1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66
fs_set_multicast_list(struct net_device * dev)67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69 struct fs_enet_private *fep = netdev_priv(dev);
70
71 (*fep->ops->set_multicast_list)(dev);
72 }
73
skb_align(struct sk_buff * skb,int align)74 static void skb_align(struct sk_buff *skb, int align)
75 {
76 int off = ((unsigned long)skb->data) & (align - 1);
77
78 if (off)
79 skb_reserve(skb, align - off);
80 }
81
82 /* NAPI receive function */
fs_enet_rx_napi(struct napi_struct * napi,int budget)83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
88 cbd_t __iomem *bdp;
89 struct sk_buff *skb, *skbn, *skbt;
90 int received = 0;
91 u16 pkt_len, sc;
92 int curidx;
93
94 if (budget <= 0)
95 return received;
96
97 /*
98 * First, grab all of the stats for the incoming packet.
99 * These get messed up if we get called due to a busy condition.
100 */
101 bdp = fep->cur_rx;
102
103 /* clear RX status bits for napi*/
104 (*fep->ops->napi_clear_rx_event)(dev);
105
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 curidx = bdp - fep->rx_bd_base;
108
109 /*
110 * Since we have allocated space to hold a complete frame,
111 * the last indicator should be set.
112 */
113 if ((sc & BD_ENET_RX_LAST) == 0)
114 dev_warn(fep->dev, "rcv is not +last\n");
115
116 /*
117 * Check for errors.
118 */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 fep->stats.rx_errors++;
122 /* Frame too long or too short. */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 fep->stats.rx_length_errors++;
125 /* Frame alignment */
126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 fep->stats.rx_frame_errors++;
128 /* CRC Error */
129 if (sc & BD_ENET_RX_CR)
130 fep->stats.rx_crc_errors++;
131 /* FIFO overrun */
132 if (sc & BD_ENET_RX_OV)
133 fep->stats.rx_crc_errors++;
134
135 skb = fep->rx_skbuff[curidx];
136
137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139 DMA_FROM_DEVICE);
140
141 skbn = skb;
142
143 } else {
144 skb = fep->rx_skbuff[curidx];
145
146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 DMA_FROM_DEVICE);
149
150 /*
151 * Process the incoming frame.
152 */
153 fep->stats.rx_packets++;
154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155 fep->stats.rx_bytes += pkt_len + 4;
156
157 if (pkt_len <= fpi->rx_copybreak) {
158 /* +2 to make IP header L1 cache aligned */
159 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160 if (skbn != NULL) {
161 skb_reserve(skbn, 2); /* align IP header */
162 skb_copy_from_linear_data(skb,
163 skbn->data, pkt_len);
164 /* swap */
165 skbt = skb;
166 skb = skbn;
167 skbn = skbt;
168 }
169 } else {
170 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171
172 if (skbn)
173 skb_align(skbn, ENET_RX_ALIGN);
174 }
175
176 if (skbn != NULL) {
177 skb_put(skb, pkt_len); /* Make room */
178 skb->protocol = eth_type_trans(skb, dev);
179 received++;
180 netif_receive_skb(skb);
181 } else {
182 fep->stats.rx_dropped++;
183 skbn = skb;
184 }
185 }
186
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194 /*
195 * Update BD pointer to next entry.
196 */
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
201
202 (*fep->ops->rx_bd_done)(dev);
203
204 if (received >= budget)
205 break;
206 }
207
208 fep->cur_rx = bdp;
209
210 if (received < budget) {
211 /* done */
212 napi_complete(napi);
213 (*fep->ops->napi_enable_rx)(dev);
214 }
215 return received;
216 }
217
fs_enet_tx_napi(struct napi_struct * napi,int budget)218 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
219 {
220 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
221 napi_tx);
222 struct net_device *dev = fep->ndev;
223 cbd_t __iomem *bdp;
224 struct sk_buff *skb;
225 int dirtyidx, do_wake, do_restart;
226 u16 sc;
227 int has_tx_work = 0;
228
229 spin_lock(&fep->tx_lock);
230 bdp = fep->dirty_tx;
231
232 /* clear TX status bits for napi*/
233 (*fep->ops->napi_clear_tx_event)(dev);
234
235 do_wake = do_restart = 0;
236 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
237 dirtyidx = bdp - fep->tx_bd_base;
238
239 if (fep->tx_free == fep->tx_ring)
240 break;
241
242 skb = fep->tx_skbuff[dirtyidx];
243
244 /*
245 * Check for errors.
