1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="MTD-NAND-Guide"> 6 <bookinfo> 7 <title>MTD NAND Driver Programming Interface</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Thomas</firstname> 12 <surname>Gleixner</surname> 13 <affiliation> 14 <address> 15 <email>tglx@linutronix.de</email> 16 </address> 17 </affiliation> 18 </author> 19 </authorgroup> 20 21 <copyright> 22 <year>2004</year> 23 <holder>Thomas Gleixner</holder> 24 </copyright> 25 26 <legalnotice> 27 <para> 28 This documentation is free software; you can redistribute 29 it and/or modify it under the terms of the GNU General Public 30 License version 2 as published by the Free Software Foundation. 31 </para> 32 33 <para> 34 This program is distributed in the hope that it will be 35 useful, but WITHOUT ANY WARRANTY; without even the implied 36 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 37 See the GNU General Public License for more details. 38 </para> 39 40 <para> 41 You should have received a copy of the GNU General Public 42 License along with this program; if not, write to the Free 43 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 44 MA 02111-1307 USA 45 </para> 46 47 <para> 48 For more details see the file COPYING in the source 49 distribution of Linux. 50 </para> 51 </legalnotice> 52 </bookinfo> 53 54<toc></toc> 55 56 <chapter id="intro"> 57 <title>Introduction</title> 58 <para> 59 The generic NAND driver supports almost all NAND and AG-AND based 60 chips and connects them to the Memory Technology Devices (MTD) 61 subsystem of the Linux Kernel. 62 </para> 63 <para> 64 This documentation is provided for developers who want to implement 65 board drivers or filesystem drivers suitable for NAND devices. 66 </para> 67 </chapter> 68 69 <chapter id="bugs"> 70 <title>Known Bugs And Assumptions</title> 71 <para> 72 None. 73 </para> 74 </chapter> 75 76 <chapter id="dochints"> 77 <title>Documentation hints</title> 78 <para> 79 The function and structure docs are autogenerated. Each function and 80 struct member has a short description which is marked with an [XXX] identifier. 81 The following chapters explain the meaning of those identifiers. 82 </para> 83 <sect1 id="Function_identifiers_XXX"> 84 <title>Function identifiers [XXX]</title> 85 <para> 86 The functions are marked with [XXX] identifiers in the short 87 comment. The identifiers explain the usage and scope of the 88 functions. Following identifiers are used: 89 </para> 90 <itemizedlist> 91 <listitem><para> 92 [MTD Interface]</para><para> 93 These functions provide the interface to the MTD kernel API. 94 They are not replaceable and provide functionality 95 which is complete hardware independent. 96 </para></listitem> 97 <listitem><para> 98 [NAND Interface]</para><para> 99 These functions are exported and provide the interface to the NAND kernel API. 100 </para></listitem> 101 <listitem><para> 102 [GENERIC]</para><para> 103 Generic functions are not replaceable and provide functionality 104 which is complete hardware independent. 105 </para></listitem> 106 <listitem><para> 107 [DEFAULT]</para><para> 108 Default functions provide hardware related functionality which is suitable 109 for most of the implementations. These functions can be replaced by the 110 board driver if necessary. Those functions are called via pointers in the 111 NAND chip description structure. The board driver can set the functions which 112 should be replaced by board dependent functions before calling nand_scan(). 113 If the function pointer is NULL on entry to nand_scan() then the pointer 114 is set to the default function which is suitable for the detected chip type. 115 </para></listitem> 116 </itemizedlist> 117 </sect1> 118 <sect1 id="Struct_member_identifiers_XXX"> 119 <title>Struct member identifiers [XXX]</title> 120 <para> 121 The struct members are marked with [XXX] identifiers in the 122 comment. The identifiers explain the usage and scope of the 123 members. Following identifiers are used: 124 </para> 125 <itemizedlist> 126 <listitem><para> 127 [INTERN]</para><para> 128 These members are for NAND driver internal use only and must not be 129 modified. Most of these values are calculated from the chip geometry 130 information which is evaluated during nand_scan(). 131 </para></listitem> 132 <listitem><para> 133 [REPLACEABLE]</para><para> 134 Replaceable members hold hardware related functions which can be 135 provided by the board driver. The board driver can set the functions which 136 should be replaced by board dependent functions before calling nand_scan(). 137 If the function pointer is NULL on entry to nand_scan() then the pointer 138 is set to the default function which is suitable for the detected chip type. 139 </para></listitem> 140 <listitem><para> 141 [BOARDSPECIFIC]</para><para> 142 Board specific members hold hardware related information which must 143 be provided by the board driver. The board driver must set the function 144 pointers and datafields before calling nand_scan(). 145 </para></listitem> 146 <listitem><para> 147 [OPTIONAL]</para><para> 148 Optional members can hold information relevant for the board driver. The 149 generic NAND driver code does not use this information. 150 </para></listitem> 151 </itemizedlist> 152 </sect1> 153 </chapter> 154 155 <chapter id="basicboarddriver"> 156 <title>Basic board driver</title> 157 <para> 158 For most boards it will be sufficient to provide just the 159 basic functions and fill out some really board dependent 160 members in the nand chip description structure. 161 </para> 162 <sect1 id="Basic_defines"> 163 <title>Basic defines</title> 164 <para> 165 At least you have to provide a mtd structure and 166 a storage for the ioremap'ed chip address. 167 You can allocate the mtd structure using kmalloc 168 or you can allocate it statically. 