1 /*
2  * hdm_usb.c - Hardware dependent module for USB
3  *
4  * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * This file is licensed under GPLv2.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/fs.h>
17 #include <linux/usb.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/cdev.h>
21 #include <linux/device.h>
22 #include <linux/list.h>
23 #include <linux/completion.h>
24 #include <linux/mutex.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/workqueue.h>
28 #include <linux/sysfs.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/uaccess.h>
32 #include "mostcore.h"
33 #include "networking.h"
34 
35 #define USB_MTU			512
36 #define NO_ISOCHRONOUS_URB	0
37 #define AV_PACKETS_PER_XACT	2
38 #define BUF_CHAIN_SIZE		0xFFFF
39 #define MAX_NUM_ENDPOINTS	30
40 #define MAX_SUFFIX_LEN		10
41 #define MAX_STRING_LEN		80
42 #define MAX_BUF_SIZE		0xFFFF
43 #define CEILING(x, y)		(((x) + (y) - 1) / (y))
44 
45 #define USB_VENDOR_ID_SMSC	0x0424  /* VID: SMSC */
46 #define USB_DEV_ID_BRDG		0xC001  /* PID: USB Bridge */
47 #define USB_DEV_ID_INIC		0xCF18  /* PID: USB INIC */
48 #define HW_RESYNC		0x0000
49 /* DRCI Addresses */
50 #define DRCI_REG_NI_STATE	0x0100
51 #define DRCI_REG_PACKET_BW	0x0101
52 #define DRCI_REG_NODE_ADDR	0x0102
53 #define DRCI_REG_NODE_POS	0x0103
54 #define DRCI_REG_MEP_FILTER	0x0140
55 #define DRCI_REG_HASH_TBL0	0x0141
56 #define DRCI_REG_HASH_TBL1	0x0142
57 #define DRCI_REG_HASH_TBL2	0x0143
58 #define DRCI_REG_HASH_TBL3	0x0144
59 #define DRCI_REG_HW_ADDR_HI	0x0145
60 #define DRCI_REG_HW_ADDR_MI	0x0146
61 #define DRCI_REG_HW_ADDR_LO	0x0147
62 #define DRCI_REG_BASE		0x1100
63 #define DRCI_COMMAND		0x02
64 #define DRCI_READ_REQ		0xA0
65 #define DRCI_WRITE_REQ		0xA1
66 
67 /**
68  * struct buf_anchor - used to create a list of pending URBs
69  * @urb: pointer to USB request block
70  * @clear_work_obj:
71  * @list: linked list
72  * @urb_completion:
73  */
74 struct buf_anchor {
75 	struct urb *urb;
76 	struct work_struct clear_work_obj;
77 	struct list_head list;
78 	struct completion urb_compl;
79 };
80 
81 #define to_buf_anchor(w) container_of(w, struct buf_anchor, clear_work_obj)
82 
83 /**
84  * struct most_dci_obj - Direct Communication Interface
85  * @kobj:position in sysfs
86  * @usb_device: pointer to the usb device
87  */
88 struct most_dci_obj {
89 	struct kobject kobj;
90 	struct usb_device *usb_device;
91 };
92 
93 #define to_dci_obj(p) container_of(p, struct most_dci_obj, kobj)
94 
95 /**
96  * struct most_dev - holds all usb interface specific stuff
97  * @parent: parent object in sysfs
98  * @usb_device: pointer to usb device
99  * @iface: hardware interface
100  * @cap: channel capabilities
101  * @conf: channel configuration
102  * @dci: direct communication interface of hardware
103  * @hw_addr: MAC address of hardware
104  * @ep_address: endpoint address table
105  * @link_stat: link status of hardware
106  * @description: device description
107  * @suffix: suffix for channel name
108  * @anchor_list_lock: locks list access
109  * @padding_active: indicates channel uses padding
110  * @is_channel_healthy: health status table of each channel
111  * @anchor_list: list of anchored items
112  * @io_mutex: synchronize I/O with disconnect
113  * @link_stat_timer: timer for link status reports
114  * @poll_work_obj: work for polling link status
115  */
116 struct most_dev {
117 	struct kobject *parent;
118 	struct usb_device *usb_device;
119 	struct most_interface iface;
120 	struct most_channel_capability *cap;
121 	struct most_channel_config *conf;
122 	struct most_dci_obj *dci;
123 	u8 hw_addr[6];
124 	u8 *ep_address;
125 	u16 link_stat;
126 	char description[MAX_STRING_LEN];
127 	char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
128 	spinlock_t anchor_list_lock[MAX_NUM_ENDPOINTS];
129 	bool padding_active[MAX_NUM_ENDPOINTS];
130 	bool is_channel_healthy[MAX_NUM_ENDPOINTS];
131 	struct list_head *anchor_list;
132 	struct mutex io_mutex;
133 	struct timer_list link_stat_timer;
134 	struct work_struct poll_work_obj;
135 };
136 
137 #define to_mdev(d) container_of(d, struct most_dev, iface)
138 #define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
139 
140 static struct workqueue_struct *schedule_usb_work;
141 static void wq_clear_halt(struct work_struct *wq_obj);
142 static void wq_netinfo(struct work_struct *wq_obj);
143 
144 /**
145  * drci_rd_reg - read a DCI register
146  * @dev: usb device
147  * @reg: register address
148  * @buf: buffer to store data
149  *
150  * This is reads data from INIC's direct register communication interface
151  */
drci_rd_reg(struct usb_device * dev,u16 reg,u16 * buf)152 static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
153 {
154 	int retval;
155 	u16 *dma_buf = kzalloc(sizeof(u16), GFP_KERNEL);
156 	u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
157 
158 	if (!dma_buf)
159 		return -ENOMEM;
160 
161 	retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
162 				 DRCI_READ_REQ, req_type,
163 				 0x0000,
164 				 reg, dma_buf, sizeof(u16), 5 * HZ);
165 	*buf = le16_to_cpu(*dma_buf);
166 	kfree(dma_buf);
167 
168 	return retval;
169 }
170 
171 /**
172  * drci_wr_reg - write a DCI register
173  * @dev: usb device
174  * @reg: register address
175  * @data: data to write
176  *
177  * This is writes data to INIC's direct register communication interface
178  */
drci_wr_reg(struct usb_device * dev,u16 reg,u16 data)179 static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
180 {
181 	return usb_control_msg(dev,
182 			       usb_sndctrlpipe(dev, 0),
183 			       DRCI_WRITE_REQ,
184 			       USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
185 			       data,
186 			       reg,
187 			       NULL,
188 			       0,
189 			       5 * HZ);
190 }
191 
192 /**
193  * free_anchored_buffers - free device's anchored items
194  * @mdev: the device
195  * @channel: channel ID
196  */
