1		     Dynamic DMA mapping Guide
2		     =========================
3
4		 David S. Miller <davem@redhat.com>
5		 Richard Henderson <rth@cygnus.com>
6		  Jakub Jelinek <jakub@redhat.com>
7
8This is a guide to device driver writers on how to use the DMA API
9with example pseudo-code.  For a concise description of the API, see
10DMA-API.txt.
11
12                       CPU and DMA addresses
13
14There are several kinds of addresses involved in the DMA API, and it's
15important to understand the differences.
16
17The kernel normally uses virtual addresses.  Any address returned by
18kmalloc(), vmalloc(), and similar interfaces is a virtual address and can
19be stored in a "void *".
20
21The virtual memory system (TLB, page tables, etc.) translates virtual
22addresses to CPU physical addresses, which are stored as "phys_addr_t" or
23"resource_size_t".  The kernel manages device resources like registers as
24physical addresses.  These are the addresses in /proc/iomem.  The physical
25address is not directly useful to a driver; it must use ioremap() to map
26the space and produce a virtual address.
27
28I/O devices use a third kind of address: a "bus address".  If a device has
29registers at an MMIO address, or if it performs DMA to read or write system
30memory, the addresses used by the device are bus addresses.  In some
31systems, bus addresses are identical to CPU physical addresses, but in
32general they are not.  IOMMUs and host bridges can produce arbitrary
33mappings between physical and bus addresses.
34
35From a device's point of view, DMA uses the bus address space, but it may
36be restricted to a subset of that space.  For example, even if a system
37supports 64-bit addresses for main memory and PCI BARs, it may use an IOMMU
38so devices only need to use 32-bit DMA addresses.
39
40Here's a picture and some examples:
41
42               CPU                  CPU                  Bus
43             Virtual              Physical             Address
44             Address              Address               Space
45              Space                Space
46
47            +-------+             +------+             +------+
48            |       |             |MMIO  |   Offset    |      |
49            |       |  Virtual    |Space |   applied   |      |
50          C +-------+ --------> B +------+ ----------> +------+ A
51            |       |  mapping    |      |   by host   |      |
52  +-----+   |       |             |      |   bridge    |      |   +--------+
53  |     |   |       |             +------+             |      |   |        |
54  | CPU |   |       |             | RAM  |             |      |   | Device |
55  |     |   |       |             |      |             |      |   |        |
56  +-----+   +-------+             +------+             +------+   +--------+
57            |       |  Virtual    |Buffer|   Mapping   |      |
58          X +-------+ --------> Y +------+ <---------- +------+ Z
59            |       |  mapping    | RAM  |   by IOMMU
60            |       |             |      |
61            |       |             |      |
62            +-------+             +------+
63
64During the enumeration process, the kernel learns about I/O devices and
65their MMIO space and the host bridges that connect them to the system.  For
66example, if a PCI device has a BAR, the kernel reads the bus address (A)
67from the BAR and converts it to a CPU physical address (B).  The address B
68is stored in a struct resource and usually exposed via /proc/iomem.  When a
69driver claims a device, it typically uses ioremap() to map physical address
70B at a virtual address (C).  It can then use, e.g., ioread32(C), to access
71the device registers at bus address A.
72
73If the device supports DMA, the driver sets up a buffer using kmalloc() or
74a similar interface, which returns a virtual address (X).  The virtual
75memory system maps X to a physical address (Y) in system RAM.  The driver
76can use virtual address X to access the buffer, but the device itself
77cannot because DMA doesn't go through the CPU virtual memory system.
78
79In some simple systems, the device can do DMA directly to physical address
80Y.  But in many others, there is IOMMU hardware that translates DMA
81addresses to physical addresses, e.g., it translates Z to Y.  This is part
82of the reason for the DMA API: the driver can give a virtual address X to
83an interface like dma_map_single(), which sets up any required IOMMU
84mapping and returns the DMA address Z.  The driver then tells the device to
85do DMA to Z, and the IOMMU maps it to the buffer at address Y in system
86RAM.
87
88So that Linux can use the dynamic DMA mapping, it needs some help from the
89drivers, namely it has to take into account that DMA addresses should be
90mapped only for the time they are actually used and unmapped after the DMA
91transfer.
92
93The following API will work of course even on platforms where no such
94hardware exists.
95
96Note that the DMA API works with any bus independent of the underlying
97microprocessor architecture. You should use the DMA API rather than the
98bus-specific DMA API, i.e., use the dma_map_*() interfaces rather than the
99pci_map_*() interfaces.
