1/*
2 * arch/arm/kernel/kprobes.c
3 *
4 * Kprobes on ARM
5 *
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * General Public License for more details.
20 */
21
22#include <linux/kernel.h>
23#include <linux/kprobes.h>
24#include <linux/module.h>
25#include <linux/slab.h>
26#include <linux/stop_machine.h>
27#include <linux/stringify.h>
28#include <asm/traps.h>
29#include <asm/opcodes.h>
30#include <asm/cacheflush.h>
31#include <linux/percpu.h>
32#include <linux/bug.h>
33#include <asm/patch.h>
34
35#include "../decode-arm.h"
36#include "../decode-thumb.h"
37#include "core.h"
38
39#define MIN_STACK_SIZE(addr) 				\
40	min((unsigned long)MAX_STACK_SIZE,		\
41	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
42
43#define flush_insns(addr, size)				\
44	flush_icache_range((unsigned long)(addr),	\
45			   (unsigned long)(addr) +	\
46			   (size))
47
48/* Used as a marker in ARM_pc to note when we're in a jprobe. */
49#define JPROBE_MAGIC_ADDR		0xffffffff
50
51DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
52DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
53
54
55int __kprobes arch_prepare_kprobe(struct kprobe *p)
56{
57	kprobe_opcode_t insn;
58	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
59	unsigned long addr = (unsigned long)p->addr;
60	bool thumb;
61	kprobe_decode_insn_t *decode_insn;
62	const union decode_action *actions;
63	int is;
64	const struct decode_checker **checkers;
65
66	if (in_exception_text(addr))
67		return -EINVAL;
68
69#ifdef CONFIG_THUMB2_KERNEL
70	thumb = true;
71	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
72	insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
73	if (is_wide_instruction(insn)) {
74		u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
75		insn = __opcode_thumb32_compose(insn, inst2);
76		decode_insn = thumb32_probes_decode_insn;
77		actions = kprobes_t32_actions;
78		checkers = kprobes_t32_checkers;
79	} else {
80		decode_insn = thumb16_probes_decode_insn;
81		actions = kprobes_t16_actions;
82		checkers = kprobes_t16_checkers;
83	}
84#else /* !CONFIG_THUMB2_KERNEL */
85	thumb = false;
86	if (addr & 0x3)
87		return -EINVAL;
88	insn = __mem_to_opcode_arm(*p->addr);
89	decode_insn = arm_probes_decode_insn;
90	actions = kprobes_arm_actions;
91	checkers = kprobes_arm_checkers;
92#endif
93
94	p->opcode = insn;
95	p->ainsn.insn = tmp_insn;
96
97	switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
98	case INSN_REJECTED:	/* not supported */
99		return -EINVAL;
100
101	case INSN_GOOD:		/* instruction uses slot */
102		p->ainsn.insn = get_insn_slot();
103		if (!p->ainsn.insn)
104			return -ENOMEM;
105		for (is = 0; is < MAX_INSN_SIZE; ++is)
106			p->ainsn.insn[is] = tmp_insn[is];
107		flush_insns(p->ainsn.insn,
108				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
109		p->ainsn.insn_fn = (probes_insn_fn_t *)
110					((uintptr_t)p->ainsn.insn | thumb);
111		break;
112
113	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
114		p->ainsn.insn = NULL;
115		break;
116	}
117
118	/*
119	 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
120	 * 'str r0, [sp, #-68]' should also be prohibited.
121	 * See __und_svc.