169 In case of static allocation you have to allocate 170 a nand_chip structure too. 171 </para> 172 <para> 173 Kmalloc based example 174 </para> 175 <programlisting> 176static struct mtd_info *board_mtd; 177static void __iomem *baseaddr; 178 </programlisting> 179 <para> 180 Static example 181 </para> 182 <programlisting> 183static struct mtd_info board_mtd; 184static struct nand_chip board_chip; 185static void __iomem *baseaddr; 186 </programlisting> 187 </sect1> 188 <sect1 id="Partition_defines"> 189 <title>Partition defines</title> 190 <para> 191 If you want to divide your device into partitions, then 192 define a partitioning scheme suitable to your board. 193 </para> 194 <programlisting> 195#define NUM_PARTITIONS 2 196static struct mtd_partition partition_info[] = { 197 { .name = "Flash partition 1", 198 .offset = 0, 199 .size = 8 * 1024 * 1024 }, 200 { .name = "Flash partition 2", 201 .offset = MTDPART_OFS_NEXT, 202 .size = MTDPART_SIZ_FULL }, 203}; 204 </programlisting> 205 </sect1> 206 <sect1 id="Hardware_control_functions"> 207 <title>Hardware control function</title> 208 <para> 209 The hardware control function provides access to the 210 control pins of the NAND chip(s). 211 The access can be done by GPIO pins or by address lines. 212 If you use address lines, make sure that the timing 213 requirements are met. 214 </para> 215 <para> 216 <emphasis>GPIO based example</emphasis> 217 </para> 218 <programlisting> 219static void board_hwcontrol(struct mtd_info *mtd, int cmd) 220{ 221 switch(cmd){ 222 case NAND_CTL_SETCLE: /* Set CLE pin high */ break; 223 case NAND_CTL_CLRCLE: /* Set CLE pin low */ break; 224 case NAND_CTL_SETALE: /* Set ALE pin high */ break; 225 case NAND_CTL_CLRALE: /* Set ALE pin low */ break; 226 case NAND_CTL_SETNCE: /* Set nCE pin low */ break; 227 case NAND_CTL_CLRNCE: /* Set nCE pin high */ break; 228 } 229} 230 </programlisting> 231 <para> 232 <emphasis>Address lines based example.</emphasis> It's assumed that the 233 nCE pin is driven by a chip select decoder. 234 </para> 235 <programlisting> 236static void board_hwcontrol(struct mtd_info *mtd, int cmd) 237{ 238 struct nand_chip *this = (struct nand_chip *) mtd->priv; 239 switch(cmd){ 240 case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break; 241 case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break; 242 case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break; 243 case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break; 244 } 245} 246 </programlisting> 247 </sect1> 248 <sect1 id="Device_ready_function"> 249 <title>Device ready function</title> 250 <para> 251 If the hardware interface has the ready busy pin of the NAND chip connected to a 252 GPIO or other accessible I/O pin, this function is used to read back the state of the 253 pin. The function has no arguments and should return 0, if the device is busy (R/B pin 254 is low) and 1, if the device is ready (R/B pin is high). 255 If the hardware interface does not give access to the ready busy pin, then 256 the function must not be defined and the function pointer this->dev_ready is set to NULL. 257 </para> 258 </sect1> 259 <sect1 id="Init_function"> 260 <title>Init function</title> 261 <para> 262 The init function allocates memory and sets up all the board 263 specific parameters and function pointers. When everything 264 is set up nand_scan() is called. This function tries to 265 detect and identify then chip. If a chip is found all the 266 internal data fields are initialized accordingly. 267 The structure(s) have to be zeroed out first and then filled with the necessary 268 information about the device. 269 </para> 270 <programlisting> 271static int __init board_init (void) 272{ 273 struct nand_chip *this; 274 int err = 0; 275 276 /* Allocate memory for MTD device structure and private data */ 277 board_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); 278 if (!board_mtd) { 279 printk ("Unable to allocate NAND MTD device structure.\n"); 280 err = -ENOMEM; 281 goto out; 282 } 283 284 /* map physical address */ 285 baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024); 286 if (!baseaddr) { 287 printk("Ioremap to access NAND chip failed\n"); 288 err = -EIO; 289 goto out_mtd; 290 } 291 292 /* Get pointer to private data */ 293 this = (struct nand_chip *) (); 294 /* Link the private data with the MTD structure */ 295 board_mtd->priv = this; 296 297 /* Set address of NAND IO lines */ 298 this->IO_ADDR_R = baseaddr; 299 this->IO_ADDR_W = baseaddr; 300 /* Reference hardware control function */ 301 this->hwcontrol = board_hwcontrol; 302 /* Set command delay time, see datasheet for correct value */ 303 this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY; 304 /* Assign the device ready function, if available */ 305 this->dev_ready = board_dev_ready; 306 this->eccmode = NAND_ECC_SOFT; 307 308 /* Scan to find existence of the device */ 309 if (nand_scan (board_mtd, 1)) { 310 err = -ENXIO; 311 goto out_ior; 312 } 313 314 add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS); 315 goto out; 316 317out_ior: 318 iounmap(baseaddr); 319out_mtd: 320 kfree (board_mtd); 321out: 322 return err; 323} 324module_init(board_init); 325 </programlisting> 326 </sect1> 327 <sect1 id="Exit_function"> 328 <title>Exit function</title> 329 <para> 330 The exit function is only necessary if the driver is 331 compiled as a module. It releases all resources which 332 are held by the chip driver and unregisters the partitions 333 in the MTD layer. 