1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8 
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13 
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20 
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28 
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33 
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37 
38 ******************************************************************************/
39 /*
40 
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43 
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45 
46 Theory of Operation
47 
48 Tx - Commands and Data
49 
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53 
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57 
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61 
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67 
68 The Tx flow cycle is as follows:
69 
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90 
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93 
94 ...
95 
96 Critical Sections / Locking :
97 
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100 
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102 
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106 
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110 
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114 
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118 
119   The flow of data on the TX side is as follows:
120 
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123 
124   The methods that work on the TBD ring are protected via priv->low_lock.
125 
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129 
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132 
133 
134 */
135 
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165 
166 #include <net/lib80211.h>
167 
168 #include "ipw2100.h"
169 #include "ipw.h"
170 
171 #define IPW2100_VERSION "git-1.2.2"
172 
173 #define DRV_NAME	"ipw2100"
174 #define DRV_VERSION	IPW2100_VERSION
175 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
177 
178 static struct pm_qos_request ipw2100_pm_qos_req;
179 
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG	/* Reception debugging */
183 #endif
184 
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189 
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198 
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205 
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211 
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213 
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 	if (ipw2100_debug_level & (level)) { \
218 		printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220 		printk(message); \
221 	} \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif				/* CONFIG_IPW2100_DEBUG */
226 
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 	"undefined",
230 	"unused",		/* HOST_ATTENTION */
231 	"HOST_COMPLETE",
232 	"unused",		/* SLEEP */
233 	"unused",		/* HOST_POWER_DOWN */
234 	"unused",
235 	"SYSTEM_CONFIG",
236 	"unused",		/* SET_IMR */
237 	"SSID",
238 	"MANDATORY_BSSID",
239 	"AUTHENTICATION_TYPE",
240 	"ADAPTER_ADDRESS",
241 	"PORT_TYPE",
242 	"INTERNATIONAL_MODE",
243 	"CHANNEL",
244 	"RTS_THRESHOLD",
245 	"FRAG_THRESHOLD",
246 	"POWER_MODE",
247 	"TX_RATES",
248 	"BASIC_TX_RATES",
249 	"WEP_KEY_INFO",
250 	"unused",
251 	"unused",
252 	"unused",
253 	"unused",
254 	"WEP_KEY_INDEX",
255 	"WEP_FLAGS",
256 	"ADD_MULTICAST",
257 	"CLEAR_ALL_MULTICAST",
258 	"BEACON_INTERVAL",
259 	"ATIM_WINDOW",
260 	"CLEAR_STATISTICS",
261 	"undefined",
262 	"undefined",
263 	"undefined",
264 	"undefined",
265 	"TX_POWER_INDEX",
266 	"undefined",
267 	"undefined",
268 	"undefined",
269 	"undefined",
270 	"undefined",
271 	"undefined",
272 	"BROADCAST_SCAN",
273 	"CARD_DISABLE",
274 	"PREFERRED_BSSID",
275 	"SET_SCAN_OPTIONS",
276 	"SCAN_DWELL_TIME",
277 	"SWEEP_TABLE",
278 	"AP_OR_STATION_TABLE",
279 	"GROUP_ORDINALS",
280 	"SHORT_RETRY_LIMIT",
281 	"LONG_RETRY_LIMIT",
282 	"unused",		/* SAVE_CALIBRATION */
283 	"unused",		/* RESTORE_CALIBRATION */
284 	"undefined",
285 	"undefined",
286 	"undefined",
287 	"HOST_PRE_POWER_DOWN",
288 	"unused",		/* HOST_INTERRUPT_COALESCING */
289 	"undefined",
290 	"CARD_DISABLE_PHY_OFF",
291 	"MSDU_TX_RATES",
292 	"undefined",
293 	"SET_STATION_STAT_BITS",
294 	"CLEAR_STATIONS_STAT_BITS",
295 	"LEAP_ROGUE_MODE",
296 	"SET_SECURITY_INFORMATION",
297 	"DISASSOCIATION_BSSID",
298 	"SET_WPA_ASS_IE"
299 };
300 #endif
301 
302 static const long ipw2100_frequencies[] = {
303 	2412, 2417, 2422, 2427,
304 	2432, 2437, 2442, 2447,
305 	2452, 2457, 2462, 2467,
306 	2472, 2484
307 };
308 
309 #define FREQ_COUNT	ARRAY_SIZE(ipw2100_frequencies)
310 
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 	{ .bitrate = 10 },
313 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317 
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319 
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324 
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328 
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 			       struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 				struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 				 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 				    size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 				     struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 				  struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344 
read_register(struct net_device * dev,u32 reg,u32 * val)345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 	struct ipw2100_priv *priv = libipw_priv(dev);
348 
349 	*val = ioread32(priv->ioaddr + reg);
350 	IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352 
write_register(struct net_device * dev,u32 reg,u32 val)353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 	struct ipw2100_priv *priv = libipw_priv(dev);
356 
357 	iowrite32(val, priv->ioaddr + reg);
358 	IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360 
read_register_word(struct net_device * dev,u32 reg,u16 * val)361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 				      u16 * val)
363 {
364 	struct ipw2100_priv *priv = libipw_priv(dev);
365 
366 	*val = ioread16(priv->ioaddr + reg);
367 	IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369 
read_register_byte(struct net_device * dev,u32 reg,u8 * val)370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 	struct ipw2100_priv *priv = libipw_priv(dev);
373 
374 	*val = ioread8(priv->ioaddr + reg);
375 	IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377 
write_register_word(struct net_device * dev,u32 reg,u16 val)378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 	struct ipw2100_priv *priv = libipw_priv(dev);
381 
382 	iowrite16(val, priv->ioaddr + reg);
383 	IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385 
write_register_byte(struct net_device * dev,u32 reg,u8 val)386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 	struct ipw2100_priv *priv = libipw_priv(dev);
389 
390 	iowrite8(val, priv->ioaddr + reg);
391 	IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393 
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
398 	read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
write_nic_dword(struct net_device * dev,u32 addr,u32 val)401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
405 	write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
read_nic_word(struct net_device * dev,u32 addr,u16 * val)408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
412 	read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
write_nic_word(struct net_device * dev,u32 addr,u16 val)415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
419 	write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
426 	read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428 
write_nic_byte(struct net_device * dev,u32 addr,u8 val)429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
433 	write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435 
write_nic_auto_inc_address(struct net_device * dev,u32 addr)436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 		       addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441 
write_nic_dword_auto_inc(struct net_device * dev,u32 val)442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 	write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446 
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 				    const u8 * buf)
449 {
450 	u32 aligned_addr;
451 	u32 aligned_len;
452 	u32 dif_len;
453 	u32 i;
454 
455 	/* read first nibble byte by byte */
456 	aligned_addr = addr & (~0x3);
457 	dif_len = addr - aligned_addr;
458 	if (dif_len) {
459 		/* Start reading at aligned_addr + dif_len */
460 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 			       aligned_addr);
462 		for (i = dif_len; i < 4; i++, buf++)
463 			write_register_byte(dev,
464 					    IPW_REG_INDIRECT_ACCESS_DATA + i,
465 					    *buf);
466 
467 		len -= dif_len;
468 		aligned_addr += 4;
469 	}
470 
471 	/* read DWs through autoincrement registers */
472 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 	aligned_len = len & (~0x3);
474 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 		write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476 
477 	/* copy the last nibble */
478 	dif_len = len - aligned_len;
479 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 	for (i = 0; i < dif_len; i++, buf++)
481 		write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 				    *buf);
483 }
484 
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 				   u8 * buf)
487 {
488 	u32 aligned_addr;
489 	u32 aligned_len;
490 	u32 dif_len;
491 	u32 i;
492 
493 	/* read first nibble byte by byte */
494 	aligned_addr = addr & (~0x3);
495 	dif_len = addr - aligned_addr;
496 	if (dif_len) {
497 		/* Start reading at aligned_addr + dif_len */
498 		write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 			       aligned_addr);
500 		for (i = dif_len; i < 4; i++, buf++)
501 			read_register_byte(dev,
502 					   IPW_REG_INDIRECT_ACCESS_DATA + i,
503 					   buf);
504 
505 		len -= dif_len;
506 		aligned_addr += 4;
507 	}
508 
509 	/* read DWs through autoincrement registers */
510 	write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 	aligned_len = len & (~0x3);
512 	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 		read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514 
515 	/* copy the last nibble */
516 	dif_len = len - aligned_len;
517 	write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 	for (i = 0; i < dif_len; i++, buf++)
519 		read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521 
ipw2100_hw_is_adapter_in_system(struct net_device * dev)522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 	u32 dbg;
525 
526 	read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527 
528 	return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530 
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 			       void *val, u32 * len)
533 {
534 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 	u32 addr;
536 	u32 field_info;
537 	u16 field_len;
538 	u16 field_count;
539 	u32 total_length;
540 
541 	if (ordinals->table1_addr == 0) {
542 		printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 		       "before they have been loaded.\n");
544 		return -EINVAL;
545 	}
546 
547 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 		if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
550 
551 			printk(KERN_WARNING DRV_NAME
552 			       ": ordinal buffer length too small, need %zd\n",
553 			       IPW_ORD_TAB_1_ENTRY_SIZE);
554 
555 			return -EINVAL;
556 		}
557 
558 		read_nic_dword(priv->net_dev,
559 			       ordinals->table1_addr + (ord << 2), &addr);
560 		read_nic_dword(priv->net_dev, addr, val);
561 
562 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
563 
564 		return 0;
565 	}
566 
567 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568 
569 		ord -= IPW_START_ORD_TAB_2;
570 
571 		/* get the address of statistic */
572 		read_nic_dword(priv->net_dev,
573 			       ordinals->table2_addr + (ord << 3), &addr);
574 
575 		/* get the second DW of statistics ;
576 		 * two 16-bit words - first is length, second is count */
577 		read_nic_dword(priv->net_dev,
578 			       ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 			       &field_info);
580 
581 		/* get each entry length */
582 		field_len = *((u16 *) & field_info);
583 
584 		/* get number of entries */
585 		field_count = *(((u16 *) & field_info) + 1);
586 
587 		/* abort if no enough memory */
588 		total_length = field_len * field_count;
589 		if (total_length > *len) {
590 			*len = total_length;
591 			return -EINVAL;
592 		}
593 
594 		*len = total_length;
595 		if (!total_length)
596 			return 0;
597 
598 		/* read the ordinal data from the SRAM */
599 		read_nic_memory(priv->net_dev, addr, total_length, val);
600 
601 		return 0;
602 	}
603 
604 	printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 	       "in table 2\n", ord);
606 
607 	return -EINVAL;
608 }
609 
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 			       u32 * len)
612 {
613 	struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 	u32 addr;
615 
616 	if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 		if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 			*len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 			IPW_DEBUG_INFO("wrong size\n");
620 			return -EINVAL;
621 		}
622 
623 		read_nic_dword(priv->net_dev,
624 			       ordinals->table1_addr + (ord << 2), &addr);
625 
626 		write_nic_dword(priv->net_dev, addr, *val);
627 
628 		*len = IPW_ORD_TAB_1_ENTRY_SIZE;
629 
630 		return 0;
631 	}
632 
633 	IPW_DEBUG_INFO("wrong table\n");
634 	if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 		return -EINVAL;
636 
637 	return -EINVAL;
638 }
639 
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)640 static char *snprint_line(char *buf, size_t count,
641 			  const u8 * data, u32 len, u32 ofs)
642 {
643 	int out, i, j, l;
644 	char c;
645 
646 	out = snprintf(buf, count, "%08X", ofs);
647 
648 	for (l = 0, i = 0; i < 2; i++) {
649 		out += snprintf(buf + out, count - out, " ");
650 		for (j = 0; j < 8 && l < len; j++, l++)
651 			out += snprintf(buf + out, count - out, "%02X ",
652 					data[(i * 8 + j)]);
653 		for (; j < 8; j++)
654 			out += snprintf(buf + out, count - out, "   ");
655 	}
656 
657 	out += snprintf(buf + out, count - out, " ");
658 	for (l = 0, i = 0; i < 2; i++) {
659 		out += snprintf(buf + out, count - out, " ");
660 		for (j = 0; j < 8 && l < len; j++, l++) {
661 			c = data[(i * 8 + j)];
662 			if (!isascii(c) || !isprint(c))
663 				c = '.';
664 
665 			out += snprintf(buf + out, count - out, "%c", c);
666 		}
667 
668 		for (; j < 8; j++)
669 			out += snprintf(buf + out, count - out, " ");
670 	}
671 
672 	return buf;
673 }
674 
printk_buf(int level,const u8 * data,u32 len)675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 	char line[81];
678 	u32 ofs = 0;
679 	if (!(ipw2100_debug_level & level))
680 		return;
681 
682 	while (len) {
683 		printk(KERN_DEBUG "%s\n",
684 		       snprint_line(line, sizeof(line), &data[ofs],
685 				    min(len, 16U), ofs));
686 		ofs += 16;
687 		len -= min(len, 16U);
688 	}
689 }
690 
691 #define MAX_RESET_BACKOFF 10
692 
schedule_reset(struct ipw2100_priv * priv)693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 	unsigned long now = get_seconds();
696 
697 	/* If we haven't received a reset request within the backoff period,
698 	 * then we can reset the backoff interval so this reset occurs
699 	 * immediately */
700 	if (priv->reset_backoff &&
701 	    (now - priv->last_reset > priv->reset_backoff))
702 		priv->reset_backoff = 0;
703 
704 	priv->last_reset = get_seconds();
705 
706 	if (!(priv->status & STATUS_RESET_PENDING)) {
707 		IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 			       priv->net_dev->name, priv->reset_backoff);
709 		netif_carrier_off(priv->net_dev);
710 		netif_stop_queue(priv->net_dev);
711 		priv->status |= STATUS_RESET_PENDING;
712 		if (priv->reset_backoff)
713 			schedule_delayed_work(&priv->reset_work,
714 					      priv->reset_backoff * HZ);
715 		else
716 			schedule_delayed_work(&priv->reset_work, 0);
717 
718 		if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 			priv->reset_backoff++;
720 
721 		wake_up_interruptible(&priv->wait_command_queue);
722 	} else
723 		IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 			       priv->net_dev->name);
725 
726 }
727 
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 				   struct host_command *cmd)
731 {
732 	struct list_head *element;
733 	struct ipw2100_tx_packet *packet;
734 	unsigned long flags;
735 	int err = 0;
736 
737 	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 		     command_types[cmd->host_command], cmd->host_command,
739 		     cmd->host_command_length);
740 	printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 		   cmd->host_command_length);
742 
743 	spin_lock_irqsave(&priv->low_lock, flags);
744 
745 	if (priv->fatal_error) {
746 		IPW_DEBUG_INFO
747 		    ("Attempt to send command while hardware in fatal error condition.\n");
748 		err = -EIO;
749 		goto fail_unlock;
750 	}
751 
752 	if (!(priv->status & STATUS_RUNNING)) {
753 		IPW_DEBUG_INFO
754 		    ("Attempt to send command while hardware is not running.\n");
755 		err = -EIO;
756 		goto fail_unlock;
757 	}
758 
759 	if (priv->status & STATUS_CMD_ACTIVE) {
760 		IPW_DEBUG_INFO
761 		    ("Attempt to send command while another command is pending.\n");
762 		err = -EBUSY;
763 		goto fail_unlock;
764 	}
765 
766 	if (list_empty(&priv->msg_free_list)) {
767 		IPW_DEBUG_INFO("no available msg buffers\n");
768 		goto fail_unlock;
769 	}
770 
771 	priv->status |= STATUS_CMD_ACTIVE;
772 	priv->messages_sent++;
773 
774 	element = priv->msg_free_list.next;
775 
776 	packet = list_entry(element, struct ipw2100_tx_packet, list);
777 	packet->jiffy_start = jiffies;
778 
779 	/* initialize the firmware command packet */
780 	packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 	packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 	packet->info.c_struct.cmd->host_command_len_reg =
783 	    cmd->host_command_length;
784 	packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785 
786 	memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 	       cmd->host_command_parameters,
788 	       sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789 
790 	list_del(element);
791 	DEC_STAT(&priv->msg_free_stat);
792 
793 	list_add_tail(element, &priv->msg_pend_list);
794 	INC_STAT(&priv->msg_pend_stat);
795 
796 	ipw2100_tx_send_commands(priv);
797 	ipw2100_tx_send_data(priv);
798 
799 	spin_unlock_irqrestore(&priv->low_lock, flags);
800 
801 	/*
802 	 * We must wait for this command to complete before another
803 	 * command can be sent...  but if we wait more than 3 seconds
804 	 * then there is a problem.
805 	 */
806 
807 	err =
808 	    wait_event_interruptible_timeout(priv->wait_command_queue,
809 					     !(priv->
810 					       status & STATUS_CMD_ACTIVE),
811 					     HOST_COMPLETE_TIMEOUT);
812 
813 	if (err == 0) {
814 		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 			       1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 		priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 		priv->status &= ~STATUS_CMD_ACTIVE;
818 		schedule_reset(priv);
819 		return -EIO;
820 	}
821 
822 	if (priv->fatal_error) {
823 		printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 		       priv->net_dev->name);
825 		return -EIO;
826 	}
827 
828 	/* !!!!! HACK TEST !!!!!
829 	 * When lots of debug trace statements are enabled, the driver
830 	 * doesn't seem to have as many firmware restart cycles...
831 	 *
832 	 * As a test, we're sticking in a 1/100s delay here */
833 	schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834 
835 	return 0;
836 
837       fail_unlock:
838 	spin_unlock_irqrestore(&priv->low_lock, flags);
839 
840 	return err;
841 }
842 
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
ipw2100_verify(struct ipw2100_priv * priv)847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 	u32 data1, data2;
850 	u32 address;
851 
852 	u32 val1 = 0x76543210;
853 	u32 val2 = 0xFEDCBA98;
854 
855 	/* Domain 0 check - all values should be DOA_DEBUG */
856 	for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 	     address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 		read_register(priv->net_dev, address, &data1);
859 		if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 			return -EIO;
861 	}
862 
863 	/* Domain 1 check - use arbitrary read/write compare  */
864 	for (address = 0; address < 5; address++) {
865 		/* The memory area is not used now */
866 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 			       val1);
868 		write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 			       val2);
870 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 			      &data1);
872 		read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 			      &data2);
874 		if (val1 == data1 && val2 == data2)
875 			return 0;
876 	}
877 
878 	return -EIO;
879 }
880 
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT		    100	// 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 	int i;
894 	u32 card_state;
895 	u32 len = sizeof(card_state);
896 	int err;
897 
898 	for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 		err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 					  &card_state, &len);
901 		if (err) {
902 			IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 				       "failed.\n");
904 			return 0;
905 		}
906 
907 		/* We'll break out if either the HW state says it is
908 		 * in the state we want, or if HOST_COMPLETE command
909 		 * finishes */
910 		if ((card_state == state) ||
911 		    ((priv->status & STATUS_ENABLED) ?
912 		     IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 			if (state == IPW_HW_STATE_ENABLED)
914 				priv->status |= STATUS_ENABLED;
915 			else
916 				priv->status &= ~STATUS_ENABLED;
917 
918 			return 0;
919 		}
920 
921 		udelay(50);
922 	}
923 
924 	IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 		       state ? "DISABLED" : "ENABLED");
926 	return -EIO;
927 }
928 
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 	int i;
937 	u32 r;
938 
939 	// assert s/w reset
940 	write_register(priv->net_dev, IPW_REG_RESET_REG,
941 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
942 
943 	// wait for clock stabilization
944 	for (i = 0; i < 1000; i++) {
945 		udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946 
947 		// check clock ready bit
948 		read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 		if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 			break;
951 	}
952 
953 	if (i == 1000)
954 		return -EIO;	// TODO: better error value
955 
956 	/* set "initialization complete" bit to move adapter to
957 	 * D0 state */
958 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 		       IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960 
961 	/* wait for clock stabilization */
962 	for (i = 0; i < 10000; i++) {
963 		udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964 
965 		/* check clock ready bit */
966 		read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 		if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 			break;
969 	}
970 
971 	if (i == 10000)
972 		return -EIO;	/* TODO: better error value */
973 
974 	/* set D0 standby bit */
975 	read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 	write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 		       r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978 
979 	return 0;
980 }
981 
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 	u32 address;
996 	int err;
997 
998 #ifndef CONFIG_PM
999 	/* Fetch the firmware and microcode */
1000 	struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002 
1003 	if (priv->fatal_error) {
1004 		IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 				"fatal error %d.  Interface must be brought down.\n",
1006 				priv->net_dev->name, priv->fatal_error);
1007 		return -EINVAL;
1008 	}
1009 #ifdef CONFIG_PM
1010 	if (!ipw2100_firmware.version) {
1011 		err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 		if (err) {
1013 			IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 					priv->net_dev->name, err);
1015 			priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 			goto fail;
1017 		}
1018 	}
1019 #else
1020 	err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 	if (err) {
1022 		IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 				priv->net_dev->name, err);
1024 		priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 		goto fail;
1026 	}
1027 #endif
1028 	priv->firmware_version = ipw2100_firmware.version;
1029 
1030 	/* s/w reset and clock stabilization */
1031 	err = sw_reset_and_clock(priv);
1032 	if (err) {
1033 		IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 				priv->net_dev->name, err);
1035 		goto fail;
1036 	}
1037 
1038 	err = ipw2100_verify(priv);
1039 	if (err) {
1040 		IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 				priv->net_dev->name, err);
1042 		goto fail;
1043 	}
1044 
1045 	/* Hold ARC */
1046 	write_nic_dword(priv->net_dev,
1047 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048 
1049 	/* allow ARC to run */
1050 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051 
1052 	/* load microcode */
1053 	err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 	if (err) {
1055 		printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 		       priv->net_dev->name, err);
1057 		goto fail;
1058 	}
1059 
1060 	/* release ARC */
1061 	write_nic_dword(priv->net_dev,
1062 			IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063 
1064 	/* s/w reset and clock stabilization (again!!!) */
1065 	err = sw_reset_and_clock(priv);
1066 	if (err) {
1067 		printk(KERN_ERR DRV_NAME
1068 		       ": %s: sw_reset_and_clock failed: %d\n",
1069 		       priv->net_dev->name, err);
1070 		goto fail;
1071 	}
1072 
1073 	/* load f/w */
1074 	err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 	if (err) {
1076 		IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 				priv->net_dev->name, err);
1078 		goto fail;
1079 	}
1080 #ifndef CONFIG_PM
1081 	/*
1082 	 * When the .resume method of the driver is called, the other
1083 	 * part of the system, i.e. the ide driver could still stay in
1084 	 * the suspend stage. This prevents us from loading the firmware
1085 	 * from the disk.  --YZ
1086 	 */
1087 
1088 	/* free any storage allocated for firmware image */
1089 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091 
1092 	/* zero out Domain 1 area indirectly (Si requirement) */
1093 	for (address = IPW_HOST_FW_SHARED_AREA0;
1094 	     address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 		write_nic_dword(priv->net_dev, address, 0);
1096 	for (address = IPW_HOST_FW_SHARED_AREA1;
1097 	     address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 		write_nic_dword(priv->net_dev, address, 0);
1099 	for (address = IPW_HOST_FW_SHARED_AREA2;
1100 	     address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 		write_nic_dword(priv->net_dev, address, 0);
1102 	for (address = IPW_HOST_FW_SHARED_AREA3;
1103 	     address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 		write_nic_dword(priv->net_dev, address, 0);
1105 	for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 	     address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 		write_nic_dword(priv->net_dev, address, 0);
1108 
1109 	return 0;
1110 
1111       fail:
1112 	ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 	return err;
1114 }
1115 
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 	if (priv->status & STATUS_INT_ENABLED)
1119 		return;
1120 	priv->status |= STATUS_INT_ENABLED;
1121 	write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123 
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 	if (!(priv->status & STATUS_INT_ENABLED))
1127 		return;
1128 	priv->status &= ~STATUS_INT_ENABLED;
1129 	write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131 
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 	struct ipw2100_ordinals *ord = &priv->ordinals;
1135 
1136 	IPW_DEBUG_INFO("enter\n");
1137 
1138 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 		      &ord->table1_addr);
1140 
1141 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 		      &ord->table2_addr);
1143 
1144 	read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 	read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146 
1147 	ord->table2_size &= 0x0000FFFF;
1148 
1149 	IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 	IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 	IPW_DEBUG_INFO("exit\n");
1152 }
1153 
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 	u32 reg = 0;
1157 	/*
1158 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 	 * by driver and enable clock
1160 	 */
1161 	reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 	       IPW_BIT_GPIO_LED_OFF);
1163 	write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165 
rf_kill_active(struct ipw2100_priv * priv)1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170 
1171 	unsigned short value = 0;
1172 	u32 reg = 0;
1173 	int i;
1174 
1175 	if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 		priv->status &= ~STATUS_RF_KILL_HW;
1178 		return 0;
1179 	}
1180 
1181 	for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 		udelay(RF_KILL_CHECK_DELAY);
1183 		read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 		value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 	}
1186 
1187 	if (value == 0) {
1188 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 		priv->status |= STATUS_RF_KILL_HW;
1190 	} else {
1191 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 		priv->status &= ~STATUS_RF_KILL_HW;
1193 	}
1194 
1195 	return (value == 0);
1196 }
1197 
ipw2100_get_hw_features(struct ipw2100_priv * priv)1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 	u32 addr, len;
1201 	u32 val;
1202 
1203 	/*
1204 	 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 	 */
1206 	len = sizeof(addr);
1207 	if (ipw2100_get_ordinal
1208 	    (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 			       __LINE__);
1211 		return -EIO;
1212 	}
1213 
1214 	IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215 
1216 	/*
1217 	 * EEPROM version is the byte at offset 0xfd in firmware
1218 	 * We read 4 bytes, then shift out the byte we actually want */
1219 	read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 	priv->eeprom_version = (val >> 24) & 0xFF;
1221 	IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222 
1223 	/*
1224 	 *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 	 *
1226 	 *  notice that the EEPROM bit is reverse polarity, i.e.