246 */
247 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
248 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
249
250 if (sc & BD_ENET_TX_HB) /* No heartbeat */
251 fep->stats.tx_heartbeat_errors++;
252 if (sc & BD_ENET_TX_LC) /* Late collision */
253 fep->stats.tx_window_errors++;
254 if (sc & BD_ENET_TX_RL) /* Retrans limit */
255 fep->stats.tx_aborted_errors++;
256 if (sc & BD_ENET_TX_UN) /* Underrun */
257 fep->stats.tx_fifo_errors++;
258 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
259 fep->stats.tx_carrier_errors++;
260
261 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
262 fep->stats.tx_errors++;
263 do_restart = 1;
264 }
265 } else
266 fep->stats.tx_packets++;
267
268 if (sc & BD_ENET_TX_READY) {
269 dev_warn(fep->dev,
270 "HEY! Enet xmit interrupt and TX_READY.\n");
271 }
272
273 /*
274 * Deferred means some collisions occurred during transmit,
275 * but we eventually sent the packet OK.
276 */
277 if (sc & BD_ENET_TX_DEF)
278 fep->stats.collisions++;
279
280 /* unmap */
281 if (fep->mapped_as_page[dirtyidx])
282 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
283 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284 else
285 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
287
288 /*
289 * Free the sk buffer associated with this last transmit.
290 */
291 if (skb) {
292 dev_kfree_skb(skb);
293 fep->tx_skbuff[dirtyidx] = NULL;
294 }
295
296 /*
297 * Update pointer to next buffer descriptor to be transmitted.
298 */
299 if ((sc & BD_ENET_TX_WRAP) == 0)
300 bdp++;
301 else
302 bdp = fep->tx_bd_base;
303
304 /*
305 * Since we have freed up a buffer, the ring is no longer
306 * full.
307 */
308 if (++fep->tx_free >= MAX_SKB_FRAGS)
309 do_wake = 1;
310 has_tx_work = 1;
311 }
312
313 fep->dirty_tx = bdp;
314
315 if (do_restart)
316 (*fep->ops->tx_restart)(dev);
317
318 if (!has_tx_work) {
319 napi_complete(napi);
320 (*fep->ops->napi_enable_tx)(dev);
321 }
322
323 spin_unlock(&fep->tx_lock);
324
325 if (do_wake)
326 netif_wake_queue(dev);
327
328 if (has_tx_work)
329 return budget;
330 return 0;
331 }
332
333 /*
334 * The interrupt handler.
335 * This is called from the MPC core interrupt.
