1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44 
45 #include <linux/atomic.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53 
54 #include "ib_srp.h"
55 
56 #define DRV_NAME	"ib_srp"
57 #define PFX		DRV_NAME ": "
58 #define DRV_VERSION	"1.0"
59 #define DRV_RELDATE	"July 1, 2013"
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator "
63 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
64 MODULE_LICENSE("Dual BSD/GPL");
65 
66 static unsigned int srp_sg_tablesize;
67 static unsigned int cmd_sg_entries;
68 static unsigned int indirect_sg_entries;
69 static bool allow_ext_sg;
70 static bool prefer_fr;
71 static bool register_always;
72 static int topspin_workarounds = 1;
73 
74 module_param(srp_sg_tablesize, uint, 0444);
75 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
76 
77 module_param(cmd_sg_entries, uint, 0444);
78 MODULE_PARM_DESC(cmd_sg_entries,
79 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
80 
81 module_param(indirect_sg_entries, uint, 0444);
82 MODULE_PARM_DESC(indirect_sg_entries,
83 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
84 
85 module_param(allow_ext_sg, bool, 0444);
86 MODULE_PARM_DESC(allow_ext_sg,
87 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
88 
89 module_param(topspin_workarounds, int, 0444);
90 MODULE_PARM_DESC(topspin_workarounds,
91 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
92 
93 module_param(prefer_fr, bool, 0444);
94 MODULE_PARM_DESC(prefer_fr,
95 "Whether to use fast registration if both FMR and fast registration are supported");
96 
97 module_param(register_always, bool, 0444);
98 MODULE_PARM_DESC(register_always,
99 		 "Use memory registration even for contiguous memory regions");
100 
101 static struct kernel_param_ops srp_tmo_ops;
102 
103 static int srp_reconnect_delay = 10;
104 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
105 		S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
107 
108 static int srp_fast_io_fail_tmo = 15;
109 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
110 		S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(fast_io_fail_tmo,
112 		 "Number of seconds between the observation of a transport"
113 		 " layer error and failing all I/O. \"off\" means that this"
114 		 " functionality is disabled.");
115 
116 static int srp_dev_loss_tmo = 600;
117 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
118 		S_IRUGO | S_IWUSR);
119 MODULE_PARM_DESC(dev_loss_tmo,
120 		 "Maximum number of seconds that the SRP transport should"
121 		 " insulate transport layer errors. After this time has been"
122 		 " exceeded the SCSI host is removed. Should be"
123 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
124 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
125 		 " this functionality is disabled.");
126 
127 static unsigned ch_count;
128 module_param(ch_count, uint, 0444);
129 MODULE_PARM_DESC(ch_count,
130 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
131 
132 static void srp_add_one(struct ib_device *device);
133 static void srp_remove_one(struct ib_device *device);
134 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
135 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
136 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
137 
138 static struct scsi_transport_template *ib_srp_transport_template;
139 static struct workqueue_struct *srp_remove_wq;
140 
141 static struct ib_client srp_client = {
142 	.name   = "srp",
143 	.add    = srp_add_one,
144 	.remove = srp_remove_one
145 };
146 
147 static struct ib_sa_client srp_sa_client;
148 
srp_tmo_get(char * buffer,const struct kernel_param * kp)149 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
150 {
151 	int tmo = *(int *)kp->arg;
152 
153 	if (tmo >= 0)
154 		return sprintf(buffer, "%d", tmo);
155 	else
156 		return sprintf(buffer, "off");
157 }
158 
srp_tmo_set(const char * val,const struct kernel_param * kp)159 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
160 {
161 	int tmo, res;
162 
163 	if (strncmp(val, "off", 3) != 0) {
164 		res = kstrtoint(val, 0, &tmo);
165 		if (res)
166 			goto out;
167 	} else {
168 		tmo = -1;
169 	}
170 	if (kp->arg == &srp_reconnect_delay)
171 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
172 				    srp_dev_loss_tmo);
173 	else if (kp->arg == &srp_fast_io_fail_tmo)
174 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
175 	else
176 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
177 				    tmo);
178 	if (res)
179 		goto out;
180 	*(int *)kp->arg = tmo;
181 
182 out:
183 	return res;
184 }
185 
186 static struct kernel_param_ops srp_tmo_ops = {
187 	.get = srp_tmo_get,
188 	.set = srp_tmo_set,
189 };
190 
host_to_target(struct Scsi_Host * host)191 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
192 {
193 	return (struct srp_target_port *) host->hostdata;
194 }
195 
srp_target_info(struct Scsi_Host * host)196 static const char *srp_target_info(struct Scsi_Host *host)
197 {
198 	return host_to_target(host)->target_name;
199 }
200 
srp_target_is_topspin(struct srp_target_port * target)201 static int srp_target_is_topspin(struct srp_target_port *target)
202 {
203 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
204 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
205 
206 	return topspin_workarounds &&
207 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
208 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
209 }
210 
srp_alloc_iu(struct srp_host * host,size_t size,gfp_t gfp_mask,enum dma_data_direction direction)211 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
212 				   gfp_t gfp_mask,
213 				   enum dma_data_direction direction)
214 {
215 	struct srp_iu *iu;
216 
217 	iu = kmalloc(sizeof *iu, gfp_mask);
218 	if (!iu)
219 		goto out;
220 
221 	iu->buf = kzalloc(size, gfp_mask);
222 	if (!iu->buf)
223 		goto out_free_iu;
224 
225 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
226 				    direction);
227 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
228 		goto out_free_buf;
229 
230 	iu->size      = size;
231 	iu->direction = direction;
232 
233 	return iu;
234 
235 out_free_buf:
236 	kfree(iu->buf);
237 out_free_iu:
238 	kfree(iu);
239 out:
240 	return NULL;
241 }
242 
srp_free_iu(struct srp_host * host,struct srp_iu * iu)243 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
244 {
245 	if (!iu)
246 		return;
247 
248 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
249 			    iu->direction);
250 	kfree(iu->buf);
251 	kfree(iu);
252 }
253 
srp_qp_event(struct ib_event * event,void * context)254 static void srp_qp_event(struct ib_event *event, void *context)
255 {
256 	pr_debug("QP event %d\n", event->event);
257 }
258 
srp_init_qp(struct srp_target_port * target,struct ib_qp * qp)259 static int srp_init_qp(struct srp_target_port *target,
260 		       struct ib_qp *qp)
261 {
262 	struct ib_qp_attr *attr;
263 	int ret;
264 
265 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
266 	if (!attr)
267 		return -ENOMEM;
268 
269 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
270 				  target->srp_host->port,
271 				  be16_to_cpu(target->pkey),
272 				  &attr->pkey_index);
273 	if (ret)
274 		goto out;
275 
276 	attr->qp_state        = IB_QPS_INIT;
277 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
278 				    IB_ACCESS_REMOTE_WRITE);
279 	attr->port_num        = target->srp_host->port;
280 
281 	ret = ib_modify_qp(qp, attr,
282 			   IB_QP_STATE		|
283 			   IB_QP_PKEY_INDEX	|
284 			   IB_QP_ACCESS_FLAGS	|
285 			   IB_QP_PORT);
286 
287 out:
288 	kfree(attr);
289 	return ret;
290 }
291 
srp_new_cm_id(struct srp_rdma_ch * ch)292 static int srp_new_cm_id(struct srp_rdma_ch *ch)
293 {
294 	struct srp_target_port *target = ch->target;
295 	struct ib_cm_id *new_cm_id;
296 
297 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
298 				    srp_cm_handler, ch);
299 	if (IS_ERR(new_cm_id))
300 		return PTR_ERR(new_cm_id);
301 
302 	if (ch->cm_id)
303 		ib_destroy_cm_id(ch->cm_id);
304 	ch->cm_id = new_cm_id;
305 	ch->path.sgid = target->sgid;
306 	ch->path.dgid = target->orig_dgid;
307 	ch->path.pkey = target->pkey;
308 	ch->path.service_id = target->service_id;
309 
310 	return 0;
311 }
312 
srp_alloc_fmr_pool(struct srp_target_port * target)313 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
314 {
315 	struct srp_device *dev = target->srp_host->srp_dev;
316 	struct ib_fmr_pool_param fmr_param;
317 
318 	memset(&fmr_param, 0, sizeof(fmr_param));
319 	fmr_param.pool_size	    = target->scsi_host->can_queue;
320 	fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
321 	fmr_param.cache		    = 1;
322 	fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
323 	fmr_param.page_shift	    = ilog2(dev->mr_page_size);
324 	fmr_param.access	    = (IB_ACCESS_LOCAL_WRITE |
325 				       IB_ACCESS_REMOTE_WRITE |
326 				       IB_ACCESS_REMOTE_READ);
327 
328 	return ib_create_fmr_pool(dev->pd, &fmr_param);
329 }
330 
331 /**
332  * srp_destroy_fr_pool() - free the resources owned by a pool
333  * @pool: Fast registration pool to be destroyed.
334  */
srp_destroy_fr_pool(struct srp_fr_pool * pool)335 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
336 {
337 	int i;
338 	struct srp_fr_desc *d;
339 
340 	if (!pool)
341 		return;
342 
343 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
344 		if (d->frpl)
345 			ib_free_fast_reg_page_list(d->frpl);
346 		if (d->mr)
347 			ib_dereg_mr(d->mr);
348 	}
349 	kfree(pool);
350 }
351 
352 /**
353  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
354  * @device:            IB device to allocate fast registration descriptors for.
355  * @pd:                Protection domain associated with the FR descriptors.
356  * @pool_size:         Number of descriptors to allocate.
357  * @max_page_list_len: Maximum fast registration work request page list length.
358  */
srp_create_fr_pool(struct ib_device * device,struct ib_pd * pd,int pool_size,int max_page_list_len)359 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
360 					      struct ib_pd *pd, int pool_size,
361 					      int max_page_list_len)
362 {
363 	struct srp_fr_pool *pool;
364 	struct srp_fr_desc *d;
365 	struct ib_mr *mr;
366 	struct ib_fast_reg_page_list *frpl;
367 	int i, ret = -EINVAL;
368 
369 	if (pool_size <= 0)
370 		goto err;
371 	ret = -ENOMEM;
372 	pool = kzalloc(sizeof(struct srp_fr_pool) +
373 		       pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
374 	if (!pool)
375 		goto err;
376 	pool->size = pool_size;
377 	pool->max_page_list_len = max_page_list_len;
378 	spin_lock_init(&pool->lock);
379 	INIT_LIST_HEAD(&pool->free_list);
380 
381 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
382 		mr = ib_alloc_fast_reg_mr(pd, max_page_list_len);
383 		if (IS_ERR(mr)) {
384 			ret = PTR_ERR(mr);
385 			goto destroy_pool;
386 		}
387 		d->mr = mr;
388 		frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
389 		if (IS_ERR(frpl)) {
390 			ret = PTR_ERR(frpl);
391 			goto destroy_pool;
392 		}
393 		d->frpl = frpl;
394 		list_add_tail(&d->entry, &pool->free_list);
395 	}
396 
397 out:
398 	return pool;
399 
400 destroy_pool:
401 	srp_destroy_fr_pool(pool);
402 
403 err:
404 	pool = ERR_PTR(ret);
405 	goto out;
406 }
407 
408 /**
409  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
410  * @pool: Pool to obtain descriptor from.
411  */
srp_fr_pool_get(struct srp_fr_pool * pool)412 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
413 {
414 	struct srp_fr_desc *d = NULL;
415 	unsigned long flags;
416 
417 	spin_lock_irqsave(&pool->lock, flags);
418 	if (!list_empty(&pool->free_list)) {
419 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
420 		list_del(&d->entry);
421 	}
422 	spin_unlock_irqrestore(&pool->lock, flags);
423 
424 	return d;
425 }
426 
427 /**
428  * srp_fr_pool_put() - put an FR descriptor back in the free list
429  * @pool: Pool the descriptor was allocated from.
430  * @desc: Pointer to an array of fast registration descriptor pointers.
431  * @n:    Number of descriptors to put back.
432  *
433  * Note: The caller must already have queued an invalidation request for
434  * desc->mr->rkey before calling this function.
435  */
srp_fr_pool_put(struct srp_fr_pool * pool,struct srp_fr_desc ** desc,int n)436 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
437 			    int n)
438 {
439 	unsigned long flags;
440 	int i;
441 
442 	spin_lock_irqsave(&pool->lock, flags);
443 	for (i = 0; i < n; i++)
444 		list_add(&desc[i]->entry, &pool->free_list);
445 	spin_unlock_irqrestore(&pool->lock, flags);
446 }
447 
srp_alloc_fr_pool(struct srp_target_port * target)448 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
449 {
450 	struct srp_device *dev = target->srp_host->srp_dev;
451 
452 	return srp_create_fr_pool(dev->dev, dev->pd,
453 				  target->scsi_host->can_queue,
454 				  dev->max_pages_per_mr);
455 }
456 
457 /**
458  * srp_destroy_qp() - destroy an RDMA queue pair
459  * @ch: SRP RDMA channel.
460  *
461  * Change a queue pair into the error state and wait until all receive
462  * completions have been processed before destroying it. This avoids that
463  * the receive completion handler can access the queue pair while it is
464  * being destroyed.