334 </para> 335 <programlisting> 336#ifdef MODULE 337static void __exit board_cleanup (void) 338{ 339 /* Release resources, unregister device */ 340 nand_release (board_mtd); 341 342 /* unmap physical address */ 343 iounmap(baseaddr); 344 345 /* Free the MTD device structure */ 346 kfree (board_mtd); 347} 348module_exit(board_cleanup); 349#endif 350 </programlisting> 351 </sect1> 352 </chapter> 353 354 <chapter id="boarddriversadvanced"> 355 <title>Advanced board driver functions</title> 356 <para> 357 This chapter describes the advanced functionality of the NAND 358 driver. For a list of functions which can be overridden by the board 359 driver see the documentation of the nand_chip structure. 360 </para> 361 <sect1 id="Multiple_chip_control"> 362 <title>Multiple chip control</title> 363 <para> 364 The nand driver can control chip arrays. Therefore the 365 board driver must provide an own select_chip function. This 366 function must (de)select the requested chip. 367 The function pointer in the nand_chip structure must 368 be set before calling nand_scan(). The maxchip parameter 369 of nand_scan() defines the maximum number of chips to 370 scan for. Make sure that the select_chip function can 371 handle the requested number of chips. 372 </para> 373 <para> 374 The nand driver concatenates the chips to one virtual 375 chip and provides this virtual chip to the MTD layer. 376 </para> 377 <para> 378 <emphasis>Note: The driver can only handle linear chip arrays 379 of equally sized chips. There is no support for 380 parallel arrays which extend the buswidth.</emphasis> 381 </para> 382 <para> 383 <emphasis>GPIO based example</emphasis> 384 </para> 385 <programlisting> 386static void board_select_chip (struct mtd_info *mtd, int chip) 387{ 388 /* Deselect all chips, set all nCE pins high */ 389 GPIO(BOARD_NAND_NCE) |= 0xff; 390 if (chip >= 0) 391 GPIO(BOARD_NAND_NCE) &= ~ (1 << chip); 392} 393 </programlisting> 394 <para> 395 <emphasis>Address lines based example.</emphasis> 396 Its assumed that the nCE pins are connected to an 397 address decoder. 398 </para> 399 <programlisting> 400static void board_select_chip (struct mtd_info *mtd, int chip) 401{ 402 struct nand_chip *this = (struct nand_chip *) mtd->priv; 403 404 /* Deselect all chips */ 405 this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK; 406 this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK; 407 switch (chip) { 408 case 0: 409 this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0; 410 this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0; 411 break; 412 .... 413 case n: 414 this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn; 415 this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn; 416 break; 417 } 418} 419 </programlisting> 420 </sect1> 421 <sect1 id="Hardware_ECC_support"> 422 <title>Hardware ECC support</title> 423 <sect2 id="Functions_and_constants"> 424 <title>Functions and constants</title> 425 <para> 426 The nand driver supports three different types of 427 hardware ECC. 428 <itemizedlist> 429 <listitem><para>NAND_ECC_HW3_256</para><para> 430 Hardware ECC generator providing 3 bytes ECC per 431 256 byte. 432 </para> </listitem> 433 <listitem><para>NAND_ECC_HW3_512</para><para> 434 Hardware ECC generator providing 3 bytes ECC per 435 512 byte. 436 </para> </listitem> 437 <listitem><para>NAND_ECC_HW6_512</para><para> 438 Hardware ECC generator providing 6 bytes ECC per 439 512 byte. 440 </para> </listitem> 441 <listitem><para>NAND_ECC_HW8_512</para><para> 442 Hardware ECC generator providing 6 bytes ECC per 443 512 byte. 444 </para> </listitem> 445 </itemizedlist> 446 If your hardware generator has a different functionality 447 add it at the appropriate place in nand_base.c 448 </para> 449 <para> 450 The board driver must provide following functions: 451 <itemizedlist> 452 <listitem><para>enable_hwecc</para><para> 453 This function is called before reading / writing to 454 the chip. Reset or initialize the hardware generator 455 in this function. The function is called with an 456 argument which let you distinguish between read 457 and write operations. 458 </para> </listitem> 459 <listitem><para>calculate_ecc</para><para> 460 This function is called after read / write from / to 461 the chip. Transfer the ECC from the hardware to 462 the buffer. If the option NAND_HWECC_SYNDROME is set 463 then the function is only called on write. See below. 464 </para> </listitem> 465 <listitem><para>correct_data</para><para> 466 In case of an ECC error this function is called for 467 error detection and correction. Return 1 respectively 2 468 in case the error can be corrected. If the error is 469 not correctable return -1. If your hardware generator 470 matches the default algorithm of the nand_ecc software 471 generator then use the correction function provided 472 by nand_ecc instead of implementing duplicated code. 473 </para> </listitem> 474 </itemizedlist> 475 </para> 476 </sect2> 477 <sect2 id="Hardware_ECC_with_syndrome_calculation"> 478 <title>Hardware ECC with syndrome calculation</title> 479 <para> 480 Many hardware ECC implementations provide Reed-Solomon 481 codes and calculate an error syndrome on read. The syndrome 482 must be converted to a standard Reed-Solomon syndrome 483 before calling the error correction code in the generic 484 Reed-Solomon library. 485 </para> 486 <para> 487 The ECC bytes must be placed immediately after the data 488 bytes in order to make the syndrome generator work. This 489 is contrary to the usual layout used by software ECC. The 490 separation of data and out of band area is not longer 491 possible. The nand driver code handles this layout and 492 the remaining free bytes in the oob area are managed by 493 the autoplacement code. Provide a matching oob-layout 494 in this case. See rts_from4.c and diskonchip.c for 495 implementation reference. In those cases we must also 496 use bad block tables on FLASH, because the ECC layout is 497 interfering with the bad block marker positions. 498 See bad block table support for details. 