100
101First of all, you should make sure
102
103#include <linux/dma-mapping.h>
104
105is in your driver, which provides the definition of dma_addr_t.  This type
106can hold any valid DMA address for the platform and should be used
107everywhere you hold a DMA address returned from the DMA mapping functions.
108
109			 What memory is DMA'able?
110
111The first piece of information you must know is what kernel memory can
112be used with the DMA mapping facilities.  There has been an unwritten
113set of rules regarding this, and this text is an attempt to finally
114write them down.
115
116If you acquired your memory via the page allocator
117(i.e. __get_free_page*()) or the generic memory allocators
118(i.e. kmalloc() or kmem_cache_alloc()) then you may DMA to/from
119that memory using the addresses returned from those routines.
120
121This means specifically that you may _not_ use the memory/addresses
122returned from vmalloc() for DMA.  It is possible to DMA to the
123_underlying_ memory mapped into a vmalloc() area, but this requires
124walking page tables to get the physical addresses, and then
125translating each of those pages back to a kernel address using
126something like __va().  [ EDIT: Update this when we integrate
127Gerd Knorr's generic code which does this. ]
128
129This rule also means that you may use neither kernel image addresses
130(items in data/text/bss segments), nor module image addresses, nor
131stack addresses for DMA.  These could all be mapped somewhere entirely
132different than the rest of physical memory.  Even if those classes of
133memory could physically work with DMA, you'd need to ensure the I/O
134buffers were cacheline-aligned.  Without that, you'd see cacheline
135sharing problems (data corruption) on CPUs with DMA-incoherent caches.
136(The CPU could write to one word, DMA would write to a different one
137in the same cache line, and one of them could be overwritten.)
138
139Also, this means that you cannot take the return of a kmap()
140call and DMA to/from that.  This is similar to vmalloc().
141
142What about block I/O and networking buffers?  The block I/O and
143networking subsystems make sure that the buffers they use are valid
144for you to DMA from/to.
145
146			DMA addressing limitations
147
148Does your device have any DMA addressing limitations?  For example, is
149your device only capable of driving the low order 24-bits of address?
150If so, you need to inform the kernel of this fact.
151
152By default, the kernel assumes that your device can address the full
15332-bits.  For a 64-bit capable device, this needs to be increased.
154And for a device with limitations, as discussed in the previous
155paragraph, it needs to be decreased.
156
157Special note about PCI: PCI-X specification requires PCI-X devices to
158support 64-bit addressing (DAC) for all transactions.  And at least
159one platform (SGI SN2) requires 64-bit consistent allocations to
160operate correctly when the IO bus is in PCI-X mode.
161
162For correct operation, you must interrogate the kernel in your device
163probe routine to see if the DMA controller on the machine can properly
164support the DMA addressing limitation your device has.  It is good
165style to do this even if your device holds the default setting,
166because this shows that you did think about these issues wrt. your
167device.
168
169The query is performed via a call to dma_set_mask_and_coherent():
170
171	int dma_set_mask_and_coherent(struct device *dev, u64 mask);
172
173which will query the mask for both streaming and coherent APIs together.
174If you have some special requirements, then the following two separate
175queries can be used instead:
176
177	The query for streaming mappings is performed via a call to
178	dma_set_mask():
179
180		int dma_set_mask(struct device *dev, u64 mask);
181
182	The query for consistent allocations is performed via a call
183	to dma_set_coherent_mask():
184
185		int dma_set_coherent_mask(struct device *dev, u64 mask);
186
187Here, dev is a pointer to the device struct of your device, and mask
188is a bit mask describing which bits of an address your device
189supports.  It returns zero if your card can perform DMA properly on
190the machine given the address mask you provided.  In general, the
191device struct of your device is embedded in the bus-specific device
192struct of your device.  For example, &pdev->dev is a pointer to the
193device struct of a PCI device (pdev is a pointer to the PCI device
194struct of your device).
195
196If it returns non-zero, your device cannot perform DMA properly on
197this platform, and attempting to do so will result in undefined
198behavior.  You must either use a different mask, or not use DMA.
199
200This means that in the failure case, you have three options:
201
2021) Use another DMA mask, if possible (see below).
2032) Use some non-DMA mode for data transfer, if possible.
2043) Ignore this device and do not initialize it.
205
206It is recommended that your driver print a kernel KERN_WARNING message
207when you end up performing either #2 or #3.  In this manner, if a user
208of your driver reports that performance is bad or that the device is not
209even detected, you can ask them for the kernel messages to find out
210exactly why.