1227 	 *     bit = 0  signifies HW RF kill switch is supported
1228 	 *     bit = 1  signifies HW RF kill switch is NOT supported
1229 	 */
1230 	read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 	if (!((val >> 24) & 0x01))
1232 		priv->hw_features |= HW_FEATURE_RFKILL;
1233 
1234 	IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 		       (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236 
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
ipw2100_start_adapter(struct ipw2100_priv * priv)1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 	int i;
1249 	u32 inta, inta_mask, gpio;
1250 
1251 	IPW_DEBUG_INFO("enter\n");
1252 
1253 	if (priv->status & STATUS_RUNNING)
1254 		return 0;
1255 
1256 	/*
1257 	 * Initialize the hw - drive adapter to DO state by setting
1258 	 * init_done bit. Wait for clk_ready bit and Download
1259 	 * fw & dino ucode
1260 	 */
1261 	if (ipw2100_download_firmware(priv)) {
1262 		printk(KERN_ERR DRV_NAME
1263 		       ": %s: Failed to power on the adapter.\n",
1264 		       priv->net_dev->name);
1265 		return -EIO;
1266 	}
1267 
1268 	/* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 	 * in the firmware RBD and TBD ring queue */
1270 	ipw2100_queues_initialize(priv);
1271 
1272 	ipw2100_hw_set_gpio(priv);
1273 
1274 	/* TODO -- Look at disabling interrupts here to make sure none
1275 	 * get fired during FW initialization */
1276 
1277 	/* Release ARC - clear reset bit */
1278 	write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279 
1280 	/* wait for f/w intialization complete */
1281 	IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 	i = 5000;
1283 	do {
1284 		schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 		/* Todo... wait for sync command ... */
1286 
1287 		read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288 
1289 		/* check "init done" bit */
1290 		if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 			/* reset "init done" bit */
1292 			write_register(priv->net_dev, IPW_REG_INTA,
1293 				       IPW2100_INTA_FW_INIT_DONE);
1294 			break;
1295 		}
1296 
1297 		/* check error conditions : we check these after the firmware
1298 		 * check so that if there is an error, the interrupt handler
1299 		 * will see it and the adapter will be reset */
1300 		if (inta &
1301 		    (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 			/* clear error conditions */
1303 			write_register(priv->net_dev, IPW_REG_INTA,
1304 				       IPW2100_INTA_FATAL_ERROR |
1305 				       IPW2100_INTA_PARITY_ERROR);
1306 		}
1307 	} while (--i);
1308 
1309 	/* Clear out any pending INTAs since we aren't supposed to have
1310 	 * interrupts enabled at this point... */
1311 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 	inta &= IPW_INTERRUPT_MASK;
1314 	/* Clear out any pending interrupts */
1315 	if (inta & inta_mask)
1316 		write_register(priv->net_dev, IPW_REG_INTA, inta);
1317 
1318 	IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 		     i ? "SUCCESS" : "FAILED");
1320 
1321 	if (!i) {
1322 		printk(KERN_WARNING DRV_NAME
1323 		       ": %s: Firmware did not initialize.\n",
1324 		       priv->net_dev->name);
1325 		return -EIO;
1326 	}
1327 
1328 	/* allow firmware to write to GPIO1 & GPIO3 */
1329 	read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330 
1331 	gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332 
1333 	write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334 
1335 	/* Ready to receive commands */
1336 	priv->status |= STATUS_RUNNING;
1337 
1338 	/* The adapter has been reset; we are not associated */
1339 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340 
1341 	IPW_DEBUG_INFO("exit\n");
1342 
1343 	return 0;
1344 }
1345 
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 	if (!priv->fatal_error)
1349 		return;
1350 
1351 	priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 	priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 	priv->fatal_error = 0;
1354 }
1355 
1356 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 	u32 reg;
1360 	int i;
1361 
1362 	IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363 
1364 	ipw2100_hw_set_gpio(priv);
1365 
1366 	/* Step 1. Stop Master Assert */
1367 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369 
1370 	/* Step 2. Wait for stop Master Assert
1371 	 *         (not more than 50us, otherwise ret error */
1372 	i = 5;
1373 	do {
1374 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376 
1377 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 			break;
1379 	} while (--i);
1380 
1381 	priv->status &= ~STATUS_RESET_PENDING;
1382 
1383 	if (!i) {
1384 		IPW_DEBUG_INFO
1385 		    ("exit - waited too long for master assert stop\n");
1386 		return -EIO;
1387 	}
1388 
1389 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1391 
1392 	/* Reset any fatal_error conditions */
1393 	ipw2100_reset_fatalerror(priv);
1394 
1395 	/* At this point, the adapter is now stopped and disabled */
1396 	priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 			  STATUS_ASSOCIATED | STATUS_ENABLED);
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412 
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414 
1415 	struct host_command cmd = {
1416 		.host_command = CARD_DISABLE_PHY_OFF,
1417 		.host_command_sequence = 0,
1418 		.host_command_length = 0,
1419 	};
1420 	int err, i;
1421 	u32 val1, val2;
1422 
1423 	IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424 
1425 	/* Turn off the radio */
1426 	err = ipw2100_hw_send_command(priv, &cmd);
1427 	if (err)
1428 		return err;
1429 
1430 	for (i = 0; i < 2500; i++) {
1431 		read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 		read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433 
1434 		if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 		    (val2 & IPW2100_COMMAND_PHY_OFF))
1436 			return 0;
1437 
1438 		schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 	}
1440 
1441 	return -EIO;
1442 }
1443 
ipw2100_enable_adapter(struct ipw2100_priv * priv)1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 	struct host_command cmd = {
1447 		.host_command = HOST_COMPLETE,
1448 		.host_command_sequence = 0,
1449 		.host_command_length = 0
1450 	};
1451 	int err = 0;
1452 
1453 	IPW_DEBUG_HC("HOST_COMPLETE\n");
1454 
1455 	if (priv->status & STATUS_ENABLED)
1456 		return 0;
1457 
1458 	mutex_lock(&priv->adapter_mutex);
1459 
1460 	if (rf_kill_active(priv)) {
1461 		IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 		goto fail_up;
1463 	}
1464 
1465 	err = ipw2100_hw_send_command(priv, &cmd);
1466 	if (err) {
1467 		IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 		goto fail_up;
1469 	}
1470 
1471 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 	if (err) {
1473 		IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 			       priv->net_dev->name);
1475 		goto fail_up;
1476 	}
1477 
1478 	if (priv->stop_hang_check) {
1479 		priv->stop_hang_check = 0;
1480 		schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 	}
1482 
1483       fail_up:
1484 	mutex_unlock(&priv->adapter_mutex);
1485 	return err;
1486 }
1487 
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491 
1492 	struct host_command cmd = {
1493 		.host_command = HOST_PRE_POWER_DOWN,
1494 		.host_command_sequence = 0,
1495 		.host_command_length = 0,
1496 	};
1497 	int err, i;
1498 	u32 reg;
1499 
1500 	if (!(priv->status & STATUS_RUNNING))
1501 		return 0;
1502 
1503 	priv->status |= STATUS_STOPPING;
1504 
1505 	/* We can only shut down the card if the firmware is operational.  So,
1506 	 * if we haven't reset since a fatal_error, then we can not send the
1507 	 * shutdown commands. */
1508 	if (!priv->fatal_error) {
1509 		/* First, make sure the adapter is enabled so that the PHY_OFF
1510 		 * command can shut it down */
1511 		ipw2100_enable_adapter(priv);
1512 
1513 		err = ipw2100_hw_phy_off(priv);
1514 		if (err)
1515 			printk(KERN_WARNING DRV_NAME
1516 			       ": Error disabling radio %d\n", err);
1517 
1518 		/*
1519 		 * If in D0-standby mode going directly to D3 may cause a
1520 		 * PCI bus violation.  Therefore we must change out of the D0
1521 		 * state.
1522 		 *
1523 		 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 		 * hardware from going into standby mode and will transition
1525 		 * out of D0-standby if it is already in that state.
1526 		 *
1527 		 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 		 * driver upon completion.  Once received, the driver can
1529 		 * proceed to the D3 state.
1530 		 *
1531 		 * Prepare for power down command to fw.  This command would
1532 		 * take HW out of D0-standby and prepare it for D3 state.
1533 		 *
1534 		 * Currently FW does not support event notification for this
1535 		 * event. Therefore, skip waiting for it.  Just wait a fixed
1536 		 * 100ms
1537 		 */
1538 		IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539 
1540 		err = ipw2100_hw_send_command(priv, &cmd);
1541 		if (err)
1542 			printk(KERN_WARNING DRV_NAME ": "
1543 			       "%s: Power down command failed: Error %d\n",
1544 			       priv->net_dev->name, err);
1545 		else
1546 			schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 	}
1548 
1549 	priv->status &= ~STATUS_ENABLED;
1550 
1551 	/*
1552 	 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 	 * by driver and enable clock
1554 	 */
1555 	ipw2100_hw_set_gpio(priv);
1556 
1557 	/*
1558 	 * Power down adapter.  Sequence:
1559 	 * 1. Stop master assert (RESET_REG[9]=1)
1560 	 * 2. Wait for stop master (RESET_REG[8]==1)
1561 	 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 	 */
1563 
1564 	/* Stop master assert */
1565 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567 
1568 	/* wait stop master not more than 50 usec.
1569 	 * Otherwise return error. */
1570 	for (i = 5; i > 0; i--) {
1571 		udelay(10);
1572 
1573 		/* Check master stop bit */
1574 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575 
1576 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 			break;
1578 	}
1579 
1580 	if (i == 0)
1581 		printk(KERN_WARNING DRV_NAME
1582 		       ": %s: Could now power down adapter.\n",
1583 		       priv->net_dev->name);
1584 
1585 	/* assert s/w reset */
1586 	write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 		       IPW_AUX_HOST_RESET_REG_SW_RESET);
1588 
1589 	priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590 
1591 	return 0;
1592 }
1593 
ipw2100_disable_adapter(struct ipw2100_priv * priv)1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 	struct host_command cmd = {
1597 		.host_command = CARD_DISABLE,
1598 		.host_command_sequence = 0,
1599 		.host_command_length = 0
1600 	};
1601 	int err = 0;
1602 
1603 	IPW_DEBUG_HC("CARD_DISABLE\n");
1604 
1605 	if (!(priv->status & STATUS_ENABLED))
1606 		return 0;
1607 
1608 	/* Make sure we clear the associated state */
1609 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610 
1611 	if (!priv->stop_hang_check) {
1612 		priv->stop_hang_check = 1;
1613 		cancel_delayed_work(&priv->hang_check);
1614 	}
1615 
1616 	mutex_lock(&priv->adapter_mutex);
1617 
1618 	err = ipw2100_hw_send_command(priv, &cmd);
1619 	if (err) {
1620 		printk(KERN_WARNING DRV_NAME
1621 		       ": exit - failed to send CARD_DISABLE command\n");
1622 		goto fail_up;
1623 	}
1624 
1625 	err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 	if (err) {
1627 		printk(KERN_WARNING DRV_NAME
1628 		       ": exit - card failed to change to DISABLED\n");
1629 		goto fail_up;
1630 	}
1631 
1632 	IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633 
1634       fail_up:
1635 	mutex_unlock(&priv->adapter_mutex);
1636 	return err;
1637 }
1638 
ipw2100_set_scan_options(struct ipw2100_priv * priv)1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 	struct host_command cmd = {
1642 		.host_command = SET_SCAN_OPTIONS,
1643 		.host_command_sequence = 0,
1644 		.host_command_length = 8
1645 	};
1646 	int err;
1647 
1648 	IPW_DEBUG_INFO("enter\n");
1649 
1650 	IPW_DEBUG_SCAN("setting scan options\n");
1651 
1652 	cmd.host_command_parameters[0] = 0;
1653 
1654 	if (!(priv->config & CFG_ASSOCIATE))
1655 		cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 	if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 		cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 	if (priv->config & CFG_PASSIVE_SCAN)
1659 		cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660 
1661 	cmd.host_command_parameters[1] = priv->channel_mask;
1662 
1663 	err = ipw2100_hw_send_command(priv, &cmd);
1664 
1665 	IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 		     cmd.host_command_parameters[0]);
1667 
1668 	return err;
1669 }
1670 
ipw2100_start_scan(struct ipw2100_priv * priv)1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 	struct host_command cmd = {
1674 		.host_command = BROADCAST_SCAN,
1675 		.host_command_sequence = 0,
1676 		.host_command_length = 4
1677 	};
1678 	int err;
1679 
1680 	IPW_DEBUG_HC("START_SCAN\n");
1681 
1682 	cmd.host_command_parameters[0] = 0;
1683 
1684 	/* No scanning if in monitor mode */
1685 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 		return 1;
1687 
1688 	if (priv->status & STATUS_SCANNING) {
1689 		IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 		return 0;
1691 	}
1692 
1693 	IPW_DEBUG_INFO("enter\n");
1694 
1695 	/* Not clearing here; doing so makes iwlist always return nothing...
1696 	 *
1697 	 * We should modify the table logic to use aging tables vs. clearing
1698 	 * the table on each scan start.
1699 	 */
1700 	IPW_DEBUG_SCAN("starting scan\n");
1701 
1702 	priv->status |= STATUS_SCANNING;
1703 	err = ipw2100_hw_send_command(priv, &cmd);
1704 	if (err)
1705 		priv->status &= ~STATUS_SCANNING;
1706 
1707 	IPW_DEBUG_INFO("exit\n");
1708 
1709 	return err;
1710 }
1711 
1712 static const struct libipw_geo ipw_geos[] = {
1713 	{			/* Restricted */
1714 	 "---",
1715 	 .bg_channels = 14,
1716 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 		{2427, 4}, {2432, 5}, {2437, 6},
1718 		{2442, 7}, {2447, 8}, {2452, 9},
1719 		{2457, 10}, {2462, 11}, {2467, 12},
1720 		{2472, 13}, {2484, 14}},
1721 	 },
1722 };
1723 
ipw2100_up(struct ipw2100_priv * priv,int deferred)1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 	unsigned long flags;
1727 	int rc = 0;
1728 	u32 lock;
1729 	u32 ord_len = sizeof(lock);
1730 
1731 	/* Age scan list entries found before suspend */
1732 	if (priv->suspend_time) {
1733 		libipw_networks_age(priv->ieee, priv->suspend_time);
1734 		priv->suspend_time = 0;
1735 	}
1736 
1737 	/* Quiet if manually disabled. */
1738 	if (priv->status & STATUS_RF_KILL_SW) {
1739 		IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 			       "switch\n", priv->net_dev->name);
1741 		return 0;
1742 	}
1743 
1744 	/* the ipw2100 hardware really doesn't want power management delays
1745 	 * longer than 175usec
1746 	 */
1747 	pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748 
1749 	/* If the interrupt is enabled, turn it off... */
1750 	spin_lock_irqsave(&priv->low_lock, flags);
1751 	ipw2100_disable_interrupts(priv);
1752 
1753 	/* Reset any fatal_error conditions */
1754 	ipw2100_reset_fatalerror(priv);
1755 	spin_unlock_irqrestore(&priv->low_lock, flags);
1756 
1757 	if (priv->status & STATUS_POWERED ||
1758 	    (priv->status & STATUS_RESET_PENDING)) {
1759 		/* Power cycle the card ... */
1760 		if (ipw2100_power_cycle_adapter(priv)) {
1761 			printk(KERN_WARNING DRV_NAME
1762 			       ": %s: Could not cycle adapter.\n",
1763 			       priv->net_dev->name);
1764 			rc = 1;
1765 			goto exit;
1766 		}
1767 	} else
1768 		priv->status |= STATUS_POWERED;
1769 
1770 	/* Load the firmware, start the clocks, etc. */
1771 	if (ipw2100_start_adapter(priv)) {
1772 		printk(KERN_ERR DRV_NAME
1773 		       ": %s: Failed to start the firmware.\n",
1774 		       priv->net_dev->name);
1775 		rc = 1;
1776 		goto exit;
1777 	}
1778 
1779 	ipw2100_initialize_ordinals(priv);
1780 
1781 	/* Determine capabilities of this particular HW configuration */
1782 	if (ipw2100_get_hw_features(priv)) {
1783 		printk(KERN_ERR DRV_NAME
1784 		       ": %s: Failed to determine HW features.\n",
1785 		       priv->net_dev->name);
1786 		rc = 1;
1787 		goto exit;
1788 	}
1789 
1790 	/* Initialize the geo */
1791 	libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 	priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793 
1794 	lock = LOCK_NONE;
1795 	if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 		printk(KERN_ERR DRV_NAME
1797 		       ": %s: Failed to clear ordinal lock.\n",
1798 		       priv->net_dev->name);
1799 		rc = 1;
1800 		goto exit;
1801 	}
1802 
1803 	priv->status &= ~STATUS_SCANNING;
1804 
1805 	if (rf_kill_active(priv)) {
1806 		printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 		       priv->net_dev->name);
1808 
1809 		if (priv->stop_rf_kill) {
1810 			priv->stop_rf_kill = 0;
1811 			schedule_delayed_work(&priv->rf_kill,
1812 					      round_jiffies_relative(HZ));
1813 		}
1814 
1815 		deferred = 1;
1816 	}
1817 
1818 	/* Turn on the interrupt so that commands can be processed */
1819 	ipw2100_enable_interrupts(priv);
1820 
1821 	/* Send all of the commands that must be sent prior to
1822 	 * HOST_COMPLETE */
1823 	if (ipw2100_adapter_setup(priv)) {
1824 		printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 		       priv->net_dev->name);
1826 		rc = 1;
1827 		goto exit;
1828 	}
1829 
1830 	if (!deferred) {
1831 		/* Enable the adapter - sends HOST_COMPLETE */
1832 		if (ipw2100_enable_adapter(priv)) {
1833 			printk(KERN_ERR DRV_NAME ": "
1834 			       "%s: failed in call to enable adapter.\n",
1835 			       priv->net_dev->name);
1836 			ipw2100_hw_stop_adapter(priv);
1837 			rc = 1;
1838 			goto exit;
1839 		}
1840 
1841 		/* Start a scan . . . */
1842 		ipw2100_set_scan_options(priv);
1843 		ipw2100_start_scan(priv);
1844 	}
1845 
1846       exit:
1847 	return rc;
1848 }
1849 
ipw2100_down(struct ipw2100_priv * priv)1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 	unsigned long flags;
1853 	union iwreq_data wrqu = {
1854 		.ap_addr = {
1855 			    .sa_family = ARPHRD_ETHER}
1856 	};
1857 	int associated = priv->status & STATUS_ASSOCIATED;
1858 
1859 	/* Kill the RF switch timer */
1860 	if (!priv->stop_rf_kill) {
1861 		priv->stop_rf_kill = 1;
1862 		cancel_delayed_work(&priv->rf_kill);
1863 	}
1864 
1865 	/* Kill the firmware hang check timer */
1866 	if (!priv->stop_hang_check) {
1867 		priv->stop_hang_check = 1;
1868 		cancel_delayed_work(&priv->hang_check);
1869 	}
1870 
1871 	/* Kill any pending resets */
1872 	if (priv->status & STATUS_RESET_PENDING)
1873 		cancel_delayed_work(&priv->reset_work);
1874 
1875 	/* Make sure the interrupt is on so that FW commands will be
1876 	 * processed correctly */
1877 	spin_lock_irqsave(&priv->low_lock, flags);
1878 	ipw2100_enable_interrupts(priv);
1879 	spin_unlock_irqrestore(&priv->low_lock, flags);
1880 
1881 	if (ipw2100_hw_stop_adapter(priv))
1882 		printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 		       priv->net_dev->name);
1884 
1885 	/* Do not disable the interrupt until _after_ we disable
1886 	 * the adaptor.  Otherwise the CARD_DISABLE command will never
1887 	 * be ack'd by the firmware */
1888 	spin_lock_irqsave(&priv->low_lock, flags);
1889 	ipw2100_disable_interrupts(priv);
1890 	spin_unlock_irqrestore(&priv->low_lock, flags);
1891 
1892 	pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893 
1894 	/* We have to signal any supplicant if we are disassociating */
1895 	if (associated)
1896 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897 
1898 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 	netif_carrier_off(priv->net_dev);
1900 	netif_stop_queue(priv->net_dev);
1901 }
1902 
ipw2100_wdev_init(struct net_device * dev)1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 	struct ipw2100_priv *priv = libipw_priv(dev);
1906 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 	struct wireless_dev *wdev = &priv->ieee->wdev;
1908 	int i;
1909 
1910 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911 
1912 	/* fill-out priv->ieee->bg_band */
1913 	if (geo->bg_channels) {
1914 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915 
1916 		bg_band->band = IEEE80211_BAND_2GHZ;
1917 		bg_band->n_channels = geo->bg_channels;
1918 		bg_band->channels = kcalloc(geo->bg_channels,
1919 					    sizeof(struct ieee80211_channel),
1920 					    GFP_KERNEL);
1921 		if (!bg_band->channels) {
1922 			ipw2100_down(priv);
1923 			return -ENOMEM;
1924 		}
1925 		/* translate geo->bg to bg_band.channels */
1926 		for (i = 0; i < geo->bg_channels; i++) {
1927 			bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 			bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 			bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 			bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 				bg_band->channels[i].flags |=
1933 					IEEE80211_CHAN_NO_IR;
1934 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 				bg_band->channels[i].flags |=
1936 					IEEE80211_CHAN_NO_IR;
1937 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 				bg_band->channels[i].flags |=
1939 					IEEE80211_CHAN_RADAR;
1940 			/* No equivalent for LIBIPW_CH_80211H_RULES,
1941 			   LIBIPW_CH_UNIFORM_SPREADING, or
1942 			   LIBIPW_CH_B_ONLY... */
1943 		}
1944 		/* point at bitrate info */
1945 		bg_band->bitrates = ipw2100_bg_rates;
1946 		bg_band->n_bitrates = RATE_COUNT;
1947 
1948 		wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949 	}
1950 
1951 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953 
1954 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 	if (wiphy_register(wdev->wiphy))
1956 		return -EIO;
1957 	return 0;
1958 }
1959 
ipw2100_reset_adapter(struct work_struct * work)1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 	struct ipw2100_priv *priv =
1963 		container_of(work, struct ipw2100_priv, reset_work.work);
1964 	unsigned long flags;
1965 	union iwreq_data wrqu = {
1966 		.ap_addr = {
1967 			    .sa_family = ARPHRD_ETHER}
1968 	};
1969 	int associated = priv->status & STATUS_ASSOCIATED;
1970 
1971 	spin_lock_irqsave(&priv->low_lock, flags);
1972 	IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 	priv->resets++;
1974 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 	priv->status |= STATUS_SECURITY_UPDATED;
1976 
1977 	/* Force a power cycle even if interface hasn't been opened
1978 	 * yet */
1979 	cancel_delayed_work(&priv->reset_work);
1980 	priv->status |= STATUS_RESET_PENDING;
1981 	spin_unlock_irqrestore(&priv->low_lock, flags);
1982 
1983 	mutex_lock(&priv->action_mutex);
1984 	/* stop timed checks so that they don't interfere with reset */
1985 	priv->stop_hang_check = 1;
1986 	cancel_delayed_work(&priv->hang_check);
1987 
1988 	/* We have to signal any supplicant if we are disassociating */
1989 	if (associated)
1990 		wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991 
1992 	ipw2100_up(priv, 0);
1993 	mutex_unlock(&priv->action_mutex);
1994 
1995 }
1996 
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999 
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 	int ret;
2002 	unsigned int len, essid_len;
2003 	char essid[IW_ESSID_MAX_SIZE];
2004 	u32 txrate;
2005 	u32 chan;
2006 	char *txratename;
2007 	u8 bssid[ETH_ALEN];
2008 
2009 	/*
2010 	 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 	 *      an actual MAC of the AP. Seems like FW sets this
2012 	 *      address too late. Read it later and expose through
2013 	 *      /proc or schedule a later task to query and update
2014 	 */
2015 
2016 	essid_len = IW_ESSID_MAX_SIZE;
2017 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 				  essid, &essid_len);
2019 	if (ret) {
2020 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 			       __LINE__);
2022 		return;
2023 	}
2024 
2025 	len = sizeof(u32);
2026 	ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 	if (ret) {
2028 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 			       __LINE__);
2030 		return;
2031 	}
2032 
2033 	len = sizeof(u32);
2034 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 	if (ret) {
2036 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 			       __LINE__);
2038 		return;
2039 	}
2040 	len = ETH_ALEN;
2041 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 				  &len);
2043 	if (ret) {
2044 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 			       __LINE__);
2046 		return;
2047 	}
2048 	memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049 
2050 	switch (txrate) {
2051 	case TX_RATE_1_MBIT:
2052 		txratename = "1Mbps";
2053 		break;
2054 	case TX_RATE_2_MBIT:
2055 		txratename = "2Mbsp";
2056 		break;
2057 	case TX_RATE_5_5_MBIT:
2058 		txratename = "5.5Mbps";
2059 		break;
2060 	case TX_RATE_11_MBIT:
2061 		txratename = "11Mbps";
2062 		break;
2063 	default:
2064 		IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 		txratename = "unknown rate";
2066 		break;
2067 	}
2068 
2069 	IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 		       priv->net_dev->name, essid_len, essid,
2071 		       txratename, chan, bssid);
2072 
2073 	/* now we copy read ssid into dev */
2074 	if (!(priv->config & CFG_STATIC_ESSID)) {
2075 		priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 		memcpy(priv->essid, essid, priv->essid_len);
2077 	}
2078 	priv->channel = chan;
2079 	memcpy(priv->bssid, bssid, ETH_ALEN);
2080 
2081 	priv->status |= STATUS_ASSOCIATING;
2082 	priv->connect_start = get_seconds();
2083 
2084 	schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086 
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 			     int length, int batch_mode)
2089 {
2090 	int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 	struct host_command cmd = {
2092 		.host_command = SSID,
2093 		.host_command_sequence = 0,
2094 		.host_command_length = ssid_len
2095 	};
2096 	int err;
2097 
2098 	IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099 
2100 	if (ssid_len)
2101 		memcpy(cmd.host_command_parameters, essid, ssid_len);
2102 
2103 	if (!batch_mode) {
2104 		err = ipw2100_disable_adapter(priv);
2105 		if (err)
2106 			return err;
2107 	}
2108 
2109 	/* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 	 * disable auto association -- so we cheat by setting a bogus SSID */
2111 	if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 		int i;
2113 		u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 		for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 			bogus[i] = 0x18 + i;
2116 		cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 	}
2118 
2119 	/* NOTE:  We always send the SSID command even if the provided ESSID is
2120 	 * the same as what we currently think is set. */
2121 
2122 	err = ipw2100_hw_send_command(priv, &cmd);
2123 	if (!err) {
2124 		memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 		memcpy(priv->essid, essid, ssid_len);
2126 		priv->essid_len = ssid_len;
2127 	}
2128 
2129 	if (!batch_mode) {
2130 		if (ipw2100_enable_adapter(priv))
2131 			err = -EIO;
2132 	}
2133 
2134 	return err;
2135 }
2136 
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 	IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 		  "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 		  priv->bssid);
2142 
2143 	priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144 
2145 	if (priv->status & STATUS_STOPPING) {
2146 		IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 		return;
2148 	}
2149 
2150 	eth_zero_addr(priv->bssid);
2151 	eth_zero_addr(priv->ieee->bssid);
2152 
2153 	netif_carrier_off(priv->net_dev);
2154 	netif_stop_queue(priv->net_dev);
2155 
2156 	if (!(priv->status & STATUS_RUNNING))
2157 		return;
2158 
2159 	if (priv->status & STATUS_SECURITY_UPDATED)
2160 		schedule_delayed_work(&priv->security_work, 0);
2161 
2162 	schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164 
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 	IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 		       priv->net_dev->name);
2169 
2170 	/* RF_KILL is now enabled (else we wouldn't be here) */
2171 	wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 	priv->status |= STATUS_RF_KILL_HW;
2173 
2174 	/* Make sure the RF Kill check timer is running */
2175 	priv->stop_rf_kill = 0;
2176 	mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178 
ipw2100_scan_event(struct work_struct * work)2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 	struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 						 scan_event.work);
2183 	union iwreq_data wrqu;
2184 
2185 	wrqu.data.length = 0;
2186 	wrqu.data.flags = 0;
2187 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189 
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 	IPW_DEBUG_SCAN("scan complete\n");
2193 	/* Age the scan results... */
2194 	priv->ieee->scans++;
2195 	priv->status &= ~STATUS_SCANNING;
2196 
2197 	/* Only userspace-requested scan completion events go out immediately */
2198 	if (!priv->user_requested_scan) {
2199 		schedule_delayed_work(&priv->scan_event,
2200 				      round_jiffies_relative(msecs_to_jiffies(4000)));
2201 	} else {
2202 		priv->user_requested_scan = 0;
2203 		mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 	}
2205 }
2206 
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 	int status;
2211 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 	char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 	int status;
2218 	void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif				/* CONFIG_IPW2100_DEBUG */
2221 
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 	IPW_DEBUG_SCAN("Scanning...\n");
2225 	priv->status |= STATUS_SCANNING;
2226 }
2227 
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 	IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 	IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 	IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 	IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 	IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 	IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 	IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 	IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 	IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 	IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 	IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 	IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 	IPW2100_HANDLER(-1, NULL)
2242 };
2243 
isr_status_change(struct ipw2100_priv * priv,int status)2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 	int i;
2247 
2248 	if (status == IPW_STATE_SCANNING &&
2249 	    priv->status & STATUS_ASSOCIATED &&
2250 	    !(priv->status & STATUS_SCANNING)) {
2251 		IPW_DEBUG_INFO("Scan detected while associated, with "
2252 			       "no scan request.  Restarting firmware.\n");
2253 
2254 		/* Wake up any sleeping jobs */
2255 		schedule_reset(priv);
2256 	}
2257 
2258 	for (i = 0; status_handlers[i].status != -1; i++) {
2259 		if (status == status_handlers[i].status) {
2260 			IPW_DEBUG_NOTIF("Status change: %s\n",
2261 					status_handlers[i].name);
2262 			if (status_handlers[i].cb)
2263 				status_handlers[i].cb(priv, status);
2264 			priv->wstats.status = status;
2265 			return;
2266 		}
2267 	}
2268 
2269 	IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271 
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 				    struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 	if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 		IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 			     command_types[cmd->host_command_reg],
2279 			     cmd->host_command_reg);
2280 	}
2281 #endif
2282 	if (cmd->host_command_reg == HOST_COMPLETE)
2283 		priv->status |= STATUS_ENABLED;
2284 
2285 	if (cmd->host_command_reg == CARD_DISABLE)
2286 		priv->status &= ~STATUS_ENABLED;
2287 
2288 	priv->status &= ~STATUS_CMD_ACTIVE;
2289 
2290 	wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292 
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 	"COMMAND_STATUS_VAL",
2296 	"STATUS_CHANGE_VAL",
2297 	"P80211_DATA_VAL",
2298 	"P8023_DATA_VAL",
2299 	"HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302 
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 				    struct ipw2100_rx_packet *packet)
2305 {
2306 	packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 	if (!packet->skb)
2308 		return -ENOMEM;
2309 
2310 	packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 	packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 					  sizeof(struct ipw2100_rx),
2313 					  PCI_DMA_FROMDEVICE);
2314 	/* NOTE: pci_map_single does not return an error code, and 0 is a valid
2315 	 *       dma_addr */
2316 
2317 	return 0;
2318 }
2319 
2320 #define SEARCH_ERROR   0xffffffff
2321 #define SEARCH_FAIL    0xfffffffe
2322 #define SEARCH_SUCCESS 0xfffffff0
2323 #define SEARCH_DISCARD 0
2324 #define SEARCH_SNAPSHOT 1
2325 
2326 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2327 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2328 {
2329 	int i;
2330 	if (!priv->snapshot[0])
2331 		return;
2332 	for (i = 0; i < 0x30; i++)
2333 		kfree(priv->snapshot[i]);
2334 	priv->snapshot[0] = NULL;
2335 }
2336 
2337 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2338 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2339 {
2340 	int i;
2341 	if (priv->snapshot[0])
2342 		return 1;
2343 	for (i = 0; i < 0x30; i++) {
2344 		priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2345 		if (!priv->snapshot[i]) {
2346 			IPW_DEBUG_INFO("%s: Error allocating snapshot "
2347 				       "buffer %d\n", priv->net_dev->name, i);
2348 			while (i > 0)
2349 				kfree(priv->snapshot[--i]);
2350 			priv->snapshot[0] = NULL;
2351 			return 0;
2352 		}
2353 	}
2354 
2355 	return 1;
2356 }
2357 
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2358 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2359 				    size_t len, int mode)
2360 {
2361 	u32 i, j;
2362 	u32 tmp;
2363 	u8 *s, *d;
2364 	u32 ret;
2365 
2366 	s = in_buf;
2367 	if (mode == SEARCH_SNAPSHOT) {
2368 		if (!ipw2100_snapshot_alloc(priv))
2369 			mode = SEARCH_DISCARD;
2370 	}
2371 
2372 	for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2373 		read_nic_dword(priv->net_dev, i, &tmp);
2374 		if (mode == SEARCH_SNAPSHOT)
2375 			*(u32 *) SNAPSHOT_ADDR(i) = tmp;
2376 		if (ret == SEARCH_FAIL) {
2377 			d = (u8 *) & tmp;
2378 			for (j = 0; j < 4; j++) {
2379 				if (*s != *d) {
2380 					s = in_buf;
2381 					continue;
2382 				}
2383 
2384 				s++;
2385 				d++;
2386 
2387 				if ((s - in_buf) == len)
2388 					ret = (i + j) - len + 1;
2389 			}
2390 		} else if (mode == SEARCH_DISCARD)
2391 			return ret;
2392 	}
2393 
2394 	return ret;
2395 }
2396 #endif
2397 
2398 /*
2399  *
2400  * 0) Disconnect the SKB from the firmware (just unmap)
2401  * 1) Pack the ETH header into the SKB
2402  * 2) Pass the SKB to the network stack
2403  *
2404  * When packet is provided by the firmware, it contains the following:
2405  *
2406  * .  libipw_hdr
2407  * .  libipw_snap_hdr
2408  *
2409  * The size of the constructed ethernet
2410  *
2411  */
2412 #ifdef IPW2100_RX_DEBUG
2413 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2414 #endif
2415 
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2416 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2417 {
2418 #ifdef IPW2100_DEBUG_C3
2419 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2420 	u32 match, reg;
2421 	int j;
2422 #endif
2423 
2424 	IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2425 		       i * sizeof(struct ipw2100_status));
2426 
2427 #ifdef IPW2100_DEBUG_C3
2428 	/* Halt the firmware so we can get a good image */
2429 	write_register(priv->net_dev, IPW_REG_RESET_REG,
2430 		       IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2431 	j = 5;
2432 	do {
2433 		udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2434 		read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2435 
2436 		if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2437 			break;
2438 	} while (j--);
2439 
2440 	match = ipw2100_match_buf(priv, (u8 *) status,
2441 				  sizeof(struct ipw2100_status),
2442 				  SEARCH_SNAPSHOT);
2443 	if (match < SEARCH_SUCCESS)
2444 		IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2445 			       "offset 0x%06X, length %d:\n",
2446 			       priv->net_dev->name, match,
2447 			       sizeof(struct ipw2100_status));
2448 	else
2449 		IPW_DEBUG_INFO("%s: No DMA status match in "
2450 			       "Firmware.\n", priv->net_dev->name);
2451 
2452 	printk_buf((u8 *) priv->status_queue.drv,
2453 		   sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2454 #endif
2455 
2456 	priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2457 	priv->net_dev->stats.rx_errors++;
2458 	schedule_reset(priv);
2459 }
2460 
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2461 static void isr_rx(struct ipw2100_priv *priv, int i,
2462 			  struct libipw_rx_stats *stats)
2463 {
2464 	struct net_device *dev = priv->net_dev;
2465 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2466 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2467 
2468 	IPW_DEBUG_RX("Handler...\n");
2469 
2470 	if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2471 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 			       "  Dropping.\n",
2473 			       dev->name,
2474 			       status->frame_size, skb_tailroom(packet->skb));
2475 		dev->stats.rx_errors++;
2476 		return;
2477 	}
2478 
2479 	if (unlikely(!netif_running(dev))) {
2480 		dev->stats.rx_errors++;
2481 		priv->wstats.discard.misc++;
2482 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483 		return;
2484 	}
2485 
2486 	if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2487 		     !(priv->status & STATUS_ASSOCIATED))) {
2488 		IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2489 		priv->wstats.discard.misc++;
2490 		return;
2491 	}
2492 
2493 	pci_unmap_single(priv->pci_dev,
2494 			 packet->dma_addr,
2495 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496 
2497 	skb_put(packet->skb, status->frame_size);
2498 
2499 #ifdef IPW2100_RX_DEBUG
2500 	/* Make a copy of the frame so we can dump it to the logs if
2501 	 * libipw_rx fails */
2502 	skb_copy_from_linear_data(packet->skb, packet_data,
2503 				  min_t(u32, status->frame_size,
2504 					     IPW_RX_NIC_BUFFER_LENGTH));
2505 #endif
2506 
2507 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2508 #ifdef IPW2100_RX_DEBUG
2509 		IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2510 			       dev->name);
2511 		printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2512 #endif
2513 		dev->stats.rx_errors++;
2514 
2515 		/* libipw_rx failed, so it didn't free the SKB */
2516 		dev_kfree_skb_any(packet->skb);
2517 		packet->skb = NULL;
2518 	}
2519 
2520 	/* We need to allocate a new SKB and attach it to the RDB. */
2521 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522 		printk(KERN_WARNING DRV_NAME ": "
2523 		       "%s: Unable to allocate SKB onto RBD ring - disabling "
2524 		       "adapter.\n", dev->name);
2525 		/* TODO: schedule adapter shutdown */
2526 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2527 	}
2528 
2529 	/* Update the RDB entry */
2530 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2531 }
2532 
2533 #ifdef CONFIG_IPW2100_MONITOR
2534 
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2535 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2536 		   struct libipw_rx_stats *stats)
2537 {
2538 	struct net_device *dev = priv->net_dev;
2539 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2540 	struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2541 
2542 	/* Magic struct that slots into the radiotap header -- no reason
2543 	 * to build this manually element by element, we can write it much
2544 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
2545 	struct ipw_rt_hdr {
2546 		struct ieee80211_radiotap_header rt_hdr;
2547 		s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2548 	} *ipw_rt;
2549 
2550 	IPW_DEBUG_RX("Handler...\n");
2551 
2552 	if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2553 				sizeof(struct ipw_rt_hdr))) {
2554 		IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2555 			       "  Dropping.\n",
2556 			       dev->name,
2557 			       status->frame_size,
2558 			       skb_tailroom(packet->skb));
2559 		dev->stats.rx_errors++;
2560 		return;
2561 	}
2562 
2563 	if (unlikely(!netif_running(dev))) {
2564 		dev->stats.rx_errors++;
2565 		priv->wstats.discard.misc++;
2566 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2567 		return;
2568 	}
2569 
2570 	if (unlikely(priv->config & CFG_CRC_CHECK &&
2571 		     status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2572 		IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2573 		dev->stats.rx_errors++;
2574 		return;
2575 	}
2576 
2577 	pci_unmap_single(priv->pci_dev, packet->dma_addr,
2578 			 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2579 	memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2580 		packet->skb->data, status->frame_size);
2581 
2582 	ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2583 
2584 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2585 	ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2586 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2587 
2588 	ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2589 
2590 	ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2591 
2592 	skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2593 
2594 	if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2595 		dev->stats.rx_errors++;
2596 
2597 		/* libipw_rx failed, so it didn't free the SKB */
2598 		dev_kfree_skb_any(packet->skb);
2599 		packet->skb = NULL;
2600 	}
2601 
2602 	/* We need to allocate a new SKB and attach it to the RDB. */
2603 	if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2604 		IPW_DEBUG_WARNING(
2605 			"%s: Unable to allocate SKB onto RBD ring - disabling "
2606 			"adapter.\n", dev->name);
2607 		/* TODO: schedule adapter shutdown */
2608 		IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2609 	}
2610 
2611 	/* Update the RDB entry */
2612 	priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2613 }
2614 
2615 #endif
2616 
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2617 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2618 {
2619 	struct ipw2100_status *status = &priv->status_queue.drv[i];
2620 	struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2621 	u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2622 
2623 	switch (frame_type) {
2624 	case COMMAND_STATUS_VAL:
2625 		return (status->frame_size != sizeof(u->rx_data.command));
2626 	case STATUS_CHANGE_VAL:
2627 		return (status->frame_size != sizeof(u->rx_data.status));
2628 	case HOST_NOTIFICATION_VAL:
2629 		return (status->frame_size < sizeof(u->rx_data.notification));
2630 	case P80211_DATA_VAL:
2631 	case P8023_DATA_VAL:
2632 #ifdef CONFIG_IPW2100_MONITOR
2633 		return 0;
2634 #else
2635 		switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2636 		case IEEE80211_FTYPE_MGMT:
2637 		case IEEE80211_FTYPE_CTL:
2638 			return 0;
2639 		case IEEE80211_FTYPE_DATA:
2640 			return (status->frame_size >
2641 				IPW_MAX_802_11_PAYLOAD_LENGTH);
2642 		}
2643 #endif
2644 	}
2645 
2646 	return 1;
2647 }
2648 
2649 /*
2650  * ipw2100 interrupts are disabled at this point, and the ISR
2651  * is the only code that calls this method.  So, we do not need
2652  * to play with any locks.