465  */
srp_destroy_qp(struct srp_rdma_ch * ch)466 static void srp_destroy_qp(struct srp_rdma_ch *ch)
467 {
468 	static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
469 	static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
470 	struct ib_recv_wr *bad_wr;
471 	int ret;
472 
473 	/* Destroying a QP and reusing ch->done is only safe if not connected */
474 	WARN_ON_ONCE(ch->connected);
475 
476 	ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
477 	WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
478 	if (ret)
479 		goto out;
480 
481 	init_completion(&ch->done);
482 	ret = ib_post_recv(ch->qp, &wr, &bad_wr);
483 	WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
484 	if (ret == 0)
485 		wait_for_completion(&ch->done);
486 
487 out:
488 	ib_destroy_qp(ch->qp);
489 }
490 
srp_create_ch_ib(struct srp_rdma_ch * ch)491 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
492 {
493 	struct srp_target_port *target = ch->target;
494 	struct srp_device *dev = target->srp_host->srp_dev;
495 	struct ib_qp_init_attr *init_attr;
496 	struct ib_cq *recv_cq, *send_cq;
497 	struct ib_qp *qp;
498 	struct ib_fmr_pool *fmr_pool = NULL;
499 	struct srp_fr_pool *fr_pool = NULL;
500 	const int m = 1 + dev->use_fast_reg;
501 	int ret;
502 
503 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
504 	if (!init_attr)
505 		return -ENOMEM;
506 
507 	/* + 1 for SRP_LAST_WR_ID */
508 	recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
509 			       target->queue_size + 1, ch->comp_vector);
510 	if (IS_ERR(recv_cq)) {
511 		ret = PTR_ERR(recv_cq);
512 		goto err;
513 	}
514 
515 	send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
516 			       m * target->queue_size, ch->comp_vector);
517 	if (IS_ERR(send_cq)) {
518 		ret = PTR_ERR(send_cq);
519 		goto err_recv_cq;
520 	}
521 
522 	ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
523 
524 	init_attr->event_handler       = srp_qp_event;
525 	init_attr->cap.max_send_wr     = m * target->queue_size;
526 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
527 	init_attr->cap.max_recv_sge    = 1;
528 	init_attr->cap.max_send_sge    = 1;
529 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
530 	init_attr->qp_type             = IB_QPT_RC;
531 	init_attr->send_cq             = send_cq;
532 	init_attr->recv_cq             = recv_cq;
533 
534 	qp = ib_create_qp(dev->pd, init_attr);
535 	if (IS_ERR(qp)) {
536 		ret = PTR_ERR(qp);
537 		goto err_send_cq;
538 	}
539 
540 	ret = srp_init_qp(target, qp);
541 	if (ret)
542 		goto err_qp;
543 
544 	if (dev->use_fast_reg && dev->has_fr) {
545 		fr_pool = srp_alloc_fr_pool(target);
546 		if (IS_ERR(fr_pool)) {
547 			ret = PTR_ERR(fr_pool);
548 			shost_printk(KERN_WARNING, target->scsi_host, PFX
549 				     "FR pool allocation failed (%d)\n", ret);
550 			goto err_qp;
551 		}
552 		if (ch->fr_pool)
553 			srp_destroy_fr_pool(ch->fr_pool);
554 		ch->fr_pool = fr_pool;
555 	} else if (!dev->use_fast_reg && dev->has_fmr) {
556 		fmr_pool = srp_alloc_fmr_pool(target);
557 		if (IS_ERR(fmr_pool)) {
558 			ret = PTR_ERR(fmr_pool);
559 			shost_printk(KERN_WARNING, target->scsi_host, PFX
560 				     "FMR pool allocation failed (%d)\n", ret);
561 			goto err_qp;
562 		}
563 		if (ch->fmr_pool)
564 			ib_destroy_fmr_pool(ch->fmr_pool);
565 		ch->fmr_pool = fmr_pool;
566 	}
567 
568 	if (ch->qp)
569 		srp_destroy_qp(ch);
570 	if (ch->recv_cq)
571 		ib_destroy_cq(ch->recv_cq);
572 	if (ch->send_cq)
573 		ib_destroy_cq(ch->send_cq);
574 
575 	ch->qp = qp;
576 	ch->recv_cq = recv_cq;
577 	ch->send_cq = send_cq;
578 
579 	kfree(init_attr);
580 	return 0;
581 
582 err_qp:
583 	ib_destroy_qp(qp);
584 
585 err_send_cq:
586 	ib_destroy_cq(send_cq);
587 
588 err_recv_cq:
589 	ib_destroy_cq(recv_cq);
590 
591 err:
592 	kfree(init_attr);
593 	return ret;
594 }
595 
596 /*
597  * Note: this function may be called without srp_alloc_iu_bufs() having been
598  * invoked. Hence the ch->[rt]x_ring checks.
599  */
srp_free_ch_ib(struct srp_target_port * target,struct srp_rdma_ch * ch)600 static void srp_free_ch_ib(struct srp_target_port *target,
601 			   struct srp_rdma_ch *ch)
602 {
603 	struct srp_device *dev = target->srp_host->srp_dev;
604 	int i;
605 
606 	if (!ch->target)
607 		return;
608 
609 	if (ch->cm_id) {
610 		ib_destroy_cm_id(ch->cm_id);
611 		ch->cm_id = NULL;
612 	}
613 
614 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
615 	if (!ch->qp)
616 		return;
617 
618 	if (dev->use_fast_reg) {
619 		if (ch->fr_pool)
620 			srp_destroy_fr_pool(ch->fr_pool);
621 	} else {
622 		if (ch->fmr_pool)
623 			ib_destroy_fmr_pool(ch->fmr_pool);
624 	}
625 	srp_destroy_qp(ch);
626 	ib_destroy_cq(ch->send_cq);
627 	ib_destroy_cq(ch->recv_cq);
628 
629 	/*
630 	 * Avoid that the SCSI error handler tries to use this channel after
631 	 * it has been freed. The SCSI error handler can namely continue
632 	 * trying to perform recovery actions after scsi_remove_host()
633 	 * returned.
634 	 */
635 	ch->target = NULL;
636 
637 	ch->qp = NULL;
638 	ch->send_cq = ch->recv_cq = NULL;
639 
640 	if (ch->rx_ring) {
641 		for (i = 0; i < target->queue_size; ++i)
642 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
643 		kfree(ch->rx_ring);
644 		ch->rx_ring = NULL;
645 	}
646 	if (ch->tx_ring) {
647 		for (i = 0; i < target->queue_size; ++i)
648 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
649 		kfree(ch->tx_ring);
650 		ch->tx_ring = NULL;
651 	}
652 }
653 
srp_path_rec_completion(int status,struct ib_sa_path_rec * pathrec,void * ch_ptr)654 static void srp_path_rec_completion(int status,
655 				    struct ib_sa_path_rec *pathrec,
656 				    void *ch_ptr)
657 {
658 	struct srp_rdma_ch *ch = ch_ptr;
659 	struct srp_target_port *target = ch->target;
660 
661 	ch->status = status;
662 	if (status)
663 		shost_printk(KERN_ERR, target->scsi_host,
664 			     PFX "Got failed path rec status %d\n", status);
665 	else
666 		ch->path = *pathrec;
667 	complete(&ch->done);
668 }
669 
srp_lookup_path(struct srp_rdma_ch * ch)670 static int srp_lookup_path(struct srp_rdma_ch *ch)
671 {
672 	struct srp_target_port *target = ch->target;
673 	int ret;
674 
675 	ch->path.numb_path = 1;
676 
677 	init_completion(&ch->done);
678 
679 	ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
680 					       target->srp_host->srp_dev->dev,
681 					       target->srp_host->port,
682 					       &ch->path,
683 					       IB_SA_PATH_REC_SERVICE_ID |
684 					       IB_SA_PATH_REC_DGID	 |
685 					       IB_SA_PATH_REC_SGID	 |
686 					       IB_SA_PATH_REC_NUMB_PATH	 |
687 					       IB_SA_PATH_REC_PKEY,
688 					       SRP_PATH_REC_TIMEOUT_MS,
689 					       GFP_KERNEL,
690 					       srp_path_rec_completion,
691 					       ch, &ch->path_query);
692 	if (ch->path_query_id < 0)
693 		return ch->path_query_id;
694 
695 	ret = wait_for_completion_interruptible(&ch->done);
696 	if (ret < 0)
697 		return ret;
698 
699 	if (ch->status < 0)
700 		shost_printk(KERN_WARNING, target->scsi_host,
701 			     PFX "Path record query failed\n");
702 
703 	return ch->status;
704 }
705 
srp_send_req(struct srp_rdma_ch * ch,bool multich)706 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
707 {
708 	struct srp_target_port *target = ch->target;
709 	struct {
710 		struct ib_cm_req_param param;
711 		struct srp_login_req   priv;
712 	} *req = NULL;
713 	int status;
714 
715 	req = kzalloc(sizeof *req, GFP_KERNEL);
716 	if (!req)
717 		return -ENOMEM;
718 
719 	req->param.primary_path		      = &ch->path;
720 	req->param.alternate_path 	      = NULL;
721 	req->param.service_id 		      = target->service_id;
722 	req->param.qp_num		      = ch->qp->qp_num;
723 	req->param.qp_type		      = ch->qp->qp_type;
724 	req->param.private_data 	      = &req->priv;
725 	req->param.private_data_len 	      = sizeof req->priv;
726 	req->param.flow_control 	      = 1;
727 
728 	get_random_bytes(&req->param.starting_psn, 4);
729 	req->param.starting_psn 	     &= 0xffffff;
730 
731 	/*
732 	 * Pick some arbitrary defaults here; we could make these
733 	 * module parameters if anyone cared about setting them.
734 	 */
735 	req->param.responder_resources	      = 4;
736 	req->param.remote_cm_response_timeout = 20;
737 	req->param.local_cm_response_timeout  = 20;
738 	req->param.retry_count                = target->tl_retry_count;
739 	req->param.rnr_retry_count 	      = 7;
740 	req->param.max_cm_retries 	      = 15;
741 
742 	req->priv.opcode     	= SRP_LOGIN_REQ;
743 	req->priv.tag        	= 0;
744 	req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
745 	req->priv.req_buf_fmt 	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
746 					      SRP_BUF_FORMAT_INDIRECT);
747 	req->priv.req_flags	= (multich ? SRP_MULTICHAN_MULTI :
748 				   SRP_MULTICHAN_SINGLE);
749 	/*
750 	 * In the published SRP specification (draft rev. 16a), the
751 	 * port identifier format is 8 bytes of ID extension followed
752 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
753 	 * opposite order, so that the GUID comes first.
754 	 *
755 	 * Targets conforming to these obsolete drafts can be
756 	 * recognized by the I/O Class they report.
757 	 */
758 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
759 		memcpy(req->priv.initiator_port_id,
760 		       &target->sgid.global.interface_id, 8);
761 		memcpy(req->priv.initiator_port_id + 8,
762 		       &target->initiator_ext, 8);
763 		memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
764 		memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
765 	} else {
766 		memcpy(req->priv.initiator_port_id,
767 		       &target->initiator_ext, 8);
768 		memcpy(req->priv.initiator_port_id + 8,
769 		       &target->sgid.global.interface_id, 8);
770 		memcpy(req->priv.target_port_id,     &target->id_ext, 8);
771 		memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
772 	}
773 
774 	/*
775 	 * Topspin/Cisco SRP targets will reject our login unless we
776 	 * zero out the first 8 bytes of our initiator port ID and set
777 	 * the second 8 bytes to the local node GUID.
778 	 */
779 	if (srp_target_is_topspin(target)) {
780 		shost_printk(KERN_DEBUG, target->scsi_host,
781 			     PFX "Topspin/Cisco initiator port ID workaround "
782 			     "activated for target GUID %016llx\n",
783 			     (unsigned long long) be64_to_cpu(target->ioc_guid));
784 		memset(req->priv.initiator_port_id, 0, 8);
785 		memcpy(req->priv.initiator_port_id + 8,
786 		       &target->srp_host->srp_dev->dev->node_guid, 8);
787 	}
788 
789 	status = ib_send_cm_req(ch->cm_id, &req->param);
790 
791 	kfree(req);
792 
793 	return status;
794 }
795 
srp_queue_remove_work(struct srp_target_port * target)796 static bool srp_queue_remove_work(struct srp_target_port *target)
797 {
798 	bool changed = false;
799 
800 	spin_lock_irq(&target->lock);
801 	if (target->state != SRP_TARGET_REMOVED) {
802 		target->state = SRP_TARGET_REMOVED;
803 		changed = true;
804 	}
805 	spin_unlock_irq(&target->lock);
806 
807 	if (changed)
808 		queue_work(srp_remove_wq, &target->remove_work);
809 
810 	return changed;
811 }
812 
srp_disconnect_target(struct srp_target_port * target)813 static void srp_disconnect_target(struct srp_target_port *target)
814 {
815 	struct srp_rdma_ch *ch;
816 	int i;
817 
818 	/* XXX should send SRP_I_LOGOUT request */
819 
820 	for (i = 0; i < target->ch_count; i++) {
821 		ch = &target->ch[i];
822 		ch->connected = false;
823 		if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
824 			shost_printk(KERN_DEBUG, target->scsi_host,
825 				     PFX "Sending CM DREQ failed\n");
826 		}
827 	}
828 }
829 
srp_free_req_data(struct srp_target_port * target,struct srp_rdma_ch * ch)830 static void srp_free_req_data(struct srp_target_port *target,
831 			      struct srp_rdma_ch *ch)
832 {
833 	struct srp_device *dev = target->srp_host->srp_dev;
834 	struct ib_device *ibdev = dev->dev;
835 	struct srp_request *req;
836 	int i;
837 
838 	if (!ch->target || !ch->req_ring)
839 		return;
840 
841 	for (i = 0; i < target->req_ring_size; ++i) {
842 		req = &ch->req_ring[i];
843 		if (dev->use_fast_reg)
844 			kfree(req->fr_list);
845 		else
846 			kfree(req->fmr_list);
847 		kfree(req->map_page);
848 		if (req->indirect_dma_addr) {
849 			ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
850 					    target->indirect_size,
851 					    DMA_TO_DEVICE);
852 		}
853 		kfree(req->indirect_desc);
854 	}
855 
856 	kfree(ch->req_ring);
857 	ch->req_ring = NULL;
858 }
859 
srp_alloc_req_data(struct srp_rdma_ch * ch)860 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
861 {
862 	struct srp_target_port *target = ch->target;
863 	struct srp_device *srp_dev = target->srp_host->srp_dev;
864 	struct ib_device *ibdev = srp_dev->dev;
865 	struct srp_request *req;
866 	void *mr_list;
867 	dma_addr_t dma_addr;
868 	int i, ret = -ENOMEM;
869 
870 	ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
871 			       GFP_KERNEL);
872 	if (!ch->req_ring)
873 		goto out;
874 
875 	for (i = 0; i < target->req_ring_size; ++i) {
876 		req = &ch->req_ring[i];
877 		mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
878 				  GFP_KERNEL);
879 		if (!mr_list)
880 			goto out;
881 		if (srp_dev->use_fast_reg)
882 			req->fr_list = mr_list;
883 		else
884 			req->fmr_list = mr_list;
885 		req->map_page = kmalloc(srp_dev->max_pages_per_mr *
886 					sizeof(void *), GFP_KERNEL);
887 		if (!req->map_page)
888 			goto out;
889 		req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
890 		if (!req->indirect_desc)
891 			goto out;
892 
893 		dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
894 					     target->indirect_size,
895 					     DMA_TO_DEVICE);
896 		if (ib_dma_mapping_error(ibdev, dma_addr))
897 			goto out;
898 
899 		req->indirect_dma_addr = dma_addr;
900 	}
901 	ret = 0;
902 
903 out:
904 	return ret;
905 }
906 
907 /**
908  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
909  * @shost: SCSI host whose attributes to remove from sysfs.
910  *
911  * Note: Any attributes defined in the host template and that did not exist
912  * before invocation of this function will be ignored.
913  */
srp_del_scsi_host_attr(struct Scsi_Host * shost)914 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
915 {
916 	struct device_attribute **attr;
917 
918 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
919 		device_remove_file(&shost->shost_dev, *attr);
920 }
921 
srp_remove_target(struct srp_target_port * target)922 static void srp_remove_target(struct srp_target_port *target)
923 {
924 	struct srp_rdma_ch *ch;
925 	int i;
926 
927 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
928 
929 	srp_del_scsi_host_attr(target->scsi_host);
930 	srp_rport_get(target->rport);
931 	srp_remove_host(target->scsi_host);
932 	scsi_remove_host(target->scsi_host);
933 	srp_stop_rport_timers(target->rport);
934 	srp_disconnect_target(target);
935 	for (i = 0; i < target->ch_count; i++) {
936 		ch = &target->ch[i];
937 		srp_free_ch_ib(target, ch);
938 	}
939 	cancel_work_sync(&target->tl_err_work);
940 	srp_rport_put(target->rport);
941 	for (i = 0; i < target->ch_count; i++) {
942 		ch = &target->ch[i];
943 		srp_free_req_data(target, ch);
944 	}
945 	kfree(target->ch);
946 	target->ch = NULL;
947 
948 	spin_lock(&target->srp_host->target_lock);
949 	list_del(&target->list);
950 	spin_unlock(&target->srp_host->target_lock);
951 
952 	scsi_host_put(target->scsi_host);
953 }
954 
srp_remove_work(struct work_struct * work)955 static void srp_remove_work(struct work_struct *work)
956 {
957 	struct srp_target_port *target =
958 		container_of(work, struct srp_target_port, remove_work);
959 
960 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
961 
962 	srp_remove_target(target);
963 }
964 
srp_rport_delete(struct srp_rport * rport)965 static void srp_rport_delete(struct srp_rport *rport)
966 {
967 	struct srp_target_port *target = rport->lld_data;
968 
969 	srp_queue_remove_work(target);
970 }
971 
972 /**
973  * srp_connected_ch() - number of connected channels
974  * @target: SRP target port.
