1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17 */
18
19#include <linux/cpu.h>
20#include <linux/cpu_pm.h>
21#include <linux/errno.h>
22#include <linux/err.h>
23#include <linux/kvm_host.h>
24#include <linux/module.h>
25#include <linux/vmalloc.h>
26#include <linux/fs.h>
27#include <linux/mman.h>
28#include <linux/sched.h>
29#include <linux/kvm.h>
30#include <trace/events/kvm.h>
31
32#define CREATE_TRACE_POINTS
33#include "trace.h"
34
35#include <asm/uaccess.h>
36#include <asm/ptrace.h>
37#include <asm/mman.h>
38#include <asm/tlbflush.h>
39#include <asm/cacheflush.h>
40#include <asm/virt.h>
41#include <asm/kvm_arm.h>
42#include <asm/kvm_asm.h>
43#include <asm/kvm_mmu.h>
44#include <asm/kvm_emulate.h>
45#include <asm/kvm_coproc.h>
46#include <asm/kvm_psci.h>
47
48#ifdef REQUIRES_VIRT
49__asm__(".arch_extension	virt");
50#endif
51
52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54static unsigned long hyp_default_vectors;
55
56/* Per-CPU variable containing the currently running vcpu. */
57static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59/* The VMID used in the VTTBR */
60static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61static u8 kvm_next_vmid;
62static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65{
66	BUG_ON(preemptible());
67	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
68}
69
70/**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
74struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75{
76	BUG_ON(preemptible());
77	return __this_cpu_read(kvm_arm_running_vcpu);
78}
79
80/**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
83struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84{
85	return &kvm_arm_running_vcpu;
86}
87
88int kvm_arch_hardware_enable(void)
89{
90	return 0;
91}
92
93int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94{
95	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96}
97
98int kvm_arch_hardware_setup(void)
99{
100	return 0;
101}
102
103void kvm_arch_check_processor_compat(void *rtn)
104{
105	*(int *)rtn = 0;
106}
107
108
109/**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm:	pointer to the KVM struct
112 */
113int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114{
115	int ret = 0;
116
117	if (type)
118		return -EINVAL;
119
120	ret = kvm_alloc_stage2_pgd(kvm);
121	if (ret)
122		goto out_fail_alloc;
123
124	ret = create_hyp_mappings(kvm, kvm + 1);
125	if (ret)
126		goto out_free_stage2_pgd;
127
128	kvm_timer_init(kvm);
129
130	/* Mark the initial VMID generation invalid */
131	kvm->arch.vmid_gen = 0;
132
133	/* The maximum number of VCPUs is limited by the host's GIC model */
134	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136	return ret;
137out_free_stage2_pgd:
138	kvm_free_stage2_pgd(kvm);
139out_fail_alloc:
140	return ret;
141}
142
143int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144{
145	return VM_FAULT_SIGBUS;
146}
147
148
149/**
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm:	pointer to the KVM struct
152 */
153void kvm_arch_destroy_vm(struct kvm *kvm)
154{
155	int i;
156
157	kvm_free_stage2_pgd(kvm);
158
159	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160		if (kvm->vcpus[i]) {
161			kvm_arch_vcpu_free(kvm->vcpus[i]);
162			kvm->vcpus[i] = NULL;
163		}
164	}
165
166	kvm_vgic_destroy(kvm);
167}
168
169int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170{
171	int r;
172	switch (ext) {
173	case KVM_CAP_IRQCHIP:
174	case KVM_CAP_IRQFD:
175	case KVM_CAP_IOEVENTFD:
176	case KVM_CAP_DEVICE_CTRL:
177	case KVM_CAP_USER_MEMORY:
178	case KVM_CAP_SYNC_MMU:
179	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180	case KVM_CAP_ONE_REG:
181	case KVM_CAP_ARM_PSCI:
182	case KVM_CAP_ARM_PSCI_0_2:
183	case KVM_CAP_READONLY_MEM:
184	case KVM_CAP_MP_STATE:
185		r = 1;
186		break;
187	case KVM_CAP_COALESCED_MMIO:
188		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189		break;
190	case KVM_CAP_ARM_SET_DEVICE_ADDR:
191		r = 1;
192		break;
193	case KVM_CAP_NR_VCPUS:
194		r = num_online_cpus();
195		break;
196	case KVM_CAP_MAX_VCPUS:
197		r = KVM_MAX_VCPUS;
198		break;
199	default:
200		r = kvm_arch_dev_ioctl_check_extension(ext);