499 </para> 500 </sect2> 501 </sect1> 502 <sect1 id="Bad_Block_table_support"> 503 <title>Bad block table support</title> 504 <para> 505 Most NAND chips mark the bad blocks at a defined 506 position in the spare area. Those blocks must 507 not be erased under any circumstances as the bad 508 block information would be lost. 509 It is possible to check the bad block mark each 510 time when the blocks are accessed by reading the 511 spare area of the first page in the block. This 512 is time consuming so a bad block table is used. 513 </para> 514 <para> 515 The nand driver supports various types of bad block 516 tables. 517 <itemizedlist> 518 <listitem><para>Per device</para><para> 519 The bad block table contains all bad block information 520 of the device which can consist of multiple chips. 521 </para> </listitem> 522 <listitem><para>Per chip</para><para> 523 A bad block table is used per chip and contains the 524 bad block information for this particular chip. 525 </para> </listitem> 526 <listitem><para>Fixed offset</para><para> 527 The bad block table is located at a fixed offset 528 in the chip (device). This applies to various 529 DiskOnChip devices. 530 </para> </listitem> 531 <listitem><para>Automatic placed</para><para> 532 The bad block table is automatically placed and 533 detected either at the end or at the beginning 534 of a chip (device) 535 </para> </listitem> 536 <listitem><para>Mirrored tables</para><para> 537 The bad block table is mirrored on the chip (device) to 538 allow updates of the bad block table without data loss. 539 </para> </listitem> 540 </itemizedlist> 541 </para> 542 <para> 543 nand_scan() calls the function nand_default_bbt(). 544 nand_default_bbt() selects appropriate default 545 bad block table descriptors depending on the chip information 546 which was retrieved by nand_scan(). 547 </para> 548 <para> 549 The standard policy is scanning the device for bad 550 blocks and build a ram based bad block table which 551 allows faster access than always checking the 552 bad block information on the flash chip itself. 553 </para> 554 <sect2 id="Flash_based_tables"> 555 <title>Flash based tables</title> 556 <para> 557 It may be desired or necessary to keep a bad block table in FLASH. 558 For AG-AND chips this is mandatory, as they have no factory marked 559 bad blocks. They have factory marked good blocks. The marker pattern 560 is erased when the block is erased to be reused. So in case of 561 powerloss before writing the pattern back to the chip this block 562 would be lost and added to the bad blocks. Therefore we scan the 563 chip(s) when we detect them the first time for good blocks and 564 store this information in a bad block table before erasing any 565 of the blocks. 566 </para> 567 <para> 568 The blocks in which the tables are stored are protected against 569 accidental access by marking them bad in the memory bad block 570 table. The bad block table management functions are allowed 571 to circumvent this protection. 572 </para> 573 <para> 574 The simplest way to activate the FLASH based bad block table support 575 is to set the option NAND_BBT_USE_FLASH in the bbt_option field of 576 the nand chip structure before calling nand_scan(). For AG-AND 577 chips is this done by default. 578 This activates the default FLASH based bad block table functionality 579 of the NAND driver. The default bad block table options are 580 <itemizedlist> 581 <listitem><para>Store bad block table per chip</para></listitem> 582 <listitem><para>Use 2 bits per block</para></listitem> 583 <listitem><para>Automatic placement at the end of the chip</para></listitem> 584 <listitem><para>Use mirrored tables with version numbers</para></listitem> 585 <listitem><para>Reserve 4 blocks at the end of the chip</para></listitem> 586 </itemizedlist> 587 </para> 588 </sect2> 589 <sect2 id="User_defined_tables"> 590 <title>User defined tables</title> 591 <para> 592 User defined tables are created by filling out a 593 nand_bbt_descr structure and storing the pointer in the 594 nand_chip structure member bbt_td before calling nand_scan(). 595 If a mirror table is necessary a second structure must be 596 created and a pointer to this structure must be stored 597 in bbt_md inside the nand_chip structure. If the bbt_md 598 member is set to NULL then only the main table is used 599 and no scan for the mirrored table is performed. 600 </para> 601 <para> 602 The most important field in the nand_bbt_descr structure 603 is the options field. The options define most of the 604 table properties. Use the predefined constants from 605 nand.h to define the options. 606 <itemizedlist> 607 <listitem><para>Number of bits per block</para> 608 <para>The supported number of bits is 1, 2, 4, 8.</para></listitem> 609 <listitem><para>Table per chip</para> 610 <para>Setting the constant NAND_BBT_PERCHIP selects that 611 a bad block table is managed for each chip in a chip array. 612 If this option is not set then a per device bad block table 613 is used.</para></listitem> 614 <listitem><para>Table location is absolute</para> 615 <para>Use the option constant NAND_BBT_ABSPAGE and 616 define the absolute page number where the bad block 617 table starts in the field pages. If you have selected bad block 618 tables per chip and you have a multi chip array then the start page 619 must be given for each chip in the chip array. Note: there is no scan 620 for a table ident pattern performed, so the fields 621 pattern, veroffs, offs, len can be left uninitialized</para></listitem> 622 <listitem><para>Table location is automatically detected</para> 623 <para>The table can either be located in the first or the last good 624 blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place 625 the bad block table at the end of the chip (device). The 626 bad block tables are marked and identified by a pattern which 627 is stored in the spare area of the first page in the block which 628 holds the bad block table. Store a pointer to the pattern 629 in the pattern field. Further the length of the pattern has to be 630 stored in len and the offset in the spare area must be given 631 in the offs member of the nand_bbt_descr structure. For mirrored 632 bad block tables different patterns are mandatory.