2653  *
2654  * RX Queue works as follows:
2655  *
2656  * Read index - firmware places packet in entry identified by the
2657  *              Read index and advances Read index.  In this manner,
2658  *              Read index will always point to the next packet to
2659  *              be filled--but not yet valid.
2660  *
2661  * Write index - driver fills this entry with an unused RBD entry.
2662  *               This entry has not filled by the firmware yet.
2663  *
2664  * In between the W and R indexes are the RBDs that have been received
2665  * but not yet processed.
2666  *
2667  * The process of handling packets will start at WRITE + 1 and advance
2668  * until it reaches the READ index.
2669  *
2670  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2671  *
2672  */
__ipw2100_rx_process(struct ipw2100_priv * priv)2673 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2674 {
2675 	struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2676 	struct ipw2100_status_queue *sq = &priv->status_queue;
2677 	struct ipw2100_rx_packet *packet;
2678 	u16 frame_type;
2679 	u32 r, w, i, s;
2680 	struct ipw2100_rx *u;
2681 	struct libipw_rx_stats stats = {
2682 		.mac_time = jiffies,
2683 	};
2684 
2685 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2686 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2687 
2688 	if (r >= rxq->entries) {
2689 		IPW_DEBUG_RX("exit - bad read index\n");
2690 		return;
2691 	}
2692 
2693 	i = (rxq->next + 1) % rxq->entries;
2694 	s = i;
2695 	while (i != r) {
2696 		/* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2697 		   r, rxq->next, i); */
2698 
2699 		packet = &priv->rx_buffers[i];
2700 
2701 		/* Sync the DMA for the RX buffer so CPU is sure to get
2702 		 * the correct values */
2703 		pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2704 					    sizeof(struct ipw2100_rx),
2705 					    PCI_DMA_FROMDEVICE);
2706 
2707 		if (unlikely(ipw2100_corruption_check(priv, i))) {
2708 			ipw2100_corruption_detected(priv, i);
2709 			goto increment;
2710 		}
2711 
2712 		u = packet->rxp;
2713 		frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2714 		stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2715 		stats.len = sq->drv[i].frame_size;
2716 
2717 		stats.mask = 0;
2718 		if (stats.rssi != 0)
2719 			stats.mask |= LIBIPW_STATMASK_RSSI;
2720 		stats.freq = LIBIPW_24GHZ_BAND;
2721 
2722 		IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2723 			     priv->net_dev->name, frame_types[frame_type],
2724 			     stats.len);
2725 
2726 		switch (frame_type) {
2727 		case COMMAND_STATUS_VAL:
2728 			/* Reset Rx watchdog */
2729 			isr_rx_complete_command(priv, &u->rx_data.command);
2730 			break;
2731 
2732 		case STATUS_CHANGE_VAL:
2733 			isr_status_change(priv, u->rx_data.status);
2734 			break;
2735 
2736 		case P80211_DATA_VAL:
2737 		case P8023_DATA_VAL:
2738 #ifdef CONFIG_IPW2100_MONITOR
2739 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2740 				isr_rx_monitor(priv, i, &stats);
2741 				break;
2742 			}
2743 #endif
2744 			if (stats.len < sizeof(struct libipw_hdr_3addr))
2745 				break;
2746 			switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2747 			case IEEE80211_FTYPE_MGMT:
2748 				libipw_rx_mgt(priv->ieee,
2749 						 &u->rx_data.header, &stats);
2750 				break;
2751 
2752 			case IEEE80211_FTYPE_CTL:
2753 				break;
2754 
2755 			case IEEE80211_FTYPE_DATA:
2756 				isr_rx(priv, i, &stats);
2757 				break;
2758 
2759 			}
2760 			break;
2761 		}
2762 
2763 	      increment:
2764 		/* clear status field associated with this RBD */
2765 		rxq->drv[i].status.info.field = 0;
2766 
2767 		i = (i + 1) % rxq->entries;
2768 	}
2769 
2770 	if (i != s) {
2771 		/* backtrack one entry, wrapping to end if at 0 */
2772 		rxq->next = (i ? i : rxq->entries) - 1;
2773 
2774 		write_register(priv->net_dev,
2775 			       IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2776 	}
2777 }
2778 
2779 /*
2780  * __ipw2100_tx_process
2781  *
2782  * This routine will determine whether the next packet on
2783  * the fw_pend_list has been processed by the firmware yet.
2784  *
2785  * If not, then it does nothing and returns.
2786  *
2787  * If so, then it removes the item from the fw_pend_list, frees
2788  * any associated storage, and places the item back on the
2789  * free list of its source (either msg_free_list or tx_free_list)
2790  *
2791  * TX Queue works as follows:
2792  *
2793  * Read index - points to the next TBD that the firmware will
2794  *              process.  The firmware will read the data, and once
2795  *              done processing, it will advance the Read index.
2796  *
2797  * Write index - driver fills this entry with an constructed TBD
2798  *               entry.  The Write index is not advanced until the
2799  *               packet has been configured.
2800  *
2801  * In between the W and R indexes are the TBDs that have NOT been
2802  * processed.  Lagging behind the R index are packets that have
2803  * been processed but have not been freed by the driver.
2804  *
2805  * In order to free old storage, an internal index will be maintained
2806  * that points to the next packet to be freed.  When all used
2807  * packets have been freed, the oldest index will be the same as the
2808  * firmware's read index.
2809  *
2810  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2811  *
2812  * Because the TBD structure can not contain arbitrary data, the
2813  * driver must keep an internal queue of cached allocations such that
2814  * it can put that data back into the tx_free_list and msg_free_list
2815  * for use by future command and data packets.
2816  *
2817  */
__ipw2100_tx_process(struct ipw2100_priv * priv)2818 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2819 {
2820 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
2821 	struct ipw2100_bd *tbd;
2822 	struct list_head *element;
2823 	struct ipw2100_tx_packet *packet;
2824 	int descriptors_used;
2825 	int e, i;
2826 	u32 r, w, frag_num = 0;
2827 
2828 	if (list_empty(&priv->fw_pend_list))
2829 		return 0;
2830 
2831 	element = priv->fw_pend_list.next;
2832 
2833 	packet = list_entry(element, struct ipw2100_tx_packet, list);
2834 	tbd = &txq->drv[packet->index];
2835 
2836 	/* Determine how many TBD entries must be finished... */
2837 	switch (packet->type) {
2838 	case COMMAND:
2839 		/* COMMAND uses only one slot; don't advance */
2840 		descriptors_used = 1;
2841 		e = txq->oldest;
2842 		break;
2843 
2844 	case DATA:
2845 		/* DATA uses two slots; advance and loop position. */
2846 		descriptors_used = tbd->num_fragments;
2847 		frag_num = tbd->num_fragments - 1;
2848 		e = txq->oldest + frag_num;
2849 		e %= txq->entries;
2850 		break;
2851 
2852 	default:
2853 		printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2854 		       priv->net_dev->name);
2855 		return 0;
2856 	}
2857 
2858 	/* if the last TBD is not done by NIC yet, then packet is
2859 	 * not ready to be released.
2860 	 *
2861 	 */
2862 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2863 		      &r);
2864 	read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2865 		      &w);
2866 	if (w != txq->next)
2867 		printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2868 		       priv->net_dev->name);
2869 
2870 	/*
2871 	 * txq->next is the index of the last packet written txq->oldest is
2872 	 * the index of the r is the index of the next packet to be read by
2873 	 * firmware
2874 	 */
2875 
2876 	/*
2877 	 * Quick graphic to help you visualize the following
2878 	 * if / else statement
2879 	 *
2880 	 * ===>|                     s---->|===============
2881 	 *                               e>|
2882 	 * | a | b | c | d | e | f | g | h | i | j | k | l
2883 	 *       r---->|
2884 	 *               w
2885 	 *
2886 	 * w - updated by driver
2887 	 * r - updated by firmware
2888 	 * s - start of oldest BD entry (txq->oldest)
2889 	 * e - end of oldest BD entry
2890 	 *
2891 	 */
2892 	if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2893 		IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2894 		return 0;
2895 	}
2896 
2897 	list_del(element);
2898 	DEC_STAT(&priv->fw_pend_stat);
2899 
2900 #ifdef CONFIG_IPW2100_DEBUG
2901 	{
2902 		i = txq->oldest;
2903 		IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2904 			     &txq->drv[i],
2905 			     (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2906 			     txq->drv[i].host_addr, txq->drv[i].buf_length);
2907 
2908 		if (packet->type == DATA) {
2909 			i = (i + 1) % txq->entries;
2910 
2911 			IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2912 				     &txq->drv[i],
2913 				     (u32) (txq->nic + i *
2914 					    sizeof(struct ipw2100_bd)),
2915 				     (u32) txq->drv[i].host_addr,
2916 				     txq->drv[i].buf_length);
2917 		}
2918 	}
2919 #endif
2920 
2921 	switch (packet->type) {
2922 	case DATA:
2923 		if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2924 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2925 			       "Expecting DATA TBD but pulled "
2926 			       "something else: ids %d=%d.\n",
2927 			       priv->net_dev->name, txq->oldest, packet->index);
2928 
2929 		/* DATA packet; we have to unmap and free the SKB */
2930 		for (i = 0; i < frag_num; i++) {
2931 			tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2932 
2933 			IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2934 				     (packet->index + 1 + i) % txq->entries,
2935 				     tbd->host_addr, tbd->buf_length);
2936 
2937 			pci_unmap_single(priv->pci_dev,
2938 					 tbd->host_addr,
2939 					 tbd->buf_length, PCI_DMA_TODEVICE);
2940 		}
2941 
2942 		libipw_txb_free(packet->info.d_struct.txb);
2943 		packet->info.d_struct.txb = NULL;
2944 
2945 		list_add_tail(element, &priv->tx_free_list);
2946 		INC_STAT(&priv->tx_free_stat);
2947 
2948 		/* We have a free slot in the Tx queue, so wake up the
2949 		 * transmit layer if it is stopped. */
2950 		if (priv->status & STATUS_ASSOCIATED)
2951 			netif_wake_queue(priv->net_dev);
2952 
2953 		/* A packet was processed by the hardware, so update the
2954 		 * watchdog */
2955 		priv->net_dev->trans_start = jiffies;
2956 
2957 		break;
2958 
2959 	case COMMAND:
2960 		if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2961 			printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2962 			       "Expecting COMMAND TBD but pulled "
2963 			       "something else: ids %d=%d.\n",
2964 			       priv->net_dev->name, txq->oldest, packet->index);
2965 
2966 #ifdef CONFIG_IPW2100_DEBUG
2967 		if (packet->info.c_struct.cmd->host_command_reg <
2968 		    ARRAY_SIZE(command_types))
2969 			IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2970 				     command_types[packet->info.c_struct.cmd->
2971 						   host_command_reg],
2972 				     packet->info.c_struct.cmd->
2973 				     host_command_reg,
2974 				     packet->info.c_struct.cmd->cmd_status_reg);
2975 #endif
2976 
2977 		list_add_tail(element, &priv->msg_free_list);
2978 		INC_STAT(&priv->msg_free_stat);
2979 		break;
2980 	}
2981 
2982 	/* advance oldest used TBD pointer to start of next entry */
2983 	txq->oldest = (e + 1) % txq->entries;
2984 	/* increase available TBDs number */
2985 	txq->available += descriptors_used;
2986 	SET_STAT(&priv->txq_stat, txq->available);
2987 
2988 	IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2989 		     jiffies - packet->jiffy_start);
2990 
2991 	return (!list_empty(&priv->fw_pend_list));
2992 }
2993 
__ipw2100_tx_complete(struct ipw2100_priv * priv)2994 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2995 {
2996 	int i = 0;
2997 
2998 	while (__ipw2100_tx_process(priv) && i < 200)
2999 		i++;
3000 
3001 	if (i == 200) {
3002 		printk(KERN_WARNING DRV_NAME ": "
3003 		       "%s: Driver is running slow (%d iters).\n",
3004 		       priv->net_dev->name, i);
3005 	}
3006 }
3007 
ipw2100_tx_send_commands(struct ipw2100_priv * priv)3008 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3009 {
3010 	struct list_head *element;
3011 	struct ipw2100_tx_packet *packet;
3012 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3013 	struct ipw2100_bd *tbd;
3014 	int next = txq->next;
3015 
3016 	while (!list_empty(&priv->msg_pend_list)) {
3017 		/* if there isn't enough space in TBD queue, then
3018 		 * don't stuff a new one in.
3019 		 * NOTE: 3 are needed as a command will take one,
3020 		 *       and there is a minimum of 2 that must be
3021 		 *       maintained between the r and w indexes
3022 		 */
3023 		if (txq->available <= 3) {
3024 			IPW_DEBUG_TX("no room in tx_queue\n");
3025 			break;
3026 		}
3027 
3028 		element = priv->msg_pend_list.next;
3029 		list_del(element);
3030 		DEC_STAT(&priv->msg_pend_stat);
3031 
3032 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3033 
3034 		IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3035 			     &txq->drv[txq->next],
3036 			     (u32) (txq->nic + txq->next *
3037 				      sizeof(struct ipw2100_bd)));
3038 
3039 		packet->index = txq->next;
3040 
3041 		tbd = &txq->drv[txq->next];
3042 
3043 		/* initialize TBD */
3044 		tbd->host_addr = packet->info.c_struct.cmd_phys;
3045 		tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3046 		/* not marking number of fragments causes problems
3047 		 * with f/w debug version */
3048 		tbd->num_fragments = 1;
3049 		tbd->status.info.field =
3050 		    IPW_BD_STATUS_TX_FRAME_COMMAND |
3051 		    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3052 
3053 		/* update TBD queue counters */
3054 		txq->next++;
3055 		txq->next %= txq->entries;
3056 		txq->available--;
3057 		DEC_STAT(&priv->txq_stat);
3058 
3059 		list_add_tail(element, &priv->fw_pend_list);
3060 		INC_STAT(&priv->fw_pend_stat);
3061 	}
3062 
3063 	if (txq->next != next) {
3064 		/* kick off the DMA by notifying firmware the
3065 		 * write index has moved; make sure TBD stores are sync'd */
3066 		wmb();
3067 		write_register(priv->net_dev,
3068 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3069 			       txq->next);
3070 	}
3071 }
3072 
3073 /*
3074  * ipw2100_tx_send_data
3075  *
3076  */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3077 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3078 {
3079 	struct list_head *element;
3080 	struct ipw2100_tx_packet *packet;
3081 	struct ipw2100_bd_queue *txq = &priv->tx_queue;
3082 	struct ipw2100_bd *tbd;
3083 	int next = txq->next;
3084 	int i = 0;
3085 	struct ipw2100_data_header *ipw_hdr;
3086 	struct libipw_hdr_3addr *hdr;
3087 
3088 	while (!list_empty(&priv->tx_pend_list)) {
3089 		/* if there isn't enough space in TBD queue, then
3090 		 * don't stuff a new one in.
3091 		 * NOTE: 4 are needed as a data will take two,
3092 		 *       and there is a minimum of 2 that must be
3093 		 *       maintained between the r and w indexes
3094 		 */
3095 		element = priv->tx_pend_list.next;
3096 		packet = list_entry(element, struct ipw2100_tx_packet, list);
3097 
3098 		if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3099 			     IPW_MAX_BDS)) {
3100 			/* TODO: Support merging buffers if more than
3101 			 * IPW_MAX_BDS are used */
3102 			IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3103 				       "Increase fragmentation level.\n",
3104 				       priv->net_dev->name);
3105 		}
3106 
3107 		if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3108 			IPW_DEBUG_TX("no room in tx_queue\n");
3109 			break;
3110 		}
3111 
3112 		list_del(element);
3113 		DEC_STAT(&priv->tx_pend_stat);
3114 
3115 		tbd = &txq->drv[txq->next];
3116 
3117 		packet->index = txq->next;
3118 
3119 		ipw_hdr = packet->info.d_struct.data;
3120 		hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3121 		    fragments[0]->data;
3122 
3123 		if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3124 			/* To DS: Addr1 = BSSID, Addr2 = SA,
3125 			   Addr3 = DA */
3126 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3127 			memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3128 		} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3129 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
3130 			   Addr3 = BSSID */
3131 			memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 			memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3133 		}
3134 
3135 		ipw_hdr->host_command_reg = SEND;
3136 		ipw_hdr->host_command_reg1 = 0;
3137 
3138 		/* For now we only support host based encryption */
3139 		ipw_hdr->needs_encryption = 0;
3140 		ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3141 		if (packet->info.d_struct.txb->nr_frags > 1)
3142 			ipw_hdr->fragment_size =
3143 			    packet->info.d_struct.txb->frag_size -
3144 			    LIBIPW_3ADDR_LEN;
3145 		else
3146 			ipw_hdr->fragment_size = 0;
3147 
3148 		tbd->host_addr = packet->info.d_struct.data_phys;
3149 		tbd->buf_length = sizeof(struct ipw2100_data_header);
3150 		tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3151 		tbd->status.info.field =
3152 		    IPW_BD_STATUS_TX_FRAME_802_3 |
3153 		    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3154 		txq->next++;
3155 		txq->next %= txq->entries;
3156 
3157 		IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3158 			     packet->index, tbd->host_addr, tbd->buf_length);
3159 #ifdef CONFIG_IPW2100_DEBUG
3160 		if (packet->info.d_struct.txb->nr_frags > 1)
3161 			IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3162 				       packet->info.d_struct.txb->nr_frags);
3163 #endif
3164 
3165 		for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3166 			tbd = &txq->drv[txq->next];
3167 			if (i == packet->info.d_struct.txb->nr_frags - 1)
3168 				tbd->status.info.field =
3169 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3170 				    IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3171 			else
3172 				tbd->status.info.field =
3173 				    IPW_BD_STATUS_TX_FRAME_802_3 |
3174 				    IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175 
3176 			tbd->buf_length = packet->info.d_struct.txb->
3177 			    fragments[i]->len - LIBIPW_3ADDR_LEN;
3178 
3179 			tbd->host_addr = pci_map_single(priv->pci_dev,
3180 							packet->info.d_struct.