211
212The standard 32-bit addressing device would do something like this:
213
214	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
215		dev_warn(dev, "mydev: No suitable DMA available\n");
216		goto ignore_this_device;
217	}
218
219Another common scenario is a 64-bit capable device.  The approach here
220is to try for 64-bit addressing, but back down to a 32-bit mask that
221should not fail.  The kernel may fail the 64-bit mask not because the
222platform is not capable of 64-bit addressing.  Rather, it may fail in
223this case simply because 32-bit addressing is done more efficiently
224than 64-bit addressing.  For example, Sparc64 PCI SAC addressing is
225more efficient than DAC addressing.
226
227Here is how you would handle a 64-bit capable device which can drive
228all 64-bits when accessing streaming DMA:
229
230	int using_dac;
231
232	if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
233		using_dac = 1;
234	} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
235		using_dac = 0;
236	} else {
237		dev_warn(dev, "mydev: No suitable DMA available\n");
238		goto ignore_this_device;
239	}
240
241If a card is capable of using 64-bit consistent allocations as well,
242the case would look like this:
243
244	int using_dac, consistent_using_dac;
245
246	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
247		using_dac = 1;
248	   	consistent_using_dac = 1;
249	} else if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
250		using_dac = 0;
251		consistent_using_dac = 0;
252	} else {
253		dev_warn(dev, "mydev: No suitable DMA available\n");
254		goto ignore_this_device;
255	}
256
257The coherent mask will always be able to set the same or a smaller mask as
258the streaming mask. However for the rare case that a device driver only
259uses consistent allocations, one would have to check the return value from
260dma_set_coherent_mask().
261
262Finally, if your device can only drive the low 24-bits of
263address you might do something like:
264
265	if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
266		dev_warn(dev, "mydev: 24-bit DMA addressing not available\n");
267		goto ignore_this_device;
268	}
269
270When dma_set_mask() or dma_set_mask_and_coherent() is successful, and
271returns zero, the kernel saves away this mask you have provided.  The
272kernel will use this information later when you make DMA mappings.
273
274There is a case which we are aware of at this time, which is worth
275mentioning in this documentation.  If your device supports multiple
276functions (for example a sound card provides playback and record
277functions) and the various different functions have _different_
278DMA addressing limitations, you may wish to probe each mask and
279only provide the functionality which the machine can handle.  It
280is important that the last call to dma_set_mask() be for the
281most specific mask.
282
283Here is pseudo-code showing how this might be done:
284
285	#define PLAYBACK_ADDRESS_BITS	DMA_BIT_MASK(32)
286	#define RECORD_ADDRESS_BITS	DMA_BIT_MASK(24)
287
288	struct my_sound_card *card;
289	struct device *dev;
290
291	...
292	if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
293		card->playback_enabled = 1;
294	} else {
295		card->playback_enabled = 0;
296		dev_warn(dev, "%s: Playback disabled due to DMA limitations\n",
297		       card->name);
298	}
299	if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
300		card->record_enabled = 1;
301	} else {
302		card->record_enabled = 0;
303		dev_warn(dev, "%s: Record disabled due to DMA limitations\n",
304		       card->name);
305	}
306
307A sound card was used as an example here because this genre of PCI
308devices seems to be littered with ISA chips given a PCI front end,
309and thus retaining the 16MB DMA addressing limitations of ISA.
310
311			Types of DMA mappings
312
313There are two types of DMA mappings:
314
315- Consistent DMA mappings which are usually mapped at driver
316  initialization, unmapped at the end and for which the hardware should
317  guarantee that the device and the CPU can access the data
318  in parallel and will see updates made by each other without any
319  explicit software flushing.
320
321  Think of "consistent" as "synchronous" or "coherent".
322
323  The current default is to return consistent memory in the low 32
324  bits of the DMA space.  However, for future compatibility you should
325  set the consistent mask even if this default is fine for your
326  driver.
327
328  Good examples of what to use consistent mappings for are:
329
330	- Network card DMA ring descriptors.
331	- SCSI adapter mailbox command data structures.
332	- Device firmware microcode executed out of
333	  main memory.
334
335  The invariant these examples all require is that any CPU store
336  to memory is immediately visible to the device, and vice
337  versa.  Consistent mappings guarantee this.
338
339  IMPORTANT: Consistent DMA memory does not preclude the usage of
340             proper memory barriers.  The CPU may reorder stores to
341	     consistent memory just as it may normal memory.  Example:
342	     if it is important for the device to see the first word
343	     of a descriptor updated before the second, you must do
344	     something like:
345
346		desc->word0 = address;
347		wmb();
348		desc->word1 = DESC_VALID;
349
350             in order to get correct behavior on all platforms.