</para></listitem> 633 <listitem><para>Table creation</para> 634 <para>Set the option NAND_BBT_CREATE to enable the table creation 635 if no table can be found during the scan. Usually this is done only 636 once if a new chip is found. </para></listitem> 637 <listitem><para>Table write support</para> 638 <para>Set the option NAND_BBT_WRITE to enable the table write support. 639 This allows the update of the bad block table(s) in case a block has 640 to be marked bad due to wear. The MTD interface function block_markbad 641 is calling the update function of the bad block table. If the write 642 support is enabled then the table is updated on FLASH.</para> 643 <para> 644 Note: Write support should only be enabled for mirrored tables with 645 version control. 646 </para></listitem> 647 <listitem><para>Table version control</para> 648 <para>Set the option NAND_BBT_VERSION to enable the table version control. 649 It's highly recommended to enable this for mirrored tables with write 650 support. It makes sure that the risk of losing the bad block 651 table information is reduced to the loss of the information about the 652 one worn out block which should be marked bad. The version is stored in 653 4 consecutive bytes in the spare area of the device. The position of 654 the version number is defined by the member veroffs in the bad block table 655 descriptor.</para></listitem> 656 <listitem><para>Save block contents on write</para> 657 <para> 658 In case that the block which holds the bad block table does contain 659 other useful information, set the option NAND_BBT_SAVECONTENT. When 660 the bad block table is written then the whole block is read the bad 661 block table is updated and the block is erased and everything is 662 written back. If this option is not set only the bad block table 663 is written and everything else in the block is ignored and erased. 664 </para></listitem> 665 <listitem><para>Number of reserved blocks</para> 666 <para> 667 For automatic placement some blocks must be reserved for 668 bad block table storage. The number of reserved blocks is defined 669 in the maxblocks member of the bad block table description structure. 670 Reserving 4 blocks for mirrored tables should be a reasonable number. 671 This also limits the number of blocks which are scanned for the bad 672 block table ident pattern. 673 </para></listitem> 674 </itemizedlist> 675 </para> 676 </sect2> 677 </sect1> 678 <sect1 id="Spare_area_placement"> 679 <title>Spare area (auto)placement</title> 680 <para> 681 The nand driver implements different possibilities for 682 placement of filesystem data in the spare area, 683 <itemizedlist> 684 <listitem><para>Placement defined by fs driver</para></listitem> 685 <listitem><para>Automatic placement</para></listitem> 686 </itemizedlist> 687 The default placement function is automatic placement. The 688 nand driver has built in default placement schemes for the 689 various chiptypes. If due to hardware ECC functionality the 690 default placement does not fit then the board driver can 691 provide a own placement scheme. 692 </para> 693 <para> 694 File system drivers can provide a own placement scheme which 695 is used instead of the default placement scheme. 696 </para> 697 <para> 698 Placement schemes are defined by a nand_oobinfo structure 699 <programlisting> 700struct nand_oobinfo { 701 int useecc; 702 int eccbytes; 703 int eccpos[24]; 704 int oobfree[8][2]; 705}; 706 </programlisting> 707 <itemizedlist> 708 <listitem><para>useecc</para><para> 709 The useecc member controls the ecc and placement function. The header 710 file include/mtd/mtd-abi.h contains constants to select ecc and 711 placement. MTD_NANDECC_OFF switches off the ecc complete. This is 712 not recommended and available for testing and diagnosis only. 713 MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE 714 selects automatic placement. 715 </para></listitem> 716 <listitem><para>eccbytes</para><para> 717 The eccbytes member defines the number of ecc bytes per page. 718 </para></listitem> 719 <listitem><para>eccpos</para><para> 720 The eccpos array holds the byte offsets in the spare area where 721 the ecc codes are placed. 722 </para></listitem> 723 <listitem><para>oobfree</para><para> 724 The oobfree array defines the areas in the spare area which can be 725 used for automatic placement. The information is given in the format 726 {offset, size}. offset defines the start of the usable area, size the 727 length in bytes. More than one area can be defined. The list is terminated 728 by an {0, 0} entry. 729 </para></listitem> 730 </itemizedlist> 731 </para> 732 <sect2 id="Placement_defined_by_fs_driver"> 733 <title>Placement defined by fs driver</title> 734 <para> 735 The calling function provides a pointer to a nand_oobinfo 736 structure which defines the ecc placement. For writes the 737 caller must provide a spare area buffer along with the 738 data buffer. The spare area buffer size is (number of pages) * 739 (size of spare area). For reads the buffer size is 740 (number of pages) * ((size of spare area) + (number of ecc 741 steps per page) * sizeof (int)). The driver stores the 742 result of the ecc check for each tuple in the spare buffer. 743 The storage sequence is 744 </para> 745 <para> 746 <spare data page 0><ecc result 0>...