3181 							txb->fragments[i]->
3182 							data +
3183 							LIBIPW_3ADDR_LEN,
3184 							tbd->buf_length,
3185 							PCI_DMA_TODEVICE);
3186 
3187 			IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3188 				     txq->next, tbd->host_addr,
3189 				     tbd->buf_length);
3190 
3191 			pci_dma_sync_single_for_device(priv->pci_dev,
3192 						       tbd->host_addr,
3193 						       tbd->buf_length,
3194 						       PCI_DMA_TODEVICE);
3195 
3196 			txq->next++;
3197 			txq->next %= txq->entries;
3198 		}
3199 
3200 		txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3201 		SET_STAT(&priv->txq_stat, txq->available);
3202 
3203 		list_add_tail(element, &priv->fw_pend_list);
3204 		INC_STAT(&priv->fw_pend_stat);
3205 	}
3206 
3207 	if (txq->next != next) {
3208 		/* kick off the DMA by notifying firmware the
3209 		 * write index has moved; make sure TBD stores are sync'd */
3210 		write_register(priv->net_dev,
3211 			       IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3212 			       txq->next);
3213 	}
3214 }
3215 
ipw2100_irq_tasklet(struct ipw2100_priv * priv)3216 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3217 {
3218 	struct net_device *dev = priv->net_dev;
3219 	unsigned long flags;
3220 	u32 inta, tmp;
3221 
3222 	spin_lock_irqsave(&priv->low_lock, flags);
3223 	ipw2100_disable_interrupts(priv);
3224 
3225 	read_register(dev, IPW_REG_INTA, &inta);
3226 
3227 	IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3228 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3229 
3230 	priv->in_isr++;
3231 	priv->interrupts++;
3232 
3233 	/* We do not loop and keep polling for more interrupts as this
3234 	 * is frowned upon and doesn't play nicely with other potentially
3235 	 * chained IRQs */
3236 	IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3237 		      (unsigned long)inta & IPW_INTERRUPT_MASK);
3238 
3239 	if (inta & IPW2100_INTA_FATAL_ERROR) {
3240 		printk(KERN_WARNING DRV_NAME
3241 		       ": Fatal interrupt. Scheduling firmware restart.\n");
3242 		priv->inta_other++;
3243 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3244 
3245 		read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3246 		IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3247 			       priv->net_dev->name, priv->fatal_error);
3248 
3249 		read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3250 		IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3251 			       priv->net_dev->name, tmp);
3252 
3253 		/* Wake up any sleeping jobs */
3254 		schedule_reset(priv);
3255 	}
3256 
3257 	if (inta & IPW2100_INTA_PARITY_ERROR) {
3258 		printk(KERN_ERR DRV_NAME
3259 		       ": ***** PARITY ERROR INTERRUPT !!!!\n");
3260 		priv->inta_other++;
3261 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3262 	}
3263 
3264 	if (inta & IPW2100_INTA_RX_TRANSFER) {
3265 		IPW_DEBUG_ISR("RX interrupt\n");
3266 
3267 		priv->rx_interrupts++;
3268 
3269 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3270 
3271 		__ipw2100_rx_process(priv);
3272 		__ipw2100_tx_complete(priv);
3273 	}
3274 
3275 	if (inta & IPW2100_INTA_TX_TRANSFER) {
3276 		IPW_DEBUG_ISR("TX interrupt\n");
3277 
3278 		priv->tx_interrupts++;
3279 
3280 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3281 
3282 		__ipw2100_tx_complete(priv);
3283 		ipw2100_tx_send_commands(priv);
3284 		ipw2100_tx_send_data(priv);
3285 	}
3286 
3287 	if (inta & IPW2100_INTA_TX_COMPLETE) {
3288 		IPW_DEBUG_ISR("TX complete\n");
3289 		priv->inta_other++;
3290 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3291 
3292 		__ipw2100_tx_complete(priv);
3293 	}
3294 
3295 	if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3296 		/* ipw2100_handle_event(dev); */
3297 		priv->inta_other++;
3298 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3299 	}
3300 
3301 	if (inta & IPW2100_INTA_FW_INIT_DONE) {
3302 		IPW_DEBUG_ISR("FW init done interrupt\n");
3303 		priv->inta_other++;
3304 
3305 		read_register(dev, IPW_REG_INTA, &tmp);
3306 		if (tmp & (IPW2100_INTA_FATAL_ERROR |
3307 			   IPW2100_INTA_PARITY_ERROR)) {
3308 			write_register(dev, IPW_REG_INTA,
3309 				       IPW2100_INTA_FATAL_ERROR |
3310 				       IPW2100_INTA_PARITY_ERROR);
3311 		}
3312 
3313 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3314 	}
3315 
3316 	if (inta & IPW2100_INTA_STATUS_CHANGE) {
3317 		IPW_DEBUG_ISR("Status change interrupt\n");
3318 		priv->inta_other++;
3319 		write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3320 	}
3321 
3322 	if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3323 		IPW_DEBUG_ISR("slave host mode interrupt\n");
3324 		priv->inta_other++;
3325 		write_register(dev, IPW_REG_INTA,
3326 			       IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3327 	}
3328 
3329 	priv->in_isr--;
3330 	ipw2100_enable_interrupts(priv);
3331 
3332 	spin_unlock_irqrestore(&priv->low_lock, flags);
3333 
3334 	IPW_DEBUG_ISR("exit\n");
3335 }
3336 
ipw2100_interrupt(int irq,void * data)3337 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3338 {
3339 	struct ipw2100_priv *priv = data;
3340 	u32 inta, inta_mask;
3341 
3342 	if (!data)
3343 		return IRQ_NONE;
3344 
3345 	spin_lock(&priv->low_lock);
3346 
3347 	/* We check to see if we should be ignoring interrupts before
3348 	 * we touch the hardware.  During ucode load if we try and handle
3349 	 * an interrupt we can cause keyboard problems as well as cause
3350 	 * the ucode to fail to initialize */
3351 	if (!(priv->status & STATUS_INT_ENABLED)) {
3352 		/* Shared IRQ */
3353 		goto none;
3354 	}
3355 
3356 	read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3357 	read_register(priv->net_dev, IPW_REG_INTA, &inta);
3358 
3359 	if (inta == 0xFFFFFFFF) {
3360 		/* Hardware disappeared */
3361 		printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3362 		goto none;
3363 	}
3364 
3365 	inta &= IPW_INTERRUPT_MASK;
3366 
3367 	if (!(inta & inta_mask)) {
3368 		/* Shared interrupt */
3369 		goto none;
3370 	}
3371 
3372 	/* We disable the hardware interrupt here just to prevent unneeded
3373 	 * calls to be made.  We disable this again within the actual
3374 	 * work tasklet, so if another part of the code re-enables the
3375 	 * interrupt, that is fine */
3376 	ipw2100_disable_interrupts(priv);
3377 
3378 	tasklet_schedule(&priv->irq_tasklet);
3379 	spin_unlock(&priv->low_lock);
3380 
3381 	return IRQ_HANDLED;
3382       none:
3383 	spin_unlock(&priv->low_lock);
3384 	return IRQ_NONE;
3385 }
3386 
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3387 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3388 			      struct net_device *dev, int pri)
3389 {
3390 	struct ipw2100_priv *priv = libipw_priv(dev);
3391 	struct list_head *element;
3392 	struct ipw2100_tx_packet *packet;
3393 	unsigned long flags;
3394 
3395 	spin_lock_irqsave(&priv->low_lock, flags);
3396 
3397 	if (!(priv->status & STATUS_ASSOCIATED)) {
3398 		IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3399 		priv->net_dev->stats.tx_carrier_errors++;
3400 		netif_stop_queue(dev);
3401 		goto fail_unlock;
3402 	}
3403 
3404 	if (list_empty(&priv->tx_free_list))
3405 		goto fail_unlock;
3406 
3407 	element = priv->tx_free_list.next;
3408 	packet = list_entry(element, struct ipw2100_tx_packet, list);
3409 
3410 	packet->info.d_struct.txb = txb;
3411 
3412 	IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3413 	printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3414 
3415 	packet->jiffy_start = jiffies;
3416 
3417 	list_del(element);
3418 	DEC_STAT(&priv->tx_free_stat);
3419 
3420 	list_add_tail(element, &priv->tx_pend_list);
3421 	INC_STAT(&priv->tx_pend_stat);
3422 
3423 	ipw2100_tx_send_data(priv);
3424 
3425 	spin_unlock_irqrestore(&priv->low_lock, flags);
3426 	return NETDEV_TX_OK;
3427 
3428 fail_unlock:
3429 	netif_stop_queue(dev);
3430 	spin_unlock_irqrestore(&priv->low_lock, flags);
3431 	return NETDEV_TX_BUSY;
3432 }
3433 
ipw2100_msg_allocate(struct ipw2100_priv * priv)3434 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3435 {
3436 	int i, j, err = -EINVAL;
3437 	void *v;
3438 	dma_addr_t p;
3439 
3440 	priv->msg_buffers =
3441 	    kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3442 		    GFP_KERNEL);
3443 	if (!priv->msg_buffers)
3444 		return -ENOMEM;
3445 
3446 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3447 		v = pci_zalloc_consistent(priv->pci_dev,
3448 					  sizeof(struct ipw2100_cmd_header),
3449 					  &p);
3450 		if (!v) {
3451 			printk(KERN_ERR DRV_NAME ": "
3452 			       "%s: PCI alloc failed for msg "
3453 			       "buffers.\n", priv->net_dev->name);
3454 			err = -ENOMEM;
3455 			break;
3456 		}
3457 
3458 		priv->msg_buffers[i].type = COMMAND;
3459 		priv->msg_buffers[i].info.c_struct.cmd =
3460 		    (struct ipw2100_cmd_header *)v;
3461 		priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3462 	}
3463 
3464 	if (i == IPW_COMMAND_POOL_SIZE)
3465 		return 0;
3466 
3467 	for (j = 0; j < i; j++) {
3468 		pci_free_consistent(priv->pci_dev,
3469 				    sizeof(struct ipw2100_cmd_header),
3470 				    priv->msg_buffers[j].info.c_struct.cmd,
3471 				    priv->msg_buffers[j].info.c_struct.
3472 				    cmd_phys);
3473 	}
3474 
3475 	kfree(priv->msg_buffers);
3476 	priv->msg_buffers = NULL;
3477 
3478 	return err;
3479 }
3480 
ipw2100_msg_initialize(struct ipw2100_priv * priv)3481 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3482 {
3483 	int i;
3484 
3485 	INIT_LIST_HEAD(&priv->msg_free_list);
3486 	INIT_LIST_HEAD(&priv->msg_pend_list);
3487 
3488 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3489 		list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3490 	SET_STAT(&priv->msg_free_stat, i);
3491 
3492 	return 0;
3493 }
3494 
ipw2100_msg_free(struct ipw2100_priv * priv)3495 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3496 {
3497 	int i;
3498 
3499 	if (!priv->msg_buffers)
3500 		return;
3501 
3502 	for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3503 		pci_free_consistent(priv->pci_dev,
3504 				    sizeof(struct ipw2100_cmd_header),
3505 				    priv->msg_buffers[i].info.c_struct.cmd,
3506 				    priv->msg_buffers[i].info.c_struct.
3507 				    cmd_phys);
3508 	}
3509 
3510 	kfree(priv->msg_buffers);
3511 	priv->msg_buffers = NULL;
3512 }
3513 
show_pci(struct device * d,struct device_attribute * attr,char * buf)3514 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3515 			char *buf)
3516 {
3517 	struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3518 	char *out = buf;
3519 	int i, j;
3520 	u32 val;
3521 
3522 	for (i = 0; i < 16; i++) {
3523 		out += sprintf(out, "[%08X] ", i * 16);
3524 		for (j = 0; j < 16; j += 4) {
3525 			pci_read_config_dword(pci_dev, i * 16 + j, &val);
3526 			out += sprintf(out, "%08X ", val);
3527 		}
3528 		out += sprintf(out, "\n");
3529 	}
3530 
3531 	return out - buf;
3532 }
3533 
3534 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3535 
show_cfg(struct device * d,struct device_attribute * attr,char * buf)3536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3537 			char *buf)
3538 {
3539 	struct ipw2100_priv *p = dev_get_drvdata(d);
3540 	return sprintf(buf, "0x%08x\n", (int)p->config);
3541 }
3542 
3543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3544 
show_status(struct device * d,struct device_attribute * attr,char * buf)3545 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3546 			   char *buf)
3547 {
3548 	struct ipw2100_priv *p = dev_get_drvdata(d);
3549 	return sprintf(buf, "0x%08x\n", (int)p->status);
3550 }
3551 
3552 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3553 
show_capability(struct device * d,struct device_attribute * attr,char * buf)3554 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3555 			       char *buf)
3556 {
3557 	struct ipw2100_priv *p = dev_get_drvdata(d);
3558 	return sprintf(buf, "0x%08x\n", (int)p->capability);
3559 }
3560 
3561 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3562 
3563 #define IPW2100_REG(x) { IPW_ ##x, #x }
3564 static const struct {
3565 	u32 addr;
3566 	const char *name;
3567 } hw_data[] = {
3568 IPW2100_REG(REG_GP_CNTRL),
3569 	    IPW2100_REG(REG_GPIO),
3570 	    IPW2100_REG(REG_INTA),
3571 	    IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3572 #define IPW2100_NIC(x, s) { x, #x, s }
3573 static const struct {
3574 	u32 addr;
3575 	const char *name;
3576 	size_t size;
3577 } nic_data[] = {
3578 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3579 	    IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3580 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3581 static const struct {
3582 	u8 index;
3583 	const char *name;
3584 	const char *desc;
3585 } ord_data[] = {
3586 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3587 	    IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3588 				"successful Host Tx's (MSDU)"),
3589 	    IPW2100_ORD(STAT_TX_DIR_DATA,
3590 				"successful Directed Tx's (MSDU)"),
3591 	    IPW2100_ORD(STAT_TX_DIR_DATA1,
3592 				"successful Directed Tx's (MSDU) @ 1MB"),
3593 	    IPW2100_ORD(STAT_TX_DIR_DATA2,
3594 				"successful Directed Tx's (MSDU) @ 2MB"),
3595 	    IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3596 				"successful Directed Tx's (MSDU) @ 5_5MB"),
3597 	    IPW2100_ORD(STAT_TX_DIR_DATA11,
3598 				"successful Directed Tx's (MSDU) @ 11MB"),
3599 	    IPW2100_ORD(STAT_TX_NODIR_DATA1,
3600 				"successful Non_Directed Tx's (MSDU) @ 1MB"),
3601 	    IPW2100_ORD(STAT_TX_NODIR_DATA2,
3602 				"successful Non_Directed Tx's (MSDU) @ 2MB"),
3603 	    IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3604 				"successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3605 	    IPW2100_ORD(STAT_TX_NODIR_DATA11,
3606 				"successful Non_Directed Tx's (MSDU) @ 11MB"),
3607 	    IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3608 	    IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3609 	    IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3610 	    IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3611 	    IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3612 	    IPW2100_ORD(STAT_TX_ASSN_RESP,
3613 				"successful Association response Tx's"),
3614 	    IPW2100_ORD(STAT_TX_REASSN,
3615 				"successful Reassociation Tx's"),
3616 	    IPW2100_ORD(STAT_TX_REASSN_RESP,
3617 				"successful Reassociation response Tx's"),
3618 	    IPW2100_ORD(STAT_TX_PROBE,
3619 				"probes successfully transmitted"),
3620 	    IPW2100_ORD(STAT_TX_PROBE_RESP,
3621 				"probe responses successfully transmitted"),
3622 	    IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3623 	    IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3624 	    IPW2100_ORD(STAT_TX_DISASSN,
3625 				"successful Disassociation TX"),
3626 	    IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3627 	    IPW2100_ORD(STAT_TX_DEAUTH,
3628 				"successful Deauthentication TX"),
3629 	    IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3630 				"Total successful Tx data bytes"),
3631 	    IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3632 	    IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3633 	    IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3634 	    IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3635 	    IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3636 	    IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3637 	    IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3638 				"times max tries in a hop failed"),
3639 	    IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3640 				"times disassociation failed"),
3641 	    IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3642 	    IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3643 	    IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3644 	    IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3645 	    IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3646 	    IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3647 	    IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3648 				"directed packets at 5.5MB"),
3649 	    IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3650 	    IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3651 	    IPW2100_ORD(STAT_RX_NODIR_DATA1,
3652 				"nondirected packets at 1MB"),
3653 	    IPW2100_ORD(STAT_RX_NODIR_DATA2,
3654 				"nondirected packets at 2MB"),
3655 	    IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3656 				"nondirected packets at 5.5MB"),
3657 	    IPW2100_ORD(STAT_RX_NODIR_DATA11,
3658 				"nondirected packets at 11MB"),
3659 	    IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3660 	    IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3661 								    "Rx CTS"),
3662 	    IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3663 	    IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3664 	    IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3665 	    IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3666 	    IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3667 	    IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3668 	    IPW2100_ORD(STAT_RX_REASSN_RESP,
3669 				"Reassociation response Rx's"),
3670 	    IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3671 	    IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3672 	    IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3673 	    IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3674 	    IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3675 	    IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3676 	    IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3677 	    IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3678 				"Total rx data bytes received"),
3679 	    IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3680 	    IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3681 	    IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3682 	    IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3683 	    IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3684 	    IPW2100_ORD(STAT_RX_DUPLICATE1,
3685 				"duplicate rx packets at 1MB"),
3686 	    IPW2100_ORD(STAT_RX_DUPLICATE2,
3687 				"duplicate rx packets at 2MB"),
3688 	    IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3689 				"duplicate rx packets at 5.5MB"),
3690 	    IPW2100_ORD(STAT_RX_DUPLICATE11,
3691 				"duplicate rx packets at 11MB"),
3692 	    IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3693 	    IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3694 	    IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3695 	    IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3696 	    IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3697 				"rx frames with invalid protocol"),
3698 	    IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3699 	    IPW2100_ORD(STAT_RX_NO_BUFFER,
3700 				"rx frames rejected due to no buffer"),
3701 	    IPW2100_ORD(STAT_RX_MISSING_FRAG,
3702 				"rx frames dropped due to missing fragment"),
3703 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3704 				"rx frames dropped due to non-sequential fragment"),
3705 	    IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3706 				"rx frames dropped due to unmatched 1st frame"),
3707 	    IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3708 				"rx frames dropped due to uncompleted frame"),
3709 	    IPW2100_ORD(STAT_RX_ICV_ERRORS,
3710 				"ICV errors during decryption"),
3711 	    IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3712 	    IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3713 	    IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3714 				"poll response timeouts"),
3715 	    IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3716 				"timeouts waiting for last {broad,multi}cast pkt"),
3717 	    IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3718 	    IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3719 	    IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3720 	    IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3721 	    IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3722 				"current calculation of % missed beacons"),
3723 	    IPW2100_ORD(STAT_PERCENT_RETRIES,
3724 				"current calculation of % missed tx retries"),
3725 	    IPW2100_ORD(ASSOCIATED_AP_PTR,
3726 				"0 if not associated, else pointer to AP table entry"),
3727 	    IPW2100_ORD(AVAILABLE_AP_CNT,
3728 				"AP's decsribed in the AP table"),
3729 	    IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3730 	    IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3731 	    IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3732 	    IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3733 				"failures due to response fail"),
3734 	    IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3735 	    IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3736 	    IPW2100_ORD(STAT_ROAM_INHIBIT,
3737 				"times roaming was inhibited due to activity"),
3738 	    IPW2100_ORD(RSSI_AT_ASSN,
3739 				"RSSI of associated AP at time of association"),
3740 	    IPW2100_ORD(STAT_ASSN_CAUSE1,
3741 				"reassociation: no probe response or TX on hop"),
3742 	    IPW2100_ORD(STAT_ASSN_CAUSE2,
3743 				"reassociation: poor tx/rx quality"),
3744 	    IPW2100_ORD(STAT_ASSN_CAUSE3,
3745 				"reassociation: tx/rx quality (excessive AP load"),
3746 	    IPW2100_ORD(STAT_ASSN_CAUSE4,
3747 				"reassociation: AP RSSI level"),
3748 	    IPW2100_ORD(STAT_ASSN_CAUSE5,
3749 				"reassociations due to load leveling"),
3750 	    IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3751 	    IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3752 				"times authentication response failed"),
3753 	    IPW2100_ORD(STATION_TABLE_CNT,
3754 				"entries in association table"),
3755 	    IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3756 	    IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3757 	    IPW2100_ORD(COUNTRY_CODE,
3758 				"IEEE country code as recv'd from beacon"),
3759 	    IPW2100_ORD(COUNTRY_CHANNELS,
3760 				"channels supported by country"),
3761 	    IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3762 	    IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3763 	    IPW2100_ORD(ANTENNA_DIVERSITY,
3764 				"TRUE if antenna diversity is disabled"),
3765 	    IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3766 	    IPW2100_ORD(OUR_FREQ,
3767 				"current radio freq lower digits - channel ID"),
3768 	    IPW2100_ORD(RTC_TIME, "current RTC time"),
3769 	    IPW2100_ORD(PORT_TYPE, "operating mode"),
3770 	    IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3771 	    IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3772 	    IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3773 	    IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3774 	    IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3775 	    IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3776 	    IPW2100_ORD(CAPABILITIES,
3777 				"Management frame capability field"),
3778 	    IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3779 	    IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3780 	    IPW2100_ORD(RTS_THRESHOLD,
3781 				"Min packet length for RTS handshaking"),
3782 	    IPW2100_ORD(INT_MODE, "International mode"),
3783 	    IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3784 				"protocol frag threshold"),
3785 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3786 				"EEPROM offset in SRAM"),
3787 	    IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3788 				"EEPROM size in SRAM"),
3789 	    IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3790 	    IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3791 				"EEPROM IBSS 11b channel set"),
3792 	    IPW2100_ORD(MAC_VERSION, "MAC Version"),
3793 	    IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3794 	    IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3795 	    IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3796 	    IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3797 
show_registers(struct device * d,struct device_attribute * attr,char * buf)3798 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3799 			      char *buf)
3800 {
3801 	int i;
3802 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3803 	struct net_device *dev = priv->net_dev;
3804 	char *out = buf;
3805 	u32 val = 0;
3806 
3807 	out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3808 
3809 	for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3810 		read_register(dev, hw_data[i].addr, &val);
3811 		out += sprintf(out, "%30s [%08X] : %08X\n",
3812 			       hw_data[i].name, hw_data[i].addr, val);
3813 	}
3814 
3815 	return out - buf;
3816 }
3817 
3818 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3819 
show_hardware(struct device * d,struct device_attribute * attr,char * buf)3820 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3821 			     char *buf)
3822 {
3823 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3824 	struct net_device *dev = priv->net_dev;
3825 	char *out = buf;
3826 	int i;
3827 
3828 	out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3829 
3830 	for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3831 		u8 tmp8;
3832 		u16 tmp16;
3833 		u32 tmp32;
3834 
3835 		switch (nic_data[i].size) {
3836 		case 1:
3837 			read_nic_byte(dev, nic_data[i].addr, &tmp8);
3838 			out += sprintf(out, "%30s [%08X] : %02X\n",
3839 				       nic_data[i].name, nic_data[i].addr,
3840 				       tmp8);
3841 			break;
3842 		case 2:
3843 			read_nic_word(dev, nic_data[i].addr, &tmp16);
3844 			out += sprintf(out, "%30s [%08X] : %04X\n",
3845 				       nic_data[i].name, nic_data[i].addr,
3846 				       tmp16);
3847 			break;
3848 		case 4:
3849 			read_nic_dword(dev, nic_data[i].addr, &tmp32);
3850 			out += sprintf(out, "%30s [%08X] : %08X\n",
3851 				       nic_data[i].name, nic_data[i].addr,
3852 				       tmp32);
3853 			break;
3854 		}
3855 	}
3856 	return out - buf;
3857 }
3858 
3859 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3860 
show_memory(struct device * d,struct device_attribute * attr,char * buf)3861 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3862 			   char *buf)
3863 {
3864 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3865 	struct net_device *dev = priv->net_dev;
3866 	static unsigned long loop = 0;
3867 	int len = 0;
3868 	u32 buffer[4];
3869 	int i;
3870 	char line[81];
3871 
3872 	if (loop >= 0x30000)
3873 		loop = 0;
3874 
3875 	/* sysfs provides us PAGE_SIZE buffer */
3876 	while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3877 
3878 		if (priv->snapshot[0])
3879 			for (i = 0; i < 4; i++)
3880 				buffer[i] =
3881 				    *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3882 		else
3883 			for (i = 0; i < 4; i++)
3884 				read_nic_dword(dev, loop + i * 4, &buffer[i]);
3885 
3886 		if (priv->dump_raw)
3887 			len += sprintf(buf + len,
3888 				       "%c%c%c%c"
3889 				       "%c%c%c%c"
3890 				       "%c%c%c%c"
3891 				       "%c%c%c%c",
3892 				       ((u8 *) buffer)[0x0],
3893 				       ((u8 *) buffer)[0x1],
3894 				       ((u8 *) buffer)[0x2],
3895 				       ((u8 *) buffer)[0x3],
3896 				       ((u8 *) buffer)[0x4],
3897 				       ((u8 *) buffer)[0x5],
3898 				       ((u8 *) buffer)[0x6],
3899 				       ((u8 *) buffer)[0x7],
3900 				       ((u8 *) buffer)[0x8],
3901 				       ((u8 *) buffer)[0x9],
3902 				       ((u8 *) buffer)[0xa],
3903 				       ((u8 *) buffer)[0xb],
3904 				       ((u8 *) buffer)[0xc],
3905 				       ((u8 *) buffer)[0xd],
3906 				       ((u8 *) buffer)[0xe],
3907 				       ((u8 *) buffer)[0xf]);
3908 		else
3909 			len += sprintf(buf + len, "%s\n",
3910 				       snprint_line(line, sizeof(line),
3911 						    (u8 *) buffer, 16, loop));
3912 		loop += 16;
3913 	}
3914 
3915 	return len;
3916 }
3917 
store_memory(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3918 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3919 			    const char *buf, size_t count)
3920 {
3921 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3922 	struct net_device *dev = priv->net_dev;
3923 	const char *p = buf;
3924 
3925 	(void)dev;		/* kill unused-var warning for debug-only code */
3926 
3927 	if (count < 1)
3928 		return count;
3929 
3930 	if (p[0] == '1' ||
3931 	    (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3932 		IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3933 			       dev->name);
3934 		priv->dump_raw = 1;
3935 
3936 	} else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3937 				   tolower(p[1]) == 'f')) {
3938 		IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3939 			       dev->name);
3940 		priv->dump_raw = 0;
3941 
3942 	} else if (tolower(p[0]) == 'r') {
3943 		IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3944 		ipw2100_snapshot_free(priv);
3945 
3946 	} else
3947 		IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3948 			       "reset = clear memory snapshot\n", dev->name);
3949 
3950 	return count;
3951 }
3952 
3953 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3954 
show_ordinals(struct device * d,struct device_attribute * attr,char * buf)3955 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3956 			     char *buf)
3957 {
3958 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3959 	u32 val = 0;
3960 	int len = 0;
3961 	u32 val_len;
3962 	static int loop = 0;
3963 
3964 	if (priv->status & STATUS_RF_KILL_MASK)
3965 		return 0;
3966 
3967 	if (loop >= ARRAY_SIZE(ord_data))
3968 		loop = 0;
3969 
3970 	/* sysfs provides us PAGE_SIZE buffer */
3971 	while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3972 		val_len = sizeof(u32);
3973 
3974 		if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3975 					&val_len))
3976 			len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3977 				       ord_data[loop].index,
3978 				       ord_data[loop].desc);
3979 		else
3980 			len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3981 				       ord_data[loop].index, val,
3982 				       ord_data[loop].desc);
3983 		loop++;
3984 	}
3985 
3986 	return len;
3987 }
3988 
3989 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3990 
show_stats(struct device * d,struct device_attribute * attr,char * buf)3991 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3992 			  char *buf)
3993 {
3994 	struct ipw2100_priv *priv = dev_get_drvdata(d);
3995 	char *out = buf;
3996 
3997 	out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3998 		       priv->interrupts, priv->tx_interrupts,
3999 		       priv->rx_interrupts, priv->inta_other);
4000 	out += sprintf(out, "firmware resets: %d\n", priv->resets);
4001 	out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4002 #ifdef CONFIG_IPW2100_DEBUG
4003 	out += sprintf(out, "packet mismatch image: %s\n",
4004 		       priv->snapshot[0] ? "YES" : "NO");
4005 #endif
4006 
4007 	return out - buf;
4008 }
4009 
4010 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4011 
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)4012 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4013 {
4014 	int err;
4015 
4016 	if (mode == priv->ieee->iw_mode)
4017 		return 0;
4018 
4019 	err = ipw2100_disable_adapter(priv);
4020 	if (err) {
4021 		printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4022 		       priv->net_dev->name, err);
4023 		return err;
4024 	}
4025 
4026 	switch (mode) {
4027 	case IW_MODE_INFRA:
4028 		priv->net_dev->type = ARPHRD_ETHER;
4029 		break;
4030 	case IW_MODE_ADHOC:
4031 		priv->net_dev->type = ARPHRD_ETHER;
4032 		break;
4033 #ifdef CONFIG_IPW2100_MONITOR
4034 	case IW_MODE_MONITOR:
4035 		priv->last_mode = priv->ieee->iw_mode;
4036 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4037 		break;
4038 #endif				/* CONFIG_IPW2100_MONITOR */
4039 	}
4040 
4041 	priv->ieee->iw_mode = mode;
4042 
4043 #ifdef CONFIG_PM
4044 	/* Indicate ipw2100_download_firmware download firmware
4045 	 * from disk instead of memory. */
4046 	ipw2100_firmware.version = 0;
4047 #endif
4048 
4049 	printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4050 	priv->reset_backoff = 0;
4051 	schedule_reset(priv);
4052 
4053 	return 0;
4054 }
4055 
show_internals(struct device * d,struct device_attribute * attr,char * buf)4056 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4057 			      char *buf)
4058 {
4059 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4060 	int len = 0;
4061 
4062 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4063 
4064 	if (priv->status & STATUS_ASSOCIATED)
4065 		len += sprintf(buf + len, "connected: %lu\n",
4066 			       get_seconds() - priv->connect_start);
4067 	else
4068 		len += sprintf(buf + len, "not connected\n");
4069 
4070 	DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4071 	DUMP_VAR(status, "08lx");
4072 	DUMP_VAR(config, "08lx");