201		break;
202	}
203	return r;
204}
205
206long kvm_arch_dev_ioctl(struct file *filp,
207			unsigned int ioctl, unsigned long arg)
208{
209	return -EINVAL;
210}
211
212
213struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214{
215	int err;
216	struct kvm_vcpu *vcpu;
217
218	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219		err = -EBUSY;
220		goto out;
221	}
222
223	if (id >= kvm->arch.max_vcpus) {
224		err = -EINVAL;
225		goto out;
226	}
227
228	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229	if (!vcpu) {
230		err = -ENOMEM;
231		goto out;
232	}
233
234	err = kvm_vcpu_init(vcpu, kvm, id);
235	if (err)
236		goto free_vcpu;
237
238	err = create_hyp_mappings(vcpu, vcpu + 1);
239	if (err)
240		goto vcpu_uninit;
241
242	return vcpu;
243vcpu_uninit:
244	kvm_vcpu_uninit(vcpu);
245free_vcpu:
246	kmem_cache_free(kvm_vcpu_cache, vcpu);
247out:
248	return ERR_PTR(err);
249}
250
251void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252{
253}
254
255void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256{
257	kvm_mmu_free_memory_caches(vcpu);
258	kvm_timer_vcpu_terminate(vcpu);
259	kvm_vgic_vcpu_destroy(vcpu);
260	kmem_cache_free(kvm_vcpu_cache, vcpu);
261}
262
263void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264{
265	kvm_arch_vcpu_free(vcpu);
266}
267
268int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269{
270	return kvm_timer_should_fire(vcpu);
271}
272
273int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
274{
275	/* Force users to call KVM_ARM_VCPU_INIT */
276	vcpu->arch.target = -1;
277	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
278
279	/* Set up the timer */
280	kvm_timer_vcpu_init(vcpu);
281
282	return 0;
283}
284
285void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
286{
287	vcpu->cpu = cpu;
288	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
289
290	kvm_arm_set_running_vcpu(vcpu);
291}
292
293void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
294{
295	/*
296	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
297	 * if the vcpu is no longer assigned to a cpu.  This is used for the
298	 * optimized make_all_cpus_request path.
299	 */
300	vcpu->cpu = -1;
301
302	kvm_arm_set_running_vcpu(NULL);
303}
304
305int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
306					struct kvm_guest_debug *dbg)
307{
308	return -EINVAL;
309}
310
311
312int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
313				    struct kvm_mp_state *mp_state)
314{
315	if (vcpu->arch.pause)
316		mp_state->mp_state = KVM_MP_STATE_STOPPED;
317	else
318		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
319
320	return 0;
321}
322
323int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
324				    struct kvm_mp_state *mp_state)
325{
326	switch (mp_state->mp_state) {
327	case KVM_MP_STATE_RUNNABLE:
328		vcpu->arch.pause = false;
329		break;
330	case KVM_MP_STATE_STOPPED:
331		vcpu->arch.pause = true;
332		break;
333	default:
334		return -EINVAL;
335	}
336
337	return 0;
338}
339
340/**
341 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
342 * @v:		The VCPU pointer
343 *
344 * If the guest CPU is not waiting for interrupts or an interrupt line is
345 * asserted, the CPU is by definition runnable.
346 */
347int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
348{
349	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
350}
351
352/* Just ensure a guest exit from a particular CPU */
353static void exit_vm_noop(void *info)
354{
355}
356
357void force_vm_exit(const cpumask_t *mask)
358{
359	smp_call_function_many(mask, exit_vm_noop, NULL, true);
360}
361
362/**
363 * need_new_vmid_gen - check that the VMID is still valid
364 * @kvm: The VM's VMID to checkt
365 *
366 * return true if there is a new generation of VMIDs being used
367 *
368 * The hardware supports only 256 values with the value zero reserved for the
369 * host, so we check if an assigned value belongs to a previous generation,
370 * which which requires us to assign a new value. If we're the first to use a
371 * VMID for the new generation, we must flush necessary caches and TLBs on all
372 * CPUs.