351
352	     Also, on some platforms your driver may need to flush CPU write
353	     buffers in much the same way as it needs to flush write buffers
354	     found in PCI bridges (such as by reading a register's value
355	     after writing it).
356
357- Streaming DMA mappings which are usually mapped for one DMA
358  transfer, unmapped right after it (unless you use dma_sync_* below)
359  and for which hardware can optimize for sequential accesses.
360
361  This of "streaming" as "asynchronous" or "outside the coherency
362  domain".
363
364  Good examples of what to use streaming mappings for are:
365
366	- Networking buffers transmitted/received by a device.
367	- Filesystem buffers written/read by a SCSI device.
368
369  The interfaces for using this type of mapping were designed in
370  such a way that an implementation can make whatever performance
371  optimizations the hardware allows.  To this end, when using
372  such mappings you must be explicit about what you want to happen.
373
374Neither type of DMA mapping has alignment restrictions that come from
375the underlying bus, although some devices may have such restrictions.
376Also, systems with caches that aren't DMA-coherent will work better
377when the underlying buffers don't share cache lines with other data.
378
379
380		 Using Consistent DMA mappings.
381
382To allocate and map large (PAGE_SIZE or so) consistent DMA regions,
383you should do:
384
385	dma_addr_t dma_handle;
386
387	cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
388
389where device is a struct device *. This may be called in interrupt
390context with the GFP_ATOMIC flag.
391
392Size is the length of the region you want to allocate, in bytes.
393
394This routine will allocate RAM for that region, so it acts similarly to
395__get_free_pages() (but takes size instead of a page order).  If your
396driver needs regions sized smaller than a page, you may prefer using
397the dma_pool interface, described below.
398
399The consistent DMA mapping interfaces, for non-NULL dev, will by
400default return a DMA address which is 32-bit addressable.  Even if the
401device indicates (via DMA mask) that it may address the upper 32-bits,
402consistent allocation will only return > 32-bit addresses for DMA if
403the consistent DMA mask has been explicitly changed via
404dma_set_coherent_mask().  This is true of the dma_pool interface as
405well.
406
407dma_alloc_coherent() returns two values: the virtual address which you
408can use to access it from the CPU and dma_handle which you pass to the
409card.
410
411The CPU virtual address and the DMA address are both
412guaranteed to be aligned to the smallest PAGE_SIZE order which
413is greater than or equal to the requested size.  This invariant
414exists (for example) to guarantee that if you allocate a chunk
415which is smaller than or equal to 64 kilobytes, the extent of the
416buffer you receive will not cross a 64K boundary.
417
418To unmap and free such a DMA region, you call:
419
420	dma_free_coherent(dev, size, cpu_addr, dma_handle);
421
422where dev, size are the same as in the above call and cpu_addr and
423dma_handle are the values dma_alloc_coherent() returned to you.
424This function may not be called in interrupt context.
425
426If your driver needs lots of smaller memory regions, you can write
427custom code to subdivide pages returned by dma_alloc_coherent(),
428or you can use the dma_pool API to do that.  A dma_pool is like
429a kmem_cache, but it uses dma_alloc_coherent(), not __get_free_pages().
430Also, it understands common hardware constraints for alignment,
431like queue heads needing to be aligned on N byte boundaries.
432
433Create a dma_pool like this:
434
435	struct dma_pool *pool;
436
437	pool = dma_pool_create(name, dev, size, align, boundary);
438
439The "name" is for diagnostics (like a kmem_cache name); dev and size
440are as above.  The device's hardware alignment requirement for this
441type of data is "align" (which is expressed in bytes, and must be a
442power of two).  If your device has no boundary crossing restrictions,
443pass 0 for boundary; passing 4096 says memory allocated from this pool
444must not cross 4KByte boundaries (but at that time it may be better to
445use dma_alloc_coherent() directly instead).
446
447Allocate memory from a DMA pool like this:
448
449	cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
450
451flags are GFP_KERNEL if blocking is permitted (not in_interrupt nor
452holding SMP locks), GFP_ATOMIC otherwise.  Like dma_alloc_coherent(),
453this returns two values, cpu_addr and dma_handle.
454
455Free memory that was allocated from a dma_pool like this:
456
457	dma_pool_free(pool, cpu_addr, dma_handle);
458
459where pool is what you passed to dma_pool_alloc(), and cpu_addr and
460dma_handle are the values dma_pool_alloc() returned. This function
461may be called in interrupt context.