975  */
srp_connected_ch(struct srp_target_port * target)976 static int srp_connected_ch(struct srp_target_port *target)
977 {
978 	int i, c = 0;
979 
980 	for (i = 0; i < target->ch_count; i++)
981 		c += target->ch[i].connected;
982 
983 	return c;
984 }
985 
srp_connect_ch(struct srp_rdma_ch * ch,bool multich)986 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
987 {
988 	struct srp_target_port *target = ch->target;
989 	int ret;
990 
991 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
992 
993 	ret = srp_lookup_path(ch);
994 	if (ret)
995 		return ret;
996 
997 	while (1) {
998 		init_completion(&ch->done);
999 		ret = srp_send_req(ch, multich);
1000 		if (ret)
1001 			return ret;
1002 		ret = wait_for_completion_interruptible(&ch->done);
1003 		if (ret < 0)
1004 			return ret;
1005 
1006 		/*
1007 		 * The CM event handling code will set status to
1008 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1009 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1010 		 * redirect REJ back.
1011 		 */
1012 		switch (ch->status) {
1013 		case 0:
1014 			ch->connected = true;
1015 			return 0;
1016 
1017 		case SRP_PORT_REDIRECT:
1018 			ret = srp_lookup_path(ch);
1019 			if (ret)
1020 				return ret;
1021 			break;
1022 
1023 		case SRP_DLID_REDIRECT:
1024 			break;
1025 
1026 		case SRP_STALE_CONN:
1027 			shost_printk(KERN_ERR, target->scsi_host, PFX
1028 				     "giving up on stale connection\n");
1029 			ch->status = -ECONNRESET;
1030 			return ch->status;
1031 
1032 		default:
1033 			return ch->status;
1034 		}
1035 	}
1036 }
1037 
srp_inv_rkey(struct srp_rdma_ch * ch,u32 rkey)1038 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1039 {
1040 	struct ib_send_wr *bad_wr;
1041 	struct ib_send_wr wr = {
1042 		.opcode		    = IB_WR_LOCAL_INV,
1043 		.wr_id		    = LOCAL_INV_WR_ID_MASK,
1044 		.next		    = NULL,
1045 		.num_sge	    = 0,
1046 		.send_flags	    = 0,
1047 		.ex.invalidate_rkey = rkey,
1048 	};
1049 
1050 	return ib_post_send(ch->qp, &wr, &bad_wr);
1051 }
1052 
srp_unmap_data(struct scsi_cmnd * scmnd,struct srp_rdma_ch * ch,struct srp_request * req)1053 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1054 			   struct srp_rdma_ch *ch,
1055 			   struct srp_request *req)
1056 {
1057 	struct srp_target_port *target = ch->target;
1058 	struct srp_device *dev = target->srp_host->srp_dev;
1059 	struct ib_device *ibdev = dev->dev;
1060 	int i, res;
1061 
1062 	if (!scsi_sglist(scmnd) ||
1063 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1064 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1065 		return;
1066 
1067 	if (dev->use_fast_reg) {
1068 		struct srp_fr_desc **pfr;
1069 
1070 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1071 			res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1072 			if (res < 0) {
1073 				shost_printk(KERN_ERR, target->scsi_host, PFX
1074 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1075 				  (*pfr)->mr->rkey, res);
1076 				queue_work(system_long_wq,
1077 					   &target->tl_err_work);
1078 			}
1079 		}
1080 		if (req->nmdesc)
1081 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1082 					req->nmdesc);
1083 	} else {
1084 		struct ib_pool_fmr **pfmr;
1085 
1086 		for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1087 			ib_fmr_pool_unmap(*pfmr);
1088 	}
1089 
1090 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1091 			scmnd->sc_data_direction);
1092 }
1093 
1094 /**
1095  * srp_claim_req - Take ownership of the scmnd associated with a request.
1096  * @ch: SRP RDMA channel.
1097  * @req: SRP request.
1098  * @sdev: If not NULL, only take ownership for this SCSI device.
1099  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1100  *         ownership of @req->scmnd if it equals @scmnd.
1101  *
1102  * Return value:
1103  * Either NULL or a pointer to the SCSI command the caller became owner of.
1104  */
srp_claim_req(struct srp_rdma_ch * ch,struct srp_request * req,struct scsi_device * sdev,struct scsi_cmnd * scmnd)1105 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1106 				       struct srp_request *req,
1107 				       struct scsi_device *sdev,
1108 				       struct scsi_cmnd *scmnd)
1109 {
1110 	unsigned long flags;
1111 
1112 	spin_lock_irqsave(&ch->lock, flags);
1113 	if (req->scmnd &&
1114 	    (!sdev || req->scmnd->device == sdev) &&
1115 	    (!scmnd || req->scmnd == scmnd)) {
1116 		scmnd = req->scmnd;
1117 		req->scmnd = NULL;
1118 	} else {
1119 		scmnd = NULL;
1120 	}
1121 	spin_unlock_irqrestore(&ch->lock, flags);
1122 
1123 	return scmnd;
1124 }
1125 
1126 /**
1127  * srp_free_req() - Unmap data and add request to the free request list.
1128  * @ch:     SRP RDMA channel.
1129  * @req:    Request to be freed.
1130  * @scmnd:  SCSI command associated with @req.
1131  * @req_lim_delta: Amount to be added to @target->req_lim.
1132  */
srp_free_req(struct srp_rdma_ch * ch,struct srp_request * req,struct scsi_cmnd * scmnd,s32 req_lim_delta)1133 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1134 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1135 {
1136 	unsigned long flags;
1137 
1138 	srp_unmap_data(scmnd, ch, req);
1139 
1140 	spin_lock_irqsave(&ch->lock, flags);
1141 	ch->req_lim += req_lim_delta;
1142 	spin_unlock_irqrestore(&ch->lock, flags);
1143 }
1144 
srp_finish_req(struct srp_rdma_ch * ch,struct srp_request * req,struct scsi_device * sdev,int result)1145 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1146 			   struct scsi_device *sdev, int result)
1147 {
1148 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1149 
1150 	if (scmnd) {
1151 		srp_free_req(ch, req, scmnd, 0);
1152 		scmnd->result = result;
1153 		scmnd->scsi_done(scmnd);
1154 	}
1155 }
1156 
srp_terminate_io(struct srp_rport * rport)1157 static void srp_terminate_io(struct srp_rport *rport)
1158 {
1159 	struct srp_target_port *target = rport->lld_data;
1160 	struct srp_rdma_ch *ch;
1161 	struct Scsi_Host *shost = target->scsi_host;
1162 	struct scsi_device *sdev;
1163 	int i, j;
1164 
1165 	/*
1166 	 * Invoking srp_terminate_io() while srp_queuecommand() is running
1167 	 * is not safe. Hence the warning statement below.
1168 	 */
1169 	shost_for_each_device(sdev, shost)
1170 		WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1171 
1172 	for (i = 0; i < target->ch_count; i++) {
1173 		ch = &target->ch[i];
1174 
1175 		for (j = 0; j < target->req_ring_size; ++j) {
1176 			struct srp_request *req = &ch->req_ring[j];
1177 
1178 			srp_finish_req(ch, req, NULL,
1179 				       DID_TRANSPORT_FAILFAST << 16);
1180 		}
1181 	}
1182 }
1183 
1184 /*
1185  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1186  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1187  * srp_reset_device() or srp_reset_host() calls will occur while this function
1188  * is in progress. One way to realize that is not to call this function
1189  * directly but to call srp_reconnect_rport() instead since that last function
1190  * serializes calls of this function via rport->mutex and also blocks
1191  * srp_queuecommand() calls before invoking this function.
1192  */
srp_rport_reconnect(struct srp_rport * rport)1193 static int srp_rport_reconnect(struct srp_rport *rport)
1194 {
1195 	struct srp_target_port *target = rport->lld_data;
1196 	struct srp_rdma_ch *ch;
1197 	int i, j, ret = 0;
1198 	bool multich = false;
1199 
1200 	srp_disconnect_target(target);
1201 
1202 	if (target->state == SRP_TARGET_SCANNING)
1203 		return -ENODEV;
1204 
1205 	/*
1206 	 * Now get a new local CM ID so that we avoid confusing the target in
1207 	 * case things are really fouled up. Doing so also ensures that all CM
1208 	 * callbacks will have finished before a new QP is allocated.
1209 	 */
1210 	for (i = 0; i < target->ch_count; i++) {
1211 		ch = &target->ch[i];
1212 		if (!ch->target)
1213 			break;
1214 		ret += srp_new_cm_id(ch);
1215 	}
1216 	for (i = 0; i < target->ch_count; i++) {
1217 		ch = &target->ch[i];
1218 		if (!ch->target)
1219 			break;
1220 		for (j = 0; j < target->req_ring_size; ++j) {
1221 			struct srp_request *req = &ch->req_ring[j];
1222 
1223 			srp_finish_req(ch, req, NULL, DID_RESET << 16);
1224 		}
1225 	}
1226 	for (i = 0; i < target->ch_count; i++) {
1227 		ch = &target->ch[i];
1228 		if (!ch->target)
1229 			break;
1230 		/*
1231 		 * Whether or not creating a new CM ID succeeded, create a new
1232 		 * QP. This guarantees that all completion callback function
1233 		 * invocations have finished before request resetting starts.
1234 		 */
1235 		ret += srp_create_ch_ib(ch);
1236 
1237 		INIT_LIST_HEAD(&ch->free_tx);
1238 		for (j = 0; j < target->queue_size; ++j)
1239 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1240 	}
1241 
1242 	target->qp_in_error = false;
1243 
1244 	for (i = 0; i < target->ch_count; i++) {
1245 		ch = &target->ch[i];
1246 		if (ret || !ch->target)
1247 			break;
1248 		ret = srp_connect_ch(ch, multich);
1249 		multich = true;
1250 	}
1251 
1252 	if (ret == 0)
1253 		shost_printk(KERN_INFO, target->scsi_host,
1254 			     PFX "reconnect succeeded\n");
1255 
1256 	return ret;
1257 }
1258 
srp_map_desc(struct srp_map_state * state,dma_addr_t dma_addr,unsigned int dma_len,u32 rkey)1259 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1260 			 unsigned int dma_len, u32 rkey)
1261 {
1262 	struct srp_direct_buf *desc = state->desc;
1263 
1264 	desc->va = cpu_to_be64(dma_addr);
1265 	desc->key = cpu_to_be32(rkey);
1266 	desc->len = cpu_to_be32(dma_len);
1267 
1268 	state->total_len += dma_len;
1269 	state->desc++;
1270 	state->ndesc++;
1271 }
1272 
srp_map_finish_fmr(struct srp_map_state * state,struct srp_rdma_ch * ch)1273 static int srp_map_finish_fmr(struct srp_map_state *state,
1274 			      struct srp_rdma_ch *ch)
1275 {
1276 	struct ib_pool_fmr *fmr;
1277 	u64 io_addr = 0;
1278 
1279 	fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1280 				   state->npages, io_addr);
1281 	if (IS_ERR(fmr))
1282 		return PTR_ERR(fmr);
1283 
1284 	*state->next_fmr++ = fmr;
1285 	state->nmdesc++;
1286 
1287 	srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1288 
1289 	return 0;
1290 }
1291 
srp_map_finish_fr(struct srp_map_state * state,struct srp_rdma_ch * ch)1292 static int srp_map_finish_fr(struct srp_map_state *state,
1293 			     struct srp_rdma_ch *ch)
1294 {
1295 	struct srp_target_port *target = ch->target;
1296 	struct srp_device *dev = target->srp_host->srp_dev;
1297 	struct ib_send_wr *bad_wr;
1298 	struct ib_send_wr wr;
1299 	struct srp_fr_desc *desc;
1300 	u32 rkey;
1301 
1302 	desc = srp_fr_pool_get(ch->fr_pool);
1303 	if (!desc)
1304 		return -ENOMEM;
1305 
1306 	rkey = ib_inc_rkey(desc->mr->rkey);
1307 	ib_update_fast_reg_key(desc->mr, rkey);
1308 
1309 	memcpy(desc->frpl->page_list, state->pages,
1310 	       sizeof(state->pages[0]) * state->npages);
1311 
1312 	memset(&wr, 0, sizeof(wr));
1313 	wr.opcode = IB_WR_FAST_REG_MR;
1314 	wr.wr_id = FAST_REG_WR_ID_MASK;
1315 	wr.wr.fast_reg.iova_start = state->base_dma_addr;
1316 	wr.wr.fast_reg.page_list = desc->frpl;
1317 	wr.wr.fast_reg.page_list_len = state->npages;
1318 	wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1319 	wr.wr.fast_reg.length = state->dma_len;
1320 	wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1321 				       IB_ACCESS_REMOTE_READ |
1322 				       IB_ACCESS_REMOTE_WRITE);
1323 	wr.wr.fast_reg.rkey = desc->mr->lkey;
1324 
1325 	*state->next_fr++ = desc;
1326 	state->nmdesc++;
1327 
1328 	srp_map_desc(state, state->base_dma_addr, state->dma_len,
1329 		     desc->mr->rkey);
1330 
1331 	return ib_post_send(ch->qp, &wr, &bad_wr);
1332 }
1333 
srp_finish_mapping(struct srp_map_state * state,struct srp_rdma_ch * ch)1334 static int srp_finish_mapping(struct srp_map_state *state,
1335 			      struct srp_rdma_ch *ch)
1336 {
1337 	struct srp_target_port *target = ch->target;
1338 	int ret = 0;
1339 
1340 	if (state->npages == 0)
1341 		return 0;
1342 
1343 	if (state->npages == 1 && !register_always)
1344 		srp_map_desc(state, state->base_dma_addr, state->dma_len,
1345 			     target->rkey);
1346 	else
1347 		ret = target->srp_host->srp_dev->use_fast_reg ?