free_anchored_buffers(struct most_dev * mdev,unsigned int channel)197 static void free_anchored_buffers(struct most_dev *mdev, unsigned int channel)
198 {
199 	struct mbo *mbo;
200 	struct buf_anchor *anchor, *tmp;
201 	unsigned long flags;
202 
203 	spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
204 	list_for_each_entry_safe(anchor, tmp, &mdev->anchor_list[channel],
205 				 list) {
206 		struct urb *urb = anchor->urb;
207 
208 		spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
209 		if (likely(urb)) {
210 			mbo = urb->context;
211 			if (!irqs_disabled()) {
212 				usb_kill_urb(urb);
213 			} else {
214 				usb_unlink_urb(urb);
215 				wait_for_completion(&anchor->urb_compl);
216 			}
217 			if ((mbo) && (mbo->complete)) {
218 				mbo->status = MBO_E_CLOSE;
219 				mbo->processed_length = 0;
220 				mbo->complete(mbo);
221 			}
222 			usb_free_urb(urb);
223 		}
224 		spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
225 		list_del(&anchor->list);
226 		kfree(anchor);
227 	}
228 	spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
229 }
230 
231 /**
232  * get_stream_frame_size - calculate frame size of current configuration
233  * @cfg: channel configuration
234  */
get_stream_frame_size(struct most_channel_config * cfg)235 static unsigned int get_stream_frame_size(struct most_channel_config *cfg)
236 {
237 	unsigned int frame_size = 0;
238 	unsigned int sub_size = cfg->subbuffer_size;
239 
240 	if (!sub_size) {
241 		pr_warn("Misconfig: Subbuffer size zero.\n");
242 		return frame_size;
243 	}
244 	switch (cfg->data_type) {
245 	case MOST_CH_ISOC_AVP:
246 		frame_size = AV_PACKETS_PER_XACT * sub_size;
247 		break;
248 	case MOST_CH_SYNC:
249 		if (cfg->packets_per_xact == 0) {
250 			pr_warn("Misconfig: Packets per XACT zero\n");
251 			frame_size = 0;
252 		} else if (cfg->packets_per_xact == 0xFF) {
253 			frame_size = (USB_MTU / sub_size) * sub_size;
254 		} else {
255 			frame_size = cfg->packets_per_xact * sub_size;
256 		}
257 		break;
258 	default:
259 		pr_warn("Query frame size of non-streaming channel\n");
260 		break;
261 	}
262 	return frame_size;
263 }
264 
265 /**
266  * hdm_poison_channel - mark buffers of this channel as invalid
267  * @iface: pointer to the interface
268  * @channel: channel ID
269  *
270  * This unlinks all URBs submitted to the HCD,
271  * calls the associated completion function of the core and removes
272  * them from the list.
273  *
274  * Returns 0 on success or error code otherwise.
275  */
hdm_poison_channel(struct most_interface * iface,int channel)276 static int hdm_poison_channel(struct most_interface *iface, int channel)
277 {
278 	struct most_dev *mdev;
279 
280 	mdev = to_mdev(iface);
281 	if (unlikely(!iface)) {
282 		dev_warn(&mdev->usb_device->dev, "Poison: Bad interface.\n");
283 		return -EIO;
284 	}
285 	if (unlikely((channel < 0) || (channel >= iface->num_channels))) {
286 		dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
287 		return -ECHRNG;
288 	}
289 
290 	mdev->is_channel_healthy[channel] = false;
291 
292 	mutex_lock(&mdev->io_mutex);
293 	free_anchored_buffers(mdev, channel);
294 	if (mdev->padding_active[channel])
295 		mdev->padding_active[channel] = false;
296 
297 	if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
298 		del_timer_sync(&mdev->link_stat_timer);
299 		cancel_work_sync(&mdev->poll_work_obj);
300 	}
301 	mutex_unlock(&mdev->io_mutex);
302 	return 0;
303 }
304 
305 /**
306  * hdm_add_padding - add padding bytes
307  * @mdev: most device
308  * @channel: channel ID
309  * @mbo: buffer object
310  *
311  * This inserts the INIC hardware specific padding bytes into a streaming
312  * channel's buffer
313  */
hdm_add_padding(struct most_dev * mdev,int channel,struct mbo * mbo)314 static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
315 {
316 	struct most_channel_config *conf = &mdev->conf[channel];
317 	unsigned int j, num_frames, frame_size;
318 	u16 rd_addr, wr_addr;
319 
320 	frame_size = get_stream_frame_size(conf);
321 	if (!frame_size)
322 		return -EIO;
323 	num_frames = mbo->buffer_length / frame_size;
324 
325 	if (num_frames < 1) {
326 		dev_err(&mdev->usb_device->dev,
327 			"Missed minimal transfer unit.\n");
328 		return -EIO;
329 	}
330 
331 	for (j = 1; j < num_frames; j++) {
332 		wr_addr = (num_frames - j) * USB_MTU;
333 		rd_addr = (num_frames - j) * frame_size;
334 		memmove(mbo->virt_address + wr_addr,
335 			mbo->virt_address + rd_addr,
336 			frame_size);
337 	}
338 	mbo->buffer_length = num_frames * USB_MTU;
339 	return 0;
340 }
341 
342 /**
343  * hdm_remove_padding - remove padding bytes
344  * @mdev: most device
345  * @channel: channel ID
346  * @mbo: buffer object
347  *
348  * This takes the INIC hardware specific padding bytes off a streaming
349  * channel's buffer.
350  */
hdm_remove_padding(struct most_dev * mdev,int channel,struct mbo * mbo)351 static int hdm_remove_padding(struct most_dev *mdev, int channel,
352 			      struct mbo *mbo)
353 {
354 	unsigned int j, num_frames, frame_size;
355 	struct most_channel_config *const conf = &mdev->conf[channel];
356 
357 	frame_size = get_stream_frame_size(conf);
358 	if (!frame_size)
359 		return -EIO;
360 	num_frames = mbo->processed_length / USB_MTU;
361 
362 	for (j = 1; j < num_frames; j++)
363 		memmove(mbo->virt_address + frame_size * j,
364 			mbo->virt_address + USB_MTU * j,
365 			frame_size);
366 
367 	mbo->processed_length = frame_size * num_frames;
368 	return 0;
369 }
370 
371 /**
372  * hdm_write_completion - completion function for submitted Tx URBs
373  * @urb: the URB that has been completed
374  *
375  * This checks the status of the completed URB. In case the URB has been
376  * unlinked before, it is immediately freed. On any other error the MBO
377  * transfer flag is set. On success it frees allocated resources and calls
378  * the completion function.
379  *
380  * Context: interrupt!