462
463Destroy a dma_pool by calling:
464
465	dma_pool_destroy(pool);
466
467Make sure you've called dma_pool_free() for all memory allocated
468from a pool before you destroy the pool. This function may not
469be called in interrupt context.
470
471			DMA Direction
472
473The interfaces described in subsequent portions of this document
474take a DMA direction argument, which is an integer and takes on
475one of the following values:
476
477 DMA_BIDIRECTIONAL
478 DMA_TO_DEVICE
479 DMA_FROM_DEVICE
480 DMA_NONE
481
482You should provide the exact DMA direction if you know it.
483
484DMA_TO_DEVICE means "from main memory to the device"
485DMA_FROM_DEVICE means "from the device to main memory"
486It is the direction in which the data moves during the DMA
487transfer.
488
489You are _strongly_ encouraged to specify this as precisely
490as you possibly can.
491
492If you absolutely cannot know the direction of the DMA transfer,
493specify DMA_BIDIRECTIONAL.  It means that the DMA can go in
494either direction.  The platform guarantees that you may legally
495specify this, and that it will work, but this may be at the
496cost of performance for example.
497
498The value DMA_NONE is to be used for debugging.  One can
499hold this in a data structure before you come to know the
500precise direction, and this will help catch cases where your
501direction tracking logic has failed to set things up properly.
502
503Another advantage of specifying this value precisely (outside of
504potential platform-specific optimizations of such) is for debugging.
505Some platforms actually have a write permission boolean which DMA
506mappings can be marked with, much like page protections in the user
507program address space.  Such platforms can and do report errors in the
508kernel logs when the DMA controller hardware detects violation of the
509permission setting.
510
511Only streaming mappings specify a direction, consistent mappings
512implicitly have a direction attribute setting of
513DMA_BIDIRECTIONAL.
514
515The SCSI subsystem tells you the direction to use in the
516'sc_data_direction' member of the SCSI command your driver is
517working on.
518
519For Networking drivers, it's a rather simple affair.  For transmit
520packets, map/unmap them with the DMA_TO_DEVICE direction
521specifier.  For receive packets, just the opposite, map/unmap them
522with the DMA_FROM_DEVICE direction specifier.
523
524		  Using Streaming DMA mappings
525
526The streaming DMA mapping routines can be called from interrupt
527context.  There are two versions of each map/unmap, one which will
528map/unmap a single memory region, and one which will map/unmap a
529scatterlist.
530
531To map a single region, you do:
532
533	struct device *dev = &my_dev->dev;
534	dma_addr_t dma_handle;
535	void *addr = buffer->ptr;
536	size_t size = buffer->len;
537
538	dma_handle = dma_map_single(dev, addr, size, direction);
539	if (dma_mapping_error(dev, dma_handle)) {
540		/*
541		 * reduce current DMA mapping usage,
542		 * delay and try again later or
543		 * reset driver.
544		 */
545		goto map_error_handling;
546	}
547
548and to unmap it:
549
550	dma_unmap_single(dev, dma_handle, size, direction);
551
552You should call dma_mapping_error() as dma_map_single() could fail and return
553error. Not all DMA implementations support the dma_mapping_error() interface.
554However, it is a good practice to call dma_mapping_error() interface, which
555will invoke the generic mapping error check interface. Doing so will ensure
556that the mapping code will work correctly on all DMA implementations without
557any dependency on the specifics of the underlying implementation. Using the
558returned address without checking for errors could result in failures ranging
559from panics to silent data corruption. A couple of examples of incorrect ways
560to check for errors that make assumptions about the underlying DMA
561implementation are as follows and these are applicable to dma_map_page() as
562well.
563
564Incorrect example 1:
565	dma_addr_t dma_handle;
566
567	dma_handle = dma_map_single(dev, addr, size, direction);
568	if ((dma_handle & 0xffff != 0) || (dma_handle >= 0x1000000)) {
569		goto map_error;
570	}
571
572Incorrect example 2:
573	dma_addr_t dma_handle;
574
575	dma_handle = dma_map_single(dev, addr, size, direction);
576	if (dma_handle == DMA_ERROR_CODE) {
577		goto map_error;
578	}
579
580You should call dma_unmap_single() when the DMA activity is finished, e.g.,
581from the interrupt which told you that the DMA transfer is done.
582
583Using CPU pointers like this for single mappings has a disadvantage:
584you cannot reference HIGHMEM memory in this way.  Thus, there is a
585map/unmap interface pair akin to dma_{map,unmap}_single().  These
586interfaces deal with page/offset pairs instead of CPU pointers.