1348 			srp_map_finish_fr(state, ch) :
1349 			srp_map_finish_fmr(state, ch);
1350 
1351 	if (ret == 0) {
1352 		state->npages = 0;
1353 		state->dma_len = 0;
1354 	}
1355 
1356 	return ret;
1357 }
1358 
srp_map_update_start(struct srp_map_state * state,struct scatterlist * sg,int sg_index,dma_addr_t dma_addr)1359 static void srp_map_update_start(struct srp_map_state *state,
1360 				 struct scatterlist *sg, int sg_index,
1361 				 dma_addr_t dma_addr)
1362 {
1363 	state->unmapped_sg = sg;
1364 	state->unmapped_index = sg_index;
1365 	state->unmapped_addr = dma_addr;
1366 }
1367 
srp_map_sg_entry(struct srp_map_state * state,struct srp_rdma_ch * ch,struct scatterlist * sg,int sg_index,bool use_mr)1368 static int srp_map_sg_entry(struct srp_map_state *state,
1369 			    struct srp_rdma_ch *ch,
1370 			    struct scatterlist *sg, int sg_index,
1371 			    bool use_mr)
1372 {
1373 	struct srp_target_port *target = ch->target;
1374 	struct srp_device *dev = target->srp_host->srp_dev;
1375 	struct ib_device *ibdev = dev->dev;
1376 	dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1377 	unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1378 	unsigned int len;
1379 	int ret;
1380 
1381 	if (!dma_len)
1382 		return 0;
1383 
1384 	if (!use_mr) {
1385 		/*
1386 		 * Once we're in direct map mode for a request, we don't
1387 		 * go back to FMR or FR mode, so no need to update anything
1388 		 * other than the descriptor.
1389 		 */
1390 		srp_map_desc(state, dma_addr, dma_len, target->rkey);
1391 		return 0;
1392 	}
1393 
1394 	/*
1395 	 * Since not all RDMA HW drivers support non-zero page offsets for
1396 	 * FMR, if we start at an offset into a page, don't merge into the
1397 	 * current FMR mapping. Finish it out, and use the kernel's MR for
1398 	 * this sg entry.
1399 	 */
1400 	if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
1401 	    dma_len > dev->mr_max_size) {
1402 		ret = srp_finish_mapping(state, ch);
1403 		if (ret)
1404 			return ret;
1405 
1406 		srp_map_desc(state, dma_addr, dma_len, target->rkey);
1407 		srp_map_update_start(state, NULL, 0, 0);
1408 		return 0;
1409 	}
1410 
1411 	/*
1412 	 * If this is the first sg that will be mapped via FMR or via FR, save
1413 	 * our position. We need to know the first unmapped entry, its index,
1414 	 * and the first unmapped address within that entry to be able to
1415 	 * restart mapping after an error.
1416 	 */
1417 	if (!state->unmapped_sg)
1418 		srp_map_update_start(state, sg, sg_index, dma_addr);
1419 
1420 	while (dma_len) {
1421 		unsigned offset = dma_addr & ~dev->mr_page_mask;
1422 		if (state->npages == dev->max_pages_per_mr || offset != 0) {
1423 			ret = srp_finish_mapping(state, ch);
1424 			if (ret)
1425 				return ret;
1426 
1427 			srp_map_update_start(state, sg, sg_index, dma_addr);
1428 		}
1429 
1430 		len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1431 
1432 		if (!state->npages)
1433 			state->base_dma_addr = dma_addr;
1434 		state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1435 		state->dma_len += len;
1436 		dma_addr += len;
1437 		dma_len -= len;
1438 	}
1439 
1440 	/*
1441 	 * If the last entry of the MR wasn't a full page, then we need to
1442 	 * close it out and start a new one -- we can only merge at page
1443 	 * boundries.
1444 	 */
1445 	ret = 0;
1446 	if (len != dev->mr_page_size) {
1447 		ret = srp_finish_mapping(state, ch);
1448 		if (!ret)
1449 			srp_map_update_start(state, NULL, 0, 0);
1450 	}
1451 	return ret;
1452 }
1453 
srp_map_sg(struct srp_map_state * state,struct srp_rdma_ch * ch,struct srp_request * req,struct scatterlist * scat,int count)1454 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1455 		      struct srp_request *req, struct scatterlist *scat,
1456 		      int count)
1457 {
1458 	struct srp_target_port *target = ch->target;
1459 	struct srp_device *dev = target->srp_host->srp_dev;
1460 	struct ib_device *ibdev = dev->dev;
1461 	struct scatterlist *sg;
1462 	int i;
1463 	bool use_mr;
1464 
1465 	state->desc	= req->indirect_desc;
1466 	state->pages	= req->map_page;
1467 	if (dev->use_fast_reg) {
1468 		state->next_fr = req->fr_list;
1469 		use_mr = !!ch->fr_pool;
1470 	} else {
1471 		state->next_fmr = req->fmr_list;
1472 		use_mr = !!ch->fmr_pool;
1473 	}
1474 
1475 	for_each_sg(scat, sg, count, i) {
1476 		if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1477 			/*
1478 			 * Memory registration failed, so backtrack to the
1479 			 * first unmapped entry and continue on without using
1480 			 * memory registration.
1481 			 */
1482 			dma_addr_t dma_addr;
1483 			unsigned int dma_len;
1484 
1485 backtrack:
1486 			sg = state->unmapped_sg;
1487 			i = state->unmapped_index;
1488 
1489 			dma_addr = ib_sg_dma_address(ibdev, sg);
1490 			dma_len = ib_sg_dma_len(ibdev, sg);
1491 			dma_len -= (state->unmapped_addr - dma_addr);
1492 			dma_addr = state->unmapped_addr;
1493 			use_mr = false;
1494 			srp_map_desc(state, dma_addr, dma_len, target->rkey);
1495 		}
1496 	}
1497 
1498 	if (use_mr && srp_finish_mapping(state, ch))
1499 		goto backtrack;
1500 
1501 	req->nmdesc = state->nmdesc;
1502 
1503 	return 0;
1504 }
1505 
srp_map_data(struct scsi_cmnd * scmnd,struct srp_rdma_ch * ch,struct srp_request * req)1506 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1507 			struct srp_request *req)
1508 {
1509 	struct srp_target_port *target = ch->target;
1510 	struct scatterlist *scat;
1511 	struct srp_cmd *cmd = req->cmd->buf;
1512 	int len, nents, count;
1513 	struct srp_device *dev;
1514 	struct ib_device *ibdev;
1515 	struct srp_map_state state;
1516 	struct srp_indirect_buf *indirect_hdr;
1517 	u32 table_len;
1518 	u8 fmt;
1519 
1520 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1521 		return sizeof (struct srp_cmd);
1522 
1523 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1524 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1525 		shost_printk(KERN_WARNING, target->scsi_host,
1526 			     PFX "Unhandled data direction %d\n",
1527 			     scmnd->sc_data_direction);
1528 		return -EINVAL;
1529 	}
1530 
1531 	nents = scsi_sg_count(scmnd);
1532 	scat  = scsi_sglist(scmnd);
1533 
1534 	dev = target->srp_host->srp_dev;
1535 	ibdev = dev->dev;
1536 
1537 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1538 	if (unlikely(count == 0))
1539 		return -EIO;
1540 
1541 	fmt = SRP_DATA_DESC_DIRECT;
1542 	len = sizeof (struct srp_cmd) +	sizeof (struct srp_direct_buf);
1543 
1544 	if (count == 1 && !register_always) {
1545 		/*
1546 		 * The midlayer only generated a single gather/scatter
1547 		 * entry, or DMA mapping coalesced everything to a
1548 		 * single entry.  So a direct descriptor along with
1549 		 * the DMA MR suffices.
1550 		 */
1551 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1552 
1553 		buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1554 		buf->key = cpu_to_be32(target->rkey);
1555 		buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1556 
1557 		req->nmdesc = 0;
1558 		goto map_complete;
1559 	}
1560 
1561 	/*
1562 	 * We have more than one scatter/gather entry, so build our indirect
1563 	 * descriptor table, trying to merge as many entries as we can.
1564 	 */
1565 	indirect_hdr = (void *) cmd->add_data;
1566 
1567 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1568 				   target->indirect_size, DMA_TO_DEVICE);
1569 
1570 	memset(&state, 0, sizeof(state));
1571 	srp_map_sg(&state, ch, req, scat, count);
1572 
1573 	/* We've mapped the request, now pull as much of the indirect
1574 	 * descriptor table as we can into the command buffer. If this
1575 	 * target is not using an external indirect table, we are
1576 	 * guaranteed to fit into the command, as the SCSI layer won't
1577 	 * give us more S/G entries than we allow.
1578 	 */
1579 	if (state.ndesc == 1) {
1580 		/*
1581 		 * Memory registration collapsed the sg-list into one entry,
1582 		 * so use a direct descriptor.
1583 		 */
1584 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1585 
1586 		*buf = req->indirect_desc[0];
1587 		goto map_complete;
1588 	}
1589 
1590 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1591 						!target->allow_ext_sg)) {
1592 		shost_printk(KERN_ERR, target->scsi_host,
1593 			     "Could not fit S/G list into SRP_CMD\n");
1594 		return -EIO;
1595 	}
1596 
1597 	count = min(state.ndesc, target->cmd_sg_cnt);
1598 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1599 
1600 	fmt = SRP_DATA_DESC_INDIRECT;
1601 	len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1602 	len += count * sizeof (struct srp_direct_buf);
1603 
1604 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1605 	       count * sizeof (struct srp_direct_buf));
1606 
1607 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1608 	indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1609 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1610 	indirect_hdr->len = cpu_to_be32(state.total_len);
1611 
1612 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1613 		cmd->data_out_desc_cnt = count;
1614 	else
1615 		cmd->data_in_desc_cnt = count;
1616 
1617 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1618 				      DMA_TO_DEVICE);
1619 
1620 map_complete:
1621 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1622 		cmd->buf_fmt = fmt << 4;
1623 	else
1624 		cmd->buf_fmt = fmt;
1625 
1626 	return len;
1627 }
1628 
1629 /*
1630  * Return an IU and possible credit to the free pool
1631  */
srp_put_tx_iu(struct srp_rdma_ch * ch,struct srp_iu * iu,enum srp_iu_type iu_type)1632 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1633 			  enum srp_iu_type iu_type)
1634 {
1635 	unsigned long flags;
1636 
1637 	spin_lock_irqsave(&ch->lock, flags);
1638 	list_add(&iu->list, &ch->free_tx);
1639 	if (iu_type != SRP_IU_RSP)
1640 		++ch->req_lim;
1641 	spin_unlock_irqrestore(&ch->lock, flags);
1642 }
1643 
1644 /*
1645  * Must be called with ch->lock held to protect req_lim and free_tx.
1646  * If IU is not sent, it must be returned using srp_put_tx_iu().
1647  *
1648  * Note:
1649  * An upper limit for the number of allocated information units for each
1650  * request type is:
1651  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1652  *   more than Scsi_Host.can_queue requests.
1653  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1654  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1655  *   one unanswered SRP request to an initiator.
1656  */
__srp_get_tx_iu(struct srp_rdma_ch * ch,enum srp_iu_type iu_type)1657 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1658 				      enum srp_iu_type iu_type)
1659 {
1660 	struct srp_target_port *target = ch->target;
1661 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1662 	struct srp_iu *iu;
1663 
1664 	srp_send_completion(ch->send_cq, ch);
1665 
1666 	if (list_empty(&ch->free_tx))
1667 		return NULL;
1668 
1669 	/* Initiator responses to target requests do not consume credits */
1670 	if (iu_type != SRP_IU_RSP) {
1671 		if (ch->req_lim <= rsv) {
1672 			++target->zero_req_lim;
1673 			return NULL;
1674 		}
1675 
1676 		--ch->req_lim;
1677 	}
1678 
1679 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1680 	list_del(&iu->list);
1681 	return iu;
1682 }
1683 
srp_post_send(struct srp_rdma_ch * ch,struct srp_iu * iu,int len)1684 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1685 {
1686 	struct srp_target_port *target = ch->target;
1687 	struct ib_sge list;
1688 	struct ib_send_wr wr, *bad_wr;
1689 
1690 	list.addr   = iu->dma;
1691 	list.length = len;
1692 	list.lkey   = target->lkey;
1693 
1694 	wr.next       = NULL;
1695 	wr.wr_id      = (uintptr_t) iu;
1696 	wr.sg_list    = &list;
1697 	wr.num_sge    = 1;
1698 	wr.opcode     = IB_WR_SEND;
1699 	wr.send_flags = IB_SEND_SIGNALED;
1700 
1701 	return ib_post_send(ch->qp, &wr, &bad_wr);
1702 }
1703 
srp_post_recv(struct srp_rdma_ch * ch,struct srp_iu * iu)1704 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1705 {
1706 	struct srp_target_port *target = ch->target;
1707 	struct ib_recv_wr wr, *bad_wr;
1708 	struct ib_sge list;
1709 
1710 	list.addr   = iu->dma;
1711 	list.length = iu->size;
1712 	list.lkey   = target->lkey;
1713 
1714 	wr.next     = NULL;
1715 	wr.wr_id    = (uintptr_t) iu;
1716 	wr.sg_list  = &list;
1717 	wr.num_sge  = 1;
1718 
1719 	return ib_post_recv(ch->qp, &wr, &bad_wr);
1720 }
1721 
srp_process_rsp(struct srp_rdma_ch * ch,struct srp_rsp * rsp)1722 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1723 {
1724 	struct srp_target_port *target = ch->target;
1725 	struct srp_request *req;
1726 	struct scsi_cmnd *scmnd;
1727 	unsigned long flags;
1728 
1729 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1730 		spin_lock_irqsave(&ch->lock, flags);
1731 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1732 		spin_unlock_irqrestore(&ch->lock, flags);
1733 
1734 		ch->tsk_mgmt_status = -1;
1735 		if (be32_to_cpu(rsp->resp_data_len) >= 4)
1736 			ch->tsk_mgmt_status = rsp->data[3];
1737 		complete(&ch->tsk_mgmt_done);
1738 	} else {
1739 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1740 		if (scmnd) {
1741 			req = (void *)scmnd->host_scribble;
1742 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1743 		}
1744 		if (!scmnd) {
1745 			shost_printk(KERN_ERR, target->scsi_host,
1746 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1747 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1748 
1749 			spin_lock_irqsave(&ch->lock, flags);
1750 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1751 			spin_unlock_irqrestore(&ch->lock, flags);
1752 
1753 			return;
1754 		}
1755 		scmnd->result = rsp->status;
1756 
1757 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1758 			memcpy(scmnd->sense_buffer, rsp->data +
1759 			       be32_to_cpu(rsp->resp_data_len),
1760 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1761 				     SCSI_SENSE_BUFFERSIZE));
1762 		}
1763 
1764 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1765 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1766 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1767 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1768 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1769 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1770 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1771 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1772 
1773 		srp_free_req(ch, req, scmnd,
1774 			     be32_to_cpu(rsp->req_lim_delta));
1775 
1776 		scmnd->host_scribble = NULL;
1777 		scmnd->scsi_done(scmnd);
1778 	}
1779 }
1780 
srp_response_common(struct srp_rdma_ch * ch,s32 req_delta,void * rsp,int len)1781 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1782 			       void *rsp, int len)
1783 {
1784 	struct srp_target_port *target = ch->target;
1785 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1786 	unsigned long flags;
1787 	struct srp_iu *iu;
1788 	int err;
1789 
1790 	spin_lock_irqsave(&ch->lock, flags);
1791 	ch->req_lim += req_delta;
1792 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1793 	spin_unlock_irqrestore(&ch->lock, flags);
1794 
1795 	if (!iu) {
1796 		shost_printk(KERN_ERR, target->scsi_host, PFX
1797 			     "no IU available to send response\n");
1798 		return 1;
1799 	}
1800 
1801 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1802 	memcpy(iu->buf, rsp, len);
1803 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1804 
1805 	err = srp_post_send(ch, iu, len);
1806 	if (err) {
1807 		shost_printk(KERN_ERR, target->scsi_host, PFX
1808 			     "unable to post response: %d\n", err);
1809 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1810 	}
1811 
1812 	return err;
1813 }
1814 
srp_process_cred_req(struct srp_rdma_ch * ch,struct srp_cred_req * req)1815 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1816 				 struct srp_cred_req *req)
1817 {
1818 	struct srp_cred_rsp rsp = {
1819 		.opcode = SRP_CRED_RSP,
1820 		.tag = req->tag,
1821 	};
1822 	s32 delta = be32_to_cpu(req->req_lim_delta);
1823 
1824 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1825 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1826 			     "problems processing SRP_CRED_REQ\n");
1827 }
1828 
srp_process_aer_req(struct srp_rdma_ch * ch,struct srp_aer_req * req)1829 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1830 				struct srp_aer_req *req)
1831 {
1832 	struct srp_target_port *target = ch->target;
1833 	struct srp_aer_rsp rsp = {
1834 		.opcode = SRP_AER_RSP,
1835 		.tag = req->tag,
1836 	};
1837 	s32 delta = be32_to_cpu(req->req_lim_delta);
1838 
1839 	shost_printk(KERN_ERR, target->scsi_host, PFX
1840 		     "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun));
1841 
1842 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1843 		shost_printk(KERN_ERR, target->scsi_host, PFX
1844 			     "problems processing SRP_AER_REQ\n");
1845 }
1846 
srp_handle_recv(struct srp_rdma_ch * ch,struct ib_wc * wc)1847 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1848 {
1849 	struct srp_target_port *target = ch->target;
1850 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1851 	struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1852 	int res;
1853 	u8 opcode;
1854 
1855 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1856 				   DMA_FROM_DEVICE);
1857 
1858 	opcode = *(u8 *) iu->buf;
1859 
1860 	if (0) {
1861 		shost_printk(KERN_ERR, target->scsi_host,
1862 			     PFX "recv completion, opcode 0x%02x\n", opcode);
1863 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1864 			       iu->buf, wc->byte_len, true);
1865 	}
1866 
1867 	switch (opcode) {
1868 	case SRP_RSP:
1869 		srp_process_rsp(ch, iu->buf);
1870 		break;
1871 
1872 	case SRP_CRED_REQ:
1873 		srp_process_cred_req(ch, iu->buf);
1874 		break;
1875 
1876 	case SRP_AER_REQ:
1877 		srp_process_aer_req(ch, iu->buf);
1878 		break;
1879 
1880 	case SRP_T_LOGOUT:
1881 		/* XXX Handle target logout */
1882 		shost_printk(KERN_WARNING, target->scsi_host,
1883 			     PFX "Got target logout request\n");
1884 		break;
1885 
1886 	default:
1887 		shost_printk(KERN_WARNING, target->scsi_host,
1888 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1889 		break;
1890 	}
1891 
1892 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1893 				      DMA_FROM_DEVICE);
1894 
1895 	res = srp_post_recv(ch, iu);
1896 	if (res != 0)
1897 		shost_printk(KERN_ERR, target->scsi_host,
1898 			     PFX "Recv failed with error code %d\n", res);
1899 }
1900 
1901 /**
1902  * srp_tl_err_work() - handle a transport layer error
1903  * @work: Work structure embedded in an SRP target port.
