1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched.h>
30 #include <linux/highmem.h>
31 #include <linux/perf_event.h>
32 
33 #include <asm/exception.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/esr.h>
36 #include <asm/system_misc.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 
40 static const char *fault_name(unsigned int esr);
41 
42 /*
43  * Dump out the page tables associated with 'addr' in mm 'mm'.
44  */
show_pte(struct mm_struct * mm,unsigned long addr)45 void show_pte(struct mm_struct *mm, unsigned long addr)
46 {
47 	pgd_t *pgd;
48 
49 	if (!mm)
50 		mm = &init_mm;
51 
52 	pr_alert("pgd = %p\n", mm->pgd);
53 	pgd = pgd_offset(mm, addr);
54 	pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
55 
56 	do {
57 		pud_t *pud;
58 		pmd_t *pmd;
59 		pte_t *pte;
60 
61 		if (pgd_none(*pgd) || pgd_bad(*pgd))
62 			break;
63 
64 		pud = pud_offset(pgd, addr);
65 		printk(", *pud=%016llx", pud_val(*pud));
66 		if (pud_none(*pud) || pud_bad(*pud))
67 			break;
68 
69 		pmd = pmd_offset(pud, addr);
70 		printk(", *pmd=%016llx", pmd_val(*pmd));
71 		if (pmd_none(*pmd) || pmd_bad(*pmd))
72 			break;
73 
74 		pte = pte_offset_map(pmd, addr);
75 		printk(", *pte=%016llx", pte_val(*pte));
76 		pte_unmap(pte);
77 	} while(0);
78 
79 	printk("\n");
80 }
81 
82 /*
83  * The kernel tried to access some page that wasn't present.
84  */
__do_kernel_fault(struct mm_struct * mm,unsigned long addr,unsigned int esr,struct pt_regs * regs)85 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
86 			      unsigned int esr, struct pt_regs *regs)
87 {
88 	/*
89 	 * Are we prepared to handle this kernel fault?
90 	 */
91 	if (fixup_exception(regs))
92 		return;
93 
94 	/*
95 	 * No handler, we'll have to terminate things with extreme prejudice.
96 	 */
97 	bust_spinlocks(1);
98 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
99 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
100 		 "paging request", addr);
101 
102 	show_pte(mm, addr);
103 	die("Oops", regs, esr);
104 	bust_spinlocks(0);
105 	do_exit(SIGKILL);
106 }
107 
108 /*
109  * Something tried to access memory that isn't in our memory map. User mode
110  * accesses just cause a SIGSEGV
111  */
__do_user_fault(struct task_struct * tsk,unsigned long addr,unsigned int esr,unsigned int sig,int code,struct pt_regs * regs)112 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
113 			    unsigned int esr, unsigned int sig, int code,
114 			    struct pt_regs *regs)
115 {
116 	struct siginfo si;
117 
118 	if (show_unhandled_signals && unhandled_signal(tsk, sig) &&
119 	    printk_ratelimit()) {
120 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
121 			tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
122 			addr, esr);
123 		show_pte(tsk->mm, addr);
124 		show_regs(regs);
125 	}
126 
127 	tsk->thread.fault_address = addr;
128 	tsk->thread.fault_code = esr;
129 	si.si_signo = sig;
130 	si.si_errno = 0;
131 	si.si_code = code;
132 	si.si_addr = (void __user *)addr;
133 	force_sig_info(sig, &si, tsk);
134 }
135 
do_bad_area(unsigned long addr,unsigned int esr,struct pt_regs * regs)136 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
137 {
138 	struct task_struct *tsk = current;
139 	struct mm_struct *mm = tsk->active_mm;
140 
141 	/*
142 	 * If we are in kernel mode at this point, we have no context to
143 	 * handle this fault with.
144 	 */
145 	if (user_mode(regs))
146 		__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
147 	else
148 		__do_kernel_fault(mm, addr, esr, regs);
149 }
150 
151 #define VM_FAULT_BADMAP		0x010000
152 #define VM_FAULT_BADACCESS	0x020000
153 
154 #define ESR_LNX_EXEC		(1 << 24)
155 
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct task_struct * tsk)156 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
157 			   unsigned int mm_flags, unsigned long vm_flags,
158 			   struct task_struct *tsk)
159 {
160 	struct vm_area_struct *vma;
161 	int fault;
162 
163 	vma = find_vma(mm, addr);
164 	fault = VM_FAULT_BADMAP;
165 	if (unlikely(!vma))
166 		goto out;
167 	if (unlikely(vma->vm_start > addr))
168 		goto check_stack;
169 
170 	/*
171 	 * Ok, we have a good vm_area for this memory access, so we can handle
172 	 * it.
173 	 */
174 good_area:
175 	/*
176 	 * Check that the permissions on the VMA allow for the fault which
177 	 * occurred. If we encountered a write or exec fault, we must have
178 	 * appropriate permissions, otherwise we allow any permission.