122	 */
123	if ((p->ainsn.stack_space < 0) ||
124			(p->ainsn.stack_space > MAX_STACK_SIZE))
125		return -EINVAL;
126
127	return 0;
128}
129
130void __kprobes arch_arm_kprobe(struct kprobe *p)
131{
132	unsigned int brkp;
133	void *addr;
134
135	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
136		/* Remove any Thumb flag */
137		addr = (void *)((uintptr_t)p->addr & ~1);
138
139		if (is_wide_instruction(p->opcode))
140			brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
141		else
142			brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
143	} else {
144		kprobe_opcode_t insn = p->opcode;
145
146		addr = p->addr;
147		brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
148
149		if (insn >= 0xe0000000)
150			brkp |= 0xe0000000;  /* Unconditional instruction */
151		else
152			brkp |= insn & 0xf0000000;  /* Copy condition from insn */
153	}
154
155	patch_text(addr, brkp);
156}
157
158/*
159 * The actual disarming is done here on each CPU and synchronized using
160 * stop_machine. This synchronization is necessary on SMP to avoid removing
161 * a probe between the moment the 'Undefined Instruction' exception is raised
162 * and the moment the exception handler reads the faulting instruction from
163 * memory. It is also needed to atomically set the two half-words of a 32-bit
164 * Thumb breakpoint.
165 */
166struct patch {
167	void *addr;
168	unsigned int insn;
169};
170
171static int __kprobes_remove_breakpoint(void *data)
172{
173	struct patch *p = data;
174	__patch_text(p->addr, p->insn);
175	return 0;
176}
177
178void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
179{
180	struct patch p = {
181		.addr = addr,
182		.insn = insn,
183	};
184	stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
185}
186
187void __kprobes arch_disarm_kprobe(struct kprobe *p)
188{
189	kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
190			p->opcode);
191}
192
193void __kprobes arch_remove_kprobe(struct kprobe *p)
194{
195	if (p->ainsn.insn) {
196		free_insn_slot(p->ainsn.insn, 0);
197		p->ainsn.insn = NULL;
198	}
199}
200
201static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
202{
203	kcb->prev_kprobe.kp = kprobe_running();
204	kcb->prev_kprobe.status = kcb->kprobe_status;
205}
206
207static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
208{
209	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
210	kcb->kprobe_status = kcb->prev_kprobe.status;
211}
212
213static void __kprobes set_current_kprobe(struct kprobe *p)
214{
215	__this_cpu_write(current_kprobe, p);
216}
217
218static void __kprobes
219singlestep_skip(struct kprobe *p, struct pt_regs *regs)
220{
221#ifdef CONFIG_THUMB2_KERNEL
222	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
223	if (is_wide_instruction(p->opcode))
224		regs->ARM_pc += 4;
225	else
226		regs->ARM_pc += 2;
227#else
228	regs->ARM_pc += 4;
229#endif
230}
231
232static inline void __kprobes
233singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
234{
235	p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
236}
237
238/*
239 * Called with IRQs disabled. IRQs must remain disabled from that point
240 * all the way until processing this kprobe is complete.  The current
241 * kprobes implementation cannot process more than one nested level of
242 * kprobe, and that level is reserved for user kprobe handlers, so we can't
243 * risk encountering a new kprobe in an interrupt handler.
244 */
245void __kprobes kprobe_handler(struct pt_regs *regs)
246{
247	struct kprobe *p, *cur;
248	struct kprobe_ctlblk *kcb;
249
250	kcb = get_kprobe_ctlblk();
251	cur = kprobe_running();
252
253#ifdef CONFIG_THUMB2_KERNEL
254	/*
255	 * First look for a probe which was registered using an address with
256	 * bit 0 set, this is the usual situation for pointers to Thumb code.
257	 * If not found, fallback to looking for one with bit 0 clear.
258	 */
259	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
260	if (!p)
261		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
262
263#else /* ! CONFIG_THUMB2_KERNEL */
264	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
265#endif
266
267	if (p) {
268		if (cur) {
269			/* Kprobe is pending, so we're recursing. */
270			switch (kcb->kprobe_status) {
271			case KPROBE_HIT_ACTIVE:
272			case KPROBE_HIT_SSDONE:
273				/* A pre- or post-handler probe got us here. */
274				kprobes_inc_nmissed_count(p);
275				save_previous_kprobe(kcb);
276				set_current_kprobe(p);
277				kcb->kprobe_status = KPROBE_REENTER;
278				singlestep(p, regs, kcb);
279				restore_previous_kprobe(kcb);
280				break;
281			default:
282				/* impossible cases */
283				BUG();
284			}
285		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
286			/* Probe hit and conditional execution check ok. */
287			set_current_kprobe(p);
288			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
289
290			/*
291			 * If we have no pre-handler or it returned 0, we
292			 * continue with normal processing.  If we have a
293			 * pre-handler and it returned non-zero, it prepped
294			 * for calling the break_handler below on re-entry,
295			 * so get out doing nothing more here.