373 */
374static bool need_new_vmid_gen(struct kvm *kvm)
375{
376	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
377}
378
379/**
380 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
381 * @kvm	The guest that we are about to run
382 *
383 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
384 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
385 * caches and TLBs.
386 */
387static void update_vttbr(struct kvm *kvm)
388{
389	phys_addr_t pgd_phys;
390	u64 vmid;
391
392	if (!need_new_vmid_gen(kvm))
393		return;
394
395	spin_lock(&kvm_vmid_lock);
396
397	/*
398	 * We need to re-check the vmid_gen here to ensure that if another vcpu
399	 * already allocated a valid vmid for this vm, then this vcpu should
400	 * use the same vmid.
401	 */
402	if (!need_new_vmid_gen(kvm)) {
403		spin_unlock(&kvm_vmid_lock);
404		return;
405	}
406
407	/* First user of a new VMID generation? */
408	if (unlikely(kvm_next_vmid == 0)) {
409		atomic64_inc(&kvm_vmid_gen);
410		kvm_next_vmid = 1;
411
412		/*
413		 * On SMP we know no other CPUs can use this CPU's or each
414		 * other's VMID after force_vm_exit returns since the
415		 * kvm_vmid_lock blocks them from reentry to the guest.
416		 */
417		force_vm_exit(cpu_all_mask);
418		/*
419		 * Now broadcast TLB + ICACHE invalidation over the inner
420		 * shareable domain to make sure all data structures are
421		 * clean.
422		 */
423		kvm_call_hyp(__kvm_flush_vm_context);
424	}
425
426	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
427	kvm->arch.vmid = kvm_next_vmid;
428	kvm_next_vmid++;
429
430	/* update vttbr to be used with the new vmid */
431	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
432	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
433	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
434	kvm->arch.vttbr = pgd_phys | vmid;
435
436	spin_unlock(&kvm_vmid_lock);
437}
438
439static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
440{
441	struct kvm *kvm = vcpu->kvm;
442	int ret;
443
444	if (likely(vcpu->arch.has_run_once))
445		return 0;
446
447	vcpu->arch.has_run_once = true;
448
449	/*
450	 * Map the VGIC hardware resources before running a vcpu the first
451	 * time on this VM.
452	 */
453	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
454		ret = kvm_vgic_map_resources(kvm);
455		if (ret)
456			return ret;
457	}
458
459	/*
460	 * Enable the arch timers only if we have an in-kernel VGIC
461	 * and it has been properly initialized, since we cannot handle
462	 * interrupts from the virtual timer with a userspace gic.
463	 */
464	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
465		kvm_timer_enable(kvm);
466
467	return 0;
468}
469
470bool kvm_arch_intc_initialized(struct kvm *kvm)
471{
472	return vgic_initialized(kvm);
473}
474
475static void vcpu_pause(struct kvm_vcpu *vcpu)
476{
477	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
478
479	wait_event_interruptible(*wq, !vcpu->arch.pause);
480}
481
482static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
483{
484	return vcpu->arch.target >= 0;
485}
486
487/**
488 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
489 * @vcpu:	The VCPU pointer
490 * @run:	The kvm_run structure pointer used for userspace state exchange
491 *
492 * This function is called through the VCPU_RUN ioctl called from user space. It
493 * will execute VM code in a loop until the time slice for the process is used
494 * or some emulation is needed from user space in which case the function will
495 * return with return value 0 and with the kvm_run structure filled in with the
496 * required data for the requested emulation.