179 	 */
180 	if (!(vma->vm_flags & vm_flags)) {
181 		fault = VM_FAULT_BADACCESS;
182 		goto out;
183 	}
184 
185 	return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
186 
187 check_stack:
188 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
189 		goto good_area;
190 out:
191 	return fault;
192 }
193 
do_page_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)194 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
195 				   struct pt_regs *regs)
196 {
197 	struct task_struct *tsk;
198 	struct mm_struct *mm;
199 	int fault, sig, code;
200 	unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
201 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
202 
203 	tsk = current;
204 	mm  = tsk->mm;
205 
206 	/* Enable interrupts if they were enabled in the parent context. */
207 	if (interrupts_enabled(regs))
208 		local_irq_enable();
209 
210 	/*
211 	 * If we're in an interrupt or have no user context, we must not take
212 	 * the fault.
213 	 */
214 	if (in_atomic() || !mm)
215 		goto no_context;
216 
217 	if (user_mode(regs))
218 		mm_flags |= FAULT_FLAG_USER;
219 
220 	if (esr & ESR_LNX_EXEC) {
221 		vm_flags = VM_EXEC;
222 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
223 		vm_flags = VM_WRITE;
224 		mm_flags |= FAULT_FLAG_WRITE;
225 	}
226 
227 	/*
228 	 * As per x86, we may deadlock here. However, since the kernel only
229 	 * validly references user space from well defined areas of the code,
230 	 * we can bug out early if this is from code which shouldn't.
231 	 */
232 	if (!down_read_trylock(&mm->mmap_sem)) {
233 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
234 			goto no_context;
235 retry:
236 		down_read(&mm->mmap_sem);
237 	} else {
238 		/*
239 		 * The above down_read_trylock() might have succeeded in which
240 		 * case, we'll have missed the might_sleep() from down_read().
241 		 */
242 		might_sleep();
243 #ifdef CONFIG_DEBUG_VM
244 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
245 			goto no_context;
246 #endif
247 	}
248 
249 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
250 
251 	/*
252 	 * If we need to retry but a fatal signal is pending, handle the
253 	 * signal first. We do not need to release the mmap_sem because it
254 	 * would already be released in __lock_page_or_retry in mm/filemap.c.
255 	 */
256 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
257 		return 0;
258 
259 	/*
260 	 * Major/minor page fault accounting is only done on the initial
261 	 * attempt. If we go through a retry, it is extremely likely that the
262 	 * page will be found in page cache at that point.
263 	 */
264 
265 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
266 	if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
267 		if (fault & VM_FAULT_MAJOR) {
268 			tsk->maj_flt++;
269 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
270 				      addr);
271 		} else {
272 			tsk->min_flt++;
273 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
274 				      addr);
275 		}
276 		if (fault & VM_FAULT_RETRY) {
277 			/*
278 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
279 			 * starvation.
280 			 */
281 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
282 			mm_flags |= FAULT_FLAG_TRIED;
283 			goto retry;
284 		}
285 	}
286 
287 	up_read(&mm->mmap_sem);
288 
289 	/*
290 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
291 	 */
292 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
293 			      VM_FAULT_BADACCESS))))
294 		return 0;
295 
296 	/*
297 	 * If we are in kernel mode at this point, we have no context to
298 	 * handle this fault with.
299 	 */
300 	if (!user_mode(regs))
301 		goto no_context;
302 
303 	if (fault & VM_FAULT_OOM) {
304 		/*
305 		 * We ran out of memory, call the OOM killer, and return to
306 		 * userspace (which will retry the fault, or kill us if we got
307 		 * oom-killed).
308 		 */
309 		pagefault_out_of_memory();
310 		return 0;
311 	}
312 
313 	if (fault & VM_FAULT_SIGBUS) {
314 		/*
315 		 * We had some memory, but were unable to successfully fix up
316 		 * this page fault.
317 		 */
318 		sig = SIGBUS;
319 		code = BUS_ADRERR;
320 	} else {
321 		/*
322 		 * Something tried to access memory that isn't in our memory
323 		 * map.
324 		 */
325 		sig = SIGSEGV;
326 		code = fault == VM_FAULT_BADACCESS ?
327 			SEGV_ACCERR : SEGV_MAPERR;
328 	}
329 
330 	__do_user_fault(tsk, addr, esr, sig, code, regs);
331 	return 0;
332 
333 no_context:
334 	__do_kernel_fault(mm, addr, esr, regs);
335 	return 0;
336 }
337 
338 /*
339  * First Level Translation Fault Handler
340  *
341  * We enter here because the first level page table doesn't contain a valid
342  * entry for the address.
343  *
344  * If the address is in kernel space (>= TASK_SIZE), then we are probably
345  * faulting in the vmalloc() area.
346  *
347  * If the init_task's first level page tables contains the relevant entry, we
348  * copy the it to this task.  If not, we send the process a signal, fixup the
349  * exception, or oops the kernel.