4073 	DUMP_VAR(capability, "08lx");
4074 
4075 	len +=
4076 	    sprintf(buf + len, "last_rtc: %lu\n",
4077 		    (unsigned long)priv->last_rtc);
4078 
4079 	DUMP_VAR(fatal_error, "d");
4080 	DUMP_VAR(stop_hang_check, "d");
4081 	DUMP_VAR(stop_rf_kill, "d");
4082 	DUMP_VAR(messages_sent, "d");
4083 
4084 	DUMP_VAR(tx_pend_stat.value, "d");
4085 	DUMP_VAR(tx_pend_stat.hi, "d");
4086 
4087 	DUMP_VAR(tx_free_stat.value, "d");
4088 	DUMP_VAR(tx_free_stat.lo, "d");
4089 
4090 	DUMP_VAR(msg_free_stat.value, "d");
4091 	DUMP_VAR(msg_free_stat.lo, "d");
4092 
4093 	DUMP_VAR(msg_pend_stat.value, "d");
4094 	DUMP_VAR(msg_pend_stat.hi, "d");
4095 
4096 	DUMP_VAR(fw_pend_stat.value, "d");
4097 	DUMP_VAR(fw_pend_stat.hi, "d");
4098 
4099 	DUMP_VAR(txq_stat.value, "d");
4100 	DUMP_VAR(txq_stat.lo, "d");
4101 
4102 	DUMP_VAR(ieee->scans, "d");
4103 	DUMP_VAR(reset_backoff, "d");
4104 
4105 	return len;
4106 }
4107 
4108 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4109 
show_bssinfo(struct device * d,struct device_attribute * attr,char * buf)4110 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4111 			    char *buf)
4112 {
4113 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4114 	char essid[IW_ESSID_MAX_SIZE + 1];
4115 	u8 bssid[ETH_ALEN];
4116 	u32 chan = 0;
4117 	char *out = buf;
4118 	unsigned int length;
4119 	int ret;
4120 
4121 	if (priv->status & STATUS_RF_KILL_MASK)
4122 		return 0;
4123 
4124 	memset(essid, 0, sizeof(essid));
4125 	memset(bssid, 0, sizeof(bssid));
4126 
4127 	length = IW_ESSID_MAX_SIZE;
4128 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4129 	if (ret)
4130 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4131 			       __LINE__);
4132 
4133 	length = sizeof(bssid);
4134 	ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4135 				  bssid, &length);
4136 	if (ret)
4137 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138 			       __LINE__);
4139 
4140 	length = sizeof(u32);
4141 	ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4142 	if (ret)
4143 		IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144 			       __LINE__);
4145 
4146 	out += sprintf(out, "ESSID: %s\n", essid);
4147 	out += sprintf(out, "BSSID:   %pM\n", bssid);
4148 	out += sprintf(out, "Channel: %d\n", chan);
4149 
4150 	return out - buf;
4151 }
4152 
4153 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4154 
4155 #ifdef CONFIG_IPW2100_DEBUG
show_debug_level(struct device_driver * d,char * buf)4156 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4157 {
4158 	return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4159 }
4160 
store_debug_level(struct device_driver * d,const char * buf,size_t count)4161 static ssize_t store_debug_level(struct device_driver *d,
4162 				 const char *buf, size_t count)
4163 {
4164 	u32 val;
4165 	int ret;
4166 
4167 	ret = kstrtou32(buf, 0, &val);
4168 	if (ret)
4169 		IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4170 	else
4171 		ipw2100_debug_level = val;
4172 
4173 	return strnlen(buf, count);
4174 }
4175 
4176 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4177 		   store_debug_level);
4178 #endif				/* CONFIG_IPW2100_DEBUG */
4179 
show_fatal_error(struct device * d,struct device_attribute * attr,char * buf)4180 static ssize_t show_fatal_error(struct device *d,
4181 				struct device_attribute *attr, char *buf)
4182 {
4183 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4184 	char *out = buf;
4185 	int i;
4186 
4187 	if (priv->fatal_error)
4188 		out += sprintf(out, "0x%08X\n", priv->fatal_error);
4189 	else
4190 		out += sprintf(out, "0\n");
4191 
4192 	for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4193 		if (!priv->fatal_errors[(priv->fatal_index - i) %
4194 					IPW2100_ERROR_QUEUE])
4195 			continue;
4196 
4197 		out += sprintf(out, "%d. 0x%08X\n", i,
4198 			       priv->fatal_errors[(priv->fatal_index - i) %
4199 						  IPW2100_ERROR_QUEUE]);
4200 	}
4201 
4202 	return out - buf;
4203 }
4204 
store_fatal_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4205 static ssize_t store_fatal_error(struct device *d,
4206 				 struct device_attribute *attr, const char *buf,
4207 				 size_t count)
4208 {
4209 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4210 	schedule_reset(priv);
4211 	return count;
4212 }
4213 
4214 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4215 		   store_fatal_error);
4216 
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)4217 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4218 			     char *buf)
4219 {
4220 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4221 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
4222 }
4223 
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4224 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4225 			      const char *buf, size_t count)
4226 {
4227 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4228 	struct net_device *dev = priv->net_dev;
4229 	unsigned long val;
4230 	int ret;
4231 
4232 	(void)dev;		/* kill unused-var warning for debug-only code */
4233 
4234 	IPW_DEBUG_INFO("enter\n");
4235 
4236 	ret = kstrtoul(buf, 0, &val);
4237 	if (ret) {
4238 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4239 	} else {
4240 		priv->ieee->scan_age = val;
4241 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4242 	}
4243 
4244 	IPW_DEBUG_INFO("exit\n");
4245 	return strnlen(buf, count);
4246 }
4247 
4248 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4249 
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)4250 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4251 			    char *buf)
4252 {
4253 	/* 0 - RF kill not enabled
4254 	   1 - SW based RF kill active (sysfs)
4255 	   2 - HW based RF kill active
4256 	   3 - Both HW and SW baed RF kill active */
4257 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4258 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4259 	    (rf_kill_active(priv) ? 0x2 : 0x0);
4260 	return sprintf(buf, "%i\n", val);
4261 }
4262 
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4263 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4264 {
4265 	if ((disable_radio ? 1 : 0) ==
4266 	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4267 		return 0;
4268 
4269 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4270 			  disable_radio ? "OFF" : "ON");
4271 
4272 	mutex_lock(&priv->action_mutex);
4273 
4274 	if (disable_radio) {
4275 		priv->status |= STATUS_RF_KILL_SW;
4276 		ipw2100_down(priv);
4277 	} else {
4278 		priv->status &= ~STATUS_RF_KILL_SW;
4279 		if (rf_kill_active(priv)) {
4280 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4281 					  "disabled by HW switch\n");
4282 			/* Make sure the RF_KILL check timer is running */
4283 			priv->stop_rf_kill = 0;
4284 			mod_delayed_work(system_wq, &priv->rf_kill,
4285 					 round_jiffies_relative(HZ));
4286 		} else
4287 			schedule_reset(priv);
4288 	}
4289 
4290 	mutex_unlock(&priv->action_mutex);
4291 	return 1;
4292 }
4293 
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4294 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4295 			     const char *buf, size_t count)
4296 {
4297 	struct ipw2100_priv *priv = dev_get_drvdata(d);
4298 	ipw_radio_kill_sw(priv, buf[0] == '1');
4299 	return count;
4300 }
4301 
4302 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4303 
4304 static struct attribute *ipw2100_sysfs_entries[] = {
4305 	&dev_attr_hardware.attr,
4306 	&dev_attr_registers.attr,
4307 	&dev_attr_ordinals.attr,
4308 	&dev_attr_pci.attr,
4309 	&dev_attr_stats.attr,
4310 	&dev_attr_internals.attr,
4311 	&dev_attr_bssinfo.attr,
4312 	&dev_attr_memory.attr,
4313 	&dev_attr_scan_age.attr,
4314 	&dev_attr_fatal_error.attr,
4315 	&dev_attr_rf_kill.attr,
4316 	&dev_attr_cfg.attr,
4317 	&dev_attr_status.attr,
4318 	&dev_attr_capability.attr,
4319 	NULL,
4320 };
4321 
4322 static struct attribute_group ipw2100_attribute_group = {
4323 	.attrs = ipw2100_sysfs_entries,
4324 };
4325 
status_queue_allocate(struct ipw2100_priv * priv,int entries)4326 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4327 {
4328 	struct ipw2100_status_queue *q = &priv->status_queue;
4329 
4330 	IPW_DEBUG_INFO("enter\n");
4331 
4332 	q->size = entries * sizeof(struct ipw2100_status);
4333 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4334 	if (!q->drv) {
4335 		IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4336 		return -ENOMEM;
4337 	}
4338 
4339 	IPW_DEBUG_INFO("exit\n");
4340 
4341 	return 0;
4342 }
4343 
status_queue_free(struct ipw2100_priv * priv)4344 static void status_queue_free(struct ipw2100_priv *priv)
4345 {
4346 	IPW_DEBUG_INFO("enter\n");
4347 
4348 	if (priv->status_queue.drv) {
4349 		pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4350 				    priv->status_queue.drv,
4351 				    priv->status_queue.nic);
4352 		priv->status_queue.drv = NULL;
4353 	}
4354 
4355 	IPW_DEBUG_INFO("exit\n");
4356 }
4357 
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4358 static int bd_queue_allocate(struct ipw2100_priv *priv,
4359 			     struct ipw2100_bd_queue *q, int entries)
4360 {
4361 	IPW_DEBUG_INFO("enter\n");
4362 
4363 	memset(q, 0, sizeof(struct ipw2100_bd_queue));
4364 
4365 	q->entries = entries;
4366 	q->size = entries * sizeof(struct ipw2100_bd);
4367 	q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4368 	if (!q->drv) {
4369 		IPW_DEBUG_INFO
4370 		    ("can't allocate shared memory for buffer descriptors\n");
4371 		return -ENOMEM;
4372 	}
4373 
4374 	IPW_DEBUG_INFO("exit\n");
4375 
4376 	return 0;
4377 }
4378 
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4379 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4380 {
4381 	IPW_DEBUG_INFO("enter\n");
4382 
4383 	if (!q)
4384 		return;
4385 
4386 	if (q->drv) {
4387 		pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4388 		q->drv = NULL;
4389 	}
4390 
4391 	IPW_DEBUG_INFO("exit\n");
4392 }
4393 
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4394 static void bd_queue_initialize(struct ipw2100_priv *priv,
4395 				struct ipw2100_bd_queue *q, u32 base, u32 size,
4396 				u32 r, u32 w)
4397 {
4398 	IPW_DEBUG_INFO("enter\n");
4399 
4400 	IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4401 		       (u32) q->nic);
4402 
4403 	write_register(priv->net_dev, base, q->nic);
4404 	write_register(priv->net_dev, size, q->entries);
4405 	write_register(priv->net_dev, r, q->oldest);
4406 	write_register(priv->net_dev, w, q->next);
4407 
4408 	IPW_DEBUG_INFO("exit\n");
4409 }
4410 
ipw2100_kill_works(struct ipw2100_priv * priv)4411 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4412 {
4413 	priv->stop_rf_kill = 1;
4414 	priv->stop_hang_check = 1;
4415 	cancel_delayed_work_sync(&priv->reset_work);
4416 	cancel_delayed_work_sync(&priv->security_work);
4417 	cancel_delayed_work_sync(&priv->wx_event_work);
4418 	cancel_delayed_work_sync(&priv->hang_check);
4419 	cancel_delayed_work_sync(&priv->rf_kill);
4420 	cancel_delayed_work_sync(&priv->scan_event);
4421 }
4422 
ipw2100_tx_allocate(struct ipw2100_priv * priv)4423 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4424 {
4425 	int i, j, err = -EINVAL;
4426 	void *v;
4427 	dma_addr_t p;
4428 
4429 	IPW_DEBUG_INFO("enter\n");
4430 
4431 	err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4432 	if (err) {
4433 		IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4434 				priv->net_dev->name);
4435 		return err;
4436 	}
4437 
4438 	priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4439 					 sizeof(struct ipw2100_tx_packet),
4440 					 GFP_ATOMIC);
4441 	if (!priv->tx_buffers) {
4442 		bd_queue_free(priv, &priv->tx_queue);
4443 		return -ENOMEM;
4444 	}
4445 
4446 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4447 		v = pci_alloc_consistent(priv->pci_dev,
4448 					 sizeof(struct ipw2100_data_header),
4449 					 &p);
4450 		if (!v) {
4451 			printk(KERN_ERR DRV_NAME
4452 			       ": %s: PCI alloc failed for tx " "buffers.\n",
4453 			       priv->net_dev->name);
4454 			err = -ENOMEM;
4455 			break;
4456 		}
4457 
4458 		priv->tx_buffers[i].type = DATA;
4459 		priv->tx_buffers[i].info.d_struct.data =
4460 		    (struct ipw2100_data_header *)v;
4461 		priv->tx_buffers[i].info.d_struct.data_phys = p;
4462 		priv->tx_buffers[i].info.d_struct.txb = NULL;
4463 	}
4464 
4465 	if (i == TX_PENDED_QUEUE_LENGTH)
4466 		return 0;
4467 
4468 	for (j = 0; j < i; j++) {
4469 		pci_free_consistent(priv->pci_dev,
4470 				    sizeof(struct ipw2100_data_header),
4471 				    priv->tx_buffers[j].info.d_struct.data,
4472 				    priv->tx_buffers[j].info.d_struct.
4473 				    data_phys);
4474 	}
4475 
4476 	kfree(priv->tx_buffers);
4477 	priv->tx_buffers = NULL;
4478 
4479 	return err;
4480 }
4481 
ipw2100_tx_initialize(struct ipw2100_priv * priv)4482 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4483 {
4484 	int i;
4485 
4486 	IPW_DEBUG_INFO("enter\n");
4487 
4488 	/*
4489 	 * reinitialize packet info lists
4490 	 */
4491 	INIT_LIST_HEAD(&priv->fw_pend_list);
4492 	INIT_STAT(&priv->fw_pend_stat);
4493 
4494 	/*
4495 	 * reinitialize lists
4496 	 */
4497 	INIT_LIST_HEAD(&priv->tx_pend_list);
4498 	INIT_LIST_HEAD(&priv->tx_free_list);
4499 	INIT_STAT(&priv->tx_pend_stat);
4500 	INIT_STAT(&priv->tx_free_stat);
4501 
4502 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503 		/* We simply drop any SKBs that have been queued for
4504 		 * transmit */
4505 		if (priv->tx_buffers[i].info.d_struct.txb) {
4506 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4507 					   txb);
4508 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4509 		}
4510 
4511 		list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4512 	}
4513 
4514 	SET_STAT(&priv->tx_free_stat, i);
4515 
4516 	priv->tx_queue.oldest = 0;
4517 	priv->tx_queue.available = priv->tx_queue.entries;
4518 	priv->tx_queue.next = 0;
4519 	INIT_STAT(&priv->txq_stat);
4520 	SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4521 
4522 	bd_queue_initialize(priv, &priv->tx_queue,
4523 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4524 			    IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4525 			    IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4526 			    IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4527 
4528 	IPW_DEBUG_INFO("exit\n");
4529 
4530 }
4531 
ipw2100_tx_free(struct ipw2100_priv * priv)4532 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4533 {
4534 	int i;
4535 
4536 	IPW_DEBUG_INFO("enter\n");
4537 
4538 	bd_queue_free(priv, &priv->tx_queue);
4539 
4540 	if (!priv->tx_buffers)
4541 		return;
4542 
4543 	for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4544 		if (priv->tx_buffers[i].info.d_struct.txb) {
4545 			libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4546 					   txb);
4547 			priv->tx_buffers[i].info.d_struct.txb = NULL;
4548 		}
4549 		if (priv->tx_buffers[i].info.d_struct.data)
4550 			pci_free_consistent(priv->pci_dev,
4551 					    sizeof(struct ipw2100_data_header),
4552 					    priv->tx_buffers[i].info.d_struct.
4553 					    data,
4554 					    priv->tx_buffers[i].info.d_struct.
4555 					    data_phys);
4556 	}
4557 
4558 	kfree(priv->tx_buffers);
4559 	priv->tx_buffers = NULL;
4560 
4561 	IPW_DEBUG_INFO("exit\n");
4562 }
4563 
ipw2100_rx_allocate(struct ipw2100_priv * priv)4564 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4565 {
4566 	int i, j, err = -EINVAL;
4567 
4568 	IPW_DEBUG_INFO("enter\n");
4569 
4570 	err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4571 	if (err) {
4572 		IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4573 		return err;
4574 	}
4575 
4576 	err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4577 	if (err) {
4578 		IPW_DEBUG_INFO("failed status_queue_allocate\n");
4579 		bd_queue_free(priv, &priv->rx_queue);
4580 		return err;
4581 	}
4582 
4583 	/*
4584 	 * allocate packets
4585 	 */
4586 	priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4587 				   sizeof(struct ipw2100_rx_packet),
4588 				   GFP_KERNEL);
4589 	if (!priv->rx_buffers) {
4590 		IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4591 
4592 		bd_queue_free(priv, &priv->rx_queue);
4593 
4594 		status_queue_free(priv);
4595 
4596 		return -ENOMEM;
4597 	}
4598 
4599 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4600 		struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4601 
4602 		err = ipw2100_alloc_skb(priv, packet);
4603 		if (unlikely(err)) {
4604 			err = -ENOMEM;
4605 			break;
4606 		}
4607 
4608 		/* The BD holds the cache aligned address */
4609 		priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4610 		priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4611 		priv->status_queue.drv[i].status_fields = 0;
4612 	}
4613 
4614 	if (i == RX_QUEUE_LENGTH)
4615 		return 0;
4616 
4617 	for (j = 0; j < i; j++) {
4618 		pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4619 				 sizeof(struct ipw2100_rx_packet),
4620 				 PCI_DMA_FROMDEVICE);
4621 		dev_kfree_skb(priv->rx_buffers[j].skb);
4622 	}
4623 
4624 	kfree(priv->rx_buffers);
4625 	priv->rx_buffers = NULL;
4626 
4627 	bd_queue_free(priv, &priv->rx_queue);
4628 
4629 	status_queue_free(priv);
4630 
4631 	return err;
4632 }
4633 
ipw2100_rx_initialize(struct ipw2100_priv * priv)4634 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4635 {
4636 	IPW_DEBUG_INFO("enter\n");
4637 
4638 	priv->rx_queue.oldest = 0;
4639 	priv->rx_queue.available = priv->rx_queue.entries - 1;
4640 	priv->rx_queue.next = priv->rx_queue.entries - 1;
4641 
4642 	INIT_STAT(&priv->rxq_stat);
4643 	SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4644 
4645 	bd_queue_initialize(priv, &priv->rx_queue,
4646 			    IPW_MEM_HOST_SHARED_RX_BD_BASE,
4647 			    IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4648 			    IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4649 			    IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4650 
4651 	/* set up the status queue */
4652 	write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4653 		       priv->status_queue.nic);
4654 
4655 	IPW_DEBUG_INFO("exit\n");
4656 }
4657 
ipw2100_rx_free(struct ipw2100_priv * priv)4658 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4659 {
4660 	int i;
4661 
4662 	IPW_DEBUG_INFO("enter\n");
4663 
4664 	bd_queue_free(priv, &priv->rx_queue);
4665 	status_queue_free(priv);
4666 
4667 	if (!priv->rx_buffers)
4668 		return;
4669 
4670 	for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4671 		if (priv->rx_buffers[i].rxp) {
4672 			pci_unmap_single(priv->pci_dev,
4673 					 priv->rx_buffers[i].dma_addr,
4674 					 sizeof(struct ipw2100_rx),
4675 					 PCI_DMA_FROMDEVICE);
4676 			dev_kfree_skb(priv->rx_buffers[i].skb);
4677 		}
4678 	}
4679 
4680 	kfree(priv->rx_buffers);
4681 	priv->rx_buffers = NULL;
4682 
4683 	IPW_DEBUG_INFO("exit\n");
4684 }
4685 
ipw2100_read_mac_address(struct ipw2100_priv * priv)4686 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4687 {
4688 	u32 length = ETH_ALEN;
4689 	u8 addr[ETH_ALEN];
4690 
4691 	int err;
4692 
4693 	err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4694 	if (err) {
4695 		IPW_DEBUG_INFO("MAC address read failed\n");
4696 		return -EIO;
4697 	}
4698 
4699 	memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4700 	IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4701 
4702 	return 0;
4703 }
4704 
4705 /********************************************************************
4706  *
4707  * Firmware Commands
4708  *
4709  ********************************************************************/
4710 
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4711 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4712 {
4713 	struct host_command cmd = {
4714 		.host_command = ADAPTER_ADDRESS,
4715 		.host_command_sequence = 0,
4716 		.host_command_length = ETH_ALEN
4717 	};
4718 	int err;
4719 
4720 	IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4721 
4722 	IPW_DEBUG_INFO("enter\n");
4723 
4724 	if (priv->config & CFG_CUSTOM_MAC) {
4725 		memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4726 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4727 	} else
4728 		memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4729 		       ETH_ALEN);
4730 
4731 	err = ipw2100_hw_send_command(priv, &cmd);
4732 
4733 	IPW_DEBUG_INFO("exit\n");
4734 	return err;
4735 }
4736 
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4737 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4738 				 int batch_mode)
4739 {
4740 	struct host_command cmd = {
4741 		.host_command = PORT_TYPE,
4742 		.host_command_sequence = 0,
4743 		.host_command_length = sizeof(u32)
4744 	};
4745 	int err;
4746 
4747 	switch (port_type) {
4748 	case IW_MODE_INFRA:
4749 		cmd.host_command_parameters[0] = IPW_BSS;
4750 		break;
4751 	case IW_MODE_ADHOC:
4752 		cmd.host_command_parameters[0] = IPW_IBSS;
4753 		break;
4754 	}
4755 
4756 	IPW_DEBUG_HC("PORT_TYPE: %s\n",
4757 		     port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4758 
4759 	if (!batch_mode) {
4760 		err = ipw2100_disable_adapter(priv);
4761 		if (err) {
4762 			printk(KERN_ERR DRV_NAME
4763 			       ": %s: Could not disable adapter %d\n",
4764 			       priv->net_dev->name, err);
4765 			return err;
4766 		}
4767 	}
4768 
4769 	/* send cmd to firmware */
4770 	err = ipw2100_hw_send_command(priv, &cmd);
4771 
4772 	if (!batch_mode)
4773 		ipw2100_enable_adapter(priv);
4774 
4775 	return err;
4776 }
4777 
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4778 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4779 			       int batch_mode)
4780 {
4781 	struct host_command cmd = {
4782 		.host_command = CHANNEL,
4783 		.host_command_sequence = 0,
4784 		.host_command_length = sizeof(u32)
4785 	};
4786 	int err;
4787 
4788 	cmd.host_command_parameters[0] = channel;
4789 
4790 	IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4791 
4792 	/* If BSS then we don't support channel selection */
4793 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
4794 		return 0;
4795 
4796 	if ((channel != 0) &&
4797 	    ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4798 		return -EINVAL;
4799 
4800 	if (!batch_mode) {
4801 		err = ipw2100_disable_adapter(priv);
4802 		if (err)
4803 			return err;
4804 	}
4805 
4806 	err = ipw2100_hw_send_command(priv, &cmd);
4807 	if (err) {
4808 		IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4809 		return err;
4810 	}
4811 
4812 	if (channel)
4813 		priv->config |= CFG_STATIC_CHANNEL;
4814 	else
4815 		priv->config &= ~CFG_STATIC_CHANNEL;
4816 
4817 	priv->channel = channel;
4818 
4819 	if (!batch_mode) {
4820 		err = ipw2100_enable_adapter(priv);
4821 		if (err)
4822 			return err;
4823 	}
4824 
4825 	return 0;
4826 }
4827 
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4828 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4829 {
4830 	struct host_command cmd = {
4831 		.host_command = SYSTEM_CONFIG,
4832 		.host_command_sequence = 0,
4833 		.host_command_length = 12,
4834 	};
4835 	u32 ibss_mask, len = sizeof(u32);
4836 	int err;
4837 
4838 	/* Set system configuration */
4839 
4840 	if (!batch_mode) {
4841 		err = ipw2100_disable_adapter(priv);
4842 		if (err)
4843 			return err;
4844 	}
4845 
4846 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4847 		cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4848 
4849 	cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4850 	    IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4851 
4852 	if (!(priv->config & CFG_LONG_PREAMBLE))
4853 		cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4854 
4855 	err = ipw2100_get_ordinal(priv,
4856 				  IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4857 				  &ibss_mask, &len);
4858 	if (err)
4859 		ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4860 
4861 	cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4862 	cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4863 
4864 	/* 11b only */
4865 	/*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4866 
4867 	err = ipw2100_hw_send_command(priv, &cmd);
4868 	if (err)
4869 		return err;
4870 
4871 /* If IPv6 is configured in the kernel then we don't want to filter out all
4872  * of the multicast packets as IPv6 needs some. */
4873 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4874 	cmd.host_command = ADD_MULTICAST;
4875 	cmd.host_command_sequence = 0;
4876 	cmd.host_command_length = 0;
4877 
4878 	ipw2100_hw_send_command(priv, &cmd);
4879 #endif
4880 	if (!batch_mode) {
4881 		err = ipw2100_enable_adapter(priv);
4882 		if (err)
4883 			return err;
4884 	}
4885 
4886 	return 0;
4887 }
4888 
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4889 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4890 				int batch_mode)
4891 {
4892 	struct host_command cmd = {
4893 		.host_command = BASIC_TX_RATES,
4894 		.host_command_sequence = 0,
4895 		.host_command_length = 4
4896 	};
4897 	int err;
4898 
4899 	cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4900 
4901 	if (!batch_mode) {
4902 		err = ipw2100_disable_adapter(priv);
4903 		if (err)
4904 			return err;
4905 	}
4906 
4907 	/* Set BASIC TX Rate first */
4908 	ipw2100_hw_send_command(priv, &cmd);
4909 
4910 	/* Set TX Rate */
4911 	cmd.host_command = TX_RATES;
4912 	ipw2100_hw_send_command(priv, &cmd);
4913 
4914 	/* Set MSDU TX Rate */
4915 	cmd.host_command = MSDU_TX_RATES;
4916 	ipw2100_hw_send_command(priv, &cmd);
4917 
4918 	if (!batch_mode) {
4919 		err = ipw2100_enable_adapter(priv);
4920 		if (err)
4921 			return err;
4922 	}
4923 
4924 	priv->tx_rates = rate;
4925 
4926 	return 0;
4927 }
4928 
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4929 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4930 {
4931 	struct host_command cmd = {
4932 		.host_command = POWER_MODE,
4933 		.host_command_sequence = 0,
4934 		.host_command_length = 4
4935 	};
4936 	int err;
4937 
4938 	cmd.host_command_parameters[0] = power_level;
4939 
4940 	err = ipw2100_hw_send_command(priv, &cmd);
4941 	if (err)
4942 		return err;
4943 
4944 	if (power_level == IPW_POWER_MODE_CAM)
4945 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4946 	else
4947 		priv->power_mode = IPW_POWER_ENABLED | power_level;
4948 
4949 #ifdef IPW2100_TX_POWER
4950 	if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4951 		/* Set beacon interval */
4952 		cmd.host_command = TX_POWER_INDEX;
4953 		cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4954 
4955 		err = ipw2100_hw_send_command(priv, &cmd);
4956 		if (err)
4957 			return err;
4958 	}
4959 #endif
4960 
4961 	return 0;
4962 }
4963 
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)4964 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4965 {
4966 	struct host_command cmd = {
4967 		.host_command = RTS_THRESHOLD,
4968 		.host_command_sequence = 0,
4969 		.host_command_length = 4
4970 	};
4971 	int err;
4972 
4973 	if (threshold & RTS_DISABLED)
4974 		cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4975 	else
4976 		cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4977 
4978 	err = ipw2100_hw_send_command(priv, &cmd);
4979 	if (err)
4980 		return err;
4981 
4982 	priv->rts_threshold = threshold;
4983 
4984 	return 0;
4985 }
4986 
4987 #if 0
4988 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4989 					u32 threshold, int batch_mode)
4990 {
4991 	struct host_command cmd = {
4992 		.host_command = FRAG_THRESHOLD,
4993 		.host_command_sequence = 0,
4994 		.host_command_length = 4,
4995 		.host_command_parameters[0] = 0,
4996 	};
4997 	int err;
4998 
4999 	if (!batch_mode) {
5000 		err = ipw2100_disable_adapter(priv);
5001 		if (err)
5002 			return err;
5003 	}
5004 
5005 	if (threshold == 0)
5006 		threshold = DEFAULT_FRAG_THRESHOLD;
5007 	else {
5008 		threshold = max(threshold, MIN_FRAG_THRESHOLD);
5009 		threshold = min(threshold, MAX_FRAG_THRESHOLD);
5010 	}
5011 
5012 	cmd.host_command_parameters[0] = threshold;
5013 
5014 	IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5015 
5016 	err = ipw2100_hw_send_command(priv, &cmd);
5017 
5018 	if (!batch_mode)
5019 		ipw2100_enable_adapter(priv);
5020 
5021 	if (!err)
5022 		priv->frag_threshold = threshold;
5023 
5024 	return err;
5025 }
5026 #endif
5027 
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5028 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5029 {
5030 	struct host_command cmd = {
5031 		.host_command = SHORT_RETRY_LIMIT,
5032 		.host_command_sequence = 0,
5033 		.host_command_length = 4
5034 	};
5035 	int err;
5036 
5037 	cmd.host_command_parameters[0] = retry;
5038 
5039 	err = ipw2100_hw_send_command(priv, &cmd);
5040 	if (err)
5041 		return err;
5042 
5043 	priv->short_retry_limit = retry;
5044 
5045 	return 0;
5046 }
5047 
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5048 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5049 {
5050 	struct host_command cmd = {
5051 		.host_command = LONG_RETRY_LIMIT,
5052 		.host_command_sequence = 0,
5053 		.host_command_length = 4
5054 	};
5055 	int err;
5056 
5057 	cmd.host_command_parameters[0] = retry;
5058 
5059 	err = ipw2100_hw_send_command(priv, &cmd);
5060 	if (err)
5061 		return err;
5062 
5063 	priv->long_retry_limit = retry;
5064 
5065 	return 0;
5066 }
5067 
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5068 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5069 				       int batch_mode)
5070 {
5071 	struct host_command cmd = {
5072 		.host_command = MANDATORY_BSSID,
5073 		.host_command_sequence = 0,
5074 		.host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5075 	};
5076 	int err;
5077 
5078 #ifdef CONFIG_IPW2100_DEBUG
5079 	if (bssid != NULL)
5080 		IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5081 	else
5082 		IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5083 #endif
5084 	/* if BSSID is empty then we disable mandatory bssid mode */
5085 	if (bssid != NULL)
5086 		memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5087 
5088 	if (!batch_mode) {
5089 		err = ipw2100_disable_adapter(priv);
5090 		if (err)
5091 			return err;
5092 	}
5093 
5094 	err = ipw2100_hw_send_command(priv, &cmd);
5095 
5096 	if (!batch_mode)
5097 		ipw2100_enable_adapter(priv);
5098 
5099 	return err;
5100 }
5101 
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5102 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5103 {
5104 	struct host_command cmd = {
5105 		.host_command = DISASSOCIATION_BSSID,
5106 		.host_command_sequence = 0,
5107 		.host_command_length = ETH_ALEN
5108 	};
5109 	int err;
5110 	int len;
5111 
5112 	IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5113 
5114 	len = ETH_ALEN;
5115 	/* The Firmware currently ignores the BSSID and just disassociates from
5116 	 * the currently associated AP -- but in the off chance that a future
5117 	 * firmware does use the BSSID provided here, we go ahead and try and
5118 	 * set it to the currently associated AP's BSSID */
5119 	memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5120 
5121 	err = ipw2100_hw_send_command(priv, &cmd);
5122 
5123 	return err;
5124 }
5125 
5126 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5127 			      struct ipw2100_wpa_assoc_frame *, int)
5128     __attribute__ ((unused));
5129 
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5131 			      struct ipw2100_wpa_assoc_frame *wpa_frame,
5132 			      int batch_mode)
5133 {
5134 	struct host_command cmd = {
5135 		.host_command = SET_WPA_IE,
5136 		.host_command_sequence = 0,
5137 		.host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5138 	};
5139 	int err;
5140 
5141 	IPW_DEBUG_HC("SET_WPA_IE\n");
5142 
5143 	if (!batch_mode) {
5144 		err = ipw2100_disable_adapter(priv);
5145 		if (err)
5146 			return err;
5147 	}
5148 
5149 	memcpy(cmd.host_command_parameters, wpa_frame,
5150 	       sizeof(struct ipw2100_wpa_assoc_frame));
5151 
5152 	err = ipw2100_hw_send_command(priv, &cmd);
5153 
5154 	if (!batch_mode) {
5155 		if (ipw2100_enable_adapter(priv))
5156 			err = -EIO;
5157 	}
5158 
5159 	return err;
5160 }
5161 
5162 struct security_info_params {
5163 	u32 allowed_ciphers;
5164 	u16 version;
5165 	u8 auth_mode;
5166 	u8 replay_counters_number;
5167 	u8 unicast_using_group;
5168 } __packed;
5169 
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5170 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5171 					    int auth_mode,
5172 					    int security_level,
5173 					    int unicast_using_group,
5174 					    int batch_mode)
5175 {
5176 	struct host_command cmd = {
5177 		.host_command = SET_SECURITY_INFORMATION,
5178 		.host_command_sequence = 0,
5179 		.host_command_length = sizeof(struct security_info_params)
5180 	};
5181 	struct security_info_params *security =
5182 	    (struct security_info_params *)&cmd.host_command_parameters;
5183 	int err;
5184 	memset(security, 0, sizeof(*security));
5185 
5186 	/* If shared key AP authentication is turned on, then we need to
5187 	 * configure the firmware to try and use it.