587Specifically:
588
589	struct device *dev = &my_dev->dev;
590	dma_addr_t dma_handle;
591	struct page *page = buffer->page;
592	unsigned long offset = buffer->offset;
593	size_t size = buffer->len;
594
595	dma_handle = dma_map_page(dev, page, offset, size, direction);
596	if (dma_mapping_error(dev, dma_handle)) {
597		/*
598		 * reduce current DMA mapping usage,
599		 * delay and try again later or
600		 * reset driver.
601		 */
602		goto map_error_handling;
603	}
604
605	...
606
607	dma_unmap_page(dev, dma_handle, size, direction);
608
609Here, "offset" means byte offset within the given page.
610
611You should call dma_mapping_error() as dma_map_page() could fail and return
612error as outlined under the dma_map_single() discussion.
613
614You should call dma_unmap_page() when the DMA activity is finished, e.g.,
615from the interrupt which told you that the DMA transfer is done.
616
617With scatterlists, you map a region gathered from several regions by:
618
619	int i, count = dma_map_sg(dev, sglist, nents, direction);
620	struct scatterlist *sg;
621
622	for_each_sg(sglist, sg, count, i) {
623		hw_address[i] = sg_dma_address(sg);
624		hw_len[i] = sg_dma_len(sg);
625	}
626
627where nents is the number of entries in the sglist.
628
629The implementation is free to merge several consecutive sglist entries
630into one (e.g. if DMA mapping is done with PAGE_SIZE granularity, any
631consecutive sglist entries can be merged into one provided the first one
632ends and the second one starts on a page boundary - in fact this is a huge
633advantage for cards which either cannot do scatter-gather or have very
634limited number of scatter-gather entries) and returns the actual number
635of sg entries it mapped them to. On failure 0 is returned.
636
637Then you should loop count times (note: this can be less than nents times)
638and use sg_dma_address() and sg_dma_len() macros where you previously
639accessed sg->address and sg->length as shown above.
640
641To unmap a scatterlist, just call:
642
643	dma_unmap_sg(dev, sglist, nents, direction);
644
645Again, make sure DMA activity has already finished.
646
647PLEASE NOTE:  The 'nents' argument to the dma_unmap_sg call must be
648              the _same_ one you passed into the dma_map_sg call,
649	      it should _NOT_ be the 'count' value _returned_ from the
650              dma_map_sg call.
651
652Every dma_map_{single,sg}() call should have its dma_unmap_{single,sg}()
653counterpart, because the DMA address space is a shared resource and
654you could render the machine unusable by consuming all DMA addresses.
655
656If you need to use the same streaming DMA region multiple times and touch
657the data in between the DMA transfers, the buffer needs to be synced
658properly in order for the CPU and device to see the most up-to-date and
659correct copy of the DMA buffer.
660
661So, firstly, just map it with dma_map_{single,sg}(), and after each DMA
662transfer call either:
663
664	dma_sync_single_for_cpu(dev, dma_handle, size, direction);
665
666or:
667
668	dma_sync_sg_for_cpu(dev, sglist, nents, direction);
669
670as appropriate.
671
672Then, if you wish to let the device get at the DMA area again,
673finish accessing the data with the CPU, and then before actually
674giving the buffer to the hardware call either:
675
676	dma_sync_single_for_device(dev, dma_handle, size, direction);
677
678or:
679
680	dma_sync_sg_for_device(dev, sglist, nents, direction);
681
682as appropriate.
683
684After the last DMA transfer call one of the DMA unmap routines
685dma_unmap_{single,sg}(). If you don't touch the data from the first
686dma_map_*() call till dma_unmap_*(), then you don't have to call the
687dma_sync_*() routines at all.
688
689Here is pseudo code which shows a situation in which you would need
690to use the dma_sync_*() interfaces.
691
692	my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
693	{
694		dma_addr_t mapping;
695
696		mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
697		if (dma_mapping_error(cp->dev, dma_handle)) {
698			/*
699			 * reduce current DMA mapping usage,
700			 * delay and try again later or
701			 * reset driver.
702			 */
703			goto map_error_handling;
704		}
705
706		cp->rx_buf = buffer;
707		cp->rx_len = len;
708		cp->rx_dma = mapping;
709
710		give_rx_buf_to_card(cp);
711	}
712
713	...
714
715	my_card_interrupt_handler(int irq, void *devid, struct pt_regs *regs)
716	{
717		struct my_card *cp = devid;
718
719		...