336 */
337 static irqreturn_t
fs_enet_interrupt(int irq,void * dev_id)338 fs_enet_interrupt(int irq, void *dev_id)
339 {
340 struct net_device *dev = dev_id;
341 struct fs_enet_private *fep;
342 const struct fs_platform_info *fpi;
343 u32 int_events;
344 u32 int_clr_events;
345 int nr, napi_ok;
346 int handled;
347
348 fep = netdev_priv(dev);
349 fpi = fep->fpi;
350
351 nr = 0;
352 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
353 nr++;
354
355 int_clr_events = int_events;
356 int_clr_events &= ~fep->ev_napi_rx;
357
358 (*fep->ops->clear_int_events)(dev, int_clr_events);
359
360 if (int_events & fep->ev_err)
361 (*fep->ops->ev_error)(dev, int_events);
362
363 if (int_events & fep->ev_rx) {
364 napi_ok = napi_schedule_prep(&fep->napi);
365
366 (*fep->ops->napi_disable_rx)(dev);
367 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
368
369 /* NOTE: it is possible for FCCs in NAPI mode */
370 /* to submit a spurious interrupt while in poll */
371 if (napi_ok)
372 __napi_schedule(&fep->napi);
373 }
374
375 if (int_events & fep->ev_tx) {
376 napi_ok = napi_schedule_prep(&fep->napi_tx);
377
378 (*fep->ops->napi_disable_tx)(dev);
379 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
380
381 /* NOTE: it is possible for FCCs in NAPI mode */
382 /* to submit a spurious interrupt while in poll */
383 if (napi_ok)
384 __napi_schedule(&fep->napi_tx);
385 }
386 }
387
388 handled = nr > 0;
389 return IRQ_RETVAL(handled);
390 }
391
fs_init_bds(struct net_device * dev)392 void fs_init_bds(struct net_device *dev)
393 {
394 struct fs_enet_private *fep = netdev_priv(dev);
395 cbd_t __iomem *bdp;
396 struct sk_buff *skb;
397 int i;
398
399 fs_cleanup_bds(dev);
400
401 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
402 fep->tx_free = fep->tx_ring;
403 fep->cur_rx = fep->rx_bd_base;
404
405 /*
406 * Initialize the receive buffer descriptors.
407 */
408 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
409 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
410 if (skb == NULL)
411 break;
412
413 skb_align(skb, ENET_RX_ALIGN);
414 fep->rx_skbuff[i] = skb;
415 CBDW_BUFADDR(bdp,
416 dma_map_single(fep->dev, skb->data,
417 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
418 DMA_FROM_DEVICE));
419 CBDW_DATLEN(bdp, 0); /* zero */
420 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
421 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
422 }
423 /*
424 * if we failed, fillup remainder
425 */
426 for (; i < fep->rx_ring; i++, bdp++) {
427 fep->rx_skbuff[i] = NULL;
428 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
429 }
430
431 /*
432 * ...and the same for transmit.
433 */
434 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
435 fep->tx_skbuff[i] = NULL;
436 CBDW_BUFADDR(bdp, 0);
437 CBDW_DATLEN(bdp, 0);
438 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
439 }
440 }
441
fs_cleanup_bds(struct net_device * dev)442 void fs_cleanup_bds(struct net_device *dev)
443 {
444 struct fs_enet_private *fep = netdev_priv(dev);
445 struct sk_buff *skb;
446 cbd_t __iomem *bdp;
447 int i;
448
449 /*
450 * Reset SKB transmit buffers.
451 */
452 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
453 if ((skb = fep->tx_skbuff[i]) == NULL)
454 continue;
455
456 /* unmap */
457 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
458 skb->len, DMA_TO_DEVICE);
459
460 fep->tx_skbuff[i] = NULL;
461 dev_kfree_skb(skb);
462 }
463
464 /*
465 * Reset SKB receive buffers
466 */
467 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
468 if ((skb = fep->rx_skbuff[i]) == NULL)
469 continue;
470
471 /* unmap */
472 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
473 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
474 DMA_FROM_DEVICE);
475
476 fep->rx_skbuff[i] = NULL;
477
478 dev_kfree_skb(skb);
479 }
480 }
481
482 /**********************************************************************************/
483
484 #ifdef CONFIG_FS_ENET_MPC5121_FEC
485 /*
486 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
487 */
tx_skb_align_workaround(struct net_device * dev,struct sk_buff * skb)488 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
489 struct sk_buff *skb)
490 {
491 struct sk_buff *new_skb;
492
493 /* Alloc new skb */
494 new_skb = netdev_alloc_skb(dev, skb->len + 4);
495 if (!new_skb)
496 return NULL;
497
498 /* Make sure new skb is properly aligned */
499 skb_align(new_skb, 4);
500
501 /* Copy data to new skb ... */
502 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503 skb_put(new_skb, skb->len);
504
505 /* ... and free an old one */
506 dev_kfree_skb_any(skb);
507
508 return new_skb;
509 }
510 #endif
511
fs_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513 {
514 struct fs_enet_private *fep = netdev_priv(dev);
515 cbd_t __iomem *bdp;
516 int curidx;
517 u16 sc;
518 int nr_frags = skb_shinfo(skb)->nr_frags;
519 skb_frag_t *frag;
520 int len;
521
522 #ifdef CONFIG_FS_ENET_MPC5121_FEC
523 if (((unsigned long)skb->data) & 0x3) {
524 skb = tx_skb_align_workaround(dev, skb);
525 if (!skb) {
526 /*
527 * We have lost packet due to memory allocation error
528 * in tx_skb_align_workaround(). Hopefully original
529 * skb is still valid, so try transmit it later.