1904  *
1905  * Note: This function may get invoked before the rport has been created,
1906  * hence the target->rport test.
1907  */
srp_tl_err_work(struct work_struct * work)1908 static void srp_tl_err_work(struct work_struct *work)
1909 {
1910 	struct srp_target_port *target;
1911 
1912 	target = container_of(work, struct srp_target_port, tl_err_work);
1913 	if (target->rport)
1914 		srp_start_tl_fail_timers(target->rport);
1915 }
1916 
srp_handle_qp_err(u64 wr_id,enum ib_wc_status wc_status,bool send_err,struct srp_rdma_ch * ch)1917 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1918 			      bool send_err, struct srp_rdma_ch *ch)
1919 {
1920 	struct srp_target_port *target = ch->target;
1921 
1922 	if (wr_id == SRP_LAST_WR_ID) {
1923 		complete(&ch->done);
1924 		return;
1925 	}
1926 
1927 	if (ch->connected && !target->qp_in_error) {
1928 		if (wr_id & LOCAL_INV_WR_ID_MASK) {
1929 			shost_printk(KERN_ERR, target->scsi_host, PFX
1930 				     "LOCAL_INV failed with status %d\n",
1931 				     wc_status);
1932 		} else if (wr_id & FAST_REG_WR_ID_MASK) {
1933 			shost_printk(KERN_ERR, target->scsi_host, PFX
1934 				     "FAST_REG_MR failed status %d\n",
1935 				     wc_status);
1936 		} else {
1937 			shost_printk(KERN_ERR, target->scsi_host,
1938 				     PFX "failed %s status %d for iu %p\n",
1939 				     send_err ? "send" : "receive",
1940 				     wc_status, (void *)(uintptr_t)wr_id);
1941 		}
1942 		queue_work(system_long_wq, &target->tl_err_work);
1943 	}
1944 	target->qp_in_error = true;
1945 }
1946 
srp_recv_completion(struct ib_cq * cq,void * ch_ptr)1947 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1948 {
1949 	struct srp_rdma_ch *ch = ch_ptr;
1950 	struct ib_wc wc;
1951 
1952 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1953 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1954 		if (likely(wc.status == IB_WC_SUCCESS)) {
1955 			srp_handle_recv(ch, &wc);
1956 		} else {
1957 			srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1958 		}
1959 	}
1960 }
1961 
srp_send_completion(struct ib_cq * cq,void * ch_ptr)1962 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1963 {
1964 	struct srp_rdma_ch *ch = ch_ptr;
1965 	struct ib_wc wc;
1966 	struct srp_iu *iu;
1967 
1968 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1969 		if (likely(wc.status == IB_WC_SUCCESS)) {
1970 			iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1971 			list_add(&iu->list, &ch->free_tx);
1972 		} else {
1973 			srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1974 		}
1975 	}
1976 }
1977 
srp_queuecommand(struct Scsi_Host * shost,struct scsi_cmnd * scmnd)1978 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1979 {
1980 	struct srp_target_port *target = host_to_target(shost);
1981 	struct srp_rport *rport = target->rport;
1982 	struct srp_rdma_ch *ch;
1983 	struct srp_request *req;
1984 	struct srp_iu *iu;
1985 	struct srp_cmd *cmd;
1986 	struct ib_device *dev;
1987 	unsigned long flags;
1988 	u32 tag;
1989 	u16 idx;
1990 	int len, ret;
1991 	const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1992 
1993 	/*
1994 	 * The SCSI EH thread is the only context from which srp_queuecommand()
1995 	 * can get invoked for blocked devices (SDEV_BLOCK /
1996 	 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1997 	 * locking the rport mutex if invoked from inside the SCSI EH.
1998 	 */
1999 	if (in_scsi_eh)
2000 		mutex_lock(&rport->mutex);
2001 
2002 	scmnd->result = srp_chkready(target->rport);
2003 	if (unlikely(scmnd->result))
2004 		goto err;
2005 
2006 	WARN_ON_ONCE(scmnd->request->tag < 0);
2007 	tag = blk_mq_unique_tag(scmnd->request);
2008 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2009 	idx = blk_mq_unique_tag_to_tag(tag);
2010 	WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2011 		  dev_name(&shost->shost_gendev), tag, idx,
2012 		  target->req_ring_size);
2013 
2014 	spin_lock_irqsave(&ch->lock, flags);
2015 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2016 	spin_unlock_irqrestore(&ch->lock, flags);
2017 
2018 	if (!iu)
2019 		goto err;
2020 
2021 	req = &ch->req_ring[idx];
2022 	dev = target->srp_host->srp_dev->dev;
2023 	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2024 				   DMA_TO_DEVICE);
2025 
2026 	scmnd->host_scribble = (void *) req;
2027 
2028 	cmd = iu->buf;
2029 	memset(cmd, 0, sizeof *cmd);
2030 
2031 	cmd->opcode = SRP_CMD;
2032 	cmd->lun    = cpu_to_be64((u64) scmnd->device->lun << 48);
2033 	cmd->tag    = tag;
2034 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2035 
2036 	req->scmnd    = scmnd;
2037 	req->cmd      = iu;
2038 
2039 	len = srp_map_data(scmnd, ch, req);
2040 	if (len < 0) {
2041 		shost_printk(KERN_ERR, target->scsi_host,
2042 			     PFX "Failed to map data (%d)\n", len);
2043 		/*
2044 		 * If we ran out of memory descriptors (-ENOMEM) because an
2045 		 * application is queuing many requests with more than
2046 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2047 		 * to reduce queue depth temporarily.
2048 		 */
2049 		scmnd->result = len == -ENOMEM ?
2050 			DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2051 		goto err_iu;
2052 	}
2053 
2054 	ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2055 				      DMA_TO_DEVICE);
2056 
2057 	if (srp_post_send(ch, iu, len)) {
2058 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2059 		goto err_unmap;
2060 	}
2061 
2062 	ret = 0;
2063 
2064 unlock_rport:
2065 	if (in_scsi_eh)
2066 		mutex_unlock(&rport->mutex);
2067 
2068 	return ret;
2069 
2070 err_unmap:
2071 	srp_unmap_data(scmnd, ch, req);
2072 
2073 err_iu:
2074 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2075 
2076 	/*
2077 	 * Avoid that the loops that iterate over the request ring can
2078 	 * encounter a dangling SCSI command pointer.
2079 	 */
2080 	req->scmnd = NULL;
2081 
2082 err:
2083 	if (scmnd->result) {
2084 		scmnd->scsi_done(scmnd);
2085 		ret = 0;
2086 	} else {
2087 		ret = SCSI_MLQUEUE_HOST_BUSY;
2088 	}
2089 
2090 	goto unlock_rport;
2091 }
2092 
2093 /*
2094  * Note: the resources allocated in this function are freed in
2095  * srp_free_ch_ib().
2096  */
srp_alloc_iu_bufs(struct srp_rdma_ch * ch)2097 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2098 {
2099 	struct srp_target_port *target = ch->target;
2100 	int i;
2101 
2102 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2103 			      GFP_KERNEL);
2104 	if (!ch->rx_ring)
2105 		goto err_no_ring;
2106 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2107 			      GFP_KERNEL);
2108 	if (!ch->tx_ring)
2109 		goto err_no_ring;
2110 
2111 	for (i = 0; i < target->queue_size; ++i) {
2112 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2113 					      ch->max_ti_iu_len,
2114 					      GFP_KERNEL, DMA_FROM_DEVICE);
2115 		if (!ch->rx_ring[i])
2116 			goto err;
2117 	}
2118 
2119 	for (i = 0; i < target->queue_size; ++i) {
2120 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2121 					      target->max_iu_len,
2122 					      GFP_KERNEL, DMA_TO_DEVICE);
2123 		if (!ch->tx_ring[i])
2124 			goto err;
2125 
2126 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2127 	}
2128 
2129 	return 0;
2130 
2131 err:
2132 	for (i = 0; i < target->queue_size; ++i) {
2133 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2134 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2135 	}
2136 
2137 
2138 err_no_ring:
2139 	kfree(ch->tx_ring);
2140 	ch->tx_ring = NULL;
2141 	kfree(ch->rx_ring);
2142 	ch->rx_ring = NULL;
2143 
2144 	return -ENOMEM;
2145 }
2146 
srp_compute_rq_tmo(struct ib_qp_attr * qp_attr,int attr_mask)2147 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2148 {
2149 	uint64_t T_tr_ns, max_compl_time_ms;
2150 	uint32_t rq_tmo_jiffies;
2151 
2152 	/*
2153 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2154 	 * table 91), both the QP timeout and the retry count have to be set
2155 	 * for RC QP's during the RTR to RTS transition.
2156 	 */
2157 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2158 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2159 
2160 	/*
2161 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2162 	 * it can take before an error completion is generated. See also
2163 	 * C9-140..142 in the IBTA spec for more information about how to
2164 	 * convert the QP Local ACK Timeout value to nanoseconds.
2165 	 */
2166 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2167 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2168 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2169 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2170 
2171 	return rq_tmo_jiffies;
2172 }
2173 
srp_cm_rep_handler(struct ib_cm_id * cm_id,struct srp_login_rsp * lrsp,struct srp_rdma_ch * ch)2174 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2175 			       struct srp_login_rsp *lrsp,
2176 			       struct srp_rdma_ch *ch)
2177 {
2178 	struct srp_target_port *target = ch->target;
2179 	struct ib_qp_attr *qp_attr = NULL;
2180 	int attr_mask = 0;
2181 	int ret;
2182 	int i;
2183 
2184 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2185 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2186 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2187 
2188 		/*
2189 		 * Reserve credits for task management so we don't
2190 		 * bounce requests back to the SCSI mid-layer.
2191 		 */
2192 		target->scsi_host->can_queue
2193 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2194 			      target->scsi_host->can_queue);
2195 		target->scsi_host->cmd_per_lun
2196 			= min_t(int, target->scsi_host->can_queue,
2197 				target->scsi_host->cmd_per_lun);
2198 	} else {
2199 		shost_printk(KERN_WARNING, target->scsi_host,
2200 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2201 		ret = -ECONNRESET;
2202 		goto error;
2203 	}
2204 
2205 	if (!ch->rx_ring) {
2206 		ret = srp_alloc_iu_bufs(ch);
2207 		if (ret)
2208 			goto error;
2209 	}
2210 
2211 	ret = -ENOMEM;
2212 	qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2213 	if (!qp_attr)
2214 		goto error;
2215 
2216 	qp_attr->qp_state = IB_QPS_RTR;
2217 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2218 	if (ret)
2219 		goto error_free;
2220 
2221 	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2222 	if (ret)
2223 		goto error_free;
2224 
2225 	for (i = 0; i < target->queue_size; i++) {
2226 		struct srp_iu *iu = ch->rx_ring[i];
2227 
2228 		ret = srp_post_recv(ch, iu);
2229 		if (ret)
2230 			goto error_free;
2231 	}
2232 
2233 	qp_attr->qp_state = IB_QPS_RTS;
2234 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2235 	if (ret)
2236 		goto error_free;
2237 
2238 	target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2239 
2240 	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2241 	if (ret)
2242 		goto error_free;
2243 
2244 	ret = ib_send_cm_rtu(cm_id, NULL, 0);
2245 
2246 error_free:
2247 	kfree(qp_attr);
2248 
2249 error:
2250 	ch->status = ret;
2251 }
2252 
srp_cm_rej_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event,struct srp_rdma_ch * ch)2253 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2254 			       struct ib_cm_event *event,
2255 			       struct srp_rdma_ch *ch)
2256 {
2257 	struct srp_target_port *target = ch->target;
2258 	struct Scsi_Host *shost = target->scsi_host;
2259 	struct ib_class_port_info *cpi;
2260 	int opcode;
2261 
2262 	switch (event->param.rej_rcvd.reason) {
2263 	case IB_CM_REJ_PORT_CM_REDIRECT:
2264 		cpi = event->param.rej_rcvd.ari;
2265 		ch->path.dlid = cpi->redirect_lid;
2266 		ch->path.pkey = cpi->redirect_pkey;
2267 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2268 		memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2269 
2270 		ch->status = ch->path.dlid ?