<ecc result n> 747 </para> 748 <para> 749 ... 750 </para> 751 <para> 752 <spare data page n><ecc result 0>...<ecc result n> 753 </para> 754 <para> 755 This is a legacy mode used by YAFFS1. 756 </para> 757 <para> 758 If the spare area buffer is NULL then only the ECC placement is 759 done according to the given scheme in the nand_oobinfo structure. 760 </para> 761 </sect2> 762 <sect2 id="Automatic_placement"> 763 <title>Automatic placement</title> 764 <para> 765 Automatic placement uses the built in defaults to place the 766 ecc bytes in the spare area. If filesystem data have to be stored / 767 read into the spare area then the calling function must provide a 768 buffer. The buffer size per page is determined by the oobfree array in 769 the nand_oobinfo structure. 770 </para> 771 <para> 772 If the spare area buffer is NULL then only the ECC placement is 773 done according to the default builtin scheme. 774 </para> 775 </sect2> 776 </sect1> 777 <sect1 id="Spare_area_autoplacement_default"> 778 <title>Spare area autoplacement default schemes</title> 779 <sect2 id="pagesize_256"> 780 <title>256 byte pagesize</title> 781<informaltable><tgroup cols="3"><tbody> 782<row> 783<entry>Offset</entry> 784<entry>Content</entry> 785<entry>Comment</entry> 786</row> 787<row> 788<entry>0x00</entry> 789<entry>ECC byte 0</entry> 790<entry>Error correction code byte 0</entry> 791</row> 792<row> 793<entry>0x01</entry> 794<entry>ECC byte 1</entry> 795<entry>Error correction code byte 1</entry> 796</row> 797<row> 798<entry>0x02</entry> 799<entry>ECC byte 2</entry> 800<entry>Error correction code byte 2</entry> 801</row> 802<row> 803<entry>0x03</entry> 804<entry>Autoplace 0</entry> 805<entry></entry> 806</row> 807<row> 808<entry>0x04</entry> 809<entry>Autoplace 1</entry> 810<entry></entry> 811</row> 812<row> 813<entry>0x05</entry> 814<entry>Bad block marker</entry> 815<entry>If any bit in this byte is zero, then this block is bad. 816This applies only to the first page in a block. In the remaining 817pages this byte is reserved</entry> 818</row> 819<row> 820<entry>0x06</entry> 821<entry>Autoplace 2</entry> 822<entry></entry> 823</row> 824<row> 825<entry>0x07</entry> 826<entry>Autoplace 3</entry> 827<entry></entry> 828</row> 829</tbody></tgroup></informaltable> 830 </sect2> 831 <sect2 id="pagesize_512"> 832 <title>512 byte pagesize</title> 833<informaltable><tgroup cols="3"><tbody> 834<row> 835<entry>Offset</entry> 836<entry>Content</entry> 837<entry>Comment</entry> 838</row> 839<row> 840<entry>0x00</entry> 841<entry>ECC byte 0</entry> 842<entry>Error correction code byte 0 of the lower 256 Byte data in 843this page</entry> 844</row> 845<row> 846<entry>0x01</entry> 847<entry>ECC byte 1</entry> 848<entry>Error correction code byte 1 of the lower 256 Bytes of data 849in this page</entry> 850</row> 851<row> 852<entry>0x02</entry> 853<entry>ECC byte 2</entry> 854<entry>Error correction code byte 2 of the lower 256 Bytes of data 855in this page</entry> 856</row> 857<row> 858<entry>0x03</entry> 859<entry>ECC byte 3</entry> 860<entry>Error correction code byte 0 of the upper 256 Bytes of data 861in this page</entry> 862</row> 863<row> 864<entry>0x04</entry> 865<entry>reserved</entry> 866<entry>reserved</entry> 867</row> 868<row> 869<entry>0x05</entry> 870<entry>Bad block marker</entry> 871<entry>If any bit in this byte is zero, then this block is bad. 872This applies only to the first page in a block. In the remaining 873pages this byte is reserved</entry> 874</row> 875<row> 876<entry>0x06</entry> 877<entry>ECC byte 4</entry> 878<entry>Error correction code byte 1 of the upper 256 Bytes of data 879in this page</entry> 880</row> 881<row> 882<entry>0x07</entry> 883<entry>ECC byte 5</entry> 884<entry>Error correction code byte 2 of the upper 256 Bytes of data 885in this page</entry> 886</row> 887<row> 888<entry>0x08 - 0x0F</entry> 889<entry>Autoplace 0 - 7</entry> 890<entry></entry> 891</row> 892</tbody></tgroup></informaltable> 893 </sect2> 894 <sect2 id="pagesize_2048"> 895 <title>2048 byte pagesize</title> 896<informaltable><tgroup cols="3"><tbody> 897<row> 898<entry>Offset</entry> 899<entry>Content</entry> 900<entry>Comment</entry> 901</row> 902<row> 903<entry>0x00</entry> 904<entry>Bad block marker</entry> 905<entry>If any bit in this byte is zero, then this block is bad. 906This applies only to the first page in a block. In the remaining 907pages this byte is reserved</entry> 908</row> 909<row> 910<entry>0x01</entry> 911<entry>Reserved</entry> 912<entry>Reserved</entry> 913</row> 914<row> 915<entry>0x02-0x27</entry> 916<entry>Autoplace 0 - 37</entry> 917<entry></entry> 918</row> 919<row> 920<entry>0x28</entry> 921<entry>ECC byte 0</entry> 922<entry>Error correction code byte 0 of the first 256 Byte data in 923this page</entry> 924</row> 925<row> 926<entry>0x29</entry> 927<entry>ECC byte 1</entry> 928<entry>Error correction code byte 1 of the first 256 Bytes of data 929in this page</entry> 930</row> 931<row> 932<entry>0x2A</entry> 933<entry>ECC byte 2</entry> 934<entry>Error correction code byte 2 of the first 256 Bytes data in 935this page</entry> 936</row> 937<row> 938<entry>0x2B</entry> 939<entry>ECC byte 3</entry> 940<entry>Error correction code byte 0 of the second 256 Bytes of data 941in this page</entry> 942</row> 943<row> 944<entry>0x2C</entry> 945<entry>ECC byte 4</entry> 946<entry>Error correction code byte 1 of the second 256 Bytes of data 947in this page</entry> 948</row> 949<row> 950<entry>0x2D</entry> 951<entry>ECC byte 5</entry> 952<entry>Error correction code byte 2 of the second 256 Bytes of data 953in this page</entry> 954</row> 955<row> 956<entry>0x2E</entry> 957<entry>ECC byte 6</entry> 958<entry>Error correction code byte 0 of the third 256 Bytes of data 959in this page</entry> 960</row> 961<row> 962<entry>0x2F</entry> 