296			 */
297			if (!p->pre_handler || !p->pre_handler(p, regs)) {
298				kcb->kprobe_status = KPROBE_HIT_SS;
299				singlestep(p, regs, kcb);
300				if (p->post_handler) {
301					kcb->kprobe_status = KPROBE_HIT_SSDONE;
302					p->post_handler(p, regs, 0);
303				}
304				reset_current_kprobe();
305			}
306		} else {
307			/*
308			 * Probe hit but conditional execution check failed,
309			 * so just skip the instruction and continue as if
310			 * nothing had happened.
311			 */
312			singlestep_skip(p, regs);
313		}
314	} else if (cur) {
315		/* We probably hit a jprobe.  Call its break handler. */
316		if (cur->break_handler && cur->break_handler(cur, regs)) {
317			kcb->kprobe_status = KPROBE_HIT_SS;
318			singlestep(cur, regs, kcb);
319			if (cur->post_handler) {
320				kcb->kprobe_status = KPROBE_HIT_SSDONE;
321				cur->post_handler(cur, regs, 0);
322			}
323		}
324		reset_current_kprobe();
325	} else {
326		/*
327		 * The probe was removed and a race is in progress.
328		 * There is nothing we can do about it.  Let's restart
329		 * the instruction.  By the time we can restart, the
330		 * real instruction will be there.
331		 */
332	}
333}
334
335static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
336{
337	unsigned long flags;
338	local_irq_save(flags);
339	kprobe_handler(regs);
340	local_irq_restore(flags);
341	return 0;
342}
343
344int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
345{
346	struct kprobe *cur = kprobe_running();
347	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
348
349	switch (kcb->kprobe_status) {
350	case KPROBE_HIT_SS:
351	case KPROBE_REENTER:
352		/*
353		 * We are here because the instruction being single
354		 * stepped caused a page fault. We reset the current
355		 * kprobe and the PC to point back to the probe address
356		 * and allow the page fault handler to continue as a
357		 * normal page fault.
358		 */
359		regs->ARM_pc = (long)cur->addr;
360		if (kcb->kprobe_status == KPROBE_REENTER) {
361			restore_previous_kprobe(kcb);
362		} else {
363			reset_current_kprobe();
364		}
365		break;
366
367	case KPROBE_HIT_ACTIVE:
368	case KPROBE_HIT_SSDONE:
369		/*
370		 * We increment the nmissed count for accounting,
371		 * we can also use npre/npostfault count for accounting
372		 * these specific fault cases.
373		 */
374		kprobes_inc_nmissed_count(cur);
375
376		/*
377		 * We come here because instructions in the pre/post
378		 * handler caused the page_fault, this could happen
379		 * if handler tries to access user space by
380		 * copy_from_user(), get_user() etc. Let the
381		 * user-specified handler try to fix it.
382		 */
383		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
384			return 1;
385		break;
386
387	default:
388		break;
389	}
390
391	return 0;
392}
393
394int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
395				       unsigned long val, void *data)
396{
397	/*
398	 * notify_die() is currently never called on ARM,
399	 * so this callback is currently empty.
400	 */
401	return NOTIFY_DONE;
402}
403
404/*
405 * When a retprobed function returns, trampoline_handler() is called,
406 * calling the kretprobe's handler. We construct a struct pt_regs to
407 * give a view of registers r0-r11 to the user return-handler.  This is
408 * not a complete pt_regs structure, but that should be plenty sufficient
409 * for kretprobe handlers which should normally be interested in r0 only
410 * anyway.