2271 			SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2272 		break;
2273 
2274 	case IB_CM_REJ_PORT_REDIRECT:
2275 		if (srp_target_is_topspin(target)) {
2276 			/*
2277 			 * Topspin/Cisco SRP gateways incorrectly send
2278 			 * reject reason code 25 when they mean 24
2279 			 * (port redirect).
2280 			 */
2281 			memcpy(ch->path.dgid.raw,
2282 			       event->param.rej_rcvd.ari, 16);
2283 
2284 			shost_printk(KERN_DEBUG, shost,
2285 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2286 				     be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2287 				     be64_to_cpu(ch->path.dgid.global.interface_id));
2288 
2289 			ch->status = SRP_PORT_REDIRECT;
2290 		} else {
2291 			shost_printk(KERN_WARNING, shost,
2292 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2293 			ch->status = -ECONNRESET;
2294 		}
2295 		break;
2296 
2297 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2298 		shost_printk(KERN_WARNING, shost,
2299 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2300 		ch->status = -ECONNRESET;
2301 		break;
2302 
2303 	case IB_CM_REJ_CONSUMER_DEFINED:
2304 		opcode = *(u8 *) event->private_data;
2305 		if (opcode == SRP_LOGIN_REJ) {
2306 			struct srp_login_rej *rej = event->private_data;
2307 			u32 reason = be32_to_cpu(rej->reason);
2308 
2309 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2310 				shost_printk(KERN_WARNING, shost,
2311 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2312 			else
2313 				shost_printk(KERN_WARNING, shost, PFX
2314 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2315 					     target->sgid.raw,
2316 					     target->orig_dgid.raw, reason);
2317 		} else
2318 			shost_printk(KERN_WARNING, shost,
2319 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2320 				     " opcode 0x%02x\n", opcode);
2321 		ch->status = -ECONNRESET;
2322 		break;
2323 
2324 	case IB_CM_REJ_STALE_CONN:
2325 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2326 		ch->status = SRP_STALE_CONN;
2327 		break;
2328 
2329 	default:
2330 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2331 			     event->param.rej_rcvd.reason);
2332 		ch->status = -ECONNRESET;
2333 	}
2334 }
2335 
srp_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2336 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2337 {
2338 	struct srp_rdma_ch *ch = cm_id->context;
2339 	struct srp_target_port *target = ch->target;
2340 	int comp = 0;
2341 
2342 	switch (event->event) {
2343 	case IB_CM_REQ_ERROR:
2344 		shost_printk(KERN_DEBUG, target->scsi_host,
2345 			     PFX "Sending CM REQ failed\n");
2346 		comp = 1;
2347 		ch->status = -ECONNRESET;
2348 		break;
2349 
2350 	case IB_CM_REP_RECEIVED:
2351 		comp = 1;
2352 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2353 		break;
2354 
2355 	case IB_CM_REJ_RECEIVED:
2356 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2357 		comp = 1;
2358 
2359 		srp_cm_rej_handler(cm_id, event, ch);
2360 		break;
2361 
2362 	case IB_CM_DREQ_RECEIVED:
2363 		shost_printk(KERN_WARNING, target->scsi_host,
2364 			     PFX "DREQ received - connection closed\n");
2365 		ch->connected = false;
2366 		if (ib_send_cm_drep(cm_id, NULL, 0))
2367 			shost_printk(KERN_ERR, target->scsi_host,
2368 				     PFX "Sending CM DREP failed\n");
2369 		queue_work(system_long_wq, &target->tl_err_work);
2370 		break;
2371 
2372 	case IB_CM_TIMEWAIT_EXIT:
2373 		shost_printk(KERN_ERR, target->scsi_host,
2374 			     PFX "connection closed\n");
2375 		comp = 1;
2376 
2377 		ch->status = 0;
2378 		break;
2379 
2380 	case IB_CM_MRA_RECEIVED:
2381 	case IB_CM_DREQ_ERROR:
2382 	case IB_CM_DREP_RECEIVED:
2383 		break;
2384 
2385 	default:
2386 		shost_printk(KERN_WARNING, target->scsi_host,
2387 			     PFX "Unhandled CM event %d\n", event->event);
2388 		break;
2389 	}
2390 
2391 	if (comp)
2392 		complete(&ch->done);
2393 
2394 	return 0;
2395 }
2396 
2397 /**
2398  * srp_change_queue_depth - setting device queue depth
2399  * @sdev: scsi device struct
2400  * @qdepth: requested queue depth
2401  *
2402  * Returns queue depth.
2403  */
2404 static int
srp_change_queue_depth(struct scsi_device * sdev,int qdepth)2405 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2406 {
2407 	if (!sdev->tagged_supported)
2408 		qdepth = 1;
2409 	return scsi_change_queue_depth(sdev, qdepth);
2410 }
2411 
srp_send_tsk_mgmt(struct srp_rdma_ch * ch,u64 req_tag,unsigned int lun,u8 func)2412 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag,
2413 			     unsigned int lun, u8 func)
2414 {
2415 	struct srp_target_port *target = ch->target;
2416 	struct srp_rport *rport = target->rport;
2417 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2418 	struct srp_iu *iu;
2419 	struct srp_tsk_mgmt *tsk_mgmt;
2420 
2421 	if (!ch->connected || target->qp_in_error)
2422 		return -1;
2423 
2424 	init_completion(&ch->tsk_mgmt_done);
2425 
2426 	/*
2427 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2428 	 * invoked while a task management function is being sent.
2429 	 */
2430 	mutex_lock(&rport->mutex);
2431 	spin_lock_irq(&ch->lock);
2432 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2433 	spin_unlock_irq(&ch->lock);
2434 
2435 	if (!iu) {
2436 		mutex_unlock(&rport->mutex);
2437 
2438 		return -1;
2439 	}
2440 
2441 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2442 				   DMA_TO_DEVICE);
2443 	tsk_mgmt = iu->buf;
2444 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2445 
2446 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2447 	tsk_mgmt->lun		= cpu_to_be64((u64) lun << 48);
2448 	tsk_mgmt->tag		= req_tag | SRP_TAG_TSK_MGMT;
2449 	tsk_mgmt->tsk_mgmt_func = func;
2450 	tsk_mgmt->task_tag	= req_tag;
2451 
2452 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2453 				      DMA_TO_DEVICE);
2454 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2455 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2456 		mutex_unlock(&rport->mutex);
2457 
2458 		return -1;
2459 	}
2460 	mutex_unlock(&rport->mutex);
2461 
2462 	if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2463 					 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2464 		return -1;
2465 
2466 	return 0;
2467 }
2468 
srp_abort(struct scsi_cmnd * scmnd)2469 static int srp_abort(struct scsi_cmnd *scmnd)
2470 {
2471 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2472 	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2473 	u32 tag;
2474 	u16 ch_idx;
2475 	struct srp_rdma_ch *ch;
2476 	int ret;
2477 
2478 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2479 
2480 	if (!req)
2481 		return SUCCESS;
2482 	tag = blk_mq_unique_tag(scmnd->request);
2483 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2484 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2485 		return SUCCESS;
2486 	ch = &target->ch[ch_idx];
2487 	if (!srp_claim_req(ch, req, NULL, scmnd))
2488 		return SUCCESS;
2489 	shost_printk(KERN_ERR, target->scsi_host,
2490 		     "Sending SRP abort for tag %#x\n", tag);
2491 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2492 			      SRP_TSK_ABORT_TASK) == 0)
2493 		ret = SUCCESS;
2494 	else if (target->rport->state == SRP_RPORT_LOST)
2495 		ret = FAST_IO_FAIL;
2496 	else
2497 		ret = FAILED;
2498 	srp_free_req(ch, req, scmnd, 0);
2499 	scmnd->result = DID_ABORT << 16;
2500 	scmnd->scsi_done(scmnd);
2501 
2502 	return ret;
2503 }
2504 
srp_reset_device(struct scsi_cmnd * scmnd)2505 static int srp_reset_device(struct scsi_cmnd *scmnd)
2506 {
2507 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2508 	struct srp_rdma_ch *ch;
2509 	int i;
2510 
2511 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2512 
2513 	ch = &target->ch[0];
2514 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2515 			      SRP_TSK_LUN_RESET))
2516 		return FAILED;
2517 	if (ch->tsk_mgmt_status)
2518 		return FAILED;
2519 
2520 	for (i = 0; i < target->ch_count; i++) {
2521 		ch = &target->ch[i];
2522 		for (i = 0; i < target->req_ring_size; ++i) {
2523 			struct srp_request *req = &ch->req_ring[i];
2524 
2525 			srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2526 		}
2527 	}
2528 
2529 	return SUCCESS;
2530 }
2531 
srp_reset_host(struct scsi_cmnd * scmnd)2532 static int srp_reset_host(struct scsi_cmnd *scmnd)
2533 {
2534 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2535 
2536 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2537 
2538 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2539 }
2540 
srp_slave_configure(struct scsi_device * sdev)2541 static int srp_slave_configure(struct scsi_device *sdev)
2542 {
2543 	struct Scsi_Host *shost = sdev->host;
2544 	struct srp_target_port *target = host_to_target(shost);
2545 	struct request_queue *q = sdev->request_queue;
2546 	unsigned long timeout;
2547 
2548 	if (sdev->type == TYPE_DISK) {
2549 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2550 		blk_queue_rq_timeout(q, timeout);
2551 	}
2552 
2553 	return 0;
2554 }
2555 
show_id_ext(struct device * dev,struct device_attribute * attr,char * buf)2556 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2557 			   char *buf)
2558 {
2559 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2560 
2561 	return sprintf(buf, "0x%016llx\n",
2562 		       (unsigned long long) be64_to_cpu(target->id_ext));
2563 }
2564 
show_ioc_guid(struct device * dev,struct device_attribute * attr,char * buf)2565 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2566 			     char *buf)
2567 {
2568 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2569 
2570 	return sprintf(buf, "0x%016llx\n",
2571 		       (unsigned long long) be64_to_cpu(target->ioc_guid));
2572 }
2573 
show_service_id(struct device * dev,struct device_attribute * attr,char * buf)2574 static ssize_t show_service_id(struct device *dev,
2575 			       struct device_attribute *attr, char *buf)
2576 {
2577 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2578 
2579 	return sprintf(buf, "0x%016llx\n",
2580 		       (unsigned long long) be64_to_cpu(target->service_id));
2581 }
2582 
show_pkey(struct device * dev,struct device_attribute * attr,char * buf)2583 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2584 			 char *buf)
2585 {
2586 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2587 
2588 	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2589 }
2590 
show_sgid(struct device * dev,struct device_attribute * attr,char * buf)2591 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2592 			 char *buf)
2593 {
2594 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2595 
2596 	return sprintf(buf, "%pI6\n", target->sgid.raw);
2597 }
2598 
show_dgid(struct device * dev,struct device_attribute * attr,char * buf)2599 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2600 			 char *buf)
2601 {
2602 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2603 	struct srp_rdma_ch *ch = &target->ch[0];
2604 
2605 	return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2606 }
2607 
show_orig_dgid(struct device * dev,struct device_attribute * attr,char * buf)2608 static ssize_t show_orig_dgid(struct device *dev,
2609 			      struct device_attribute *attr, char *buf)
2610 {
2611 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2612 
2613 	return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2614 }
2615 
show_req_lim(struct device * dev,struct device_attribute * attr,char * buf)2616 static ssize_t show_req_lim(struct device *dev,
2617 			    struct device_attribute *attr, char *buf)
2618 {
2619 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2620 	struct srp_rdma_ch *ch;
2621 	int i, req_lim = INT_MAX;
2622 
2623 	for (i = 0; i < target->ch_count; i++) {
2624 		ch = &target->ch[i];
2625 		req_lim = min(req_lim, ch->req_lim);
2626 	}
2627 	return sprintf(buf, "%d\n", req_lim);
2628 }
2629 
show_zero_req_lim(struct device * dev,struct device_attribute * attr,char * buf)2630 static ssize_t show_zero_req_lim(struct device *dev,
2631 				 struct device_attribute *attr, char *buf)
2632 {
2633 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2634 
2635 	return sprintf(buf, "%d\n", target->zero_req_lim);
2636 }
2637 
show_local_ib_port(struct device * dev,struct device_attribute * attr,char * buf)2638 static ssize_t show_local_ib_port(struct device *dev,
2639 				  struct device_attribute *attr, char *buf)
2640 {
2641 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2642 
2643 	return sprintf(buf, "%d\n", target->srp_host->port);
2644 }
2645 
show_local_ib_device(struct device * dev,struct device_attribute * attr,char * buf)2646 static ssize_t show_local_ib_device(struct device *dev,
2647 				    struct device_attribute *attr, char *buf)
2648 {
2649 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2650 
2651 	return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2652 }
2653 
show_ch_count(struct device * dev,struct device_attribute * attr,char * buf)2654 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2655 			     char *buf)
2656 {
2657 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2658 
2659 	return sprintf(buf, "%d\n", target->ch_count);
2660 }
2661 
show_comp_vector(struct device * dev,struct device_attribute * attr,char * buf)2662 static ssize_t show_comp_vector(struct device *dev,
2663 				struct device_attribute *attr, char *buf)
2664 {
2665 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2666 
2667 	return sprintf(buf, "%d\n", target->comp_vector);
2668 }
2669 
show_tl_retry_count(struct device * dev,struct device_attribute * attr,char * buf)2670 static ssize_t show_tl_retry_count(struct device *dev,
2671 				   struct device_attribute *attr, char *buf)
2672 {
2673 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2674 
2675 	return sprintf(buf, "%d\n", target->tl_retry_count);
2676 }
2677 
show_cmd_sg_entries(struct device * dev,struct device_attribute * attr,char * buf)2678 static ssize_t show_cmd_sg_entries(struct device *dev,
2679 				   struct device_attribute *attr, char *buf)
2680 {
2681 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2682 
2683 	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2684 }
2685 
show_allow_ext_sg(struct device * dev,struct device_attribute * attr,char * buf)2686 static ssize_t show_allow_ext_sg(struct device *dev,
2687 				 struct device_attribute *attr, char *buf)
2688 {
2689 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2690 
2691 	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2692 }
2693 
2694 static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
2695 static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
2696 static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
2697 static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
2698 static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
2699 static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
2700 static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
2701 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2702 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
2703 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2704 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2705 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2706 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2707 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2708 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2709 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2710 
2711 static struct device_attribute *srp_host_attrs[] = {
2712 	&dev_attr_id_ext,
2713 	&dev_attr_ioc_guid,
2714 	&dev_attr_service_id,
2715 	&dev_attr_pkey,
2716 	&dev_attr_sgid,
2717 	&dev_attr_dgid,
2718 	&dev_attr_orig_dgid,
2719 	&dev_attr_req_lim,
2720 	&dev_attr_zero_req_lim,
2721 	&dev_attr_local_ib_port,
2722 	&dev_attr_local_ib_device,
2723 	&dev_attr_ch_count,
2724 	&dev_attr_comp_vector,
2725 	&dev_attr_tl_retry_count,
2726 	&dev_attr_cmd_sg_entries,
2727 	&dev_attr_allow_ext_sg,
2728 	NULL
2729 };
2730 
2731 static struct scsi_host_template srp_template = {
2732 	.module				= THIS_MODULE,
2733 	.name				= "InfiniBand SRP initiator",
2734 	.proc_name			= DRV_NAME,
2735 	.slave_configure		= srp_slave_configure,
2736 	.info				= srp_target_info,
2737 	.queuecommand			= srp_queuecommand,
2738 	.change_queue_depth             = srp_change_queue_depth,
2739 	.eh_abort_handler		= srp_abort,
2740 	.eh_device_reset_handler	= srp_reset_device,
2741 	.eh_host_reset_handler		= srp_reset_host,
2742 	.skip_settle_delay		= true,
2743 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
2744 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
2745 	.this_id			= -1,
2746 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
2747 	.use_clustering			= ENABLE_CLUSTERING,
2748 	.shost_attrs			= srp_host_attrs,
2749 	.use_blk_tags			= 1,
2750 	.track_queue_depth		= 1,
2751 };
2752 
srp_sdev_count(struct Scsi_Host * host)2753 static int srp_sdev_count(struct Scsi_Host *host)
2754 {
2755 	struct scsi_device *sdev;
2756 	int c = 0;
2757 
2758 	shost_for_each_device(sdev, host)
2759 		c++;
2760 
2761 	return c;
2762 }
2763 
2764 /*
2765  * Return values:
2766  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2767  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2768  *    removal has been scheduled.