530 */
531 return NETDEV_TX_BUSY;
532 }
533 }
534 #endif
535 spin_lock(&fep->tx_lock);
536
537 /*
538 * Fill in a Tx ring entry
539 */
540 bdp = fep->cur_tx;
541
542 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
543 netif_stop_queue(dev);
544 spin_unlock(&fep->tx_lock);
545
546 /*
547 * Ooops. All transmit buffers are full. Bail out.
548 * This should not happen, since the tx queue should be stopped.
549 */
550 dev_warn(fep->dev, "tx queue full!.\n");
551 return NETDEV_TX_BUSY;
552 }
553
554 curidx = bdp - fep->tx_bd_base;
555
556 len = skb->len;
557 fep->stats.tx_bytes += len;
558 if (nr_frags)
559 len -= skb->data_len;
560 fep->tx_free -= nr_frags + 1;
561 /*
562 * Push the data cache so the CPM does not get stale memory data.
563 */
564 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
565 skb->data, len, DMA_TO_DEVICE));
566 CBDW_DATLEN(bdp, len);
567
568 fep->mapped_as_page[curidx] = 0;
569 frag = skb_shinfo(skb)->frags;
570 while (nr_frags) {
571 CBDC_SC(bdp,
572 BD_ENET_TX_STATS | BD_ENET_TX_LAST | BD_ENET_TX_TC);
573 CBDS_SC(bdp, BD_ENET_TX_READY);
574
575 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
576 bdp++, curidx++;
577 else
578 bdp = fep->tx_bd_base, curidx = 0;
579
580 len = skb_frag_size(frag);
581 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
582 DMA_TO_DEVICE));
583 CBDW_DATLEN(bdp, len);
584
585 fep->tx_skbuff[curidx] = NULL;
586 fep->mapped_as_page[curidx] = 1;
587
588 frag++;
589 nr_frags--;
590 }
591
592 /* Trigger transmission start */
593 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
594 BD_ENET_TX_LAST | BD_ENET_TX_TC;
595
596 /* note that while FEC does not have this bit
597 * it marks it as available for software use
598 * yay for hw reuse :) */
599 if (skb->len <= 60)
600 sc |= BD_ENET_TX_PAD;
601 CBDC_SC(bdp, BD_ENET_TX_STATS);
602 CBDS_SC(bdp, sc);
603
604 /* Save skb pointer. */
605 fep->tx_skbuff[curidx] = skb;
606
607 /* If this was the last BD in the ring, start at the beginning again. */
608 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
609 bdp++;
610 else
611 bdp = fep->tx_bd_base;
612 fep->cur_tx = bdp;
613
614 if (fep->tx_free < MAX_SKB_FRAGS)
615 netif_stop_queue(dev);
616
617 skb_tx_timestamp(skb);
618
619 (*fep->ops->tx_kickstart)(dev);
620
621 spin_unlock(&fep->tx_lock);
622
623 return NETDEV_TX_OK;
624 }
625
fs_timeout(struct net_device * dev)626 static void fs_timeout(struct net_device *dev)
627 {
628 struct fs_enet_private *fep = netdev_priv(dev);
629 unsigned long flags;
630 int wake = 0;
631
632 fep->stats.tx_errors++;
633
634 spin_lock_irqsave(&fep->lock, flags);
635
636 if (dev->flags & IFF_UP) {
637 phy_stop(fep->phydev);
638 (*fep->ops->stop)(dev);
639 (*fep->ops->restart)(dev);
640 phy_start(fep->phydev);
641 }
642
643 phy_start(fep->phydev);
644 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
645 spin_unlock_irqrestore(&fep->lock, flags);
646
647 if (wake)
648 netif_wake_queue(dev);
649 }
650
651 /*-----------------------------------------------------------------------------
652 * generic link-change handler - should be sufficient for most cases
653 *-----------------------------------------------------------------------------*/
generic_adjust_link(struct net_device * dev)654 static void generic_adjust_link(struct net_device *dev)