720		if (read_card_status(cp) == RX_BUF_TRANSFERRED) {
721			struct my_card_header *hp;
722
723			/* Examine the header to see if we wish
724			 * to accept the data.  But synchronize
725			 * the DMA transfer with the CPU first
726			 * so that we see updated contents.
727			 */
728			dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
729						cp->rx_len,
730						DMA_FROM_DEVICE);
731
732			/* Now it is safe to examine the buffer. */
733			hp = (struct my_card_header *) cp->rx_buf;
734			if (header_is_ok(hp)) {
735				dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
736						 DMA_FROM_DEVICE);
737				pass_to_upper_layers(cp->rx_buf);
738				make_and_setup_new_rx_buf(cp);
739			} else {
740				/* CPU should not write to
741				 * DMA_FROM_DEVICE-mapped area,
742				 * so dma_sync_single_for_device() is
743				 * not needed here. It would be required
744				 * for DMA_BIDIRECTIONAL mapping if
745				 * the memory was modified.
746				 */
747				give_rx_buf_to_card(cp);
748			}
749		}
750	}
751
752Drivers converted fully to this interface should not use virt_to_bus() any
753longer, nor should they use bus_to_virt(). Some drivers have to be changed a
754little bit, because there is no longer an equivalent to bus_to_virt() in the
755dynamic DMA mapping scheme - you have to always store the DMA addresses
756returned by the dma_alloc_coherent(), dma_pool_alloc(), and dma_map_single()
757calls (dma_map_sg() stores them in the scatterlist itself if the platform
758supports dynamic DMA mapping in hardware) in your driver structures and/or
759in the card registers.
760
761All drivers should be using these interfaces with no exceptions.  It
762is planned to completely remove virt_to_bus() and bus_to_virt() as
763they are entirely deprecated.  Some ports already do not provide these
764as it is impossible to correctly support them.
765
766			Handling Errors
767
768DMA address space is limited on some architectures and an allocation
769failure can be determined by:
770
771- checking if dma_alloc_coherent() returns NULL or dma_map_sg returns 0
772
773- checking the dma_addr_t returned from dma_map_single() and dma_map_page()
774  by using dma_mapping_error():
775
776	dma_addr_t dma_handle;
777
778	dma_handle = dma_map_single(dev, addr, size, direction);
779	if (dma_mapping_error(dev, dma_handle)) {
780		/*
781		 * reduce current DMA mapping usage,
782		 * delay and try again later or
783		 * reset driver.
784		 */
785		goto map_error_handling;
786	}
787
788- unmap pages that are already mapped, when mapping error occurs in the middle
789  of a multiple page mapping attempt. These example are applicable to
790  dma_map_page() as well.
791
792Example 1:
793	dma_addr_t dma_handle1;
794	dma_addr_t dma_handle2;
795
796	dma_handle1 = dma_map_single(dev, addr, size, direction);
797	if (dma_mapping_error(dev, dma_handle1)) {
798		/*
799		 * reduce current DMA mapping usage,
800		 * delay and try again later or
801		 * reset driver.
802		 */
803		goto map_error_handling1;
804	}
805	dma_handle2 = dma_map_single(dev, addr, size, direction);
806	if (dma_mapping_error(dev, dma_handle2)) {
807		/*
808		 * reduce current DMA mapping usage,
809		 * delay and try again later or
810		 * reset driver.
811		 */
812		goto map_error_handling2;
813	}
814
815	...
816
817	map_error_handling2:
818		dma_unmap_single(dma_handle1);
819	map_error_handling1:
820
821Example 2: (if buffers are allocated in a loop, unmap all mapped buffers when
822	    mapping error is detected in the middle)
823
824	dma_addr_t dma_addr;
825	dma_addr_t array[DMA_BUFFERS];
826	int save_index = 0;
827
828	for (i = 0; i < DMA_BUFFERS; i++) {
829
830		...
831
832		dma_addr = dma_map_single(dev, addr, size, direction);
833		if (dma_mapping_error(dev, dma_addr)) {
834			/*
835			 * reduce current DMA mapping usage,
836			 * delay and try again later or
837			 * reset driver.
838			 */
839			goto map_error_handling;
840		}
841		array[i].dma_addr = dma_addr;
842		save_index++;
843	}
844
845	...
846
847	map_error_handling:
848
849	for (i = 0; i < save_index; i++) {
850
851		...