963<entry>ECC byte 7</entry> 964<entry>Error correction code byte 1 of the third 256 Bytes of data 965in this page</entry> 966</row> 967<row> 968<entry>0x30</entry> 969<entry>ECC byte 8</entry> 970<entry>Error correction code byte 2 of the third 256 Bytes of data 971in this page</entry> 972</row> 973<row> 974<entry>0x31</entry> 975<entry>ECC byte 9</entry> 976<entry>Error correction code byte 0 of the fourth 256 Bytes of data 977in this page</entry> 978</row> 979<row> 980<entry>0x32</entry> 981<entry>ECC byte 10</entry> 982<entry>Error correction code byte 1 of the fourth 256 Bytes of data 983in this page</entry> 984</row> 985<row> 986<entry>0x33</entry> 987<entry>ECC byte 11</entry> 988<entry>Error correction code byte 2 of the fourth 256 Bytes of data 989in this page</entry> 990</row> 991<row> 992<entry>0x34</entry> 993<entry>ECC byte 12</entry> 994<entry>Error correction code byte 0 of the fifth 256 Bytes of data 995in this page</entry> 996</row> 997<row> 998<entry>0x35</entry> 999<entry>ECC byte 13</entry> 1000<entry>Error correction code byte 1 of the fifth 256 Bytes of data 1001in this page</entry> 1002</row> 1003<row> 1004<entry>0x36</entry> 1005<entry>ECC byte 14</entry> 1006<entry>Error correction code byte 2 of the fifth 256 Bytes of data 1007in this page</entry> 1008</row> 1009<row> 1010<entry>0x37</entry> 1011<entry>ECC byte 15</entry> 1012<entry>Error correction code byte 0 of the sixt 256 Bytes of data 1013in this page</entry> 1014</row> 1015<row> 1016<entry>0x38</entry> 1017<entry>ECC byte 16</entry> 1018<entry>Error correction code byte 1 of the sixt 256 Bytes of data 1019in this page</entry> 1020</row> 1021<row> 1022<entry>0x39</entry> 1023<entry>ECC byte 17</entry> 1024<entry>Error correction code byte 2 of the sixt 256 Bytes of data 1025in this page</entry> 1026</row> 1027<row> 1028<entry>0x3A</entry> 1029<entry>ECC byte 18</entry> 1030<entry>Error correction code byte 0 of the seventh 256 Bytes of 1031data in this page</entry> 1032</row> 1033<row> 1034<entry>0x3B</entry> 1035<entry>ECC byte 19</entry> 1036<entry>Error correction code byte 1 of the seventh 256 Bytes of 1037data in this page</entry> 1038</row> 1039<row> 1040<entry>0x3C</entry> 1041<entry>ECC byte 20</entry> 1042<entry>Error correction code byte 2 of the seventh 256 Bytes of 1043data in this page</entry> 1044</row> 1045<row> 1046<entry>0x3D</entry> 1047<entry>ECC byte 21</entry> 1048<entry>Error correction code byte 0 of the eighth 256 Bytes of data 1049in this page</entry> 1050</row> 1051<row> 1052<entry>0x3E</entry> 1053<entry>ECC byte 22</entry> 1054<entry>Error correction code byte 1 of the eighth 256 Bytes of data 1055in this page</entry> 1056</row> 1057<row> 1058<entry>0x3F</entry> 1059<entry>ECC byte 23</entry> 1060<entry>Error correction code byte 2 of the eighth 256 Bytes of data 1061in this page</entry> 1062</row> 1063</tbody></tgroup></informaltable> 1064 </sect2> 1065 </sect1> 1066 </chapter> 1067 1068 <chapter id="filesystems"> 1069 <title>Filesystem support</title> 1070 <para> 1071 The NAND driver provides all necessary functions for a 1072 filesystem via the MTD interface. 1073 </para> 1074 <para> 1075 Filesystems must be aware of the NAND peculiarities and 1076 restrictions. One major restrictions of NAND Flash is, that you cannot 1077 write as often as you want to a page. The consecutive writes to a page, 1078 before erasing it again, are restricted to 1-3 writes, depending on the 1079 manufacturers specifications. This applies similar to the spare area. 1080 </para> 1081 <para> 1082 Therefore NAND aware filesystems must either write in page size chunks 1083 or hold a writebuffer to collect smaller writes until they sum up to 1084 pagesize. Available NAND aware filesystems: JFFS2, YAFFS. 1085 </para> 1086 <para> 1087 The spare area usage to store filesystem data is controlled by 1088 the spare area placement functionality which is described in one 1089 of the earlier chapters. 1090 </para> 1091 </chapter> 1092 <chapter id="tools"> 1093 <title>Tools</title> 1094 <para> 1095 The MTD project provides a couple of helpful tools to handle NAND Flash. 1096 <itemizedlist> 1097 <listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem> 1098 <listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem> 1099 <listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem> 1100 </itemizedlist> 1101 </para> 1102 <para> 1103 These tools are aware of the NAND restrictions. Please use those tools 1104 instead of complaining about errors which are caused by non NAND aware 1105 access methods. 1106 </para> 1107 </chapter> 1108 1109 <chapter id="defines"> 1110 <title>Constants</title> 1111 <para> 1112 This chapter describes the constants which might be relevant for a driver developer. 1113 </para> 1114 <sect1 id="Chip_option_constants"> 1115 <title>Chip option constants</title> 1116 <sect2 id="Constants_for_chip_id_table"> 1117 <title>Constants for chip id table</title> 1118 <para> 1119 These constants are defined in nand.h. They are ored together to describe 1120 the chip functionality. 1121 <programlisting> 1122/* Buswitdh is 16 bit */ 1123#define NAND_BUSWIDTH_16 0x00000002 1124/* Device supports partial programming without padding */ 1125#define NAND_NO_PADDING 0x00000004 1126/* Chip has cache program function */ 1127#define NAND_CACHEPRG 0x00000008 1128/* Chip has copy back function */ 1129#define NAND_COPYBACK 0x00000010 1130/* AND Chip which has 4 banks and a confusing page / block 1131 * assignment. See Renesas datasheet for further information */ 1132#define NAND_IS_AND 0x00000020 1133/* Chip has a array of 4 pages which can be read without 1134 * additional ready /busy waits */ 1135#define NAND_4PAGE_ARRAY 0x00000040 1136 </programlisting> 1137 </para> 1138 </sect2> 1139 <sect2 id="Constants_for_runtime_options"> 1140 <title>Constants for runtime options</title> 1141 <para> 1142 These constants are defined in nand.h. They are ored together to describe 1143 the functionality. 