655 {
656 struct fs_enet_private *fep = netdev_priv(dev);
657 struct phy_device *phydev = fep->phydev;
658 int new_state = 0;
659
660 if (phydev->link) {
661 /* adjust to duplex mode */
662 if (phydev->duplex != fep->oldduplex) {
663 new_state = 1;
664 fep->oldduplex = phydev->duplex;
665 }
666
667 if (phydev->speed != fep->oldspeed) {
668 new_state = 1;
669 fep->oldspeed = phydev->speed;
670 }
671
672 if (!fep->oldlink) {
673 new_state = 1;
674 fep->oldlink = 1;
675 }
676
677 if (new_state)
678 fep->ops->restart(dev);
679 } else if (fep->oldlink) {
680 new_state = 1;
681 fep->oldlink = 0;
682 fep->oldspeed = 0;
683 fep->oldduplex = -1;
684 }
685
686 if (new_state && netif_msg_link(fep))
687 phy_print_status(phydev);
688 }
689
690
fs_adjust_link(struct net_device * dev)691 static void fs_adjust_link(struct net_device *dev)
692 {
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695
696 spin_lock_irqsave(&fep->lock, flags);
697
698 if(fep->ops->adjust_link)
699 fep->ops->adjust_link(dev);
700 else
701 generic_adjust_link(dev);
702
703 spin_unlock_irqrestore(&fep->lock, flags);
704 }
705
fs_init_phy(struct net_device * dev)706 static int fs_init_phy(struct net_device *dev)
707 {
708 struct fs_enet_private *fep = netdev_priv(dev);
709 struct phy_device *phydev;
710 phy_interface_t iface;
711
712 fep->oldlink = 0;
713 fep->oldspeed = 0;
714 fep->oldduplex = -1;
715
716 iface = fep->fpi->use_rmii ?
717 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718
719 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720 iface);
721 if (!phydev) {
722 dev_err(&dev->dev, "Could not attach to PHY\n");
723 return -ENODEV;
724 }
725
726 fep->phydev = phydev;
727
728 return 0;
729 }
730
fs_enet_open(struct net_device * dev)731 static int fs_enet_open(struct net_device *dev)
732 {
733 struct fs_enet_private *fep = netdev_priv(dev);
734 int r;
735 int err;
736
737 /* to initialize the fep->cur_rx,... */
738 /* not doing this, will cause a crash in fs_enet_rx_napi */
739 fs_init_bds(fep->ndev);
740
741 napi_enable(&fep->napi);
742 napi_enable(&fep->napi_tx);
743
744 /* Install our interrupt handler. */
745 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
746 "fs_enet-mac", dev);
747 if (r != 0) {
748 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
749 napi_disable(&fep->napi);
750 napi_disable(&fep->napi_tx);
751 return -EINVAL;
752 }
753
754 err = fs_init_phy(dev);
755 if (err) {
756 free_irq(fep->interrupt, dev);
757 napi_disable(&fep->napi);
758 napi_disable(&fep->napi_tx);
759 return err;
760 }
761 phy_start(fep->phydev);
762
763 netif_start_queue(dev);
764
765 return 0;
766 }
767
fs_enet_close(struct net_device * dev)768 static int fs_enet_close(struct net_device *dev)
769 {
770 struct fs_enet_private *fep = netdev_priv(dev);
771 unsigned long flags;
772
773 netif_stop_queue(dev);
774 netif_carrier_off(dev);
775 napi_disable(&fep->napi);
776 napi_disable(&fep->napi_tx);
777 phy_stop(fep->phydev);
778
779 spin_lock_irqsave(&fep->lock, flags);
780 spin_lock(&fep->tx_lock);
781 (*fep->ops->stop)(dev);
782 spin_unlock(&fep->tx_lock);
783 spin_unlock_irqrestore(&fep->lock, flags);
784
785 /* release any irqs */
786 phy_disconnect(fep->phydev);
787 fep->phydev = NULL;
788 free_irq(fep->interrupt, dev);
789
790 return 0;
791 }
792