2769  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2770  */
srp_add_target(struct srp_host * host,struct srp_target_port * target)2771 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2772 {
2773 	struct srp_rport_identifiers ids;
2774 	struct srp_rport *rport;
2775 
2776 	target->state = SRP_TARGET_SCANNING;
2777 	sprintf(target->target_name, "SRP.T10:%016llX",
2778 		 (unsigned long long) be64_to_cpu(target->id_ext));
2779 
2780 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2781 		return -ENODEV;
2782 
2783 	memcpy(ids.port_id, &target->id_ext, 8);
2784 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2785 	ids.roles = SRP_RPORT_ROLE_TARGET;
2786 	rport = srp_rport_add(target->scsi_host, &ids);
2787 	if (IS_ERR(rport)) {
2788 		scsi_remove_host(target->scsi_host);
2789 		return PTR_ERR(rport);
2790 	}
2791 
2792 	rport->lld_data = target;
2793 	target->rport = rport;
2794 
2795 	spin_lock(&host->target_lock);
2796 	list_add_tail(&target->list, &host->target_list);
2797 	spin_unlock(&host->target_lock);
2798 
2799 	scsi_scan_target(&target->scsi_host->shost_gendev,
2800 			 0, target->scsi_id, SCAN_WILD_CARD, 0);
2801 
2802 	if (srp_connected_ch(target) < target->ch_count ||
2803 	    target->qp_in_error) {
2804 		shost_printk(KERN_INFO, target->scsi_host,
2805 			     PFX "SCSI scan failed - removing SCSI host\n");
2806 		srp_queue_remove_work(target);
2807 		goto out;
2808 	}
2809 
2810 	pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2811 		 dev_name(&target->scsi_host->shost_gendev),
2812 		 srp_sdev_count(target->scsi_host));
2813 
2814 	spin_lock_irq(&target->lock);
2815 	if (target->state == SRP_TARGET_SCANNING)
2816 		target->state = SRP_TARGET_LIVE;
2817 	spin_unlock_irq(&target->lock);
2818 
2819 out:
2820 	return 0;
2821 }
2822 
srp_release_dev(struct device * dev)2823 static void srp_release_dev(struct device *dev)
2824 {
2825 	struct srp_host *host =
2826 		container_of(dev, struct srp_host, dev);
2827 
2828 	complete(&host->released);
2829 }
2830 
2831 static struct class srp_class = {
2832 	.name    = "infiniband_srp",
2833 	.dev_release = srp_release_dev
2834 };
2835 
2836 /**
2837  * srp_conn_unique() - check whether the connection to a target is unique
2838  * @host:   SRP host.
2839  * @target: SRP target port.
2840  */
srp_conn_unique(struct srp_host * host,struct srp_target_port * target)2841 static bool srp_conn_unique(struct srp_host *host,
2842 			    struct srp_target_port *target)
2843 {
2844 	struct srp_target_port *t;
2845 	bool ret = false;
2846 
2847 	if (target->state == SRP_TARGET_REMOVED)
2848 		goto out;
2849 
2850 	ret = true;
2851 
2852 	spin_lock(&host->target_lock);
2853 	list_for_each_entry(t, &host->target_list, list) {
2854 		if (t != target &&
2855 		    target->id_ext == t->id_ext &&
2856 		    target->ioc_guid == t->ioc_guid &&
2857 		    target->initiator_ext == t->initiator_ext) {
2858 			ret = false;
2859 			break;
2860 		}
2861 	}
2862 	spin_unlock(&host->target_lock);
2863 
2864 out:
2865 	return ret;
2866 }
2867 
2868 /*
2869  * Target ports are added by writing
2870  *
2871  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2872  *     pkey=<P_Key>,service_id=<service ID>
2873  *
2874  * to the add_target sysfs attribute.
2875  */
2876 enum {
2877 	SRP_OPT_ERR		= 0,
2878 	SRP_OPT_ID_EXT		= 1 << 0,
2879 	SRP_OPT_IOC_GUID	= 1 << 1,
2880 	SRP_OPT_DGID		= 1 << 2,
2881 	SRP_OPT_PKEY		= 1 << 3,
2882 	SRP_OPT_SERVICE_ID	= 1 << 4,
2883 	SRP_OPT_MAX_SECT	= 1 << 5,
2884 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
2885 	SRP_OPT_IO_CLASS	= 1 << 7,
2886 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
2887 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
2888 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
2889 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
2890 	SRP_OPT_COMP_VECTOR	= 1 << 12,
2891 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
2892 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
2893 	SRP_OPT_ALL		= (SRP_OPT_ID_EXT	|
2894 				   SRP_OPT_IOC_GUID	|
2895 				   SRP_OPT_DGID		|
2896 				   SRP_OPT_PKEY		|
2897 				   SRP_OPT_SERVICE_ID),
2898 };
2899 
2900 static const match_table_t srp_opt_tokens = {
2901 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
2902 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
2903 	{ SRP_OPT_DGID,			"dgid=%s" 		},
2904 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
2905 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
2906 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
2907 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
2908 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
2909 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
2910 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
2911 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
2912 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
2913 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
2914 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
2915 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
2916 	{ SRP_OPT_ERR,			NULL 			}
2917 };
2918 
srp_parse_options(const char * buf,struct srp_target_port * target)2919 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2920 {
2921 	char *options, *sep_opt;
2922 	char *p;
2923 	char dgid[3];
2924 	substring_t args[MAX_OPT_ARGS];
2925 	int opt_mask = 0;
2926 	int token;
2927 	int ret = -EINVAL;
2928 	int i;
2929 
2930 	options = kstrdup(buf, GFP_KERNEL);
2931 	if (!options)
2932 		return -ENOMEM;
2933 
2934 	sep_opt = options;
2935 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2936 		if (!*p)
2937 			continue;
2938 
2939 		token = match_token(p, srp_opt_tokens, args);
2940 		opt_mask |= token;
2941 
2942 		switch (token) {
2943 		case SRP_OPT_ID_EXT:
2944 			p = match_strdup(args);
2945 			if (!p) {
2946 				ret = -ENOMEM;
2947 				goto out;
2948 			}
2949 			target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2950 			kfree(p);
2951 			break;
2952 
2953 		case SRP_OPT_IOC_GUID:
2954 			p = match_strdup(args);
2955 			if (!p) {
2956 				ret = -ENOMEM;
2957 				goto out;
2958 			}
2959 			target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2960 			kfree(p);
2961 			break;
2962 
2963 		case SRP_OPT_DGID:
2964 			p = match_strdup(args);
2965 			if (!p) {
2966 				ret = -ENOMEM;
2967 				goto out;
2968 			}
2969 			if (strlen(p) != 32) {
2970 				pr_warn("bad dest GID parameter '%s'\n", p);
2971 				kfree(p);
2972 				goto out;
2973 			}
2974 
2975 			for (i = 0; i < 16; ++i) {
2976 				strlcpy(dgid, p + i * 2, sizeof(dgid));
2977 				if (sscanf(dgid, "%hhx",
2978 					   &target->orig_dgid.raw[i]) < 1) {
2979 					ret = -EINVAL;
2980 					kfree(p);
2981 					goto out;
2982 				}
2983 			}
2984 			kfree(p);
2985 			break;
2986 
2987 		case SRP_OPT_PKEY:
2988 			if (match_hex(args, &token)) {
2989 				pr_warn("bad P_Key parameter '%s'\n", p);
2990 				goto out;
2991 			}
2992 			target->pkey = cpu_to_be16(token);
2993 			break;
2994 
2995 		case SRP_OPT_SERVICE_ID:
2996 			p = match_strdup(args);
2997 			if (!p) {
2998 				ret = -ENOMEM;
2999 				goto out;
3000 			}
3001 			target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3002 			kfree(p);
3003 			break;
3004 
3005 		case SRP_OPT_MAX_SECT:
3006 			if (match_int(args, &token)) {
3007 				pr_warn("bad max sect parameter '%s'\n", p);
3008 				goto out;
3009 			}
3010 			target->scsi_host->max_sectors = token;
3011 			break;
3012 
3013 		case SRP_OPT_QUEUE_SIZE:
3014 			if (match_int(args, &token) || token < 1) {
3015 				pr_warn("bad queue_size parameter '%s'\n", p);
3016 				goto out;
3017 			}
3018 			target->scsi_host->can_queue = token;
3019 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3020 					     SRP_TSK_MGMT_SQ_SIZE;
3021 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3022 				target->scsi_host->cmd_per_lun = token;
3023 			break;
3024 
3025 		case SRP_OPT_MAX_CMD_PER_LUN:
3026 			if (match_int(args, &token) || token < 1) {
3027 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3028 					p);
3029 				goto out;
3030 			}
3031 			target->scsi_host->cmd_per_lun = token;
3032 			break;
3033 
3034 		case SRP_OPT_IO_CLASS:
3035 			if (match_hex(args, &token)) {
3036 				pr_warn("bad IO class parameter '%s'\n", p);
3037 				goto out;
3038 			}
3039 			if (token != SRP_REV10_IB_IO_CLASS &&
3040 			    token != SRP_REV16A_IB_IO_CLASS) {
3041 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3042 					token, SRP_REV10_IB_IO_CLASS,
3043 					SRP_REV16A_IB_IO_CLASS);
3044 				goto out;
3045 			}
3046 			target->io_class = token;
3047 			break;
3048 
3049 		case SRP_OPT_INITIATOR_EXT:
3050 			p = match_strdup(args);
3051 			if (!p) {
3052 				ret = -ENOMEM;
3053 				goto out;
3054 			}
3055 			target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3056 			kfree(p);
3057 			break;
3058 
3059 		case SRP_OPT_CMD_SG_ENTRIES:
3060 			if (match_int(args, &token) || token < 1 || token > 255) {
3061 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3062 					p);
3063 				goto out;
3064 			}
3065 			target->cmd_sg_cnt = token;
3066 			break;
3067 
3068 		case SRP_OPT_ALLOW_EXT_SG:
3069 			if (match_int(args, &token)) {
3070 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3071 				goto out;
3072 			}
3073 			target->allow_ext_sg = !!token;
3074 			break;
3075 
3076 		case SRP_OPT_SG_TABLESIZE:
3077 			if (match_int(args, &token) || token < 1 ||
3078 					token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3079 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3080 					p);
3081 				goto out;
3082 			}
3083 			target->sg_tablesize = token;
3084 			break;
3085 
3086 		case SRP_OPT_COMP_VECTOR:
3087 			if (match_int(args, &token) || token < 0) {
3088 				pr_warn("bad comp_vector parameter '%s'\n", p);
3089 				goto out;
3090 			}
3091 			target->comp_vector = token;
3092 			break;
3093 
3094 		case SRP_OPT_TL_RETRY_COUNT:
3095 			if (match_int(args, &token) || token < 2 || token > 7) {
3096 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3097 					p);
3098 				goto out;
3099 			}
3100 			target->tl_retry_count = token;
3101 			break;
3102 
3103 		default:
3104 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3105 				p);
3106 			goto out;
3107 		}
3108 	}
3109 
3110 	if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3111 		ret = 0;
3112 	else
3113 		for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3114 			if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3115 			    !(srp_opt_tokens[i].token & opt_mask))
3116 				pr_warn("target creation request is missing parameter '%s'\n",
3117 					srp_opt_tokens[i].pattern);
3118 
3119 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3120 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3121 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3122 			target->scsi_host->cmd_per_lun,
3123 			target->scsi_host->can_queue);
3124 
3125 out:
3126 	kfree(options);
3127 	return ret;
3128 }
3129 
srp_create_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3130 static ssize_t srp_create_target(struct device *dev,
3131 				 struct device_attribute *attr,
3132 				 const char *buf, size_t count)
3133 {
3134 	struct srp_host *host =
3135 		container_of(dev, struct srp_host, dev);
3136 	struct Scsi_Host *target_host;
3137 	struct srp_target_port *target;
3138 	struct srp_rdma_ch *ch;
3139 	struct srp_device *srp_dev = host->srp_dev;
3140 	struct ib_device *ibdev = srp_dev->dev;
3141 	int ret, node_idx, node, cpu, i;
3142 	bool multich = false;
3143 
3144 	target_host = scsi_host_alloc(&srp_template,
3145 				      sizeof (struct srp_target_port));
3146 	if (!target_host)
3147 		return -ENOMEM;
3148 
3149 	target_host->transportt  = ib_srp_transport_template;
3150 	target_host->max_channel = 0;
3151 	target_host->max_id      = 1;
3152 	target_host->max_lun     = SRP_MAX_LUN;
3153 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3154 
3155 	target = host_to_target(target_host);
3156 
3157 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3158 	target->scsi_host	= target_host;
3159 	target->srp_host	= host;
3160 	target->lkey		= host->srp_dev->mr->lkey;
3161 	target->rkey		= host->srp_dev->mr->rkey;
3162 	target->cmd_sg_cnt	= cmd_sg_entries;
3163 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3164 	target->allow_ext_sg	= allow_ext_sg;
3165 	target->tl_retry_count	= 7;
3166 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3167 
3168 	/*
3169 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3170 	 * before this function returns.