350  *
351  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
352  * or a critical region, and should only copy the information from the master
353  * page table, nothing more.
354  */
do_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)355 static int __kprobes do_translation_fault(unsigned long addr,
356 					  unsigned int esr,
357 					  struct pt_regs *regs)
358 {
359 	if (addr < TASK_SIZE)
360 		return do_page_fault(addr, esr, regs);
361 
362 	do_bad_area(addr, esr, regs);
363 	return 0;
364 }
365 
366 /*
367  * This abort handler always returns "fault".
368  */
do_bad(unsigned long addr,unsigned int esr,struct pt_regs * regs)369 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
370 {
371 	return 1;
372 }
373 
374 static struct fault_info {
375 	int	(*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
376 	int	sig;
377 	int	code;
378 	const char *name;
379 } fault_info[] = {
380 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
381 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
382 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
383 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
384 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
385 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
386 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
387 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
388 	{ do_bad,		SIGBUS,  0,		"reserved access flag fault"	},
389 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
390 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
391 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
392 	{ do_bad,		SIGBUS,  0,		"reserved permission fault"	},
393 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
394 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
395 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
396 	{ do_bad,		SIGBUS,  0,		"synchronous external abort"	},
397 	{ do_bad,		SIGBUS,  0,		"asynchronous external abort"	},
398 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
399 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
400 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
401 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
402 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
403 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
404 	{ do_bad,		SIGBUS,  0,		"synchronous parity error"	},
405 	{ do_bad,		SIGBUS,  0,		"asynchronous parity error"	},
406 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
407 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
408 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
409 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
410 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
411 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
412 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
413 	{ do_bad,		SIGBUS,  BUS_ADRALN,	"alignment fault"		},
414 	{ do_bad,		SIGBUS,  0,		"debug event"			},
415 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
416 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
417 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
418 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
419 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
420 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
421 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
422 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
423 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
424 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
425 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
426 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
427 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
428 	{ do_bad,		SIGBUS,  0,		"unknown 48"			},
429 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
430 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
431 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
432 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
433 	{ do_bad,		SIGBUS,  0,		"unknown 53"			},
434 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
435 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
436 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
437 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
438 	{ do_bad,		SIGBUS,  0,		"implementation fault (coprocessor abort)" },
439 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
440 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
441 	{ do_bad,		SIGBUS,  0,		"unknown 61"			},
442 	{ do_bad,		SIGBUS,  0,		"unknown 62"			},
443 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
444 };
445 
fault_name(unsigned int esr)446 static const char *fault_name(unsigned int esr)
447 {
448 	const struct fault_info *inf = fault_info + (esr & 63);
449 	return inf->name;
450 }
451 
452 /*
453  * Dispatch a data abort to the relevant handler.
454  */
do_mem_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)455 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
456 					 struct pt_regs *regs)
457 {
458 	const struct fault_info *inf = fault_info + (esr & 63);
459 	struct siginfo info;
460 
461 	if (!inf->fn(addr, esr, regs))
462 		return;
463 
464 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
465 		 inf->name, esr, addr);
466 
467 	info.si_signo = inf->sig;
468 	info.si_errno = 0;
469 	info.si_code  = inf->code;
470 	info.si_addr  = (void __user *)addr;
471 	arm64_notify_die("", regs, &info, esr);
472 }
473 
474 /*
475  * Handle stack alignment exceptions.
476  */
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)477 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
478 					   unsigned int esr,
479 					   struct pt_regs *regs)
480 {
481 	struct siginfo info;
482 
483 	info.si_signo = SIGBUS;
484 	info.si_errno = 0;
485 	info.si_code  = BUS_ADRALN;
486 	info.si_addr  = (void __user *)addr;
487 	arm64_notify_die("", regs, &info, esr);
488 }
489 
490 static struct fault_info debug_fault_info[] = {
491 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
492 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
493 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
494 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
495 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
496 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
497 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
498 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
499 };
500 
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)501 void __init hook_debug_fault_code(int nr,
502 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
503 				  int sig, int code, const char *name)
504 {
505 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
506 
507 	debug_fault_info[nr].fn		= fn;
508 	debug_fault_info[nr].sig	= sig;
509 	debug_fault_info[nr].code	= code;
510 	debug_fault_info[nr].name	= name;
511 }
512 
do_debug_exception(unsigned long addr,unsigned int esr,struct pt_regs * regs)513 asmlinkage int __exception do_debug_exception(unsigned long addr,
514 					      unsigned int esr,
515 					      struct pt_regs *regs)
516 {
517 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
518 	struct siginfo info;
519 
520 	if (!inf->fn(addr, esr, regs))
521 		return 1;
522 
523 	pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
524 		 inf->name, esr, addr);
525 
526 	info.si_signo = inf->sig;
527 	info.si_errno = 0;
528 	info.si_code  = inf->code;
529 	info.si_addr  = (void __user *)addr;
530 	arm64_notify_die("", regs, &info, 0);
531 
532 	return 0;
533 }
534