1144 <programlisting> 1145/* The hw ecc generator provides a syndrome instead a ecc value on read 1146 * This can only work if we have the ecc bytes directly behind the 1147 * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ 1148#define NAND_HWECC_SYNDROME 0x00020000 1149 </programlisting> 1150 </para> 1151 </sect2> 1152 </sect1> 1153 1154 <sect1 id="EEC_selection_constants"> 1155 <title>ECC selection constants</title> 1156 <para> 1157 Use these constants to select the ECC algorithm. 1158 <programlisting> 1159/* No ECC. Usage is not recommended ! */ 1160#define NAND_ECC_NONE 0 1161/* Software ECC 3 byte ECC per 256 Byte data */ 1162#define NAND_ECC_SOFT 1 1163/* Hardware ECC 3 byte ECC per 256 Byte data */ 1164#define NAND_ECC_HW3_256 2 1165/* Hardware ECC 3 byte ECC per 512 Byte data */ 1166#define NAND_ECC_HW3_512 3 1167/* Hardware ECC 6 byte ECC per 512 Byte data */ 1168#define NAND_ECC_HW6_512 4 1169/* Hardware ECC 6 byte ECC per 512 Byte data */ 1170#define NAND_ECC_HW8_512 6 1171 </programlisting> 1172 </para> 1173 </sect1> 1174 1175 <sect1 id="Hardware_control_related_constants"> 1176 <title>Hardware control related constants</title> 1177 <para> 1178 These constants describe the requested hardware access function when 1179 the boardspecific hardware control function is called 1180 <programlisting> 1181/* Select the chip by setting nCE to low */ 1182#define NAND_CTL_SETNCE 1 1183/* Deselect the chip by setting nCE to high */ 1184#define NAND_CTL_CLRNCE 2 1185/* Select the command latch by setting CLE to high */ 1186#define NAND_CTL_SETCLE 3 1187/* Deselect the command latch by setting CLE to low */ 1188#define NAND_CTL_CLRCLE 4 1189/* Select the address latch by setting ALE to high */ 1190#define NAND_CTL_SETALE 5 1191/* Deselect the address latch by setting ALE to low */ 1192#define NAND_CTL_CLRALE 6 1193/* Set write protection by setting WP to high. Not used! */ 1194#define NAND_CTL_SETWP 7 1195/* Clear write protection by setting WP to low. Not used! */ 1196#define NAND_CTL_CLRWP 8 1197 </programlisting> 1198 </para> 1199 </sect1> 1200 1201 <sect1 id="Bad_block_table_constants"> 1202 <title>Bad block table related constants</title> 1203 <para> 1204 These constants describe the options used for bad block 1205 table descriptors. 1206 <programlisting> 1207/* Options for the bad block table descriptors */ 1208 1209/* The number of bits used per block in the bbt on the device */ 1210#define NAND_BBT_NRBITS_MSK 0x0000000F 1211#define NAND_BBT_1BIT 0x00000001 1212#define NAND_BBT_2BIT 0x00000002 1213#define NAND_BBT_4BIT 0x00000004 1214#define NAND_BBT_8BIT 0x00000008 1215/* The bad block table is in the last good block of the device */ 1216#define NAND_BBT_LASTBLOCK 0x00000010 1217/* The bbt is at the given page, else we must scan for the bbt */ 1218#define NAND_BBT_ABSPAGE 0x00000020 1219/* bbt is stored per chip on multichip devices */ 1220#define NAND_BBT_PERCHIP 0x00000080 1221/* bbt has a version counter at offset veroffs */ 1222#define NAND_BBT_VERSION 0x00000100 1223/* Create a bbt if none axists */ 1224#define NAND_BBT_CREATE 0x00000200 1225/* Write bbt if necessary */ 1226#define NAND_BBT_WRITE 0x00001000 1227/* Read and write back block contents when writing bbt */ 1228#define NAND_BBT_SAVECONTENT 0x00002000 1229 </programlisting> 1230 </para> 1231 </sect1> 1232 1233 </chapter> 1234 1235 <chapter id="structs"> 1236 <title>Structures</title> 1237 <para> 1238 This chapter contains the autogenerated documentation of the structures which are 1239 used in the NAND driver and might be relevant for a driver developer. Each 1240 struct member has a short description which is marked with an [XXX] identifier. 1241 See the chapter "Documentation hints" for an explanation. 1242 </para> 1243!Iinclude/linux/mtd/nand.h 1244 </chapter> 1245 1246 <chapter id="pubfunctions"> 1247 <title>Public Functions Provided</title> 1248 <para> 1249 This chapter contains the autogenerated documentation of the NAND kernel API functions 1250 which are exported. Each function has a short description which is marked with an [XXX] identifier. 1251 See the chapter "Documentation hints" for an explanation. 1252 </para> 1253!Edrivers/mtd/nand/nand_base.c 1254!Edrivers/mtd/nand/nand_bbt.c 1255!Edrivers/mtd/nand/nand_ecc.c 1256 </chapter> 1257 1258 <chapter id="intfunctions"> 1259 <title>Internal Functions Provided</title> 1260 <para> 1261 This chapter contains the autogenerated documentation of the NAND driver internal functions. 1262 Each function has a short description which is marked with an [XXX] identifier. 1263 See the chapter "Documentation hints" for an explanation. 1264 The functions marked with [DEFAULT] might be relevant for a board driver developer. 1265 </para> 1266!Idrivers/mtd/nand/nand_base.c 1267!Idrivers/mtd/nand/nand_bbt.c 1268<!-- No internal functions for kernel-doc: 1269X!Idrivers/mtd/nand/nand_ecc.c 1270--> 1271 </chapter> 1272 1273 <chapter id="credits"> 1274 <title>Credits</title> 1275 <para> 1276 The following people have contributed to the NAND driver: 1277 <orderedlist> 1278 <listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem> 1279 <listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem> 1280 <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> 1281 </orderedlist> 1282 A lot of users have provided bugfixes, improvements and helping hands for testing. 1283 Thanks a lot. 1284 </para> 1285 <para> 1286 The following people have contributed to this document: 1287 <orderedlist> 1288 <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> 1289 </orderedlist> 1290 </para> 1291 </chapter> 1292</book> 1293