381  */
hdm_write_completion(struct urb * urb)382 static void hdm_write_completion(struct urb *urb)
383 {
384 	struct mbo *mbo;
385 	struct buf_anchor *anchor;
386 	struct most_dev *mdev;
387 	struct device *dev;
388 	unsigned int channel;
389 	unsigned long flags;
390 
391 	mbo = urb->context;
392 	anchor = mbo->priv;
393 	mdev = to_mdev(mbo->ifp);
394 	channel = mbo->hdm_channel_id;
395 	dev = &mdev->usb_device->dev;
396 
397 	if ((urb->status == -ENOENT) || (urb->status == -ECONNRESET) ||
398 	    (!mdev->is_channel_healthy[channel])) {
399 		complete(&anchor->urb_compl);
400 		return;
401 	}
402 
403 	if (unlikely(urb->status && !(urb->status == -ENOENT ||
404 				      urb->status == -ECONNRESET ||
405 				      urb->status == -ESHUTDOWN))) {
406 		mbo->processed_length = 0;
407 		switch (urb->status) {
408 		case -EPIPE:
409 			dev_warn(dev, "Broken OUT pipe detected\n");
410 			most_stop_enqueue(&mdev->iface, channel);
411 			mbo->status = MBO_E_INVAL;
412 			usb_unlink_urb(urb);
413 			INIT_WORK(&anchor->clear_work_obj, wq_clear_halt);
414 			queue_work(schedule_usb_work, &anchor->clear_work_obj);
415 			return;
416 		case -ENODEV:
417 		case -EPROTO:
418 			mbo->status = MBO_E_CLOSE;
419 			break;
420 		default:
421 			mbo->status = MBO_E_INVAL;
422 			break;
423 		}
424 	} else {
425 		mbo->status = MBO_SUCCESS;
426 		mbo->processed_length = urb->actual_length;
427 	}
428 
429 	spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
430 	list_del(&anchor->list);
431 	spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
432 	kfree(anchor);
433 
434 	if (likely(mbo->complete))
435 		mbo->complete(mbo);
436 	usb_free_urb(urb);
437 }
438 
439 /**
440  * hdm_read_completion - completion function for submitted Rx URBs
441  * @urb: the URB that has been completed
442  *
443  * This checks the status of the completed URB. In case the URB has been
444  * unlinked before it is immediately freed. On any other error the MBO transfer
445  * flag is set. On success it frees allocated resources, removes
446  * padding bytes -if necessary- and calls the completion function.
447  *
448  * Context: interrupt!
449  *
450  * **************************************************************************
451  *                   Error codes returned by in urb->status
452  *                   or in iso_frame_desc[n].status (for ISO)
453  * *************************************************************************
454  *
455  * USB device drivers may only test urb status values in completion handlers.
456  * This is because otherwise there would be a race between HCDs updating
457  * these values on one CPU, and device drivers testing them on another CPU.
458  *
459  * A transfer's actual_length may be positive even when an error has been
460  * reported.  That's because transfers often involve several packets, so that
461  * one or more packets could finish before an error stops further endpoint I/O.
462  *
463  * For isochronous URBs, the urb status value is non-zero only if the URB is
464  * unlinked, the device is removed, the host controller is disabled or the total
465  * transferred length is less than the requested length and the URB_SHORT_NOT_OK
466  * flag is set.  Completion handlers for isochronous URBs should only see
467  * urb->status set to zero, -ENOENT, -ECONNRESET, -ESHUTDOWN, or -EREMOTEIO.
468  * Individual frame descriptor status fields may report more status codes.
469  *
470  *
471  * 0			Transfer completed successfully
472  *
473  * -ENOENT		URB was synchronously unlinked by usb_unlink_urb
474  *
475  * -EINPROGRESS		URB still pending, no results yet
476  *			(That is, if drivers see this it's a bug.)
477  *
478  * -EPROTO (*, **)	a) bitstuff error
479  *			b) no response packet received within the
480  *			   prescribed bus turn-around time
481  *			c) unknown USB error
482  *
483  * -EILSEQ (*, **)	a) CRC mismatch
484  *			b) no response packet received within the
485  *			   prescribed bus turn-around time
486  *			c) unknown USB error
487  *
488  *			Note that often the controller hardware does not
489  *			distinguish among cases a), b), and c), so a
490  *			driver cannot tell whether there was a protocol
491  *			error, a failure to respond (often caused by
492  *			device disconnect), or some other fault.
493  *
494  * -ETIME (**)		No response packet received within the prescribed
495  *			bus turn-around time.  This error may instead be
496  *			reported as -EPROTO or -EILSEQ.
497  *
498  * -ETIMEDOUT		Synchronous USB message functions use this code
499  *			to indicate timeout expired before the transfer
500  *			completed, and no other error was reported by HC.
501  *
502  * -EPIPE (**)		Endpoint stalled.  For non-control endpoints,
503  *			reset this status with usb_clear_halt().
504  *
505  * -ECOMM		During an IN transfer, the host controller
506  *			received data from an endpoint faster than it
507  *			could be written to system memory
508  *
509  * -ENOSR		During an OUT transfer, the host controller
510  *			could not retrieve data from system memory fast
511  *			enough to keep up with the USB data rate
512  *
513  * -EOVERFLOW (*)	The amount of data returned by the endpoint was
514  *			greater than either the max packet size of the
515  *			endpoint or the remaining buffer size.  "Babble".
516  *
517  * -EREMOTEIO		The data read from the endpoint did not fill the
518  *			specified buffer, and URB_SHORT_NOT_OK was set in
519  *			urb->transfer_flags.
520  *
521  * -ENODEV		Device was removed.  Often preceded by a burst of
522  *			other errors, since the hub driver doesn't detect
523  *			device removal events immediately.
524  *
525  * -EXDEV		ISO transfer only partially completed
526  *			(only set in iso_frame_desc[n].status, not urb->status)
527  *
528  * -EINVAL		ISO madness, if this happens: Log off and go home
529  *
530  * -ECONNRESET		URB was asynchronously unlinked by usb_unlink_urb
531  *
532  * -ESHUTDOWN		The device or host controller has been disabled due
533  *			to some problem that could not be worked around,
534  *			such as a physical disconnect.
535  *
536  *
537  * (*) Error codes like -EPROTO, -EILSEQ and -EOVERFLOW normally indicate
538  * hardware problems such as bad devices (including firmware) or cables.
539  *
540  * (**) This is also one of several codes that different kinds of host
541  * controller use to indicate a transfer has failed because of device
542  * disconnect.  In the interval before the hub driver starts disconnect
543  * processing, devices may receive such fault reports for every request.