fs_enet_get_stats(struct net_device * dev)793 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
794 {
795 struct fs_enet_private *fep = netdev_priv(dev);
796 return &fep->stats;
797 }
798
799 /*************************************************************************/
800
fs_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)801 static void fs_get_drvinfo(struct net_device *dev,
802 struct ethtool_drvinfo *info)
803 {
804 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
805 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
806 }
807
fs_get_regs_len(struct net_device * dev)808 static int fs_get_regs_len(struct net_device *dev)
809 {
810 struct fs_enet_private *fep = netdev_priv(dev);
811
812 return (*fep->ops->get_regs_len)(dev);
813 }
814
fs_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)815 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
816 void *p)
817 {
818 struct fs_enet_private *fep = netdev_priv(dev);
819 unsigned long flags;
820 int r, len;
821
822 len = regs->len;
823
824 spin_lock_irqsave(&fep->lock, flags);
825 r = (*fep->ops->get_regs)(dev, p, &len);
826 spin_unlock_irqrestore(&fep->lock, flags);
827
828 if (r == 0)
829 regs->version = 0;
830 }
831
fs_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)832 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
833 {
834 struct fs_enet_private *fep = netdev_priv(dev);
835
836 if (!fep->phydev)
837 return -ENODEV;
838
839 return phy_ethtool_gset(fep->phydev, cmd);
840 }
841
fs_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)842 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
843 {
844 struct fs_enet_private *fep = netdev_priv(dev);
845
846 if (!fep->phydev)
847 return -ENODEV;
848
849 return phy_ethtool_sset(fep->phydev, cmd);
850 }
851
fs_nway_reset(struct net_device * dev)852 static int fs_nway_reset(struct net_device *dev)
853 {
854 return 0;
855 }
856
fs_get_msglevel(struct net_device * dev)857 static u32 fs_get_msglevel(struct net_device *dev)
858 {
859 struct fs_enet_private *fep = netdev_priv(dev);
860 return fep->msg_enable;
861 }
862
fs_set_msglevel(struct net_device * dev,u32 value)863 static void fs_set_msglevel(struct net_device *dev, u32 value)
864 {
865 struct fs_enet_private *fep = netdev_priv(dev);
866 fep->msg_enable = value;
867 }
868
869 static const struct ethtool_ops fs_ethtool_ops = {
870 .get_drvinfo = fs_get_drvinfo,
871 .get_regs_len = fs_get_regs_len,
872 .get_settings = fs_get_settings,
873 .set_settings = fs_set_settings,
874 .nway_reset = fs_nway_reset,
875 .get_link = ethtool_op_get_link,
876 .get_msglevel = fs_get_msglevel,
877 .set_msglevel = fs_set_msglevel,
878 .get_regs = fs_get_regs,
879 .get_ts_info = ethtool_op_get_ts_info,
880 };
881
fs_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)882 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
883 {
884 struct fs_enet_private *fep = netdev_priv(dev);
885
886 if (!netif_running(dev))
887 return -EINVAL;
888
889 return phy_mii_ioctl(fep->phydev, rq, cmd);
890 }
891
892 extern int fs_mii_connect(struct net_device *dev);
893 extern void fs_mii_disconnect(struct net_device *dev);
894
895 /**************************************************************************************/
896
897 #ifdef CONFIG_FS_ENET_HAS_FEC
898 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