3171 	 */
3172 	scsi_host_get(target->scsi_host);
3173 
3174 	mutex_lock(&host->add_target_mutex);
3175 
3176 	ret = srp_parse_options(buf, target);
3177 	if (ret)
3178 		goto out;
3179 
3180 	ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3181 	if (ret)
3182 		goto out;
3183 
3184 	target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3185 
3186 	if (!srp_conn_unique(target->srp_host, target)) {
3187 		shost_printk(KERN_INFO, target->scsi_host,
3188 			     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3189 			     be64_to_cpu(target->id_ext),
3190 			     be64_to_cpu(target->ioc_guid),
3191 			     be64_to_cpu(target->initiator_ext));
3192 		ret = -EEXIST;
3193 		goto out;
3194 	}
3195 
3196 	if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3197 	    target->cmd_sg_cnt < target->sg_tablesize) {
3198 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3199 		target->sg_tablesize = target->cmd_sg_cnt;
3200 	}
3201 
3202 	target_host->sg_tablesize = target->sg_tablesize;
3203 	target->indirect_size = target->sg_tablesize *
3204 				sizeof (struct srp_direct_buf);
3205 	target->max_iu_len = sizeof (struct srp_cmd) +
3206 			     sizeof (struct srp_indirect_buf) +
3207 			     target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3208 
3209 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3210 	INIT_WORK(&target->remove_work, srp_remove_work);
3211 	spin_lock_init(&target->lock);
3212 	ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3213 	if (ret)
3214 		goto out;
3215 
3216 	ret = -ENOMEM;
3217 	target->ch_count = max_t(unsigned, num_online_nodes(),
3218 				 min(ch_count ? :
3219 				     min(4 * num_online_nodes(),
3220 					 ibdev->num_comp_vectors),
3221 				     num_online_cpus()));
3222 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3223 			     GFP_KERNEL);
3224 	if (!target->ch)
3225 		goto out;
3226 
3227 	node_idx = 0;
3228 	for_each_online_node(node) {
3229 		const int ch_start = (node_idx * target->ch_count /
3230 				      num_online_nodes());
3231 		const int ch_end = ((node_idx + 1) * target->ch_count /
3232 				    num_online_nodes());
3233 		const int cv_start = (node_idx * ibdev->num_comp_vectors /
3234 				      num_online_nodes() + target->comp_vector)
3235 				     % ibdev->num_comp_vectors;
3236 		const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3237 				    num_online_nodes() + target->comp_vector)
3238 				   % ibdev->num_comp_vectors;
3239 		int cpu_idx = 0;
3240 
3241 		for_each_online_cpu(cpu) {
3242 			if (cpu_to_node(cpu) != node)
3243 				continue;
3244 			if (ch_start + cpu_idx >= ch_end)
3245 				continue;
3246 			ch = &target->ch[ch_start + cpu_idx];
3247 			ch->target = target;
3248 			ch->comp_vector = cv_start == cv_end ? cv_start :
3249 				cv_start + cpu_idx % (cv_end - cv_start);
3250 			spin_lock_init(&ch->lock);
3251 			INIT_LIST_HEAD(&ch->free_tx);
3252 			ret = srp_new_cm_id(ch);
3253 			if (ret)
3254 				goto err_disconnect;
3255 
3256 			ret = srp_create_ch_ib(ch);
3257 			if (ret)
3258 				goto err_disconnect;
3259 
3260 			ret = srp_alloc_req_data(ch);
3261 			if (ret)
3262 				goto err_disconnect;
3263 
3264 			ret = srp_connect_ch(ch, multich);
3265 			if (ret) {
3266 				shost_printk(KERN_ERR, target->scsi_host,
3267 					     PFX "Connection %d/%d failed\n",
3268 					     ch_start + cpu_idx,
3269 					     target->ch_count);
3270 				if (node_idx == 0 && cpu_idx == 0) {
3271 					goto err_disconnect;
3272 				} else {
3273 					srp_free_ch_ib(target, ch);
3274 					srp_free_req_data(target, ch);
3275 					target->ch_count = ch - target->ch;
3276 					goto connected;
3277 				}
3278 			}
3279 
3280 			multich = true;
3281 			cpu_idx++;
3282 		}
3283 		node_idx++;
3284 	}
3285 
3286 connected:
3287 	target->scsi_host->nr_hw_queues = target->ch_count;
3288 
3289 	ret = srp_add_target(host, target);
3290 	if (ret)
3291 		goto err_disconnect;
3292 
3293 	if (target->state != SRP_TARGET_REMOVED) {
3294 		shost_printk(KERN_DEBUG, target->scsi_host, PFX
3295 			     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3296 			     be64_to_cpu(target->id_ext),
3297 			     be64_to_cpu(target->ioc_guid),
3298 			     be16_to_cpu(target->pkey),
3299 			     be64_to_cpu(target->service_id),
3300 			     target->sgid.raw, target->orig_dgid.raw);
3301 	}
3302 
3303 	ret = count;
3304 
3305 out:
3306 	mutex_unlock(&host->add_target_mutex);
3307 
3308 	scsi_host_put(target->scsi_host);
3309 	if (ret < 0)
3310 		scsi_host_put(target->scsi_host);
3311 
3312 	return ret;
3313 
3314 err_disconnect:
3315 	srp_disconnect_target(target);
3316 
3317 	for (i = 0; i < target->ch_count; i++) {
3318 		ch = &target->ch[i];
3319 		srp_free_ch_ib(target, ch);
3320 		srp_free_req_data(target, ch);
3321 	}
3322 
3323 	kfree(target->ch);
3324 	goto out;
3325 }
3326 
3327 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3328 
show_ibdev(struct device * dev,struct device_attribute * attr,char * buf)3329 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3330 			  char *buf)
3331 {
3332 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3333 
3334 	return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3335 }
3336 
3337 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3338 
show_port(struct device * dev,struct device_attribute * attr,char * buf)3339 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3340 			 char *buf)
3341 {
3342 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3343 
3344 	return sprintf(buf, "%d\n", host->port);
3345 }
3346 
3347 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3348 
srp_add_port(struct srp_device * device,u8 port)3349 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3350 {
3351 	struct srp_host *host;
3352 
3353 	host = kzalloc(sizeof *host, GFP_KERNEL);
3354 	if (!host)
3355 		return NULL;
3356 
3357 	INIT_LIST_HEAD(&host->target_list);
3358 	spin_lock_init(&host->target_lock);
3359 	init_completion(&host->released);
3360 	mutex_init(&host->add_target_mutex);
3361 	host->srp_dev = device;
3362 	host->port = port;
3363 
3364 	host->dev.class = &srp_class;
3365 	host->dev.parent = device->dev->dma_device;
3366 	dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3367 
3368 	if (device_register(&host->dev))
3369 		goto free_host;
3370 	if (device_create_file(&host->dev, &dev_attr_add_target))
3371 		goto err_class;
3372 	if (device_create_file(&host->dev, &dev_attr_ibdev))
3373 		goto err_class;
3374 	if (device_create_file(&host->dev, &dev_attr_port))
3375 		goto err_class;
3376 
3377 	return host;
3378 
3379 err_class:
3380 	device_unregister(&host->dev);
3381 
3382 free_host:
3383 	kfree(host);
3384 
3385 	return NULL;
3386 }
3387 
srp_add_one(struct ib_device * device)3388 static void srp_add_one(struct ib_device *device)
3389 {
3390 	struct srp_device *srp_dev;
3391 	struct ib_device_attr *dev_attr;
3392 	struct srp_host *host;
3393 	int mr_page_shift, s, e, p;
3394 	u64 max_pages_per_mr;
3395 
3396 	dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3397 	if (!dev_attr)
3398 		return;
3399 
3400 	if (ib_query_device(device, dev_attr)) {
3401 		pr_warn("Query device failed for %s\n", device->name);
3402 		goto free_attr;
3403 	}
3404 
3405 	srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3406 	if (!srp_dev)
3407 		goto free_attr;
3408 
3409 	srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3410 			    device->map_phys_fmr && device->unmap_fmr);
3411 	srp_dev->has_fr = (dev_attr->device_cap_flags &
3412 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
3413 	if (!srp_dev->has_fmr && !srp_dev->has_fr)
3414 		dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3415 
3416 	srp_dev->use_fast_reg = (srp_dev->has_fr &&
3417 				 (!srp_dev->has_fmr || prefer_fr));
3418 
3419 	/*
3420 	 * Use the smallest page size supported by the HCA, down to a
3421 	 * minimum of 4096 bytes. We're unlikely to build large sglists
3422 	 * out of smaller entries.
3423 	 */
3424 	mr_page_shift		= max(12, ffs(dev_attr->page_size_cap) - 1);
3425 	srp_dev->mr_page_size	= 1 << mr_page_shift;
3426 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3427 	max_pages_per_mr	= dev_attr->max_mr_size;
3428 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3429 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3430 					  max_pages_per_mr);
3431 	if (srp_dev->use_fast_reg) {
3432 		srp_dev->max_pages_per_mr =
3433 			min_t(u32, srp_dev->max_pages_per_mr,
3434 			      dev_attr->max_fast_reg_page_list_len);
3435 	}
3436 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
3437 				   srp_dev->max_pages_per_mr;
3438 	pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3439 		 device->name, mr_page_shift, dev_attr->max_mr_size,
3440 		 dev_attr->max_fast_reg_page_list_len,
3441 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3442 
3443 	INIT_LIST_HEAD(&srp_dev->dev_list);
3444 
3445 	srp_dev->dev = device;
3446 	srp_dev->pd  = ib_alloc_pd(device);
3447 	if (IS_ERR(srp_dev->pd))
3448 		goto free_dev;
3449 
3450 	srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3451 				    IB_ACCESS_LOCAL_WRITE |
3452 				    IB_ACCESS_REMOTE_READ |
3453 				    IB_ACCESS_REMOTE_WRITE);
3454 	if (IS_ERR(srp_dev->mr))
3455 		goto err_pd;
3456 
3457 	if (device->node_type == RDMA_NODE_IB_SWITCH) {
3458 		s = 0;
3459 		e = 0;
3460 	} else {
3461 		s = 1;
3462 		e = device->phys_port_cnt;
3463 	}
3464 
3465 	for (p = s; p <= e; ++p) {
3466 		host = srp_add_port(srp_dev, p);
3467 		if (host)
3468 			list_add_tail(&host->list, &srp_dev->dev_list);
3469 	}
3470 
3471 	ib_set_client_data(device, &srp_client, srp_dev);
3472 
3473 	goto free_attr;
3474 
3475 err_pd:
3476 	ib_dealloc_pd(srp_dev->pd);
3477 
3478 free_dev:
3479 	kfree(srp_dev);
3480 
3481 free_attr:
3482 	kfree(dev_attr);
3483 }
3484 
srp_remove_one(struct ib_device * device)3485 static void srp_remove_one(struct ib_device *device)
3486 {
3487 	struct srp_device *srp_dev;
3488 	struct srp_host *host, *tmp_host;
3489 	struct srp_target_port *target;
3490 
3491 	srp_dev = ib_get_client_data(device, &srp_client);
3492 	if (!srp_dev)
3493 		return;
3494 
3495 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3496 		device_unregister(&host->dev);
3497 		/*
3498 		 * Wait for the sysfs entry to go away, so that no new
3499 		 * target ports can be created.
3500 		 */
3501 		wait_for_completion(&host->released);
3502 
3503 		/*
3504 		 * Remove all target ports.
3505 		 */
3506 		spin_lock(&host->target_lock);
3507 		list_for_each_entry(target, &host->target_list, list)
3508 			srp_queue_remove_work(target);
3509 		spin_unlock(&host->target_lock);
3510 
3511 		/*
3512 		 * Wait for tl_err and target port removal tasks.
3513 		 */
3514 		flush_workqueue(system_long_wq);
3515 		flush_workqueue(srp_remove_wq);
3516 
3517 		kfree(host);
3518 	}
3519 
3520 	ib_dereg_mr(srp_dev->mr);
3521 	ib_dealloc_pd(srp_dev->pd);
3522 
3523 	kfree(srp_dev);
3524 }
3525 
3526 static struct srp_function_template ib_srp_transport_functions = {
3527 	.has_rport_state	 = true,
3528 	.reset_timer_if_blocked	 = true,
3529 	.reconnect_delay	 = &srp_reconnect_delay,
3530 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
3531 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
3532 	.reconnect		 = srp_rport_reconnect,
3533 	.rport_delete		 = srp_rport_delete,
3534 	.terminate_rport_io	 = srp_terminate_io,
3535 };
3536 
srp_init_module(void)3537 static int __init srp_init_module(void)
3538 {
3539 	int ret;
3540 
3541 	BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3542 
3543 	if (srp_sg_tablesize) {
3544 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3545 		if (!cmd_sg_entries)
3546 			cmd_sg_entries = srp_sg_tablesize;
3547 	}
3548 
3549 	if (!cmd_sg_entries)
3550 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3551 
3552 	if (cmd_sg_entries > 255) {
3553 		pr_warn("Clamping cmd_sg_entries to 255\n");
3554 		cmd_sg_entries = 255;
3555 	}
3556 
3557 	if (!indirect_sg_entries)
3558 		indirect_sg_entries = cmd_sg_entries;
3559 	else if (indirect_sg_entries < cmd_sg_entries) {
3560 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3561 			cmd_sg_entries);
3562 		indirect_sg_entries = cmd_sg_entries;
3563 	}
3564 
3565 	srp_remove_wq = create_workqueue("srp_remove");
3566 	if (!srp_remove_wq) {
3567 		ret = -ENOMEM;
3568 		goto out;
3569 	}
3570 
3571 	ret = -ENOMEM;
3572 	ib_srp_transport_template =
3573 		srp_attach_transport(&ib_srp_transport_functions);
3574 	if (!ib_srp_transport_template)
3575 		goto destroy_wq;
3576 
3577 	ret = class_register(&srp_class);
3578 	if (ret) {
3579 		pr_err("couldn't register class infiniband_srp\n");
3580 		goto release_tr;
3581 	}
3582 
3583 	ib_sa_register_client(&srp_sa_client);
3584 
3585 	ret = ib_register_client(&srp_client);
3586 	if (ret) {
3587 		pr_err("couldn't register IB client\n");
3588 		goto unreg_sa;
3589 	}
3590 
3591 out:
3592 	return ret;
3593 
3594 unreg_sa:
3595 	ib_sa_unregister_client(&srp_sa_client);
3596 	class_unregister(&srp_class);
3597 
3598 release_tr:
3599 	srp_release_transport(ib_srp_transport_template);
3600 
3601 destroy_wq:
3602 	destroy_workqueue(srp_remove_wq);
3603 	goto out;
3604 }
3605 
srp_cleanup_module(void)3606 static void __exit srp_cleanup_module(void)
3607 {
3608 	ib_unregister_client(&srp_client);
3609 	ib_sa_unregister_client(&srp_sa_client);
3610 	class_unregister(&srp_class);
3611 	srp_release_transport(ib_srp_transport_template);
3612 	destroy_workqueue(srp_remove_wq);
3613 }
3614 
3615 module_init(srp_init_module);
3616 module_exit(srp_cleanup_module);
3617