544  *
545  * See <https://www.kernel.org/doc/Documentation/usb/error-codes.txt>
546  */
hdm_read_completion(struct urb * urb)547 static void hdm_read_completion(struct urb *urb)
548 {
549 	struct mbo *mbo;
550 	struct buf_anchor *anchor;
551 	struct most_dev *mdev;
552 	struct device *dev;
553 	unsigned long flags;
554 	unsigned int channel;
555 
556 	mbo = urb->context;
557 	anchor = mbo->priv;
558 	mdev = to_mdev(mbo->ifp);
559 	channel = mbo->hdm_channel_id;
560 	dev = &mdev->usb_device->dev;
561 
562 	if ((urb->status == -ENOENT) || (urb->status == -ECONNRESET) ||
563 	    (!mdev->is_channel_healthy[channel])) {
564 		complete(&anchor->urb_compl);
565 		return;
566 	}
567 
568 	if (unlikely(urb->status && !(urb->status == -ENOENT ||
569 				      urb->status == -ECONNRESET ||
570 				      urb->status == -ESHUTDOWN))) {
571 		mbo->processed_length = 0;
572 		switch (urb->status) {
573 		case -EPIPE:
574 			dev_warn(dev, "Broken IN pipe detected\n");
575 			mbo->status = MBO_E_INVAL;
576 			usb_unlink_urb(urb);
577 			INIT_WORK(&anchor->clear_work_obj, wq_clear_halt);
578 			queue_work(schedule_usb_work, &anchor->clear_work_obj);
579 			return;
580 		case -ENODEV:
581 		case -EPROTO:
582 			mbo->status = MBO_E_CLOSE;
583 			break;
584 		case -EOVERFLOW:
585 			dev_warn(dev, "Babble on IN pipe detected\n");
586 		default:
587 			mbo->status = MBO_E_INVAL;
588 			break;
589 		}
590 	} else {
591 		mbo->processed_length = urb->actual_length;
592 		if (!mdev->padding_active[channel]) {
593 			mbo->status = MBO_SUCCESS;
594 		} else {
595 			if (hdm_remove_padding(mdev, channel, mbo)) {
596 				mbo->processed_length = 0;
597 				mbo->status = MBO_E_INVAL;
598 			} else {
599 				mbo->status = MBO_SUCCESS;
600 			}
601 		}
602 	}
603 	spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
604 	list_del(&anchor->list);
605 	spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
606 	kfree(anchor);
607 
608 	if (likely(mbo->complete))
609 		mbo->complete(mbo);
610 	usb_free_urb(urb);
611 }
612 
613 /**
614  * hdm_enqueue - receive a buffer to be used for data transfer
615  * @iface: interface to enqueue to
616  * @channel: ID of the channel
617  * @mbo: pointer to the buffer object
618  *
619  * This allocates a new URB and fills it according to the channel
620  * that is being used for transmission of data. Before the URB is
621  * submitted it is stored in the private anchor list.
622  *
623  * Returns 0 on success. On any error the URB is freed and a error code
624  * is returned.
625  *
626  * Context: Could in _some_ cases be interrupt!
627  */
hdm_enqueue(struct most_interface * iface,int channel,struct mbo * mbo)628 static int hdm_enqueue(struct most_interface *iface, int channel,
629 		       struct mbo *mbo)
630 {
631 	struct most_dev *mdev;
632 	struct buf_anchor *anchor;
633 	struct most_channel_config *conf;
634 	struct device *dev;
635 	int retval = 0;
636 	struct urb *urb;
637 	unsigned long flags;
638 	unsigned long length;
639 	void *virt_address;
640 
641 	if (unlikely(!iface || !mbo))
642 		return -EIO;
643 	if (unlikely(iface->num_channels <= channel) || (channel < 0))
644 		return -ECHRNG;
645 
646 	mdev = to_mdev(iface);
647 	conf = &mdev->conf[channel];
648 	dev = &mdev->usb_device->dev;
649 
650 	if (!mdev->usb_device)
651 		return -ENODEV;
652 
653 	urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_ATOMIC);
654 	if (!urb) {
655 		dev_err(dev, "Failed to allocate URB\n");
656 		return -ENOMEM;
657 	}
658 
659 	anchor = kzalloc(sizeof(*anchor), GFP_ATOMIC);
660 	if (!anchor) {
661 		retval = -ENOMEM;
662 		goto _error;
663 	}
664 
665 	anchor->urb = urb;
666 	init_completion(&anchor->urb_compl);
667 	mbo->priv = anchor;
668 
669 	spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
670 	list_add_tail(&anchor->list, &mdev->anchor_list[channel]);
671 	spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
672 
673 	if ((mdev->padding_active[channel]) &&
674 	    (conf->direction & MOST_CH_TX))
675 		if (hdm_add_padding(mdev, channel, mbo)) {
676 			retval = -EIO;
677 			goto _error_1;
678 		}
679 
680 	urb->transfer_dma = mbo->bus_address;
681 	virt_address = mbo->virt_address;
682 	length = mbo->buffer_length;
683 
684 	if (conf->direction & MOST_CH_TX) {
685 		usb_fill_bulk_urb(urb, mdev->usb_device,
686 				  usb_sndbulkpipe(mdev->usb_device,
687 						  mdev->ep_address[channel]),
688 				  virt_address,
689 				  length,
690 				  hdm_write_completion,
691 				  mbo);
692 		if (conf->data_type != MOST_CH_ISOC_AVP)
693 			urb->transfer_flags |= URB_ZERO_PACKET;
694 	} else {
695 		usb_fill_bulk_urb(urb, mdev->usb_device,
696 				  usb_rcvbulkpipe(mdev->usb_device,
697 						  mdev->ep_address[channel]),
698 				  virt_address,
699 				  length + conf->extra_len,
700 				  hdm_read_completion,
701 				  mbo);
702 	}
703 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
704 
705 	retval = usb_submit_urb(urb, GFP_KERNEL);
706 	if (retval) {
707 		dev_err(dev, "URB submit failed with error %d.\n", retval);
708 		goto _error_1;
709 	}
710 	return 0;
711 
712 _error_1:
713 	spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
714 	list_del(&anchor->list);
715 	spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
716 	kfree(anchor);
717 _error:
718 	usb_free_urb(urb);
719 	return retval;
720 }
721 
722 /**
723  * hdm_configure_channel - receive channel configuration from core
724  * @iface: interface
725  * @channel: channel ID
726  * @conf: structure that holds the configuration information
727  */
hdm_configure_channel(struct most_interface * iface,int channel,struct most_channel_config * conf)728 static int hdm_configure_channel(struct most_interface *iface, int channel,
729 				 struct most_channel_config *conf)
730 {
731 	unsigned int num_frames;
732 	unsigned int frame_size;
733 	unsigned int temp_size;
734 	unsigned int tail_space;
735 	struct most_dev *mdev;
736 	struct device *dev;
737 
738 	mdev = to_mdev(iface);
739 	mdev->is_channel_healthy[channel] = true;
740 	dev = &mdev->usb_device->dev;
741 
742 	if (unlikely(!iface || !conf)) {
743 		dev_err(dev, "Bad interface or config pointer.\n");
744 		return -EINVAL;
745 	}
746 	if (unlikely((channel < 0) || (channel >= iface->num_channels))) {
747 		dev_err(dev, "Channel ID out of range.\n");
748 		return -EINVAL;
749 	}
750 	if ((!conf->num_buffers) || (!conf->buffer_size)) {
751 		dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
752 		return -EINVAL;
753 	}
754 
755 	if (!(conf->data_type == MOST_CH_SYNC) &&
756 	    !((conf->data_type == MOST_CH_ISOC_AVP) &&
757 	      (conf->packets_per_xact != 0xFF))) {
758 		mdev->padding_active[channel] = false;
759 		goto exit;
760 	}
761 
762 	mdev->padding_active[channel] = true;
763 	temp_size = conf->buffer_size;
764 
765 	frame_size = get_stream_frame_size(conf);
766 	if ((frame_size == 0) || (frame_size > USB_MTU)) {
767 		dev_warn(dev, "Misconfig: frame size wrong\n");
768 		return -EINVAL;
769 	}
770 
771 	if (conf->buffer_size % frame_size) {
772 		u16 tmp_val;
773 
774 		tmp_val = conf->buffer_size / frame_size;
775 		conf->buffer_size = tmp_val * frame_size;
776 		dev_notice(dev,
777 			   "Channel %d - rounding buffer size to %d bytes, channel config says %d bytes\n",
778 			   channel,
779 			   conf->buffer_size,
780 			   temp_size);
781 	}
782 
783 	num_frames = conf->buffer_size / frame_size;
784 	tail_space = num_frames * (USB_MTU - frame_size);
785 	temp_size += tail_space;
786 
787 	/* calculate extra length to comply w/ HW padding */
788 	conf->extra_len = (CEILING(temp_size, USB_MTU) * USB_MTU)
789 			  - conf->buffer_size;
790 exit:
791 	mdev->conf[channel] = *conf;
792 	return 0;
793 }
794 
795 /**
796  * hdm_update_netinfo - retrieve latest networking information
797  * @mdev: device interface
798  *
799  * This triggers the USB vendor requests to read the hardware address and
800  * the current link status of the attached device.