5188 	 *
5189 	 * Actual data encryption/decryption is handled by the host. */
5190 	security->auth_mode = auth_mode;
5191 	security->unicast_using_group = unicast_using_group;
5192 
5193 	switch (security_level) {
5194 	default:
5195 	case SEC_LEVEL_0:
5196 		security->allowed_ciphers = IPW_NONE_CIPHER;
5197 		break;
5198 	case SEC_LEVEL_1:
5199 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5200 		    IPW_WEP104_CIPHER;
5201 		break;
5202 	case SEC_LEVEL_2:
5203 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5204 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5205 		break;
5206 	case SEC_LEVEL_2_CKIP:
5207 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5208 		    IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5209 		break;
5210 	case SEC_LEVEL_3:
5211 		security->allowed_ciphers = IPW_WEP40_CIPHER |
5212 		    IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5213 		break;
5214 	}
5215 
5216 	IPW_DEBUG_HC
5217 	    ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5218 	     security->auth_mode, security->allowed_ciphers, security_level);
5219 
5220 	security->replay_counters_number = 0;
5221 
5222 	if (!batch_mode) {
5223 		err = ipw2100_disable_adapter(priv);
5224 		if (err)
5225 			return err;
5226 	}
5227 
5228 	err = ipw2100_hw_send_command(priv, &cmd);
5229 
5230 	if (!batch_mode)
5231 		ipw2100_enable_adapter(priv);
5232 
5233 	return err;
5234 }
5235 
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5236 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5237 {
5238 	struct host_command cmd = {
5239 		.host_command = TX_POWER_INDEX,
5240 		.host_command_sequence = 0,
5241 		.host_command_length = 4
5242 	};
5243 	int err = 0;
5244 	u32 tmp = tx_power;
5245 
5246 	if (tx_power != IPW_TX_POWER_DEFAULT)
5247 		tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5248 		      (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5249 
5250 	cmd.host_command_parameters[0] = tmp;
5251 
5252 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5253 		err = ipw2100_hw_send_command(priv, &cmd);
5254 	if (!err)
5255 		priv->tx_power = tx_power;
5256 
5257 	return 0;
5258 }
5259 
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5260 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5261 					    u32 interval, int batch_mode)
5262 {
5263 	struct host_command cmd = {
5264 		.host_command = BEACON_INTERVAL,
5265 		.host_command_sequence = 0,
5266 		.host_command_length = 4
5267 	};
5268 	int err;
5269 
5270 	cmd.host_command_parameters[0] = interval;
5271 
5272 	IPW_DEBUG_INFO("enter\n");
5273 
5274 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5275 		if (!batch_mode) {
5276 			err = ipw2100_disable_adapter(priv);
5277 			if (err)
5278 				return err;
5279 		}
5280 
5281 		ipw2100_hw_send_command(priv, &cmd);
5282 
5283 		if (!batch_mode) {
5284 			err = ipw2100_enable_adapter(priv);
5285 			if (err)
5286 				return err;
5287 		}
5288 	}
5289 
5290 	IPW_DEBUG_INFO("exit\n");
5291 
5292 	return 0;
5293 }
5294 
ipw2100_queues_initialize(struct ipw2100_priv * priv)5295 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5296 {
5297 	ipw2100_tx_initialize(priv);
5298 	ipw2100_rx_initialize(priv);
5299 	ipw2100_msg_initialize(priv);
5300 }
5301 
ipw2100_queues_free(struct ipw2100_priv * priv)5302 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5303 {
5304 	ipw2100_tx_free(priv);
5305 	ipw2100_rx_free(priv);
5306 	ipw2100_msg_free(priv);
5307 }
5308 
ipw2100_queues_allocate(struct ipw2100_priv * priv)5309 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5310 {
5311 	if (ipw2100_tx_allocate(priv) ||
5312 	    ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5313 		goto fail;
5314 
5315 	return 0;
5316 
5317       fail:
5318 	ipw2100_tx_free(priv);
5319 	ipw2100_rx_free(priv);
5320 	ipw2100_msg_free(priv);
5321 	return -ENOMEM;
5322 }
5323 
5324 #define IPW_PRIVACY_CAPABLE 0x0008
5325 
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5326 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5327 				 int batch_mode)
5328 {
5329 	struct host_command cmd = {
5330 		.host_command = WEP_FLAGS,
5331 		.host_command_sequence = 0,
5332 		.host_command_length = 4
5333 	};
5334 	int err;
5335 
5336 	cmd.host_command_parameters[0] = flags;
5337 
5338 	IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5339 
5340 	if (!batch_mode) {
5341 		err = ipw2100_disable_adapter(priv);
5342 		if (err) {
5343 			printk(KERN_ERR DRV_NAME
5344 			       ": %s: Could not disable adapter %d\n",
5345 			       priv->net_dev->name, err);
5346 			return err;
5347 		}
5348 	}
5349 
5350 	/* send cmd to firmware */
5351 	err = ipw2100_hw_send_command(priv, &cmd);
5352 
5353 	if (!batch_mode)
5354 		ipw2100_enable_adapter(priv);
5355 
5356 	return err;
5357 }
5358 
5359 struct ipw2100_wep_key {
5360 	u8 idx;
5361 	u8 len;
5362 	u8 key[13];
5363 };
5364 
5365 /* Macros to ease up priting WEP keys */
5366 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5367 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5368 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5369 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5370 
5371 /**
5372  * Set a the wep key
5373  *
5374  * @priv: struct to work on
5375  * @idx: index of the key we want to set
5376  * @key: ptr to the key data to set
5377  * @len: length of the buffer at @key
5378  * @batch_mode: FIXME perform the operation in batch mode, not
5379  *              disabling the device.
5380  *
5381  * @returns 0 if OK, < 0 errno code on error.
5382  *
5383  * Fill out a command structure with the new wep key, length an
5384  * index and send it down the wire.
5385  */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5386 static int ipw2100_set_key(struct ipw2100_priv *priv,
5387 			   int idx, char *key, int len, int batch_mode)
5388 {
5389 	int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5390 	struct host_command cmd = {
5391 		.host_command = WEP_KEY_INFO,
5392 		.host_command_sequence = 0,
5393 		.host_command_length = sizeof(struct ipw2100_wep_key),
5394 	};
5395 	struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5396 	int err;
5397 
5398 	IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5399 		     idx, keylen, len);
5400 
5401 	/* NOTE: We don't check cached values in case the firmware was reset
5402 	 * or some other problem is occurring.  If the user is setting the key,
5403 	 * then we push the change */
5404 
5405 	wep_key->idx = idx;
5406 	wep_key->len = keylen;
5407 
5408 	if (keylen) {
5409 		memcpy(wep_key->key, key, len);
5410 		memset(wep_key->key + len, 0, keylen - len);
5411 	}
5412 
5413 	/* Will be optimized out on debug not being configured in */
5414 	if (keylen == 0)
5415 		IPW_DEBUG_WEP("%s: Clearing key %d\n",
5416 			      priv->net_dev->name, wep_key->idx);
5417 	else if (keylen == 5)
5418 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5419 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5420 			      WEP_STR_64(wep_key->key));
5421 	else
5422 		IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5423 			      "\n",
5424 			      priv->net_dev->name, wep_key->idx, wep_key->len,
5425 			      WEP_STR_128(wep_key->key));
5426 
5427 	if (!batch_mode) {
5428 		err = ipw2100_disable_adapter(priv);
5429 		/* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5430 		if (err) {
5431 			printk(KERN_ERR DRV_NAME
5432 			       ": %s: Could not disable adapter %d\n",
5433 			       priv->net_dev->name, err);
5434 			return err;
5435 		}
5436 	}
5437 
5438 	/* send cmd to firmware */
5439 	err = ipw2100_hw_send_command(priv, &cmd);
5440 
5441 	if (!batch_mode) {
5442 		int err2 = ipw2100_enable_adapter(priv);
5443 		if (err == 0)
5444 			err = err2;
5445 	}
5446 	return err;
5447 }
5448 
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5449 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5450 				 int idx, int batch_mode)
5451 {
5452 	struct host_command cmd = {
5453 		.host_command = WEP_KEY_INDEX,
5454 		.host_command_sequence = 0,
5455 		.host_command_length = 4,
5456 		.host_command_parameters = {idx},
5457 	};
5458 	int err;
5459 
5460 	IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5461 
5462 	if (idx < 0 || idx > 3)
5463 		return -EINVAL;
5464 
5465 	if (!batch_mode) {
5466 		err = ipw2100_disable_adapter(priv);
5467 		if (err) {
5468 			printk(KERN_ERR DRV_NAME
5469 			       ": %s: Could not disable adapter %d\n",
5470 			       priv->net_dev->name, err);
5471 			return err;
5472 		}
5473 	}
5474 
5475 	/* send cmd to firmware */
5476 	err = ipw2100_hw_send_command(priv, &cmd);
5477 
5478 	if (!batch_mode)
5479 		ipw2100_enable_adapter(priv);
5480 
5481 	return err;
5482 }
5483 
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5484 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5485 {
5486 	int i, err, auth_mode, sec_level, use_group;
5487 
5488 	if (!(priv->status & STATUS_RUNNING))
5489 		return 0;
5490 
5491 	if (!batch_mode) {
5492 		err = ipw2100_disable_adapter(priv);
5493 		if (err)
5494 			return err;
5495 	}
5496 
5497 	if (!priv->ieee->sec.enabled) {
5498 		err =
5499 		    ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5500 						     SEC_LEVEL_0, 0, 1);
5501 	} else {
5502 		auth_mode = IPW_AUTH_OPEN;
5503 		if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5504 			if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5505 				auth_mode = IPW_AUTH_SHARED;
5506 			else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5507 				auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5508 		}
5509 
5510 		sec_level = SEC_LEVEL_0;
5511 		if (priv->ieee->sec.flags & SEC_LEVEL)
5512 			sec_level = priv->ieee->sec.level;
5513 
5514 		use_group = 0;
5515 		if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5516 			use_group = priv->ieee->sec.unicast_uses_group;
5517 
5518 		err =
5519 		    ipw2100_set_security_information(priv, auth_mode, sec_level,
5520 						     use_group, 1);
5521 	}
5522 
5523 	if (err)
5524 		goto exit;
5525 
5526 	if (priv->ieee->sec.enabled) {
5527 		for (i = 0; i < 4; i++) {
5528 			if (!(priv->ieee->sec.flags & (1 << i))) {
5529 				memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5530 				priv->ieee->sec.key_sizes[i] = 0;
5531 			} else {
5532 				err = ipw2100_set_key(priv, i,
5533 						      priv->ieee->sec.keys[i],
5534 						      priv->ieee->sec.
5535 						      key_sizes[i], 1);
5536 				if (err)
5537 					goto exit;
5538 			}
5539 		}
5540 
5541 		ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5542 	}
5543 
5544 	/* Always enable privacy so the Host can filter WEP packets if
5545 	 * encrypted data is sent up */
5546 	err =
5547 	    ipw2100_set_wep_flags(priv,
5548 				  priv->ieee->sec.
5549 				  enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5550 	if (err)
5551 		goto exit;
5552 
5553 	priv->status &= ~STATUS_SECURITY_UPDATED;
5554 
5555       exit:
5556 	if (!batch_mode)
5557 		ipw2100_enable_adapter(priv);
5558 
5559 	return err;
5560 }
5561 
ipw2100_security_work(struct work_struct * work)5562 static void ipw2100_security_work(struct work_struct *work)
5563 {
5564 	struct ipw2100_priv *priv =
5565 		container_of(work, struct ipw2100_priv, security_work.work);
5566 
5567 	/* If we happen to have reconnected before we get a chance to
5568 	 * process this, then update the security settings--which causes
5569 	 * a disassociation to occur */
5570 	if (!(priv->status & STATUS_ASSOCIATED) &&
5571 	    priv->status & STATUS_SECURITY_UPDATED)
5572 		ipw2100_configure_security(priv, 0);
5573 }
5574 
shim__set_security(struct net_device * dev,struct libipw_security * sec)5575 static void shim__set_security(struct net_device *dev,
5576 			       struct libipw_security *sec)
5577 {
5578 	struct ipw2100_priv *priv = libipw_priv(dev);
5579 	int i, force_update = 0;
5580 
5581 	mutex_lock(&priv->action_mutex);
5582 	if (!(priv->status & STATUS_INITIALIZED))
5583 		goto done;
5584 
5585 	for (i = 0; i < 4; i++) {
5586 		if (sec->flags & (1 << i)) {
5587 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5588 			if (sec->key_sizes[i] == 0)
5589 				priv->ieee->sec.flags &= ~(1 << i);
5590 			else
5591 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5592 				       sec->key_sizes[i]);
5593 			if (sec->level == SEC_LEVEL_1) {
5594 				priv->ieee->sec.flags |= (1 << i);
5595 				priv->status |= STATUS_SECURITY_UPDATED;
5596 			} else
5597 				priv->ieee->sec.flags &= ~(1 << i);
5598 		}
5599 	}
5600 
5601 	if ((sec->flags & SEC_ACTIVE_KEY) &&
5602 	    priv->ieee->sec.active_key != sec->active_key) {
5603 		if (sec->active_key <= 3) {
5604 			priv->ieee->sec.active_key = sec->active_key;
5605 			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5606 		} else
5607 			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5608 
5609 		priv->status |= STATUS_SECURITY_UPDATED;
5610 	}
5611 
5612 	if ((sec->flags & SEC_AUTH_MODE) &&
5613 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5614 		priv->ieee->sec.auth_mode = sec->auth_mode;
5615 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
5616 		priv->status |= STATUS_SECURITY_UPDATED;
5617 	}
5618 
5619 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5620 		priv->ieee->sec.flags |= SEC_ENABLED;
5621 		priv->ieee->sec.enabled = sec->enabled;
5622 		priv->status |= STATUS_SECURITY_UPDATED;
5623 		force_update = 1;
5624 	}
5625 
5626 	if (sec->flags & SEC_ENCRYPT)
5627 		priv->ieee->sec.encrypt = sec->encrypt;
5628 
5629 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5630 		priv->ieee->sec.level = sec->level;
5631 		priv->ieee->sec.flags |= SEC_LEVEL;
5632 		priv->status |= STATUS_SECURITY_UPDATED;
5633 	}
5634 
5635 	IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5636 		      priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5637 		      priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5638 		      priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5639 		      priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5640 		      priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5641 		      priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5642 		      priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5643 		      priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5644 		      priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5645 
5646 /* As a temporary work around to enable WPA until we figure out why
5647  * wpa_supplicant toggles the security capability of the driver, which
5648  * forces a disassocation with force_update...
5649  *
5650  *	if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5651 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5652 		ipw2100_configure_security(priv, 0);
5653       done:
5654 	mutex_unlock(&priv->action_mutex);
5655 }
5656 
ipw2100_adapter_setup(struct ipw2100_priv * priv)5657 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5658 {
5659 	int err;
5660 	int batch_mode = 1;
5661 	u8 *bssid;
5662 
5663 	IPW_DEBUG_INFO("enter\n");
5664 
5665 	err = ipw2100_disable_adapter(priv);
5666 	if (err)
5667 		return err;
5668 #ifdef CONFIG_IPW2100_MONITOR
5669 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5670 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5671 		if (err)
5672 			return err;
5673 
5674 		IPW_DEBUG_INFO("exit\n");
5675 
5676 		return 0;
5677 	}
5678 #endif				/* CONFIG_IPW2100_MONITOR */
5679 
5680 	err = ipw2100_read_mac_address(priv);
5681 	if (err)
5682 		return -EIO;
5683 
5684 	err = ipw2100_set_mac_address(priv, batch_mode);
5685 	if (err)
5686 		return err;
5687 
5688 	err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5689 	if (err)
5690 		return err;
5691 
5692 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5693 		err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5694 		if (err)
5695 			return err;
5696 	}
5697 
5698 	err = ipw2100_system_config(priv, batch_mode);
5699 	if (err)
5700 		return err;
5701 
5702 	err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5703 	if (err)
5704 		return err;
5705 
5706 	/* Default to power mode OFF */
5707 	err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5708 	if (err)
5709 		return err;
5710 
5711 	err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5712 	if (err)
5713 		return err;
5714 
5715 	if (priv->config & CFG_STATIC_BSSID)
5716 		bssid = priv->bssid;
5717 	else
5718 		bssid = NULL;
5719 	err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5720 	if (err)
5721 		return err;
5722 
5723 	if (priv->config & CFG_STATIC_ESSID)
5724 		err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5725 					batch_mode);
5726 	else
5727 		err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5728 	if (err)
5729 		return err;
5730 
5731 	err = ipw2100_configure_security(priv, batch_mode);
5732 	if (err)
5733 		return err;
5734 
5735 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5736 		err =
5737 		    ipw2100_set_ibss_beacon_interval(priv,
5738 						     priv->beacon_interval,
5739 						     batch_mode);
5740 		if (err)
5741 			return err;
5742 
5743 		err = ipw2100_set_tx_power(priv, priv->tx_power);
5744 		if (err)
5745 			return err;
5746 	}
5747 
5748 	/*
5749 	   err = ipw2100_set_fragmentation_threshold(
5750 	   priv, priv->frag_threshold, batch_mode);
5751 	   if (err)
5752 	   return err;
5753 	 */
5754 
5755 	IPW_DEBUG_INFO("exit\n");
5756 
5757 	return 0;
5758 }
5759 
5760 /*************************************************************************
5761  *
5762  * EXTERNALLY CALLED METHODS
5763  *
5764  *************************************************************************/
5765 
5766 /* This method is called by the network layer -- not to be confused with
5767  * ipw2100_set_mac_address() declared above called by this driver (and this
5768  * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5769 static int ipw2100_set_address(struct net_device *dev, void *p)
5770 {
5771 	struct ipw2100_priv *priv = libipw_priv(dev);
5772 	struct sockaddr *addr = p;
5773 	int err = 0;
5774 
5775 	if (!is_valid_ether_addr(addr->sa_data))
5776 		return -EADDRNOTAVAIL;
5777 
5778 	mutex_lock(&priv->action_mutex);
5779 
5780 	priv->config |= CFG_CUSTOM_MAC;
5781 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5782 
5783 	err = ipw2100_set_mac_address(priv, 0);
5784 	if (err)
5785 		goto done;
5786 
5787 	priv->reset_backoff = 0;
5788 	mutex_unlock(&priv->action_mutex);
5789 	ipw2100_reset_adapter(&priv->reset_work.work);
5790 	return 0;
5791 
5792       done:
5793 	mutex_unlock(&priv->action_mutex);
5794 	return err;
5795 }
5796 
ipw2100_open(struct net_device * dev)5797 static int ipw2100_open(struct net_device *dev)
5798 {
5799 	struct ipw2100_priv *priv = libipw_priv(dev);
5800 	unsigned long flags;
5801 	IPW_DEBUG_INFO("dev->open\n");
5802 
5803 	spin_lock_irqsave(&priv->low_lock, flags);
5804 	if (priv->status & STATUS_ASSOCIATED) {
5805 		netif_carrier_on(dev);
5806 		netif_start_queue(dev);
5807 	}
5808 	spin_unlock_irqrestore(&priv->low_lock, flags);
5809 
5810 	return 0;
5811 }
5812 
ipw2100_close(struct net_device * dev)5813 static int ipw2100_close(struct net_device *dev)
5814 {
5815 	struct ipw2100_priv *priv = libipw_priv(dev);
5816 	unsigned long flags;
5817 	struct list_head *element;
5818 	struct ipw2100_tx_packet *packet;
5819 
5820 	IPW_DEBUG_INFO("enter\n");
5821 
5822 	spin_lock_irqsave(&priv->low_lock, flags);
5823 
5824 	if (priv->status & STATUS_ASSOCIATED)
5825 		netif_carrier_off(dev);
5826 	netif_stop_queue(dev);
5827 
5828 	/* Flush the TX queue ... */
5829 	while (!list_empty(&priv->tx_pend_list)) {
5830 		element = priv->tx_pend_list.next;
5831 		packet = list_entry(element, struct ipw2100_tx_packet, list);
5832 
5833 		list_del(element);
5834 		DEC_STAT(&priv->tx_pend_stat);
5835 
5836 		libipw_txb_free(packet->info.d_struct.txb);
5837 		packet->info.d_struct.txb = NULL;
5838 
5839 		list_add_tail(element, &priv->tx_free_list);
5840 		INC_STAT(&priv->tx_free_stat);
5841 	}
5842 	spin_unlock_irqrestore(&priv->low_lock, flags);
5843 
5844 	IPW_DEBUG_INFO("exit\n");
5845 
5846 	return 0;
5847 }
5848 
5849 /*
5850  * TODO:  Fix this function... its just wrong
5851  */
ipw2100_tx_timeout(struct net_device * dev)5852 static void ipw2100_tx_timeout(struct net_device *dev)
5853 {
5854 	struct ipw2100_priv *priv = libipw_priv(dev);
5855 
5856 	dev->stats.tx_errors++;
5857 
5858 #ifdef CONFIG_IPW2100_MONITOR
5859 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5860 		return;
5861 #endif
5862 
5863 	IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5864 		       dev->name);
5865 	schedule_reset(priv);
5866 }
5867 
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5868 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5869 {
5870 	/* This is called when wpa_supplicant loads and closes the driver
5871 	 * interface. */
5872 	priv->ieee->wpa_enabled = value;
5873 	return 0;
5874 }
5875 
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5876 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5877 {
5878 
5879 	struct libipw_device *ieee = priv->ieee;
5880 	struct libipw_security sec = {
5881 		.flags = SEC_AUTH_MODE,
5882 	};
5883 	int ret = 0;
5884 
5885 	if (value & IW_AUTH_ALG_SHARED_KEY) {
5886 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5887 		ieee->open_wep = 0;
5888 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5889 		sec.auth_mode = WLAN_AUTH_OPEN;
5890 		ieee->open_wep = 1;
5891 	} else if (value & IW_AUTH_ALG_LEAP) {
5892 		sec.auth_mode = WLAN_AUTH_LEAP;
5893 		ieee->open_wep = 1;
5894 	} else
5895 		return -EINVAL;
5896 
5897 	if (ieee->set_security)
5898 		ieee->set_security(ieee->dev, &sec);
5899 	else
5900 		ret = -EOPNOTSUPP;
5901 
5902 	return ret;
5903 }
5904 
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5905 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5906 				    char *wpa_ie, int wpa_ie_len)
5907 {
5908 
5909 	struct ipw2100_wpa_assoc_frame frame;
5910 
5911 	frame.fixed_ie_mask = 0;
5912 
5913 	/* copy WPA IE */
5914 	memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5915 	frame.var_ie_len = wpa_ie_len;
5916 
5917 	/* make sure WPA is enabled */
5918 	ipw2100_wpa_enable(priv, 1);
5919 	ipw2100_set_wpa_ie(priv, &frame, 0);
5920 }
5921 
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5922 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5923 				    struct ethtool_drvinfo *info)
5924 {
5925 	struct ipw2100_priv *priv = libipw_priv(dev);
5926 	char fw_ver[64], ucode_ver[64];
5927 
5928 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5929 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5930 
5931 	ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5932 	ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5933 
5934 	snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5935 		 fw_ver, priv->eeprom_version, ucode_ver);
5936 
5937 	strlcpy(info->bus_info, pci_name(priv->pci_dev),
5938 		sizeof(info->bus_info));
5939 }
5940 
ipw2100_ethtool_get_link(struct net_device * dev)5941 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5942 {
5943 	struct ipw2100_priv *priv = libipw_priv(dev);
5944 	return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5945 }
5946 
5947 static const struct ethtool_ops ipw2100_ethtool_ops = {
5948 	.get_link = ipw2100_ethtool_get_link,
5949 	.get_drvinfo = ipw_ethtool_get_drvinfo,
5950 };
5951 
ipw2100_hang_check(struct work_struct * work)5952 static void ipw2100_hang_check(struct work_struct *work)
5953 {
5954 	struct ipw2100_priv *priv =
5955 		container_of(work, struct ipw2100_priv, hang_check.work);
5956 	unsigned long flags;
5957 	u32 rtc = 0xa5a5a5a5;
5958 	u32 len = sizeof(rtc);
5959 	int restart = 0;
5960 
5961 	spin_lock_irqsave(&priv->low_lock, flags);
5962 
5963 	if (priv->fatal_error != 0) {
5964 		/* If fatal_error is set then we need to restart */
5965 		IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5966 			       priv->net_dev->name);
5967 
5968 		restart = 1;
5969 	} else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5970 		   (rtc == priv->last_rtc)) {
5971 		/* Check if firmware is hung */
5972 		IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5973 			       priv->net_dev->name);
5974 
5975 		restart = 1;
5976 	}
5977 
5978 	if (restart) {
5979 		/* Kill timer */
5980 		priv->stop_hang_check = 1;
5981 		priv->hangs++;
5982 
5983 		/* Restart the NIC */
5984 		schedule_reset(priv);
5985 	}
5986 
5987 	priv->last_rtc = rtc;
5988 
5989 	if (!priv->stop_hang_check)
5990 		schedule_delayed_work(&priv->hang_check, HZ / 2);
5991 
5992 	spin_unlock_irqrestore(&priv->low_lock, flags);
5993 }
5994 
ipw2100_rf_kill(struct work_struct * work)5995 static void ipw2100_rf_kill(struct work_struct *work)
5996 {
5997 	struct ipw2100_priv *priv =
5998 		container_of(work, struct ipw2100_priv, rf_kill.work);
5999 	unsigned long flags;
6000 
6001 	spin_lock_irqsave(&priv->low_lock, flags);
6002 
6003 	if (rf_kill_active(priv)) {
6004 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6005 		if (!priv->stop_rf_kill)