411 */
412void __naked __kprobes kretprobe_trampoline(void)
413{
414	__asm__ __volatile__ (
415		"stmdb	sp!, {r0 - r11}		\n\t"
416		"mov	r0, sp			\n\t"
417		"bl	trampoline_handler	\n\t"
418		"mov	lr, r0			\n\t"
419		"ldmia	sp!, {r0 - r11}		\n\t"
420#ifdef CONFIG_THUMB2_KERNEL
421		"bx	lr			\n\t"
422#else
423		"mov	pc, lr			\n\t"
424#endif
425		: : : "memory");
426}
427
428/* Called from kretprobe_trampoline */
429static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
430{
431	struct kretprobe_instance *ri = NULL;
432	struct hlist_head *head, empty_rp;
433	struct hlist_node *tmp;
434	unsigned long flags, orig_ret_address = 0;
435	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
436
437	INIT_HLIST_HEAD(&empty_rp);
438	kretprobe_hash_lock(current, &head, &flags);
439
440	/*
441	 * It is possible to have multiple instances associated with a given
442	 * task either because multiple functions in the call path have
443	 * a return probe installed on them, and/or more than one return
444	 * probe was registered for a target function.
445	 *
446	 * We can handle this because:
447	 *     - instances are always inserted at the head of the list
448	 *     - when multiple return probes are registered for the same
449	 *       function, the first instance's ret_addr will point to the
450	 *       real return address, and all the rest will point to
451	 *       kretprobe_trampoline
452	 */
453	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
454		if (ri->task != current)
455			/* another task is sharing our hash bucket */
456			continue;
457
458		if (ri->rp && ri->rp->handler) {
459			__this_cpu_write(current_kprobe, &ri->rp->kp);
460			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
461			ri->rp->handler(ri, regs);
462			__this_cpu_write(current_kprobe, NULL);
463		}
464
465		orig_ret_address = (unsigned long)ri->ret_addr;
466		recycle_rp_inst(ri, &empty_rp);
467
468		if (orig_ret_address != trampoline_address)
469			/*
470			 * This is the real return address. Any other
471			 * instances associated with this task are for
472			 * other calls deeper on the call stack
473			 */
474			break;
475	}
476
477	kretprobe_assert(ri, orig_ret_address, trampoline_address);
478	kretprobe_hash_unlock(current, &flags);
479
480	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
481		hlist_del(&ri->hlist);
482		kfree(ri);
483	}
484
485	return (void *)orig_ret_address;
486}
487
488void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
489				      struct pt_regs *regs)
490{
491	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
492
493	/* Replace the return addr with trampoline addr. */
494	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
495}
496
497int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
498{
499	struct jprobe *jp = container_of(p, struct jprobe, kp);
500	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
501	long sp_addr = regs->ARM_sp;
502	long cpsr;
503
504	kcb->jprobe_saved_regs = *regs;
505	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
506	regs->ARM_pc = (long)jp->entry;
507
508	cpsr = regs->ARM_cpsr | PSR_I_BIT;
509#ifdef CONFIG_THUMB2_KERNEL
510	/* Set correct Thumb state in cpsr */
511	if (regs->ARM_pc & 1)
512		cpsr |= PSR_T_BIT;
513	else
514		cpsr &= ~PSR_T_BIT;
515#endif
516	regs->ARM_cpsr = cpsr;
517
518	preempt_disable();
519	return 1;
520}
521
522void __kprobes jprobe_return(void)
523{
524	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
525
526	__asm__ __volatile__ (
527		/*
528		 * Setup an empty pt_regs. Fill SP and PC fields as
529		 * they're needed by longjmp_break_handler.
530		 *
531		 * We allocate some slack between the original SP and start of
532		 * our fabricated regs. To be precise we want to have worst case
533		 * covered which is STMFD with all 16 regs so we allocate 2 *
534		 * sizeof(struct_pt_regs)).
535		 *
536		 * This is to prevent any simulated instruction from writing
537		 * over the regs when they are accessing the stack.