801  */
hdm_update_netinfo(struct most_dev * mdev)802 static int hdm_update_netinfo(struct most_dev *mdev)
803 {
804 	struct usb_device *usb_device = mdev->usb_device;
805 	struct device *dev = &usb_device->dev;
806 	u16 hi, mi, lo, link;
807 
808 	if (!is_valid_ether_addr(mdev->hw_addr)) {
809 		if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi) < 0) {
810 			dev_err(dev, "Vendor request \"hw_addr_hi\" failed\n");
811 			return -1;
812 		}
813 
814 		if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi) < 0) {
815 			dev_err(dev, "Vendor request \"hw_addr_mid\" failed\n");
816 			return -1;
817 		}
818 
819 		if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo) < 0) {
820 			dev_err(dev, "Vendor request \"hw_addr_low\" failed\n");
821 			return -1;
822 		}
823 
824 		mutex_lock(&mdev->io_mutex);
825 		mdev->hw_addr[0] = hi >> 8;
826 		mdev->hw_addr[1] = hi;
827 		mdev->hw_addr[2] = mi >> 8;
828 		mdev->hw_addr[3] = mi;
829 		mdev->hw_addr[4] = lo >> 8;
830 		mdev->hw_addr[5] = lo;
831 		mutex_unlock(&mdev->io_mutex);
832 	}
833 
834 	if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link) < 0) {
835 		dev_err(dev, "Vendor request \"link status\" failed\n");
836 		return -1;
837 	}
838 
839 	mutex_lock(&mdev->io_mutex);
840 	mdev->link_stat = link;
841 	mutex_unlock(&mdev->io_mutex);
842 	return 0;
843 }
844 
845 /**
846  * hdm_request_netinfo - request network information
847  * @iface: pointer to interface
848  * @channel: channel ID
849  *
850  * This is used as trigger to set up the link status timer that
851  * polls for the NI state of the INIC every 2 seconds.
852  *
853  */
hdm_request_netinfo(struct most_interface * iface,int channel)854 static void hdm_request_netinfo(struct most_interface *iface, int channel)
855 {
856 	struct most_dev *mdev;
857 
858 	BUG_ON(!iface);
859 	mdev = to_mdev(iface);
860 	mdev->link_stat_timer.expires = jiffies + HZ;
861 	mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
862 }
863 
864 /**
865  * link_stat_timer_handler - add work to link_stat work queue
866  * @data: pointer to USB device instance
867  *
868  * The handler runs in interrupt context. That's why we need to defer the
869  * tasks to a work queue.
870  */
link_stat_timer_handler(unsigned long data)871 static void link_stat_timer_handler(unsigned long data)
872 {
873 	struct most_dev *mdev = (struct most_dev *)data;
874 
875 	queue_work(schedule_usb_work, &mdev->poll_work_obj);
876 	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
877 	add_timer(&mdev->link_stat_timer);
878 }
879 
880 /**
881  * wq_netinfo - work queue function
882  * @wq_obj: object that holds data for our deferred work to do
883  *
884  * This retrieves the network interface status of the USB INIC
885  * and compares it with the current status. If the status has
886  * changed, it updates the status of the core.
887  */
wq_netinfo(struct work_struct * wq_obj)888 static void wq_netinfo(struct work_struct *wq_obj)
889 {
890 	struct most_dev *mdev;
891 	int i, prev_link_stat;
892 	u8 prev_hw_addr[6];
893 
894 	mdev = to_mdev_from_work(wq_obj);
895 	prev_link_stat = mdev->link_stat;
896 
897 	for (i = 0; i < 6; i++)
898 		prev_hw_addr[i] = mdev->hw_addr[i];
899 
900 	if (hdm_update_netinfo(mdev) < 0)
901 		return;
902 	if ((prev_link_stat != mdev->link_stat) ||
903 	    (prev_hw_addr[0] != mdev->hw_addr[0]) ||
904 	    (prev_hw_addr[1] != mdev->hw_addr[1]) ||
905 	    (prev_hw_addr[2] != mdev->hw_addr[2]) ||
906 	    (prev_hw_addr[3] != mdev->hw_addr[3]) ||
907 	    (prev_hw_addr[4] != mdev->hw_addr[4]) ||
908 	    (prev_hw_addr[5] != mdev->hw_addr[5]))
909 		most_deliver_netinfo(&mdev->iface, mdev->link_stat,
910 				     &mdev->hw_addr[0]);
911 }
912 
913 /**
914  * wq_clear_halt - work queue function
915  * @wq_obj: work_struct object to execute
916  *
917  * This sends a clear_halt to the given USB pipe.