899 #else
900 #define IS_FEC(match) 0
901 #endif
902
903 static const struct net_device_ops fs_enet_netdev_ops = {
904 .ndo_open = fs_enet_open,
905 .ndo_stop = fs_enet_close,
906 .ndo_get_stats = fs_enet_get_stats,
907 .ndo_start_xmit = fs_enet_start_xmit,
908 .ndo_tx_timeout = fs_timeout,
909 .ndo_set_rx_mode = fs_set_multicast_list,
910 .ndo_do_ioctl = fs_ioctl,
911 .ndo_validate_addr = eth_validate_addr,
912 .ndo_set_mac_address = eth_mac_addr,
913 .ndo_change_mtu = eth_change_mtu,
914 #ifdef CONFIG_NET_POLL_CONTROLLER
915 .ndo_poll_controller = fs_enet_netpoll,
916 #endif
917 };
918
919 static const struct of_device_id fs_enet_match[];
fs_enet_probe(struct platform_device * ofdev)920 static int fs_enet_probe(struct platform_device *ofdev)
921 {
922 const struct of_device_id *match;
923 struct net_device *ndev;
924 struct fs_enet_private *fep;
925 struct fs_platform_info *fpi;
926 const u32 *data;
927 struct clk *clk;
928 int err;
929 const u8 *mac_addr;
930 const char *phy_connection_type;
931 int privsize, len, ret = -ENODEV;
932
933 match = of_match_device(fs_enet_match, &ofdev->dev);
934 if (!match)
935 return -EINVAL;
936
937 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
938 if (!fpi)
939 return -ENOMEM;
940
941 if (!IS_FEC(match)) {
942 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
943 if (!data || len != 4)
944 goto out_free_fpi;
945
946 fpi->cp_command = *data;
947 }
948
949 fpi->rx_ring = 32;
950 fpi->tx_ring = 64;
951 fpi->rx_copybreak = 240;
952 fpi->napi_weight = 17;
953 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
954 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
955 err = of_phy_register_fixed_link(ofdev->dev.of_node);
956 if (err)
957 goto out_free_fpi;
958
959 /* In the case of a fixed PHY, the DT node associated
960 * to the PHY is the Ethernet MAC DT node.
961 */
962 fpi->phy_node = of_node_get(ofdev->dev.of_node);
963 }
964
965 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
966 phy_connection_type = of_get_property(ofdev->dev.of_node,
967 "phy-connection-type", NULL);
968 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
969 fpi->use_rmii = 1;
970 }
971
972 /* make clock lookup non-fatal (the driver is shared among platforms),
973 * but require enable to succeed when a clock was specified/found,
974 * keep a reference to the clock upon successful acquisition
975 */
976 clk = devm_clk_get(&ofdev->dev, "per");
977 if (!IS_ERR(clk)) {
978 err = clk_prepare_enable(clk);
979 if (err) {
980 ret = err;
981 goto out_free_fpi;
982 }
983 fpi->clk_per = clk;
984 }
985
986 privsize = sizeof(*fep) +
987 sizeof(struct sk_buff **) *
988 (fpi->rx_ring + fpi->tx_ring) +
989 sizeof(char) * fpi->tx_ring;
990
991 ndev = alloc_etherdev(privsize);
992 if (!ndev) {
993 ret = -ENOMEM;
994 goto out_put;
995 }
996
997 SET_NETDEV_DEV(ndev, &ofdev->dev);
998 platform_set_drvdata(ofdev, ndev);
999
1000 fep = netdev_priv(ndev);
1001 fep->dev = &ofdev->dev;
1002 fep->ndev = ndev;
1003 fep->fpi = fpi;
1004 fep->ops = match->data;
1005
1006 ret = fep->ops->setup_data(ndev);
1007 if (ret)
1008 goto out_free_dev;
1009
1010 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1011 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1012 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1013 fpi->tx_ring);