538		 */
539#ifdef CONFIG_THUMB2_KERNEL
540		"sub    r0, %0, %1		\n\t"
541		"mov    sp, r0			\n\t"
542#else
543		"sub    sp, %0, %1		\n\t"
544#endif
545		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
546		"str    %0, [sp, %2]		\n\t"
547		"str    r0, [sp, %3]		\n\t"
548		"mov    r0, sp			\n\t"
549		"bl     kprobe_handler		\n\t"
550
551		/*
552		 * Return to the context saved by setjmp_pre_handler
553		 * and restored by longjmp_break_handler.
554		 */
555#ifdef CONFIG_THUMB2_KERNEL
556		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
557		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
558		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
559		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
560						      /* rfe context */
561		"ldmia	sp, {r0 - r12}		\n\t"
562		"mov	sp, lr			\n\t"
563		"ldr	lr, [sp], #4		\n\t"
564		"rfeia	sp!			\n\t"
565#else
566		"ldr	r0, [sp, %4]		\n\t"
567		"msr	cpsr_cxsf, r0		\n\t"
568		"ldmia	sp, {r0 - pc}		\n\t"
569#endif
570		:
571		: "r" (kcb->jprobe_saved_regs.ARM_sp),
572		  "I" (sizeof(struct pt_regs) * 2),
573		  "J" (offsetof(struct pt_regs, ARM_sp)),
574		  "J" (offsetof(struct pt_regs, ARM_pc)),
575		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
576		  "J" (offsetof(struct pt_regs, ARM_lr))
577		: "memory", "cc");
578}
579
580int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
581{
582	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
583	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
584	long orig_sp = regs->ARM_sp;
585	struct jprobe *jp = container_of(p, struct jprobe, kp);
586
587	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
588		if (orig_sp != stack_addr) {
589			struct pt_regs *saved_regs =
590				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
591			printk("current sp %lx does not match saved sp %lx\n",
592			       orig_sp, stack_addr);
593			printk("Saved registers for jprobe %p\n", jp);
594			show_regs(saved_regs);
595			printk("Current registers\n");
596			show_regs(regs);
597			BUG();
598		}
599		*regs = kcb->jprobe_saved_regs;
600		memcpy((void *)stack_addr, kcb->jprobes_stack,
601		       MIN_STACK_SIZE(stack_addr));
602		preempt_enable_no_resched();
603		return 1;
604	}
605	return 0;
606}
607
608int __kprobes arch_trampoline_kprobe(struct kprobe *p)
609{
610	return 0;
611}
612
613#ifdef CONFIG_THUMB2_KERNEL
614
615static struct undef_hook kprobes_thumb16_break_hook = {
616	.instr_mask	= 0xffff,
617	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
618	.cpsr_mask	= MODE_MASK,
619	.cpsr_val	= SVC_MODE,
620	.fn		= kprobe_trap_handler,
621};
622
623static struct undef_hook kprobes_thumb32_break_hook = {
624	.instr_mask	= 0xffffffff,
625	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
626	.cpsr_mask	= MODE_MASK,
627	.cpsr_val	= SVC_MODE,
628	.fn		= kprobe_trap_handler,
629};
630
631#else  /* !CONFIG_THUMB2_KERNEL */
632
633static struct undef_hook kprobes_arm_break_hook = {
634	.instr_mask	= 0x0fffffff,
635	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
636	.cpsr_mask	= MODE_MASK,
637	.cpsr_val	= SVC_MODE,
638	.fn		= kprobe_trap_handler,
639};
640
641#endif /* !CONFIG_THUMB2_KERNEL */
642
643int __init arch_init_kprobes()
644{
645	arm_probes_decode_init();
646#ifdef CONFIG_THUMB2_KERNEL
647	register_undef_hook(&kprobes_thumb16_break_hook);
648	register_undef_hook(&kprobes_thumb32_break_hook);
649#else
650	register_undef_hook(&kprobes_arm_break_hook);
651#endif
652	return 0;
653}
654