497 */
498int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
499{
500	int ret;
501	sigset_t sigsaved;
502
503	if (unlikely(!kvm_vcpu_initialized(vcpu)))
504		return -ENOEXEC;
505
506	ret = kvm_vcpu_first_run_init(vcpu);
507	if (ret)
508		return ret;
509
510	if (run->exit_reason == KVM_EXIT_MMIO) {
511		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
512		if (ret)
513			return ret;
514	}
515
516	if (vcpu->sigset_active)
517		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
518
519	ret = 1;
520	run->exit_reason = KVM_EXIT_UNKNOWN;
521	while (ret > 0) {
522		/*
523		 * Check conditions before entering the guest
524		 */
525		cond_resched();
526
527		update_vttbr(vcpu->kvm);
528
529		if (vcpu->arch.pause)
530			vcpu_pause(vcpu);
531
532		kvm_vgic_flush_hwstate(vcpu);
533		kvm_timer_flush_hwstate(vcpu);
534
535		local_irq_disable();
536
537		/*
538		 * Re-check atomic conditions
539		 */
540		if (signal_pending(current)) {
541			ret = -EINTR;
542			run->exit_reason = KVM_EXIT_INTR;
543		}
544
545		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546			local_irq_enable();
547			kvm_timer_sync_hwstate(vcpu);
548			kvm_vgic_sync_hwstate(vcpu);
549			continue;
550		}
551
552		/**************************************************************
553		 * Enter the guest
554		 */
555		trace_kvm_entry(*vcpu_pc(vcpu));
556		kvm_guest_enter();
557		vcpu->mode = IN_GUEST_MODE;
558
559		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
560
561		vcpu->mode = OUTSIDE_GUEST_MODE;
562		kvm_guest_exit();
563		trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
564		/*
565		 * We may have taken a host interrupt in HYP mode (ie
566		 * while executing the guest). This interrupt is still
567		 * pending, as we haven't serviced it yet!
568		 *
569		 * We're now back in SVC mode, with interrupts
570		 * disabled.  Enabling the interrupts now will have
571		 * the effect of taking the interrupt again, in SVC
572		 * mode this time.
573		 */
574		local_irq_enable();
575
576		/*
577		 * Back from guest
578		 *************************************************************/
579
580		kvm_timer_sync_hwstate(vcpu);
581		kvm_vgic_sync_hwstate(vcpu);
582
583		ret = handle_exit(vcpu, run, ret);
584	}
585
586	if (vcpu->sigset_active)
587		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
588	return ret;
589}
590
591static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
592{
593	int bit_index;
594	bool set;
595	unsigned long *ptr;
596
597	if (number == KVM_ARM_IRQ_CPU_IRQ)
598		bit_index = __ffs(HCR_VI);
599	else /* KVM_ARM_IRQ_CPU_FIQ */
600		bit_index = __ffs(HCR_VF);
601
602	ptr = (unsigned long *)&vcpu->arch.irq_lines;
603	if (level)
604		set = test_and_set_bit(bit_index, ptr);
605	else
606		set = test_and_clear_bit(bit_index, ptr);
607
608	/*
609	 * If we didn't change anything, no need to wake up or kick other CPUs
610	 */
611	if (set == level)
612		return 0;
613
614	/*
615	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
616	 * trigger a world-switch round on the running physical CPU to set the
617	 * virtual IRQ/FIQ fields in the HCR appropriately.
618	 */
619	kvm_vcpu_kick(vcpu);
620
621	return 0;
622}
623
624int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
625			  bool line_status)
626{
627	u32 irq = irq_level->irq;
628	unsigned int irq_type, vcpu_idx, irq_num;
629	int nrcpus = atomic_read(&kvm->online_vcpus);
630	struct kvm_vcpu *vcpu = NULL;
631	bool level = irq_level->level;
632
633	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
634	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
635	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
636
637	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
638
639	switch (irq_type) {
640	case KVM_ARM_IRQ_TYPE_CPU:
641		if (irqchip_in_kernel(kvm))
642			return -ENXIO;
643
644		if (vcpu_idx >= nrcpus)
645			return -EINVAL;
646
647		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
648		if (!vcpu)
649			return -EINVAL;
650
651		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
652			return -EINVAL;
653
654		return vcpu_interrupt_line(vcpu, irq_num, level);
655	case KVM_ARM_IRQ_TYPE_PPI:
656		if (!irqchip_in_kernel(kvm))
657			return -ENXIO;
658
659		if (vcpu_idx >= nrcpus)
660			return -EINVAL;
661
662		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
663		if (!vcpu)
664			return -EINVAL;
665
666		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
667			return -EINVAL;
668
669		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
670	case KVM_ARM_IRQ_TYPE_SPI:
671		if (!irqchip_in_kernel(kvm))
672			return -ENXIO;
673
674		if (irq_num < VGIC_NR_PRIVATE_IRQS)
675			return -EINVAL;
676
677		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
678	}
679
680	return -EINVAL;
681}
682
683static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
684			       const struct kvm_vcpu_init *init)
685{
686	unsigned int i;
687	int phys_target = kvm_target_cpu();
688
689	if (init->target != phys_target)
690		return -EINVAL;
691
692	/*
693	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
694	 * use the same target.