1014
1015 spin_lock_init(&fep->lock);
1016 spin_lock_init(&fep->tx_lock);
1017
1018 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1019 if (mac_addr)
1020 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1021
1022 ret = fep->ops->allocate_bd(ndev);
1023 if (ret)
1024 goto out_cleanup_data;
1025
1026 fep->rx_bd_base = fep->ring_base;
1027 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1028
1029 fep->tx_ring = fpi->tx_ring;
1030 fep->rx_ring = fpi->rx_ring;
1031
1032 ndev->netdev_ops = &fs_enet_netdev_ops;
1033 ndev->watchdog_timeo = 2 * HZ;
1034 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1035 netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1036
1037 ndev->ethtool_ops = &fs_ethtool_ops;
1038
1039 init_timer(&fep->phy_timer_list);
1040
1041 netif_carrier_off(ndev);
1042
1043 ndev->features |= NETIF_F_SG;
1044
1045 ret = register_netdev(ndev);
1046 if (ret)
1047 goto out_free_bd;
1048
1049 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1050
1051 return 0;
1052
1053 out_free_bd:
1054 fep->ops->free_bd(ndev);
1055 out_cleanup_data:
1056 fep->ops->cleanup_data(ndev);
1057 out_free_dev:
1058 free_netdev(ndev);
1059 out_put:
1060 of_node_put(fpi->phy_node);
1061 if (fpi->clk_per)
1062 clk_disable_unprepare(fpi->clk_per);
1063 out_free_fpi:
1064 kfree(fpi);
1065 return ret;
1066 }
1067
fs_enet_remove(struct platform_device * ofdev)1068 static int fs_enet_remove(struct platform_device *ofdev)
1069 {
1070 struct net_device *ndev = platform_get_drvdata(ofdev);
1071 struct fs_enet_private *fep = netdev_priv(ndev);
1072
1073 unregister_netdev(ndev);
1074
1075 fep->ops->free_bd(ndev);
1076 fep->ops->cleanup_data(ndev);
1077 dev_set_drvdata(fep->dev, NULL);
1078 of_node_put(fep->fpi->phy_node);
1079 if (fep->fpi->clk_per)
1080 clk_disable_unprepare(fep->fpi->clk_per);
1081 free_netdev(ndev);
1082 return 0;
1083 }
1084
1085 static const struct of_device_id fs_enet_match[] = {
1086 #ifdef CONFIG_FS_ENET_HAS_SCC
1087 {
1088 .compatible = "fsl,cpm1-scc-enet",
1089 .data = (void *)&fs_scc_ops,
1090 },
1091 {
1092 .compatible = "fsl,cpm2-scc-enet",
1093 .data = (void *)&fs_scc_ops,
1094 },
1095 #endif
1096 #ifdef CONFIG_FS_ENET_HAS_FCC
1097 {
1098 .compatible = "fsl,cpm2-fcc-enet",
1099 .data = (void *)&fs_fcc_ops,
1100 },
1101 #endif
1102 #ifdef CONFIG_FS_ENET_HAS_FEC
1103 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1104 {
1105 .compatible = "fsl,mpc5121-fec",
1106 .data = (void *)&fs_fec_ops,
1107 },
1108 {
1109 .compatible = "fsl,mpc5125-fec",
1110 .data = (void *)&fs_fec_ops,
1111 },
1112 #else
1113 {
1114 .compatible = "fsl,pq1-fec-enet",
1115 .data = (void *)&fs_fec_ops,
1116 },
1117 #endif
1118 #endif
1119 {}
1120 };
1121 MODULE_DEVICE_TABLE(of, fs_enet_match);
1122
1123 static struct platform_driver fs_enet_driver = {
1124 .driver = {
1125 .name = "fs_enet",
1126 .of_match_table = fs_enet_match,
1127 },
1128 .probe = fs_enet_probe,
1129 .remove = fs_enet_remove,
1130 };
1131
1132 #ifdef CONFIG_NET_POLL_CONTROLLER
fs_enet_netpoll(struct net_device * dev)1133 static void fs_enet_netpoll(struct net_device *dev)
1134 {
1135 disable_irq(dev->irq);
1136 fs_enet_interrupt(dev->irq, dev);
1137 enable_irq(dev->irq);
1138 }
1139 #endif
1140
1141 module_platform_driver(fs_enet_driver);
1142