6006 			schedule_delayed_work(&priv->rf_kill,
6007 					      round_jiffies_relative(HZ));
6008 		goto exit_unlock;
6009 	}
6010 
6011 	/* RF Kill is now disabled, so bring the device back up */
6012 
6013 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6014 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6015 				  "device\n");
6016 		schedule_reset(priv);
6017 	} else
6018 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6019 				  "enabled\n");
6020 
6021       exit_unlock:
6022 	spin_unlock_irqrestore(&priv->low_lock, flags);
6023 }
6024 
6025 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6026 
6027 static const struct net_device_ops ipw2100_netdev_ops = {
6028 	.ndo_open		= ipw2100_open,
6029 	.ndo_stop		= ipw2100_close,
6030 	.ndo_start_xmit		= libipw_xmit,
6031 	.ndo_change_mtu		= libipw_change_mtu,
6032 	.ndo_tx_timeout		= ipw2100_tx_timeout,
6033 	.ndo_set_mac_address	= ipw2100_set_address,
6034 	.ndo_validate_addr	= eth_validate_addr,
6035 };
6036 
6037 /* Look into using netdev destructor to shutdown libipw? */
6038 
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * ioaddr)6039 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6040 					       void __iomem * ioaddr)
6041 {
6042 	struct ipw2100_priv *priv;
6043 	struct net_device *dev;
6044 
6045 	dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6046 	if (!dev)
6047 		return NULL;
6048 	priv = libipw_priv(dev);
6049 	priv->ieee = netdev_priv(dev);
6050 	priv->pci_dev = pci_dev;
6051 	priv->net_dev = dev;
6052 	priv->ioaddr = ioaddr;
6053 
6054 	priv->ieee->hard_start_xmit = ipw2100_tx;
6055 	priv->ieee->set_security = shim__set_security;
6056 
6057 	priv->ieee->perfect_rssi = -20;
6058 	priv->ieee->worst_rssi = -85;
6059 
6060 	dev->netdev_ops = &ipw2100_netdev_ops;
6061 	dev->ethtool_ops = &ipw2100_ethtool_ops;
6062 	dev->wireless_handlers = &ipw2100_wx_handler_def;
6063 	priv->wireless_data.libipw = priv->ieee;
6064 	dev->wireless_data = &priv->wireless_data;
6065 	dev->watchdog_timeo = 3 * HZ;
6066 	dev->irq = 0;
6067 
6068 	/* NOTE: We don't use the wireless_handlers hook
6069 	 * in dev as the system will start throwing WX requests
6070 	 * to us before we're actually initialized and it just
6071 	 * ends up causing problems.  So, we just handle
6072 	 * the WX extensions through the ipw2100_ioctl interface */
6073 
6074 	/* memset() puts everything to 0, so we only have explicitly set
6075 	 * those values that need to be something else */
6076 
6077 	/* If power management is turned on, default to AUTO mode */
6078 	priv->power_mode = IPW_POWER_AUTO;
6079 
6080 #ifdef CONFIG_IPW2100_MONITOR
6081 	priv->config |= CFG_CRC_CHECK;
6082 #endif
6083 	priv->ieee->wpa_enabled = 0;
6084 	priv->ieee->drop_unencrypted = 0;
6085 	priv->ieee->privacy_invoked = 0;
6086 	priv->ieee->ieee802_1x = 1;
6087 
6088 	/* Set module parameters */
6089 	switch (network_mode) {
6090 	case 1:
6091 		priv->ieee->iw_mode = IW_MODE_ADHOC;
6092 		break;
6093 #ifdef CONFIG_IPW2100_MONITOR
6094 	case 2:
6095 		priv->ieee->iw_mode = IW_MODE_MONITOR;
6096 		break;
6097 #endif
6098 	default:
6099 	case 0:
6100 		priv->ieee->iw_mode = IW_MODE_INFRA;
6101 		break;
6102 	}
6103 
6104 	if (disable == 1)
6105 		priv->status |= STATUS_RF_KILL_SW;
6106 
6107 	if (channel != 0 &&
6108 	    ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6109 		priv->config |= CFG_STATIC_CHANNEL;
6110 		priv->channel = channel;
6111 	}
6112 
6113 	if (associate)
6114 		priv->config |= CFG_ASSOCIATE;
6115 
6116 	priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6117 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6118 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6119 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6120 	priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6121 	priv->tx_power = IPW_TX_POWER_DEFAULT;
6122 	priv->tx_rates = DEFAULT_TX_RATES;
6123 
6124 	strcpy(priv->nick, "ipw2100");
6125 
6126 	spin_lock_init(&priv->low_lock);
6127 	mutex_init(&priv->action_mutex);
6128 	mutex_init(&priv->adapter_mutex);
6129 
6130 	init_waitqueue_head(&priv->wait_command_queue);
6131 
6132 	netif_carrier_off(dev);
6133 
6134 	INIT_LIST_HEAD(&priv->msg_free_list);
6135 	INIT_LIST_HEAD(&priv->msg_pend_list);
6136 	INIT_STAT(&priv->msg_free_stat);
6137 	INIT_STAT(&priv->msg_pend_stat);
6138 
6139 	INIT_LIST_HEAD(&priv->tx_free_list);
6140 	INIT_LIST_HEAD(&priv->tx_pend_list);
6141 	INIT_STAT(&priv->tx_free_stat);
6142 	INIT_STAT(&priv->tx_pend_stat);
6143 
6144 	INIT_LIST_HEAD(&priv->fw_pend_list);
6145 	INIT_STAT(&priv->fw_pend_stat);
6146 
6147 	INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6148 	INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6149 	INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6150 	INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6151 	INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6152 	INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6153 
6154 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6155 		     ipw2100_irq_tasklet, (unsigned long)priv);
6156 
6157 	/* NOTE:  We do not start the deferred work for status checks yet */
6158 	priv->stop_rf_kill = 1;
6159 	priv->stop_hang_check = 1;
6160 
6161 	return dev;
6162 }
6163 
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6164 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6165 				const struct pci_device_id *ent)
6166 {
6167 	void __iomem *ioaddr;
6168 	struct net_device *dev = NULL;
6169 	struct ipw2100_priv *priv = NULL;
6170 	int err = 0;
6171 	int registered = 0;
6172 	u32 val;
6173 
6174 	IPW_DEBUG_INFO("enter\n");
6175 
6176 	if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6177 		IPW_DEBUG_INFO("weird - resource type is not memory\n");
6178 		err = -ENODEV;
6179 		goto out;
6180 	}
6181 
6182 	ioaddr = pci_iomap(pci_dev, 0, 0);
6183 	if (!ioaddr) {
6184 		printk(KERN_WARNING DRV_NAME
6185 		       "Error calling ioremap_nocache.\n");
6186 		err = -EIO;
6187 		goto fail;
6188 	}
6189 
6190 	/* allocate and initialize our net_device */
6191 	dev = ipw2100_alloc_device(pci_dev, ioaddr);
6192 	if (!dev) {
6193 		printk(KERN_WARNING DRV_NAME
6194 		       "Error calling ipw2100_alloc_device.\n");
6195 		err = -ENOMEM;
6196 		goto fail;
6197 	}
6198 
6199 	/* set up PCI mappings for device */
6200 	err = pci_enable_device(pci_dev);
6201 	if (err) {
6202 		printk(KERN_WARNING DRV_NAME
6203 		       "Error calling pci_enable_device.\n");
6204 		return err;
6205 	}
6206 
6207 	priv = libipw_priv(dev);
6208 
6209 	pci_set_master(pci_dev);
6210 	pci_set_drvdata(pci_dev, priv);
6211 
6212 	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6213 	if (err) {
6214 		printk(KERN_WARNING DRV_NAME
6215 		       "Error calling pci_set_dma_mask.\n");
6216 		pci_disable_device(pci_dev);
6217 		return err;
6218 	}
6219 
6220 	err = pci_request_regions(pci_dev, DRV_NAME);
6221 	if (err) {
6222 		printk(KERN_WARNING DRV_NAME
6223 		       "Error calling pci_request_regions.\n");
6224 		pci_disable_device(pci_dev);
6225 		return err;
6226 	}
6227 
6228 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
6229 	 * PCI Tx retries from interfering with C3 CPU state */
6230 	pci_read_config_dword(pci_dev, 0x40, &val);
6231 	if ((val & 0x0000ff00) != 0)
6232 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6233 
6234 	if (!ipw2100_hw_is_adapter_in_system(dev)) {
6235 		printk(KERN_WARNING DRV_NAME
6236 		       "Device not found via register read.\n");
6237 		err = -ENODEV;
6238 		goto fail;
6239 	}
6240 
6241 	SET_NETDEV_DEV(dev, &pci_dev->dev);
6242 
6243 	/* Force interrupts to be shut off on the device */
6244 	priv->status |= STATUS_INT_ENABLED;
6245 	ipw2100_disable_interrupts(priv);
6246 
6247 	/* Allocate and initialize the Tx/Rx queues and lists */
6248 	if (ipw2100_queues_allocate(priv)) {
6249 		printk(KERN_WARNING DRV_NAME
6250 		       "Error calling ipw2100_queues_allocate.\n");
6251 		err = -ENOMEM;
6252 		goto fail;
6253 	}
6254 	ipw2100_queues_initialize(priv);
6255 
6256 	err = request_irq(pci_dev->irq,
6257 			  ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6258 	if (err) {
6259 		printk(KERN_WARNING DRV_NAME
6260 		       "Error calling request_irq: %d.\n", pci_dev->irq);
6261 		goto fail;
6262 	}
6263 	dev->irq = pci_dev->irq;
6264 
6265 	IPW_DEBUG_INFO("Attempting to register device...\n");
6266 
6267 	printk(KERN_INFO DRV_NAME
6268 	       ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6269 
6270 	err = ipw2100_up(priv, 1);
6271 	if (err)
6272 		goto fail;
6273 
6274 	err = ipw2100_wdev_init(dev);
6275 	if (err)
6276 		goto fail;
6277 	registered = 1;
6278 
6279 	/* Bring up the interface.  Pre 0.46, after we registered the
6280 	 * network device we would call ipw2100_up.  This introduced a race
6281 	 * condition with newer hotplug configurations (network was coming
6282 	 * up and making calls before the device was initialized).
6283 	 */
6284 	err = register_netdev(dev);
6285 	if (err) {
6286 		printk(KERN_WARNING DRV_NAME
6287 		       "Error calling register_netdev.\n");
6288 		goto fail;
6289 	}
6290 	registered = 2;
6291 
6292 	mutex_lock(&priv->action_mutex);
6293 
6294 	IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6295 
6296 	/* perform this after register_netdev so that dev->name is set */
6297 	err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6298 	if (err)
6299 		goto fail_unlock;
6300 
6301 	/* If the RF Kill switch is disabled, go ahead and complete the
6302 	 * startup sequence */
6303 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
6304 		/* Enable the adapter - sends HOST_COMPLETE */
6305 		if (ipw2100_enable_adapter(priv)) {
6306 			printk(KERN_WARNING DRV_NAME
6307 			       ": %s: failed in call to enable adapter.\n",
6308 			       priv->net_dev->name);
6309 			ipw2100_hw_stop_adapter(priv);
6310 			err = -EIO;
6311 			goto fail_unlock;
6312 		}
6313 
6314 		/* Start a scan . . . */
6315 		ipw2100_set_scan_options(priv);
6316 		ipw2100_start_scan(priv);
6317 	}
6318 
6319 	IPW_DEBUG_INFO("exit\n");
6320 
6321 	priv->status |= STATUS_INITIALIZED;
6322 
6323 	mutex_unlock(&priv->action_mutex);
6324 out:
6325 	return err;
6326 
6327       fail_unlock:
6328 	mutex_unlock(&priv->action_mutex);
6329       fail:
6330 	if (dev) {
6331 		if (registered >= 2)
6332 			unregister_netdev(dev);
6333 
6334 		if (registered) {
6335 			wiphy_unregister(priv->ieee->wdev.wiphy);
6336 			kfree(priv->ieee->bg_band.channels);
6337 		}
6338 
6339 		ipw2100_hw_stop_adapter(priv);
6340 
6341 		ipw2100_disable_interrupts(priv);
6342 
6343 		if (dev->irq)
6344 			free_irq(dev->irq, priv);
6345 
6346 		ipw2100_kill_works(priv);
6347 
6348 		/* These are safe to call even if they weren't allocated */
6349 		ipw2100_queues_free(priv);
6350 		sysfs_remove_group(&pci_dev->dev.kobj,
6351 				   &ipw2100_attribute_group);
6352 
6353 		free_libipw(dev, 0);
6354 	}
6355 
6356 	pci_iounmap(pci_dev, ioaddr);
6357 
6358 	pci_release_regions(pci_dev);
6359 	pci_disable_device(pci_dev);
6360 	goto out;
6361 }
6362 
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6363 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6364 {
6365 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6366 	struct net_device *dev = priv->net_dev;
6367 
6368 	mutex_lock(&priv->action_mutex);
6369 
6370 	priv->status &= ~STATUS_INITIALIZED;
6371 
6372 	sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6373 
6374 #ifdef CONFIG_PM
6375 	if (ipw2100_firmware.version)
6376 		ipw2100_release_firmware(priv, &ipw2100_firmware);
6377 #endif
6378 	/* Take down the hardware */
6379 	ipw2100_down(priv);
6380 
6381 	/* Release the mutex so that the network subsystem can
6382 	 * complete any needed calls into the driver... */
6383 	mutex_unlock(&priv->action_mutex);
6384 
6385 	/* Unregister the device first - this results in close()
6386 	 * being called if the device is open.  If we free storage
6387 	 * first, then close() will crash.
6388 	 * FIXME: remove the comment above. */
6389 	unregister_netdev(dev);
6390 
6391 	ipw2100_kill_works(priv);
6392 
6393 	ipw2100_queues_free(priv);
6394 
6395 	/* Free potential debugging firmware snapshot */
6396 	ipw2100_snapshot_free(priv);
6397 
6398 	free_irq(dev->irq, priv);
6399 
6400 	pci_iounmap(pci_dev, priv->ioaddr);
6401 
6402 	/* wiphy_unregister needs to be here, before free_libipw */
6403 	wiphy_unregister(priv->ieee->wdev.wiphy);
6404 	kfree(priv->ieee->bg_band.channels);
6405 	free_libipw(dev, 0);
6406 
6407 	pci_release_regions(pci_dev);
6408 	pci_disable_device(pci_dev);
6409 
6410 	IPW_DEBUG_INFO("exit\n");
6411 }
6412 
6413 #ifdef CONFIG_PM
ipw2100_suspend(struct pci_dev * pci_dev,pm_message_t state)6414 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6415 {
6416 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6417 	struct net_device *dev = priv->net_dev;
6418 
6419 	IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6420 
6421 	mutex_lock(&priv->action_mutex);
6422 	if (priv->status & STATUS_INITIALIZED) {
6423 		/* Take down the device; powers it off, etc. */
6424 		ipw2100_down(priv);
6425 	}
6426 
6427 	/* Remove the PRESENT state of the device */
6428 	netif_device_detach(dev);
6429 
6430 	pci_save_state(pci_dev);
6431 	pci_disable_device(pci_dev);
6432 	pci_set_power_state(pci_dev, PCI_D3hot);
6433 
6434 	priv->suspend_at = get_seconds();
6435 
6436 	mutex_unlock(&priv->action_mutex);
6437 
6438 	return 0;
6439 }
6440 
ipw2100_resume(struct pci_dev * pci_dev)6441 static int ipw2100_resume(struct pci_dev *pci_dev)
6442 {
6443 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444 	struct net_device *dev = priv->net_dev;
6445 	int err;
6446 	u32 val;
6447 
6448 	if (IPW2100_PM_DISABLED)
6449 		return 0;
6450 
6451 	mutex_lock(&priv->action_mutex);
6452 
6453 	IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6454 
6455 	pci_set_power_state(pci_dev, PCI_D0);
6456 	err = pci_enable_device(pci_dev);
6457 	if (err) {
6458 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6459 		       dev->name);
6460 		mutex_unlock(&priv->action_mutex);
6461 		return err;
6462 	}
6463 	pci_restore_state(pci_dev);
6464 
6465 	/*
6466 	 * Suspend/Resume resets the PCI configuration space, so we have to
6467 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6468 	 * from interfering with C3 CPU state. pci_restore_state won't help
6469 	 * here since it only restores the first 64 bytes pci config header.
6470 	 */
6471 	pci_read_config_dword(pci_dev, 0x40, &val);
6472 	if ((val & 0x0000ff00) != 0)
6473 		pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6474 
6475 	/* Set the device back into the PRESENT state; this will also wake
6476 	 * the queue of needed */
6477 	netif_device_attach(dev);
6478 
6479 	priv->suspend_time = get_seconds() - priv->suspend_at;
6480 
6481 	/* Bring the device back up */
6482 	if (!(priv->status & STATUS_RF_KILL_SW))
6483 		ipw2100_up(priv, 0);
6484 
6485 	mutex_unlock(&priv->action_mutex);
6486 
6487 	return 0;
6488 }
6489 #endif
6490 
ipw2100_shutdown(struct pci_dev * pci_dev)6491 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6492 {
6493 	struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6494 
6495 	/* Take down the device; powers it off, etc. */
6496 	ipw2100_down(priv);
6497 
6498 	pci_disable_device(pci_dev);
6499 }
6500 
6501 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6502 
6503 static const struct pci_device_id ipw2100_pci_id_table[] = {
6504 	IPW2100_DEV_ID(0x2520),	/* IN 2100A mPCI 3A */
6505 	IPW2100_DEV_ID(0x2521),	/* IN 2100A mPCI 3B */
6506 	IPW2100_DEV_ID(0x2524),	/* IN 2100A mPCI 3B */
6507 	IPW2100_DEV_ID(0x2525),	/* IN 2100A mPCI 3B */
6508 	IPW2100_DEV_ID(0x2526),	/* IN 2100A mPCI Gen A3 */
6509 	IPW2100_DEV_ID(0x2522),	/* IN 2100 mPCI 3B */
6510 	IPW2100_DEV_ID(0x2523),	/* IN 2100 mPCI 3A */
6511 	IPW2100_DEV_ID(0x2527),	/* IN 2100 mPCI 3B */
6512 	IPW2100_DEV_ID(0x2528),	/* IN 2100 mPCI 3B */
6513 	IPW2100_DEV_ID(0x2529),	/* IN 2100 mPCI 3B */
6514 	IPW2100_DEV_ID(0x252B),	/* IN 2100 mPCI 3A */
6515 	IPW2100_DEV_ID(0x252C),	/* IN 2100 mPCI 3A */
6516 	IPW2100_DEV_ID(0x252D),	/* IN 2100 mPCI 3A */
6517 
6518 	IPW2100_DEV_ID(0x2550),	/* IB 2100A mPCI 3B */
6519 	IPW2100_DEV_ID(0x2551),	/* IB 2100 mPCI 3B */
6520 	IPW2100_DEV_ID(0x2553),	/* IB 2100 mPCI 3B */
6521 	IPW2100_DEV_ID(0x2554),	/* IB 2100 mPCI 3B */
6522 	IPW2100_DEV_ID(0x2555),	/* IB 2100 mPCI 3B */
6523 
6524 	IPW2100_DEV_ID(0x2560),	/* DE 2100A mPCI 3A */
6525 	IPW2100_DEV_ID(0x2562),	/* DE 2100A mPCI 3A */
6526 	IPW2100_DEV_ID(0x2563),	/* DE 2100A mPCI 3A */
6527 	IPW2100_DEV_ID(0x2561),	/* DE 2100 mPCI 3A */
6528 	IPW2100_DEV_ID(0x2565),	/* DE 2100 mPCI 3A */
6529 	IPW2100_DEV_ID(0x2566),	/* DE 2100 mPCI 3A */
6530 	IPW2100_DEV_ID(0x2567),	/* DE 2100 mPCI 3A */
6531 
6532 	IPW2100_DEV_ID(0x2570),	/* GA 2100 mPCI 3B */
6533 
6534 	IPW2100_DEV_ID(0x2580),	/* TO 2100A mPCI 3B */
6535 	IPW2100_DEV_ID(0x2582),	/* TO 2100A mPCI 3B */
6536 	IPW2100_DEV_ID(0x2583),	/* TO 2100A mPCI 3B */
6537 	IPW2100_DEV_ID(0x2581),	/* TO 2100 mPCI 3B */
6538 	IPW2100_DEV_ID(0x2585),	/* TO 2100 mPCI 3B */
6539 	IPW2100_DEV_ID(0x2586),	/* TO 2100 mPCI 3B */
6540 	IPW2100_DEV_ID(0x2587),	/* TO 2100 mPCI 3B */
6541 
6542 	IPW2100_DEV_ID(0x2590),	/* SO 2100A mPCI 3B */
6543 	IPW2100_DEV_ID(0x2592),	/* SO 2100A mPCI 3B */
6544 	IPW2100_DEV_ID(0x2591),	/* SO 2100 mPCI 3B */
6545 	IPW2100_DEV_ID(0x2593),	/* SO 2100 mPCI 3B */
6546 	IPW2100_DEV_ID(0x2596),	/* SO 2100 mPCI 3B */
6547 	IPW2100_DEV_ID(0x2598),	/* SO 2100 mPCI 3B */
6548 
6549 	IPW2100_DEV_ID(0x25A0),	/* HP 2100 mPCI 3B */
6550 	{0,},
6551 };
6552 
6553 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6554 
6555 static struct pci_driver ipw2100_pci_driver = {
6556 	.name = DRV_NAME,
6557 	.id_table = ipw2100_pci_id_table,
6558 	.probe = ipw2100_pci_init_one,
6559 	.remove = ipw2100_pci_remove_one,
6560 #ifdef CONFIG_PM
6561 	.suspend = ipw2100_suspend,
6562 	.resume = ipw2100_resume,
6563 #endif
6564 	.shutdown = ipw2100_shutdown,
6565 };
6566 
6567 /**
6568  * Initialize the ipw2100 driver/module
6569  *
6570  * @returns 0 if ok, < 0 errno node con error.
6571  *
6572  * Note: we cannot init the /proc stuff until the PCI driver is there,
6573  * or we risk an unlikely race condition on someone accessing
6574  * uninitialized data in the PCI dev struct through /proc.
6575  */
ipw2100_init(void)6576 static int __init ipw2100_init(void)
6577 {
6578 	int ret;
6579 
6580 	printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6581 	printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6582 
6583 	pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6584 			   PM_QOS_DEFAULT_VALUE);
6585 
6586 	ret = pci_register_driver(&ipw2100_pci_driver);
6587 	if (ret)
6588 		goto out;
6589 
6590 #ifdef CONFIG_IPW2100_DEBUG
6591 	ipw2100_debug_level = debug;
6592 	ret = driver_create_file(&ipw2100_pci_driver.driver,
6593 				 &driver_attr_debug_level);
6594 #endif
6595 
6596 out:
6597 	return ret;
6598 }
6599 
6600 /**
6601  * Cleanup ipw2100 driver registration
6602  */
ipw2100_exit(void)6603 static void __exit ipw2100_exit(void)
6604 {
6605 	/* FIXME: IPG: check that we have no instances of the devices open */
6606 #ifdef CONFIG_IPW2100_DEBUG
6607 	driver_remove_file(&ipw2100_pci_driver.driver,
6608 			   &driver_attr_debug_level);
6609 #endif
6610 	pci_unregister_driver(&ipw2100_pci_driver);
6611 	pm_qos_remove_request(&ipw2100_pm_qos_req);
6612 }
6613 
6614 module_init(ipw2100_init);
6615 module_exit(ipw2100_exit);
6616 
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6617 static int ipw2100_wx_get_name(struct net_device *dev,
6618 			       struct iw_request_info *info,
6619 			       union iwreq_data *wrqu, char *extra)
6620 {
6621 	/*
6622 	 * This can be called at any time.  No action lock required
6623 	 */
6624 
6625 	struct ipw2100_priv *priv = libipw_priv(dev);
6626 	if (!(priv->status & STATUS_ASSOCIATED))
6627 		strcpy(wrqu->name, "unassociated");
6628 	else
6629 		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6630 
6631 	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6632 	return 0;
6633 }
6634 
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6635 static int ipw2100_wx_set_freq(struct net_device *dev,
6636 			       struct iw_request_info *info,
6637 			       union iwreq_data *wrqu, char *extra)
6638 {
6639 	struct ipw2100_priv *priv = libipw_priv(dev);
6640 	struct iw_freq *fwrq = &wrqu->freq;
6641 	int err = 0;
6642 
6643 	if (priv->ieee->iw_mode == IW_MODE_INFRA)
6644 		return -EOPNOTSUPP;
6645 
6646 	mutex_lock(&priv->action_mutex);
6647 	if (!(priv->status & STATUS_INITIALIZED)) {
6648 		err = -EIO;
6649 		goto done;
6650 	}
6651 
6652 	/* if setting by freq convert to channel */
6653 	if (fwrq->e == 1) {
6654 		if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6655 			int f = fwrq->m / 100000;
6656 			int c = 0;
6657 
6658 			while ((c < REG_MAX_CHANNEL) &&
6659 			       (f != ipw2100_frequencies[c]))
6660 				c++;
6661 
6662 			/* hack to fall through */
6663 			fwrq->e = 0;
6664 			fwrq->m = c + 1;
6665 		}
6666 	}
6667 
6668 	if (fwrq->e > 0 || fwrq->m > 1000) {
6669 		err = -EOPNOTSUPP;
6670 		goto done;
6671 	} else {		/* Set the channel */
6672 		IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6673 		err = ipw2100_set_channel(priv, fwrq->m, 0);
6674 	}
6675 
6676       done:
6677 	mutex_unlock(&priv->action_mutex);
6678 	return err;
6679 }
6680 
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6681 static int ipw2100_wx_get_freq(struct net_device *dev,
6682 			       struct iw_request_info *info,
6683 			       union iwreq_data *wrqu, char *extra)
6684 {
6685 	/*
6686 	 * This can be called at any time.  No action lock required
6687 	 */
6688 
6689 	struct ipw2100_priv *priv = libipw_priv(dev);
6690 
6691 	wrqu->freq.e = 0;
6692 
6693 	/* If we are associated, trying to associate, or have a statically
6694 	 * configured CHANNEL then return that; otherwise return ANY */
6695 	if (priv->config & CFG_STATIC_CHANNEL ||
6696 	    priv->status & STATUS_ASSOCIATED)
6697 		wrqu->freq.m = priv->channel;
6698 	else
6699 		wrqu->freq.m = 0;
6700 
6701 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6702 	return 0;
6703 
6704 }
6705 
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6706 static int ipw2100_wx_set_mode(struct net_device *dev,
6707 			       struct iw_request_info *info,
6708 			       union iwreq_data *wrqu, char *extra)
6709 {
6710 	struct ipw2100_priv *priv = libipw_priv(dev);
6711 	int err = 0;
6712 
6713 	IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6714 
6715 	if (wrqu->mode == priv->ieee->iw_mode)
6716 		return 0;
6717 
6718 	mutex_lock(&priv->action_mutex);
6719 	if (!(priv->status & STATUS_INITIALIZED)) {
6720 		err = -EIO;
6721 		goto done;
6722 	}
6723 
6724 	switch (wrqu->mode) {
6725 #ifdef CONFIG_IPW2100_MONITOR
6726 	case IW_MODE_MONITOR:
6727 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6728 		break;
6729 #endif				/* CONFIG_IPW2100_MONITOR */
6730 	case IW_MODE_ADHOC:
6731 		err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6732 		break;
6733 	case IW_MODE_INFRA:
6734 	case IW_MODE_AUTO:
6735 	default:
6736 		err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6737 		break;
6738 	}
6739 
6740       done:
6741 	mutex_unlock(&priv->action_mutex);
6742 	return err;
6743 }
6744 
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6745 static int ipw2100_wx_get_mode(struct net_device *dev,
6746 			       struct iw_request_info *info,
6747 			       union iwreq_data *wrqu, char *extra)
6748 {
6749 	/*
6750 	 * This can be called at any time.  No action lock required
6751 	 */
6752 
6753 	struct ipw2100_priv *priv = libipw_priv(dev);
6754 
6755 	wrqu->mode = priv->ieee->iw_mode;
6756 	IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6757 
6758 	return 0;
6759 }
6760 
6761 #define POWER_MODES 5
6762 
6763 /* Values are in microsecond */
6764 static const s32 timeout_duration[POWER_MODES] = {
6765 	350000,
6766 	250000,
6767 	75000,
6768 	37000,
6769 	25000,
6770 };
6771 
6772 static const s32 period_duration[POWER_MODES] = {
6773 	400000,
6774 	700000,
6775 	1000000,
6776 	1000000,
6777 	1000000
6778 };
6779 
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6780 static int ipw2100_wx_get_range(struct net_device *dev,
6781 				struct iw_request_info *info,
6782 				union iwreq_data *wrqu, char *extra)
6783 {
6784 	/*
6785 	 * This can be called at any time.  No action lock required
6786 	 */
6787 
6788 	struct ipw2100_priv *priv = libipw_priv(dev);
6789 	struct iw_range *range = (struct iw_range *)extra;
6790 	u16 val;
6791 	int i, level;
6792 
6793 	wrqu->data.length = sizeof(*range);
6794 	memset(range, 0, sizeof(*range));
6795 
6796 	/* Let's try to keep this struct in the same order as in
6797 	 * linux/include/wireless.h
6798 	 */
6799 
6800 	/* TODO: See what values we can set, and remove the ones we can't
6801 	 * set, or fill them with some default data.