695	 */
696	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
697		return -EINVAL;
698
699	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
700	for (i = 0; i < sizeof(init->features) * 8; i++) {
701		bool set = (init->features[i / 32] & (1 << (i % 32)));
702
703		if (set && i >= KVM_VCPU_MAX_FEATURES)
704			return -ENOENT;
705
706		/*
707		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
708		 * use the same feature set.
709		 */
710		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
711		    test_bit(i, vcpu->arch.features) != set)
712			return -EINVAL;
713
714		if (set)
715			set_bit(i, vcpu->arch.features);
716	}
717
718	vcpu->arch.target = phys_target;
719
720	/* Now we know what it is, we can reset it. */
721	return kvm_reset_vcpu(vcpu);
722}
723
724
725static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
726					 struct kvm_vcpu_init *init)
727{
728	int ret;
729
730	ret = kvm_vcpu_set_target(vcpu, init);
731	if (ret)
732		return ret;
733
734	/*
735	 * Ensure a rebooted VM will fault in RAM pages and detect if the
736	 * guest MMU is turned off and flush the caches as needed.
737	 */
738	if (vcpu->arch.has_run_once)
739		stage2_unmap_vm(vcpu->kvm);
740
741	vcpu_reset_hcr(vcpu);
742
743	/*
744	 * Handle the "start in power-off" case by marking the VCPU as paused.
745	 */
746	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
747		vcpu->arch.pause = true;
748	else
749		vcpu->arch.pause = false;
750
751	return 0;
752}
753
754long kvm_arch_vcpu_ioctl(struct file *filp,
755			 unsigned int ioctl, unsigned long arg)
756{
757	struct kvm_vcpu *vcpu = filp->private_data;
758	void __user *argp = (void __user *)arg;
759
760	switch (ioctl) {
761	case KVM_ARM_VCPU_INIT: {
762		struct kvm_vcpu_init init;
763
764		if (copy_from_user(&init, argp, sizeof(init)))
765			return -EFAULT;
766
767		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
768	}
769	case KVM_SET_ONE_REG:
770	case KVM_GET_ONE_REG: {
771		struct kvm_one_reg reg;
772
773		if (unlikely(!kvm_vcpu_initialized(vcpu)))
774			return -ENOEXEC;
775
776		if (copy_from_user(&reg, argp, sizeof(reg)))
777			return -EFAULT;
778		if (ioctl == KVM_SET_ONE_REG)
779			return kvm_arm_set_reg(vcpu, &reg);
780		else
781			return kvm_arm_get_reg(vcpu, &reg);
782	}
783	case KVM_GET_REG_LIST: {
784		struct kvm_reg_list __user *user_list = argp;
785		struct kvm_reg_list reg_list;
786		unsigned n;
787
788		if (unlikely(!kvm_vcpu_initialized(vcpu)))
789			return -ENOEXEC;
790
791		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
792			return -EFAULT;
793		n = reg_list.n;
794		reg_list.n = kvm_arm_num_regs(vcpu);
795		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
796			return -EFAULT;
797		if (n < reg_list.n)
798			return -E2BIG;
799		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
800	}
801	default:
802		return -EINVAL;
803	}
804}
805
806/**
807 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
808 * @kvm: kvm instance
809 * @log: slot id and address to which we copy the log
810 *
811 * Steps 1-4 below provide general overview of dirty page logging. See
812 * kvm_get_dirty_log_protect() function description for additional details.
813 *
814 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
815 * always flush the TLB (step 4) even if previous step failed  and the dirty
816 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
817 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
818 * writes will be marked dirty for next log read.
819 *
820 *   1. Take a snapshot of the bit and clear it if needed.
821 *   2. Write protect the corresponding page.
822 *   3. Copy the snapshot to the userspace.
823 *   4. Flush TLB's if needed.