918  */
wq_clear_halt(struct work_struct * wq_obj)919 static void wq_clear_halt(struct work_struct *wq_obj)
920 {
921 	struct buf_anchor *anchor;
922 	struct most_dev *mdev;
923 	struct mbo *mbo;
924 	struct urb *urb;
925 	unsigned int channel;
926 	unsigned long flags;
927 
928 	anchor = to_buf_anchor(wq_obj);
929 	urb = anchor->urb;
930 	mbo = urb->context;
931 	mdev = to_mdev(mbo->ifp);
932 	channel = mbo->hdm_channel_id;
933 
934 	if (usb_clear_halt(urb->dev, urb->pipe))
935 		dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
936 
937 	usb_free_urb(urb);
938 	spin_lock_irqsave(&mdev->anchor_list_lock[channel], flags);
939 	list_del(&anchor->list);
940 	spin_unlock_irqrestore(&mdev->anchor_list_lock[channel], flags);
941 
942 	if (likely(mbo->complete))
943 		mbo->complete(mbo);
944 	if (mdev->conf[channel].direction & MOST_CH_TX)
945 		most_resume_enqueue(&mdev->iface, channel);
946 
947 	kfree(anchor);
948 }
949 
950 /**
951  * hdm_usb_fops - file operation table for USB driver
952  */
953 static const struct file_operations hdm_usb_fops = {
954 	.owner = THIS_MODULE,
955 };
956 
957 /**
958  * usb_device_id - ID table for HCD device probing
959  */
960 static struct usb_device_id usbid[] = {
961 	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
962 	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_INIC), },
963 	{ } /* Terminating entry */
964 };
965 
966 #define MOST_DCI_RO_ATTR(_name) \
967 	struct most_dci_attribute most_dci_attr_##_name = \
968 		__ATTR(_name, S_IRUGO, show_value, NULL)
969 
970 #define MOST_DCI_ATTR(_name) \
971 	struct most_dci_attribute most_dci_attr_##_name = \
972 		__ATTR(_name, S_IRUGO | S_IWUSR, show_value, store_value)
973 
974 /**
975  * struct most_dci_attribute - to access the attributes of a dci object
976  * @attr: attributes of a dci object
977  * @show: pointer to the show function
978  * @store: pointer to the store function
979  */
980 struct most_dci_attribute {
981 	struct attribute attr;
982 	ssize_t (*show)(struct most_dci_obj *d,
983 			struct most_dci_attribute *attr,
984 			char *buf);
985 	ssize_t (*store)(struct most_dci_obj *d,
986 			 struct most_dci_attribute *attr,
987 			 const char *buf,
988 			 size_t count);
989 };
990 
991 #define to_dci_attr(a) container_of(a, struct most_dci_attribute, attr)
992 
993 /**
994  * dci_attr_show - show function for dci object
995  * @kobj: pointer to kobject
996  * @attr: pointer to attribute struct
997  * @buf: buffer
998  */
dci_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)999 static ssize_t dci_attr_show(struct kobject *kobj, struct attribute *attr,
1000 			     char *buf)
1001 {
1002 	struct most_dci_attribute *dci_attr = to_dci_attr(attr);
1003 	struct most_dci_obj *dci_obj = to_dci_obj(kobj);
1004 
1005 	if (!dci_attr->show)
1006 		return -EIO;
1007 
1008 	return dci_attr->show(dci_obj, dci_attr, buf);
1009 }
1010 
1011 /**
1012  * dci_attr_store - store function for dci object
1013  * @kobj: pointer to kobject
1014  * @attr: pointer to attribute struct
1015  * @buf: buffer
1016  * @len: length of buffer
1017  */
dci_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)1018 static ssize_t dci_attr_store(struct kobject *kobj,
1019 			      struct attribute *attr,
1020 			      const char *buf,
1021 			      size_t len)
1022 {
1023 	struct most_dci_attribute *dci_attr = to_dci_attr(attr);
1024 	struct most_dci_obj *dci_obj = to_dci_obj(kobj);
1025 
1026 	if (!dci_attr->store)
1027 		return -EIO;
1028 
1029 	return dci_attr->store(dci_obj, dci_attr, buf, len);
1030 }
1031 
1032 static const struct sysfs_ops most_dci_sysfs_ops = {
1033 	.show = dci_attr_show,
1034 	.store = dci_attr_store,
1035 };
1036 
1037 /**
1038  * most_dci_release - release function for dci object
1039  * @kobj: pointer to kobject
1040  *
1041  * This frees the memory allocated for the dci object
1042  */
most_dci_release(struct kobject * kobj)1043 static void most_dci_release(struct kobject *kobj)
1044 {
1045 	struct most_dci_obj *dci_obj = to_dci_obj(kobj);
1046 
1047 	kfree(dci_obj);
1048 }
1049 
show_value(struct most_dci_obj * dci_obj,struct most_dci_attribute * attr,char * buf)1050 static ssize_t show_value(struct most_dci_obj *dci_obj,
1051 			  struct most_dci_attribute *attr, char *buf)
1052 {
1053 	u16 tmp_val;
1054 	u16 reg_addr;
1055 	int err;
1056 
1057 	if (!strcmp(attr->attr.name, "ni_state"))
1058 		reg_addr = DRCI_REG_NI_STATE;
1059 	else if (!strcmp(attr->attr.name, "packet_bandwidth"))
1060 		reg_addr = DRCI_REG_PACKET_BW;
1061 	else if (!strcmp(attr->attr.name, "node_address"))
1062 		reg_addr = DRCI_REG_NODE_ADDR;
1063 	else if (!strcmp(attr->attr.name, "node_position"))
1064 		reg_addr = DRCI_REG_NODE_POS;
1065 	else if (!strcmp(attr->attr.name, "mep_filter"))
1066 		reg_addr = DRCI_REG_MEP_FILTER;
1067 	else if (!strcmp(attr->attr.name, "mep_hash0"))
1068 		reg_addr = DRCI_REG_HASH_TBL0;
1069 	else if (!strcmp(attr->attr.name, "mep_hash1"))