852
853		dma_unmap_single(array[i].dma_addr);
854	}
855
856Networking drivers must call dev_kfree_skb() to free the socket buffer
857and return NETDEV_TX_OK if the DMA mapping fails on the transmit hook
858(ndo_start_xmit). This means that the socket buffer is just dropped in
859the failure case.
860
861SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping
862fails in the queuecommand hook. This means that the SCSI subsystem
863passes the command to the driver again later.
864
865		Optimizing Unmap State Space Consumption
866
867On many platforms, dma_unmap_{single,page}() is simply a nop.
868Therefore, keeping track of the mapping address and length is a waste
869of space.  Instead of filling your drivers up with ifdefs and the like
870to "work around" this (which would defeat the whole purpose of a
871portable API) the following facilities are provided.
872
873Actually, instead of describing the macros one by one, we'll
874transform some example code.
875
8761) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
877   Example, before:
878
879	struct ring_state {
880		struct sk_buff *skb;
881		dma_addr_t mapping;
882		__u32 len;
883	};
884
885   after:
886
887	struct ring_state {
888		struct sk_buff *skb;
889		DEFINE_DMA_UNMAP_ADDR(mapping);
890		DEFINE_DMA_UNMAP_LEN(len);
891	};
892
8932) Use dma_unmap_{addr,len}_set() to set these values.
894   Example, before:
895
896	ringp->mapping = FOO;
897	ringp->len = BAR;
898
899   after:
900
901	dma_unmap_addr_set(ringp, mapping, FOO);
902	dma_unmap_len_set(ringp, len, BAR);
903
9043) Use dma_unmap_{addr,len}() to access these values.
905   Example, before:
906
907	dma_unmap_single(dev, ringp->mapping, ringp->len,
908			 DMA_FROM_DEVICE);
909
910   after:
911
912	dma_unmap_single(dev,
913			 dma_unmap_addr(ringp, mapping),
914			 dma_unmap_len(ringp, len),
915			 DMA_FROM_DEVICE);
916
917It really should be self-explanatory.  We treat the ADDR and LEN
918separately, because it is possible for an implementation to only
919need the address in order to perform the unmap operation.
920
921			Platform Issues
922
923If you are just writing drivers for Linux and do not maintain
924an architecture port for the kernel, you can safely skip down
925to "Closing".
926
9271) Struct scatterlist requirements.
928
929   Don't invent the architecture specific struct scatterlist; just use
930   <asm-generic/scatterlist.h>. You need to enable
931   CONFIG_NEED_SG_DMA_LENGTH if the architecture supports IOMMUs
932   (including software IOMMU).
933
9342) ARCH_DMA_MINALIGN
935
936   Architectures must ensure that kmalloc'ed buffer is
937   DMA-safe. Drivers and subsystems depend on it. If an architecture
938   isn't fully DMA-coherent (i.e. hardware doesn't ensure that data in
939   the CPU cache is identical to data in main memory),
940   ARCH_DMA_MINALIGN must be set so that the memory allocator
941   makes sure that kmalloc'ed buffer doesn't share a cache line with
942   the others. See arch/arm/include/asm/cache.h as an example.
943
944   Note that ARCH_DMA_MINALIGN is about DMA memory alignment
945   constraints. You don't need to worry about the architecture data
946   alignment constraints (e.g. the alignment constraints about 64-bit
947   objects).
948
9493) Supporting multiple types of IOMMUs
950
951   If your architecture needs to support multiple types of IOMMUs, you
952   can use include/linux/asm-generic/dma-mapping-common.h. It's a
953   library to support the DMA API with multiple types of IOMMUs. Lots
954   of architectures (x86, powerpc, sh, alpha, ia64, microblaze and
955   sparc) use it. Choose one to see how it can be used. If you need to
956   support multiple types of IOMMUs in a single system, the example of
957   x86 or powerpc helps.
958
959			   Closing
960
961This document, and the API itself, would not be in its current
962form without the feedback and suggestions from numerous individuals.
963We would like to specifically mention, in no particular order, the
964following people:
965
966	Russell King <rmk@arm.linux.org.uk>
967	Leo Dagum <dagum@barrel.engr.sgi.com>
968	Ralf Baechle <ralf@oss.sgi.com>
969	Grant Grundler <grundler@cup.hp.com>
970	Jay Estabrook <Jay.Estabrook@compaq.com>
971	Thomas Sailer <sailer@ife.ee.ethz.ch>
972	Andrea Arcangeli <andrea@suse.de>
973	Jens Axboe <jens.axboe@oracle.com>
974	David Mosberger-Tang <davidm@hpl.hp.com>
975