824 */
825int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
826{
827	bool is_dirty = false;
828	int r;
829
830	mutex_lock(&kvm->slots_lock);
831
832	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
833
834	if (is_dirty)
835		kvm_flush_remote_tlbs(kvm);
836
837	mutex_unlock(&kvm->slots_lock);
838	return r;
839}
840
841static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
842					struct kvm_arm_device_addr *dev_addr)
843{
844	unsigned long dev_id, type;
845
846	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
847		KVM_ARM_DEVICE_ID_SHIFT;
848	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
849		KVM_ARM_DEVICE_TYPE_SHIFT;
850
851	switch (dev_id) {
852	case KVM_ARM_DEVICE_VGIC_V2:
853		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
854	default:
855		return -ENODEV;
856	}
857}
858
859long kvm_arch_vm_ioctl(struct file *filp,
860		       unsigned int ioctl, unsigned long arg)
861{
862	struct kvm *kvm = filp->private_data;
863	void __user *argp = (void __user *)arg;
864
865	switch (ioctl) {
866	case KVM_CREATE_IRQCHIP: {
867		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
868	}
869	case KVM_ARM_SET_DEVICE_ADDR: {
870		struct kvm_arm_device_addr dev_addr;
871
872		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
873			return -EFAULT;
874		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
875	}
876	case KVM_ARM_PREFERRED_TARGET: {
877		int err;
878		struct kvm_vcpu_init init;
879
880		err = kvm_vcpu_preferred_target(&init);
881		if (err)
882			return err;
883
884		if (copy_to_user(argp, &init, sizeof(init)))
885			return -EFAULT;
886
887		return 0;
888	}
889	default:
890		return -EINVAL;
891	}
892}
893
894static void cpu_init_hyp_mode(void *dummy)
895{
896	phys_addr_t boot_pgd_ptr;
897	phys_addr_t pgd_ptr;
898	unsigned long hyp_stack_ptr;
899	unsigned long stack_page;
900	unsigned long vector_ptr;
901
902	/* Switch from the HYP stub to our own HYP init vector */
903	__hyp_set_vectors(kvm_get_idmap_vector());
904
905	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
906	pgd_ptr = kvm_mmu_get_httbr();
907	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
908	hyp_stack_ptr = stack_page + PAGE_SIZE;
909	vector_ptr = (unsigned long)__kvm_hyp_vector;
910
911	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
912}
913
914static int hyp_init_cpu_notify(struct notifier_block *self,
915			       unsigned long action, void *cpu)
916{
917	switch (action) {
918	case CPU_STARTING:
919	case CPU_STARTING_FROZEN:
920		if (__hyp_get_vectors() == hyp_default_vectors)
921			cpu_init_hyp_mode(NULL);
922		break;
923	}
924
925	return NOTIFY_OK;
926}
927
928static struct notifier_block hyp_init_cpu_nb = {
929	.notifier_call = hyp_init_cpu_notify,
930};
931
932#ifdef CONFIG_CPU_PM
933static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
934				    unsigned long cmd,
935				    void *v)
936{
937	if (cmd == CPU_PM_EXIT &&
938	    __hyp_get_vectors() == hyp_default_vectors) {
939		cpu_init_hyp_mode(NULL);
940		return NOTIFY_OK;
941	}
942
943	return NOTIFY_DONE;
944}
945
946static struct notifier_block hyp_init_cpu_pm_nb = {
947	.notifier_call = hyp_init_cpu_pm_notifier,
948};
949
950static void __init hyp_cpu_pm_init(void)
951{
952	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
953}
954#else
955static inline void hyp_cpu_pm_init(void)
956{
957}
958#endif
959
960/**
961 * Inits Hyp-mode on all online CPUs
962 */
963static int init_hyp_mode(void)
964{
965	int cpu;
966	int err = 0;
967
968	/*
969	 * Allocate Hyp PGD and setup Hyp identity mapping
970	 */
971	err = kvm_mmu_init();
972	if (err)
973		goto out_err;
974
975	/*
976	 * It is probably enough to obtain the default on one
977	 * CPU. It's unlikely to be different on the others.