1070 		reg_addr = DRCI_REG_HASH_TBL1;
1071 	else if (!strcmp(attr->attr.name, "mep_hash2"))
1072 		reg_addr = DRCI_REG_HASH_TBL2;
1073 	else if (!strcmp(attr->attr.name, "mep_hash3"))
1074 		reg_addr = DRCI_REG_HASH_TBL3;
1075 	else if (!strcmp(attr->attr.name, "mep_eui48_hi"))
1076 		reg_addr = DRCI_REG_HW_ADDR_HI;
1077 	else if (!strcmp(attr->attr.name, "mep_eui48_mi"))
1078 		reg_addr = DRCI_REG_HW_ADDR_MI;
1079 	else if (!strcmp(attr->attr.name, "mep_eui48_lo"))
1080 		reg_addr = DRCI_REG_HW_ADDR_LO;
1081 	else
1082 		return -EIO;
1083 
1084 	err = drci_rd_reg(dci_obj->usb_device, reg_addr, &tmp_val);
1085 	if (err < 0)
1086 		return err;
1087 
1088 	return snprintf(buf, PAGE_SIZE, "%04x\n", tmp_val);
1089 }
1090 
store_value(struct most_dci_obj * dci_obj,struct most_dci_attribute * attr,const char * buf,size_t count)1091 static ssize_t store_value(struct most_dci_obj *dci_obj,
1092 			   struct most_dci_attribute *attr,
1093 			   const char *buf, size_t count)
1094 {
1095 	u16 val;
1096 	u16 reg_addr;
1097 	int err;
1098 
1099 	if (!strcmp(attr->attr.name, "mep_filter"))
1100 		reg_addr = DRCI_REG_MEP_FILTER;
1101 	else if (!strcmp(attr->attr.name, "mep_hash0"))
1102 		reg_addr = DRCI_REG_HASH_TBL0;
1103 	else if (!strcmp(attr->attr.name, "mep_hash1"))
1104 		reg_addr = DRCI_REG_HASH_TBL1;
1105 	else if (!strcmp(attr->attr.name, "mep_hash2"))
1106 		reg_addr = DRCI_REG_HASH_TBL2;
1107 	else if (!strcmp(attr->attr.name, "mep_hash3"))
1108 		reg_addr = DRCI_REG_HASH_TBL3;
1109 	else if (!strcmp(attr->attr.name, "mep_eui48_hi"))
1110 		reg_addr = DRCI_REG_HW_ADDR_HI;
1111 	else if (!strcmp(attr->attr.name, "mep_eui48_mi"))
1112 		reg_addr = DRCI_REG_HW_ADDR_MI;
1113 	else if (!strcmp(attr->attr.name, "mep_eui48_lo"))
1114 		reg_addr = DRCI_REG_HW_ADDR_LO;
1115 	else
1116 		return -EIO;
1117 
1118 	err = kstrtou16(buf, 16, &val);
1119 	if (err)
1120 		return err;
1121 
1122 	err = drci_wr_reg(dci_obj->usb_device, reg_addr, val);
1123 	if (err < 0)
1124 		return err;
1125 
1126 	return count;
1127 }
1128 
1129 static MOST_DCI_RO_ATTR(ni_state);
1130 static MOST_DCI_RO_ATTR(packet_bandwidth);
1131 static MOST_DCI_RO_ATTR(node_address);
1132 static MOST_DCI_RO_ATTR(node_position);
1133 static MOST_DCI_ATTR(mep_filter);
1134 static MOST_DCI_ATTR(mep_hash0);
1135 static MOST_DCI_ATTR(mep_hash1);
1136 static MOST_DCI_ATTR(mep_hash2);
1137 static MOST_DCI_ATTR(mep_hash3);
1138 static MOST_DCI_ATTR(mep_eui48_hi);
1139 static MOST_DCI_ATTR(mep_eui48_mi);
1140 static MOST_DCI_ATTR(mep_eui48_lo);
1141 
1142 /**
1143  * most_dci_def_attrs - array of default attribute files of the dci object
1144  */
1145 static struct attribute *most_dci_def_attrs[] = {
1146 	&most_dci_attr_ni_state.attr,
1147 	&most_dci_attr_packet_bandwidth.attr,
1148 	&most_dci_attr_node_address.attr,
1149 	&most_dci_attr_node_position.attr,
1150 	&most_dci_attr_mep_filter.attr,
1151 	&most_dci_attr_mep_hash0.attr,
1152 	&most_dci_attr_mep_hash1.attr,
1153 	&most_dci_attr_mep_hash2.attr,
1154 	&most_dci_attr_mep_hash3.attr,
1155 	&most_dci_attr_mep_eui48_hi.attr,
1156 	&most_dci_attr_mep_eui48_mi.attr,
1157 	&most_dci_attr_mep_eui48_lo.attr,
1158 	NULL,
1159 };
1160 
1161 /**
1162  * DCI ktype
1163  */
1164 static struct kobj_type most_dci_ktype = {
1165 	.sysfs_ops = &most_dci_sysfs_ops,
1166 	.release = most_dci_release,
1167 	.default_attrs = most_dci_def_attrs,
1168 };
1169 
1170 /**
1171  * create_most_dci_obj - allocates a dci object
1172  * @parent: parent kobject
1173  *
1174  * This creates a dci object and registers it with sysfs.
1175  * Returns a pointer to the object or NULL when something went wrong.
1176  */
1177 static struct
create_most_dci_obj(struct kobject * parent)1178 most_dci_obj *create_most_dci_obj(struct kobject *parent)
1179 {
1180 	struct most_dci_obj *most_dci;
1181 	int retval;
1182 
1183 	most_dci = kzalloc(sizeof(*most_dci), GFP_KERNEL);
1184 	if (!most_dci)
1185 		return NULL;
1186 
1187 	retval = kobject_init_and_add(&most_dci->kobj, &most_dci_ktype, parent,
1188 				      "dci");
1189 	if (retval) {
1190 		kobject_put(&most_dci->kobj);
1191 		return NULL;
1192 	}
1193 	return most_dci;
1194 }
1195 
1196 /**
1197  * destroy_most_dci_obj - DCI object release function
1198  * @p: pointer to dci object
1199  */
destroy_most_dci_obj(struct most_dci_obj * p)1200 static void destroy_most_dci_obj(struct most_dci_obj *p)
1201 {
1202 	kobject_put(&p->kobj);
1203 }
1204 
1205 /**
1206  * hdm_probe - probe function of USB device driver
1207  * @interface: Interface of the attached USB device
1208  * @id: Pointer to the USB ID table.
1209  *
1210  * This allocates and initializes the device instance, adds the new
1211  * entry to the internal list, scans the USB descriptors and registers
1212  * the interface with the core.
1213  * Additionally, the DCI objects are created and the hardware is sync'd.
1214  *
1215  * Return 0 on success. In case of an error a negative number is returned.
1216  */
1217 static int
hdm_probe(struct usb_interface * interface,const struct usb_device_id * id)1218 hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
1219 {
1220 	unsigned int i;
1221 	unsigned int num_endpoints;
1222 	struct most_channel_capability *tmp_cap;
1223 	struct most_dev *mdev;
1224 	struct usb_device *usb_dev;
1225 	struct device *dev;
1226 	struct usb_host_interface *usb_iface_desc;
1227 	struct usb_endpoint_descriptor *ep_desc;
1228 	int ret = 0;
1229 	int err;
1230 
1231 	usb_iface_desc = interface->cur_altsetting;
1232 	usb_dev = interface_to_usbdev(interface);
1233 	dev = &usb_dev->dev;
1234 	mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
1235 	if (!mdev)
1236 		goto exit_ENOMEM;
1237 
1238 	usb_set_intfdata(interface, mdev);
1239 	num_endpoints = usb_iface_desc->desc.bNumEndpoints;
1240 	mutex_init(&mdev->io_mutex);
1241 	INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
1242 	setup_timer(&mdev->link_stat_timer, link_stat_timer_handler,
1243 		    (unsigned long)mdev);
1244 
1245 	mdev->usb_device = usb_dev;
1246 	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
1247 
1248 	mdev->iface.mod = hdm_usb_fops.owner;
1249 	mdev->iface.interface = ITYPE_USB;
1250 	mdev->iface.configure = hdm_configure_channel;
1251 	mdev->iface.request_netinfo = hdm_request_netinfo;
1252 	mdev->iface.enqueue = hdm_enqueue;
1253 	mdev->iface.poison_channel = hdm_poison_channel;
1254 	mdev->iface.description = mdev->description;
1255 	mdev->iface.num_channels = num_endpoints;
1256 
1257 	snprintf(mdev->description, sizeof(mdev->description),
1258 		 "usb_device %d-%s:%d.%d",
1259 		 usb_dev->bus->busnum,
1260 		 usb_dev->devpath,
1261 		 usb_dev->config->desc.bConfigurationValue,
1262 		 usb_iface_desc->desc.bInterfaceNumber);
1263 
1264 	mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
1265 	if (!mdev->conf)
1266 		goto exit_free;
1267 
1268 	mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1269 	if (!mdev->cap)
1270 		goto exit_free1;
1271 
1272 	mdev->iface.channel_vector = mdev->cap;
1273 	mdev->iface.priv = NULL;
1274 
1275 	mdev->ep_address =
1276 		kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1277 	if (!mdev->ep_address)
1278 		goto exit_free2;
1279 
1280 	mdev->anchor_list =
1281 		kcalloc(num_endpoints, sizeof(*mdev->anchor_list), GFP_KERNEL);
1282 	if (!mdev->anchor_list)
1283 		goto exit_free3;
1284 
1285 	tmp_cap = mdev->cap;
1286 	for (i = 0; i < num_endpoints; i++) {
1287 		ep_desc = &usb_iface_desc->endpoint[i].desc;
1288 		mdev->ep_address[i] = ep_desc->bEndpointAddress;
1289 		mdev->padding_active[i] = false;
1290 		mdev->is_channel_healthy[i] = true;
1291 
1292 		snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1293 			 mdev->ep_address[i]);
1294 
1295 		tmp_cap->name_suffix = &mdev->suffix[i][0];
1296 		tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1297 		tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1298 		tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1299 		tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1300 		tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1301 				     MOST_CH_ISOC_AVP | MOST_CH_SYNC;
1302 		if (ep_desc->bEndpointAddress & USB_DIR_IN)
1303 			tmp_cap->direction = MOST_CH_RX;
1304 		else
1305 			tmp_cap->direction = MOST_CH_TX;
1306 		tmp_cap++;
1307 		INIT_LIST_HEAD(&mdev->anchor_list[i]);
1308 		spin_lock_init(&mdev->anchor_list_lock[i]);
1309 		err = drci_wr_reg(usb_dev,
1310 				  DRCI_REG_BASE + DRCI_COMMAND +
1311 				  ep_desc->bEndpointAddress * 16,
1312 				  1);
1313 		if (err < 0)
1314 			pr_warn("DCI Sync for EP %02x failed",
1315 				ep_desc->bEndpointAddress);
1316 	}
1317 	dev_notice(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1318 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1319 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1320 		   usb_dev->bus->busnum,
1321 		   usb_dev->devnum);
1322 
1323 	dev_notice(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1324 		   usb_dev->bus->busnum,
1325 		   usb_dev->devpath,
1326 		   usb_dev->config->desc.bConfigurationValue,
1327 		   usb_iface_desc->desc.bInterfaceNumber);
1328 
1329 	mdev->parent = most_register_interface(&mdev->iface);
1330 	if (IS_ERR(mdev->parent)) {
1331 		ret = PTR_ERR(mdev->parent);
1332 		goto exit_free4;
1333 	}
1334 
1335 	mutex_lock(&mdev->io_mutex);
1336 	if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_INIC) {
1337 		/* this increments the reference count of the instance
1338 		 * object of the core
1339 		 */
1340 		mdev->dci = create_most_dci_obj(mdev->parent);
1341 		if (!mdev->dci) {
1342 			mutex_unlock(&mdev->io_mutex);
1343 			most_deregister_interface(&mdev->iface);
1344 			ret = -ENOMEM;
1345 			goto exit_free4;
1346 		}
1347 
1348 		kobject_uevent(&mdev->dci->kobj, KOBJ_ADD);
1349 		mdev->dci->usb_device = mdev->usb_device;
1350 	}
1351 	mutex_unlock(&mdev->io_mutex);
1352 	return 0;
1353 
1354 exit_free4:
1355 	kfree(mdev->anchor_list);
1356 exit_free3:
1357 	kfree(mdev->ep_address);
1358 exit_free2:
1359 	kfree(mdev->cap);
1360 exit_free1:
1361 	kfree(mdev->conf);
1362 exit_free:
1363 	kfree(mdev);
1364 exit_ENOMEM:
1365 	if (ret == 0 || ret == -ENOMEM) {
1366 		ret = -ENOMEM;
1367 		dev_err(dev, "out of memory\n");
1368 	}
1369 	return ret;
1370 }
1371 
1372 /**
1373  * hdm_disconnect - disconnect function of USB device driver
1374  * @interface: Interface of the attached USB device
1375  *
1376  * This deregisters the interface with the core, removes the kernel timer
1377  * and frees resources.
1378  *
1379  * Context: hub kernel thread
1380  */
hdm_disconnect(struct usb_interface * interface)1381 static void hdm_disconnect(struct usb_interface *interface)
1382 {
1383 	struct most_dev *mdev;
1384 
1385 	mdev = usb_get_intfdata(interface);
1386 	mutex_lock(&mdev->io_mutex);
1387 	usb_set_intfdata(interface, NULL);
1388 	mdev->usb_device = NULL;
1389 	mutex_unlock(&mdev->io_mutex);
1390 
1391 	del_timer_sync(&mdev->link_stat_timer);
1392 	cancel_work_sync(&mdev->poll_work_obj);
1393 
1394 	destroy_most_dci_obj(mdev->dci);
1395 	most_deregister_interface(&mdev->iface);
1396 
1397 	kfree(mdev->anchor_list);
1398 	kfree(mdev->cap);
1399 	kfree(mdev->conf);
1400 	kfree(mdev->ep_address);
1401 	kfree(mdev);
1402 }
1403 
1404 static struct usb_driver hdm_usb = {
1405 	.name = "hdm_usb",
1406 	.id_table = usbid,
1407 	.probe = hdm_probe,
1408 	.disconnect = hdm_disconnect,
1409 };
1410 
hdm_usb_init(void)1411 static int __init hdm_usb_init(void)
1412 {
1413 	pr_info("hdm_usb_init()\n");
1414 	if (usb_register(&hdm_usb)) {
1415 		pr_err("could not register hdm_usb driver\n");
1416 		return -EIO;
1417 	}
1418 	schedule_usb_work = create_workqueue("hdmu_work");
1419 	if (!schedule_usb_work) {
1420 		pr_err("could not create workqueue\n");
1421 		usb_deregister(&hdm_usb);
1422 		return -ENOMEM;
1423 	}
1424 	return 0;
1425 }
1426 
hdm_usb_exit(void)1427 static void __exit hdm_usb_exit(void)
1428 {
1429 	pr_info("hdm_usb_exit()\n");
1430 	destroy_workqueue(schedule_usb_work);
1431 	usb_deregister(&hdm_usb);
1432 }
1433 
1434 module_init(hdm_usb_init);
1435 module_exit(hdm_usb_exit);
1436 MODULE_LICENSE("GPL");
1437 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1438 MODULE_DESCRIPTION("HDM_4_USB");
1439