978	 */
979	hyp_default_vectors = __hyp_get_vectors();
980
981	/*
982	 * Allocate stack pages for Hypervisor-mode
983	 */
984	for_each_possible_cpu(cpu) {
985		unsigned long stack_page;
986
987		stack_page = __get_free_page(GFP_KERNEL);
988		if (!stack_page) {
989			err = -ENOMEM;
990			goto out_free_stack_pages;
991		}
992
993		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
994	}
995
996	/*
997	 * Map the Hyp-code called directly from the host
998	 */
999	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1000	if (err) {
1001		kvm_err("Cannot map world-switch code\n");
1002		goto out_free_mappings;
1003	}
1004
1005	/*
1006	 * Map the Hyp stack pages
1007	 */
1008	for_each_possible_cpu(cpu) {
1009		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1010		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011
1012		if (err) {
1013			kvm_err("Cannot map hyp stack\n");
1014			goto out_free_mappings;
1015		}
1016	}
1017
1018	/*
1019	 * Map the host CPU structures
1020	 */
1021	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1022	if (!kvm_host_cpu_state) {
1023		err = -ENOMEM;
1024		kvm_err("Cannot allocate host CPU state\n");
1025		goto out_free_mappings;
1026	}
1027
1028	for_each_possible_cpu(cpu) {
1029		kvm_cpu_context_t *cpu_ctxt;
1030
1031		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1032		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033
1034		if (err) {
1035			kvm_err("Cannot map host CPU state: %d\n", err);
1036			goto out_free_context;
1037		}
1038	}
1039
1040	/*
1041	 * Execute the init code on each CPU.
1042	 */
1043	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1044
1045	/*
1046	 * Init HYP view of VGIC
1047	 */
1048	err = kvm_vgic_hyp_init();
1049	if (err)
1050		goto out_free_context;
1051
1052	/*
1053	 * Init HYP architected timer support
1054	 */
1055	err = kvm_timer_hyp_init();
1056	if (err)
1057		goto out_free_mappings;
1058
1059#ifndef CONFIG_HOTPLUG_CPU
1060	free_boot_hyp_pgd();
1061#endif
1062
1063	kvm_perf_init();
1064
1065	kvm_info("Hyp mode initialized successfully\n");
1066
1067	return 0;
1068out_free_context:
1069	free_percpu(kvm_host_cpu_state);
1070out_free_mappings:
1071	free_hyp_pgds();
1072out_free_stack_pages:
1073	for_each_possible_cpu(cpu)
1074		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1075out_err:
1076	kvm_err("error initializing Hyp mode: %d\n", err);
1077	return err;
1078}
1079
1080static void check_kvm_target_cpu(void *ret)
1081{
1082	*(int *)ret = kvm_target_cpu();
1083}
1084
1085struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086{
1087	struct kvm_vcpu *vcpu;
1088	int i;
1089
1090	mpidr &= MPIDR_HWID_BITMASK;
1091	kvm_for_each_vcpu(i, vcpu, kvm) {
1092		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1093			return vcpu;
1094	}
1095	return NULL;
1096}
1097
1098/**
1099 * Initialize Hyp-mode and memory mappings on all CPUs.
1100 */
1101int kvm_arch_init(void *opaque)
1102{
1103	int err;
1104	int ret, cpu;
1105
1106	if (!is_hyp_mode_available()) {
1107		kvm_err("HYP mode not available\n");
1108		return -ENODEV;
1109	}
1110
1111	for_each_online_cpu(cpu) {
1112		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1113		if (ret < 0) {
1114			kvm_err("Error, CPU %d not supported!\n", cpu);
1115			return -ENODEV;
1116		}
1117	}
1118
1119	cpu_notifier_register_begin();
1120
1121	err = init_hyp_mode();
1122	if (err)
1123		goto out_err;
1124
1125	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1126	if (err) {
1127		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1128		goto out_err;
1129	}
1130
1131	cpu_notifier_register_done();
1132
1133	hyp_cpu_pm_init();
1134
1135	kvm_coproc_table_init();
1136	return 0;
1137out_err:
1138	cpu_notifier_register_done();
1139	return err;
1140}
1141
1142/* NOP: Compiling as a module not supported */
1143void kvm_arch_exit(void)
1144{
1145	kvm_perf_teardown();
1146}
1147
1148static int arm_init(void)
1149{
1150	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1151	return rc;
1152}
1153
1154module_init(arm_init);
1155