6802 	 */
6803 
6804 	/* ~5 Mb/s real (802.11b) */
6805 	range->throughput = 5 * 1000 * 1000;
6806 
6807 //      range->sensitivity;     /* signal level threshold range */
6808 
6809 	range->max_qual.qual = 100;
6810 	/* TODO: Find real max RSSI and stick here */
6811 	range->max_qual.level = 0;
6812 	range->max_qual.noise = 0;
6813 	range->max_qual.updated = 7;	/* Updated all three */
6814 
6815 	range->avg_qual.qual = 70;	/* > 8% missed beacons is 'bad' */
6816 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6817 	range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6818 	range->avg_qual.noise = 0;
6819 	range->avg_qual.updated = 7;	/* Updated all three */
6820 
6821 	range->num_bitrates = RATE_COUNT;
6822 
6823 	for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6824 		range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6825 	}
6826 
6827 	range->min_rts = MIN_RTS_THRESHOLD;
6828 	range->max_rts = MAX_RTS_THRESHOLD;
6829 	range->min_frag = MIN_FRAG_THRESHOLD;
6830 	range->max_frag = MAX_FRAG_THRESHOLD;
6831 
6832 	range->min_pmp = period_duration[0];	/* Minimal PM period */
6833 	range->max_pmp = period_duration[POWER_MODES - 1];	/* Maximal PM period */
6834 	range->min_pmt = timeout_duration[POWER_MODES - 1];	/* Minimal PM timeout */
6835 	range->max_pmt = timeout_duration[0];	/* Maximal PM timeout */
6836 
6837 	/* How to decode max/min PM period */
6838 	range->pmp_flags = IW_POWER_PERIOD;
6839 	/* How to decode max/min PM period */
6840 	range->pmt_flags = IW_POWER_TIMEOUT;
6841 	/* What PM options are supported */
6842 	range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6843 
6844 	range->encoding_size[0] = 5;
6845 	range->encoding_size[1] = 13;	/* Different token sizes */
6846 	range->num_encoding_sizes = 2;	/* Number of entry in the list */
6847 	range->max_encoding_tokens = WEP_KEYS;	/* Max number of tokens */
6848 //      range->encoding_login_index;            /* token index for login token */
6849 
6850 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6851 		range->txpower_capa = IW_TXPOW_DBM;
6852 		range->num_txpower = IW_MAX_TXPOWER;
6853 		for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6854 		     i < IW_MAX_TXPOWER;
6855 		     i++, level -=
6856 		     ((IPW_TX_POWER_MAX_DBM -
6857 		       IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6858 			range->txpower[i] = level / 16;
6859 	} else {
6860 		range->txpower_capa = 0;
6861 		range->num_txpower = 0;
6862 	}
6863 
6864 	/* Set the Wireless Extension versions */
6865 	range->we_version_compiled = WIRELESS_EXT;
6866 	range->we_version_source = 18;
6867 
6868 //      range->retry_capa;      /* What retry options are supported */
6869 //      range->retry_flags;     /* How to decode max/min retry limit */
6870 //      range->r_time_flags;    /* How to decode max/min retry life */
6871 //      range->min_retry;       /* Minimal number of retries */
6872 //      range->max_retry;       /* Maximal number of retries */
6873 //      range->min_r_time;      /* Minimal retry lifetime */
6874 //      range->max_r_time;      /* Maximal retry lifetime */
6875 
6876 	range->num_channels = FREQ_COUNT;
6877 
6878 	val = 0;
6879 	for (i = 0; i < FREQ_COUNT; i++) {
6880 		// TODO: Include only legal frequencies for some countries
6881 //              if (local->channel_mask & (1 << i)) {
6882 		range->freq[val].i = i + 1;
6883 		range->freq[val].m = ipw2100_frequencies[i] * 100000;
6884 		range->freq[val].e = 1;
6885 		val++;
6886 //              }
6887 		if (val == IW_MAX_FREQUENCIES)
6888 			break;
6889 	}
6890 	range->num_frequency = val;
6891 
6892 	/* Event capability (kernel + driver) */
6893 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6894 				IW_EVENT_CAPA_MASK(SIOCGIWAP));
6895 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
6896 
6897 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6898 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6899 
6900 	IPW_DEBUG_WX("GET Range\n");
6901 
6902 	return 0;
6903 }
6904 
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6905 static int ipw2100_wx_set_wap(struct net_device *dev,
6906 			      struct iw_request_info *info,
6907 			      union iwreq_data *wrqu, char *extra)
6908 {
6909 	struct ipw2100_priv *priv = libipw_priv(dev);
6910 	int err = 0;
6911 
6912 	// sanity checks
6913 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6914 		return -EINVAL;
6915 
6916 	mutex_lock(&priv->action_mutex);
6917 	if (!(priv->status & STATUS_INITIALIZED)) {
6918 		err = -EIO;
6919 		goto done;
6920 	}
6921 
6922 	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6923 	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6924 		/* we disable mandatory BSSID association */
6925 		IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6926 		priv->config &= ~CFG_STATIC_BSSID;
6927 		err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6928 		goto done;
6929 	}
6930 
6931 	priv->config |= CFG_STATIC_BSSID;
6932 	memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6933 
6934 	err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6935 
6936 	IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6937 
6938       done:
6939 	mutex_unlock(&priv->action_mutex);
6940 	return err;
6941 }
6942 
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6943 static int ipw2100_wx_get_wap(struct net_device *dev,
6944 			      struct iw_request_info *info,
6945 			      union iwreq_data *wrqu, char *extra)
6946 {
6947 	/*
6948 	 * This can be called at any time.  No action lock required
6949 	 */
6950 
6951 	struct ipw2100_priv *priv = libipw_priv(dev);
6952 
6953 	/* If we are associated, trying to associate, or have a statically
6954 	 * configured BSSID then return that; otherwise return ANY */
6955 	if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6956 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6957 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6958 	} else
6959 		eth_zero_addr(wrqu->ap_addr.sa_data);
6960 
6961 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6962 	return 0;
6963 }
6964 
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6965 static int ipw2100_wx_set_essid(struct net_device *dev,
6966 				struct iw_request_info *info,
6967 				union iwreq_data *wrqu, char *extra)
6968 {
6969 	struct ipw2100_priv *priv = libipw_priv(dev);
6970 	char *essid = "";	/* ANY */
6971 	int length = 0;
6972 	int err = 0;
6973 
6974 	mutex_lock(&priv->action_mutex);
6975 	if (!(priv->status & STATUS_INITIALIZED)) {
6976 		err = -EIO;
6977 		goto done;
6978 	}
6979 
6980 	if (wrqu->essid.flags && wrqu->essid.length) {
6981 		length = wrqu->essid.length;
6982 		essid = extra;
6983 	}
6984 
6985 	if (length == 0) {
6986 		IPW_DEBUG_WX("Setting ESSID to ANY\n");
6987 		priv->config &= ~CFG_STATIC_ESSID;
6988 		err = ipw2100_set_essid(priv, NULL, 0, 0);
6989 		goto done;
6990 	}
6991 
6992 	length = min(length, IW_ESSID_MAX_SIZE);
6993 
6994 	priv->config |= CFG_STATIC_ESSID;
6995 
6996 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6997 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6998 		err = 0;
6999 		goto done;
7000 	}
7001 
7002 	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7003 
7004 	priv->essid_len = length;
7005 	memcpy(priv->essid, essid, priv->essid_len);
7006 
7007 	err = ipw2100_set_essid(priv, essid, length, 0);
7008 
7009       done:
7010 	mutex_unlock(&priv->action_mutex);
7011 	return err;
7012 }
7013 
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7014 static int ipw2100_wx_get_essid(struct net_device *dev,
7015 				struct iw_request_info *info,
7016 				union iwreq_data *wrqu, char *extra)
7017 {
7018 	/*
7019 	 * This can be called at any time.  No action lock required
7020 	 */
7021 
7022 	struct ipw2100_priv *priv = libipw_priv(dev);
7023 
7024 	/* If we are associated, trying to associate, or have a statically
7025 	 * configured ESSID then return that; otherwise return ANY */
7026 	if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7027 		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7028 			     priv->essid_len, priv->essid);
7029 		memcpy(extra, priv->essid, priv->essid_len);
7030 		wrqu->essid.length = priv->essid_len;
7031 		wrqu->essid.flags = 1;	/* active */
7032 	} else {
7033 		IPW_DEBUG_WX("Getting essid: ANY\n");
7034 		wrqu->essid.length = 0;
7035 		wrqu->essid.flags = 0;	/* active */
7036 	}
7037 
7038 	return 0;
7039 }
7040 
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7041 static int ipw2100_wx_set_nick(struct net_device *dev,
7042 			       struct iw_request_info *info,
7043 			       union iwreq_data *wrqu, char *extra)
7044 {
7045 	/*
7046 	 * This can be called at any time.  No action lock required
7047 	 */
7048 
7049 	struct ipw2100_priv *priv = libipw_priv(dev);
7050 
7051 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7052 		return -E2BIG;
7053 
7054 	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7055 	memset(priv->nick, 0, sizeof(priv->nick));
7056 	memcpy(priv->nick, extra, wrqu->data.length);
7057 
7058 	IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7059 
7060 	return 0;
7061 }
7062 
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7063 static int ipw2100_wx_get_nick(struct net_device *dev,
7064 			       struct iw_request_info *info,
7065 			       union iwreq_data *wrqu, char *extra)
7066 {
7067 	/*
7068 	 * This can be called at any time.  No action lock required
7069 	 */
7070 
7071 	struct ipw2100_priv *priv = libipw_priv(dev);
7072 
7073 	wrqu->data.length = strlen(priv->nick);
7074 	memcpy(extra, priv->nick, wrqu->data.length);
7075 	wrqu->data.flags = 1;	/* active */
7076 
7077 	IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7078 
7079 	return 0;
7080 }
7081 
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7082 static int ipw2100_wx_set_rate(struct net_device *dev,
7083 			       struct iw_request_info *info,
7084 			       union iwreq_data *wrqu, char *extra)
7085 {
7086 	struct ipw2100_priv *priv = libipw_priv(dev);
7087 	u32 target_rate = wrqu->bitrate.value;
7088 	u32 rate;
7089 	int err = 0;
7090 
7091 	mutex_lock(&priv->action_mutex);
7092 	if (!(priv->status & STATUS_INITIALIZED)) {
7093 		err = -EIO;
7094 		goto done;
7095 	}
7096 
7097 	rate = 0;
7098 
7099 	if (target_rate == 1000000 ||
7100 	    (!wrqu->bitrate.fixed && target_rate > 1000000))
7101 		rate |= TX_RATE_1_MBIT;
7102 	if (target_rate == 2000000 ||
7103 	    (!wrqu->bitrate.fixed && target_rate > 2000000))
7104 		rate |= TX_RATE_2_MBIT;
7105 	if (target_rate == 5500000 ||
7106 	    (!wrqu->bitrate.fixed && target_rate > 5500000))
7107 		rate |= TX_RATE_5_5_MBIT;
7108 	if (target_rate == 11000000 ||
7109 	    (!wrqu->bitrate.fixed && target_rate > 11000000))
7110 		rate |= TX_RATE_11_MBIT;
7111 	if (rate == 0)
7112 		rate = DEFAULT_TX_RATES;
7113 
7114 	err = ipw2100_set_tx_rates(priv, rate, 0);
7115 
7116 	IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7117       done:
7118 	mutex_unlock(&priv->action_mutex);
7119 	return err;
7120 }
7121 
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7122 static int ipw2100_wx_get_rate(struct net_device *dev,
7123 			       struct iw_request_info *info,
7124 			       union iwreq_data *wrqu, char *extra)
7125 {
7126 	struct ipw2100_priv *priv = libipw_priv(dev);
7127 	int val;
7128 	unsigned int len = sizeof(val);
7129 	int err = 0;
7130 
7131 	if (!(priv->status & STATUS_ENABLED) ||
7132 	    priv->status & STATUS_RF_KILL_MASK ||
7133 	    !(priv->status & STATUS_ASSOCIATED)) {
7134 		wrqu->bitrate.value = 0;
7135 		return 0;
7136 	}
7137 
7138 	mutex_lock(&priv->action_mutex);
7139 	if (!(priv->status & STATUS_INITIALIZED)) {
7140 		err = -EIO;
7141 		goto done;
7142 	}
7143 
7144 	err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7145 	if (err) {
7146 		IPW_DEBUG_WX("failed querying ordinals.\n");
7147 		goto done;
7148 	}
7149 
7150 	switch (val & TX_RATE_MASK) {
7151 	case TX_RATE_1_MBIT:
7152 		wrqu->bitrate.value = 1000000;
7153 		break;
7154 	case TX_RATE_2_MBIT:
7155 		wrqu->bitrate.value = 2000000;
7156 		break;
7157 	case TX_RATE_5_5_MBIT:
7158 		wrqu->bitrate.value = 5500000;
7159 		break;
7160 	case TX_RATE_11_MBIT:
7161 		wrqu->bitrate.value = 11000000;
7162 		break;
7163 	default:
7164 		wrqu->bitrate.value = 0;
7165 	}
7166 
7167 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7168 
7169       done:
7170 	mutex_unlock(&priv->action_mutex);
7171 	return err;
7172 }
7173 
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7174 static int ipw2100_wx_set_rts(struct net_device *dev,
7175 			      struct iw_request_info *info,
7176 			      union iwreq_data *wrqu, char *extra)
7177 {
7178 	struct ipw2100_priv *priv = libipw_priv(dev);
7179 	int value, err;
7180 
7181 	/* Auto RTS not yet supported */
7182 	if (wrqu->rts.fixed == 0)
7183 		return -EINVAL;
7184 
7185 	mutex_lock(&priv->action_mutex);
7186 	if (!(priv->status & STATUS_INITIALIZED)) {
7187 		err = -EIO;
7188 		goto done;
7189 	}
7190 
7191 	if (wrqu->rts.disabled)
7192 		value = priv->rts_threshold | RTS_DISABLED;
7193 	else {
7194 		if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7195 			err = -EINVAL;
7196 			goto done;
7197 		}
7198 		value = wrqu->rts.value;
7199 	}
7200 
7201 	err = ipw2100_set_rts_threshold(priv, value);
7202 
7203 	IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7204       done:
7205 	mutex_unlock(&priv->action_mutex);
7206 	return err;
7207 }
7208 
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7209 static int ipw2100_wx_get_rts(struct net_device *dev,
7210 			      struct iw_request_info *info,
7211 			      union iwreq_data *wrqu, char *extra)
7212 {
7213 	/*
7214 	 * This can be called at any time.  No action lock required
7215 	 */
7216 
7217 	struct ipw2100_priv *priv = libipw_priv(dev);
7218 
7219 	wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7220 	wrqu->rts.fixed = 1;	/* no auto select */
7221 
7222 	/* If RTS is set to the default value, then it is disabled */
7223 	wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7224 
7225 	IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7226 
7227 	return 0;
7228 }
7229 
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7230 static int ipw2100_wx_set_txpow(struct net_device *dev,
7231 				struct iw_request_info *info,
7232 				union iwreq_data *wrqu, char *extra)
7233 {
7234 	struct ipw2100_priv *priv = libipw_priv(dev);
7235 	int err = 0, value;
7236 
7237 	if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7238 		return -EINPROGRESS;
7239 
7240 	if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7241 		return 0;
7242 
7243 	if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7244 		return -EINVAL;
7245 
7246 	if (wrqu->txpower.fixed == 0)
7247 		value = IPW_TX_POWER_DEFAULT;
7248 	else {
7249 		if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7250 		    wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7251 			return -EINVAL;
7252 
7253 		value = wrqu->txpower.value;
7254 	}
7255 
7256 	mutex_lock(&priv->action_mutex);
7257 	if (!(priv->status & STATUS_INITIALIZED)) {
7258 		err = -EIO;
7259 		goto done;
7260 	}
7261 
7262 	err = ipw2100_set_tx_power(priv, value);
7263 
7264 	IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7265 
7266       done:
7267 	mutex_unlock(&priv->action_mutex);
7268 	return err;
7269 }
7270 
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7271 static int ipw2100_wx_get_txpow(struct net_device *dev,
7272 				struct iw_request_info *info,
7273 				union iwreq_data *wrqu, char *extra)
7274 {
7275 	/*
7276 	 * This can be called at any time.  No action lock required
7277 	 */
7278 
7279 	struct ipw2100_priv *priv = libipw_priv(dev);
7280 
7281 	wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7282 
7283 	if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7284 		wrqu->txpower.fixed = 0;
7285 		wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7286 	} else {
7287 		wrqu->txpower.fixed = 1;
7288 		wrqu->txpower.value = priv->tx_power;
7289 	}
7290 
7291 	wrqu->txpower.flags = IW_TXPOW_DBM;
7292 
7293 	IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7294 
7295 	return 0;
7296 }
7297 
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7298 static int ipw2100_wx_set_frag(struct net_device *dev,
7299 			       struct iw_request_info *info,
7300 			       union iwreq_data *wrqu, char *extra)
7301 {
7302 	/*
7303 	 * This can be called at any time.  No action lock required
7304 	 */
7305 
7306 	struct ipw2100_priv *priv = libipw_priv(dev);
7307 
7308 	if (!wrqu->frag.fixed)
7309 		return -EINVAL;
7310 
7311 	if (wrqu->frag.disabled) {
7312 		priv->frag_threshold |= FRAG_DISABLED;
7313 		priv->ieee->fts = DEFAULT_FTS;
7314 	} else {
7315 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7316 		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
7317 			return -EINVAL;
7318 
7319 		priv->ieee->fts = wrqu->frag.value & ~0x1;
7320 		priv->frag_threshold = priv->ieee->fts;
7321 	}
7322 
7323 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7324 
7325 	return 0;
7326 }
7327 
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7328 static int ipw2100_wx_get_frag(struct net_device *dev,
7329 			       struct iw_request_info *info,
7330 			       union iwreq_data *wrqu, char *extra)
7331 {
7332 	/*
7333 	 * This can be called at any time.  No action lock required
7334 	 */
7335 
7336 	struct ipw2100_priv *priv = libipw_priv(dev);
7337 	wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7338 	wrqu->frag.fixed = 0;	/* no auto select */
7339 	wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7340 
7341 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7342 
7343 	return 0;
7344 }
7345 
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7346 static int ipw2100_wx_set_retry(struct net_device *dev,
7347 				struct iw_request_info *info,
7348 				union iwreq_data *wrqu, char *extra)
7349 {
7350 	struct ipw2100_priv *priv = libipw_priv(dev);
7351 	int err = 0;
7352 
7353 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7354 		return -EINVAL;
7355 
7356 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7357 		return 0;
7358 
7359 	mutex_lock(&priv->action_mutex);
7360 	if (!(priv->status & STATUS_INITIALIZED)) {
7361 		err = -EIO;
7362 		goto done;
7363 	}
7364 
7365 	if (wrqu->retry.flags & IW_RETRY_SHORT) {
7366 		err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7367 		IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7368 			     wrqu->retry.value);
7369 		goto done;
7370 	}
7371 
7372 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7373 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374 		IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7375 			     wrqu->retry.value);
7376 		goto done;
7377 	}
7378 
7379 	err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7380 	if (!err)
7381 		err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382 
7383 	IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7384 
7385       done:
7386 	mutex_unlock(&priv->action_mutex);
7387 	return err;
7388 }
7389 
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7390 static int ipw2100_wx_get_retry(struct net_device *dev,
7391 				struct iw_request_info *info,
7392 				union iwreq_data *wrqu, char *extra)
7393 {
7394 	/*
7395 	 * This can be called at any time.  No action lock required
7396 	 */
7397 
7398 	struct ipw2100_priv *priv = libipw_priv(dev);
7399 
7400 	wrqu->retry.disabled = 0;	/* can't be disabled */
7401 
7402 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7403 		return -EINVAL;
7404 
7405 	if (wrqu->retry.flags & IW_RETRY_LONG) {
7406 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7407 		wrqu->retry.value = priv->long_retry_limit;
7408 	} else {
7409 		wrqu->retry.flags =
7410 		    (priv->short_retry_limit !=
7411 		     priv->long_retry_limit) ?
7412 		    IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7413 
7414 		wrqu->retry.value = priv->short_retry_limit;
7415 	}
7416 
7417 	IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7418 
7419 	return 0;
7420 }
7421 
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7422 static int ipw2100_wx_set_scan(struct net_device *dev,
7423 			       struct iw_request_info *info,
7424 			       union iwreq_data *wrqu, char *extra)
7425 {
7426 	struct ipw2100_priv *priv = libipw_priv(dev);
7427 	int err = 0;
7428 
7429 	mutex_lock(&priv->action_mutex);
7430 	if (!(priv->status & STATUS_INITIALIZED)) {
7431 		err = -EIO;
7432 		goto done;
7433 	}
7434 
7435 	IPW_DEBUG_WX("Initiating scan...\n");
7436 
7437 	priv->user_requested_scan = 1;
7438 	if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7439 		IPW_DEBUG_WX("Start scan failed.\n");
7440 
7441 		/* TODO: Mark a scan as pending so when hardware initialized
7442 		 *       a scan starts */
7443 	}
7444 
7445       done:
7446 	mutex_unlock(&priv->action_mutex);
7447 	return err;
7448 }
7449 
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7450 static int ipw2100_wx_get_scan(struct net_device *dev,
7451 			       struct iw_request_info *info,
7452 			       union iwreq_data *wrqu, char *extra)
7453 {
7454 	/*
7455 	 * This can be called at any time.  No action lock required
7456 	 */
7457 
7458 	struct ipw2100_priv *priv = libipw_priv(dev);
7459 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7460 }
7461 
7462 /*
7463  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7464  */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7465 static int ipw2100_wx_set_encode(struct net_device *dev,
7466 				 struct iw_request_info *info,
7467 				 union iwreq_data *wrqu, char *key)
7468 {
7469 	/*
7470 	 * No check of STATUS_INITIALIZED required
7471 	 */
7472 
7473 	struct ipw2100_priv *priv = libipw_priv(dev);
7474 	return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7475 }
7476 
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7477 static int ipw2100_wx_get_encode(struct net_device *dev,
7478 				 struct iw_request_info *info,
7479 				 union iwreq_data *wrqu, char *key)
7480 {
7481 	/*
7482 	 * This can be called at any time.  No action lock required
7483 	 */
7484 
7485 	struct ipw2100_priv *priv = libipw_priv(dev);
7486 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7487 }
7488 
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7489 static int ipw2100_wx_set_power(struct net_device *dev,
7490 				struct iw_request_info *info,
7491 				union iwreq_data *wrqu, char *extra)
7492 {
7493 	struct ipw2100_priv *priv = libipw_priv(dev);
7494 	int err = 0;
7495 
7496 	mutex_lock(&priv->action_mutex);
7497 	if (!(priv->status & STATUS_INITIALIZED)) {
7498 		err = -EIO;
7499 		goto done;
7500 	}
7501 
7502 	if (wrqu->power.disabled) {
7503 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7504 		err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7505 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7506 		goto done;
7507 	}
7508 
7509 	switch (wrqu->power.flags & IW_POWER_MODE) {
7510 	case IW_POWER_ON:	/* If not specified */
7511 	case IW_POWER_MODE:	/* If set all mask */
7512 	case IW_POWER_ALL_R:	/* If explicitly state all */
7513 		break;
7514 	default:		/* Otherwise we don't support it */
7515 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7516 			     wrqu->power.flags);
7517 		err = -EOPNOTSUPP;
7518 		goto done;
7519 	}
7520 
7521 	/* If the user hasn't specified a power management mode yet, default
7522 	 * to BATTERY */
7523 	priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7524 	err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7525 
7526 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7527 
7528       done:
7529 	mutex_unlock(&priv->action_mutex);
7530 	return err;
7531 
7532 }
7533 
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7534 static int ipw2100_wx_get_power(struct net_device *dev,
7535 				struct iw_request_info *info,
7536 				union iwreq_data *wrqu, char *extra)
7537 {
7538 	/*
7539 	 * This can be called at any time.  No action lock required
7540 	 */
7541 
7542 	struct ipw2100_priv *priv = libipw_priv(dev);
7543 
7544 	if (!(priv->power_mode & IPW_POWER_ENABLED))
7545 		wrqu->power.disabled = 1;
7546 	else {
7547 		wrqu->power.disabled = 0;
7548 		wrqu->power.flags = 0;
7549 	}
7550 
7551 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7552 
7553 	return 0;
7554 }
7555 
7556 /*
7557  * WE-18 WPA support
7558  */
7559 
7560 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7561 static int ipw2100_wx_set_genie(struct net_device *dev,
7562 				struct iw_request_info *info,
7563 				union iwreq_data *wrqu, char *extra)
7564 {
7565 
7566 	struct ipw2100_priv *priv = libipw_priv(dev);
7567 	struct libipw_device *ieee = priv->ieee;
7568 	u8 *buf;
7569 
7570 	if (!ieee->wpa_enabled)
7571 		return -EOPNOTSUPP;
7572 
7573 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
7574 	    (wrqu->data.length && extra == NULL))
7575 		return -EINVAL;
7576 
7577 	if (wrqu->data.length) {
7578 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7579 		if (buf == NULL)
7580 			return -ENOMEM;
7581 
7582 		kfree(ieee->wpa_ie);
7583 		ieee->wpa_ie = buf;
7584 		ieee->wpa_ie_len = wrqu->data.length;
7585 	} else {
7586 		kfree(ieee->wpa_ie);
7587 		ieee->wpa_ie = NULL;
7588 		ieee->wpa_ie_len = 0;
7589 	}
7590 
7591 	ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7592 
7593 	return 0;
7594 }
7595 
7596 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7597 static int ipw2100_wx_get_genie(struct net_device *dev,
7598 				struct iw_request_info *info,
7599 				union iwreq_data *wrqu, char *extra)
7600 {
7601 	struct ipw2100_priv *priv = libipw_priv(dev);
7602 	struct libipw_device *ieee = priv->ieee;
7603 
7604 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7605 		wrqu->data.length = 0;
7606 		return 0;
7607 	}
7608 
7609 	if (wrqu->data.length < ieee->wpa_ie_len)
7610 		return -E2BIG;
7611 
7612 	wrqu->data.length = ieee->wpa_ie_len;
7613 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7614 
7615 	return 0;
7616 }
7617 
7618 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7619 static int ipw2100_wx_set_auth(struct net_device *dev,
7620 			       struct iw_request_info *info,
7621 			       union iwreq_data *wrqu, char *extra)
7622 {
7623 	struct ipw2100_priv *priv = libipw_priv(dev);
7624 	struct libipw_device *ieee = priv->ieee;
7625 	struct iw_param *param = &wrqu->param;
7626 	struct lib80211_crypt_data *crypt;
7627 	unsigned long flags;
7628 	int ret = 0;
7629 
7630 	switch (param->flags & IW_AUTH_INDEX) {
7631 	case IW_AUTH_WPA_VERSION:
7632 	case IW_AUTH_CIPHER_PAIRWISE:
7633 	case IW_AUTH_CIPHER_GROUP:
7634 	case IW_AUTH_KEY_MGMT:
7635 		/*
7636 		 * ipw2200 does not use these parameters
7637 		 */
7638 		break;
7639 
7640 	case IW_AUTH_TKIP_COUNTERMEASURES:
7641 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7642 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7643 			break;
7644 
7645 		flags = crypt->ops->get_flags(crypt->priv);
7646 
7647 		if (param->value)
7648 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7649 		else
7650 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7651 
7652 		crypt->ops->set_flags(flags, crypt->priv);
7653 
7654 		break;
7655 
7656 	case IW_AUTH_DROP_UNENCRYPTED:{
7657 			/* HACK:
7658 			 *
7659 			 * wpa_supplicant calls set_wpa_enabled when the driver
7660 			 * is loaded and unloaded, regardless of if WPA is being
7661 			 * used.  No other calls are made which can be used to
7662 			 * determine if encryption will be used or not prior to
7663 			 * association being expected.  If encryption is not being
7664 			 * used, drop_unencrypted is set to false, else true -- we
7665 			 * can use this to determine if the CAP_PRIVACY_ON bit should
7666 			 * be set.
7667 			 */
7668 			struct libipw_security sec = {
7669 				.flags = SEC_ENABLED,
7670 				.enabled = param->value,
7671 			};
7672 			priv->ieee->drop_unencrypted = param->value;
7673 			/* We only change SEC_LEVEL for open mode. Others
7674 			 * are set by ipw_wpa_set_encryption.
7675 			 */
7676 			if (!param->value) {
7677 				sec.flags |= SEC_LEVEL;
7678 				sec.level = SEC_LEVEL_0;
7679 			} else {
7680 				sec.flags |= SEC_LEVEL;
7681 				sec.level = SEC_LEVEL_1;
7682 			}
7683 			if (priv->ieee->set_security)
7684 				priv->ieee->set_security(priv->ieee->dev, &sec);
7685 			break;
7686 		}
7687 
7688 	case IW_AUTH_80211_AUTH_ALG:
7689 		ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7690 		break;
7691 
7692 	case IW_AUTH_WPA_ENABLED:
7693 		ret = ipw2100_wpa_enable(priv, param->value);
7694 		break;
7695 
7696 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7697 		ieee->ieee802_1x = param->value;
7698 		break;
7699 
7700 		//case IW_AUTH_ROAMING_CONTROL:
7701 	case IW_AUTH_PRIVACY_INVOKED:
7702 		ieee->privacy_invoked = param->value;
7703 		break;
7704 
7705 	default:
7706 		return -EOPNOTSUPP;
7707 	}
7708 	return ret;
7709 }
7710 
7711 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7712 static int ipw2100_wx_get_auth(struct net_device *dev,
7713 			       struct iw_request_info *info,
7714 			       union iwreq_data *wrqu, char *extra)
7715 {
7716 	struct ipw2100_priv *priv = libipw_priv(dev);
7717 	struct libipw_device *ieee = priv->ieee;
7718 	struct lib80211_crypt_data *crypt;
7719 	struct iw_param *param = &wrqu->param;
7720 	int ret = 0;
7721 
7722 	switch (param->flags & IW_AUTH_INDEX) {
7723 	case IW_AUTH_WPA_VERSION:
7724 	case IW_AUTH_CIPHER_PAIRWISE:
7725 	case IW_AUTH_CIPHER_GROUP:
7726 	case IW_AUTH_KEY_MGMT:
7727 		/*
7728 		 * wpa_supplicant will control these internally
7729 		 */
7730 		ret = -EOPNOTSUPP;
7731 		break;
7732 
7733 	case IW_AUTH_TKIP_COUNTERMEASURES:
7734 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7735 		if (!crypt || !crypt->ops->get_flags) {
7736 			IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7737 					  "crypt not set!\n");
7738 			break;
7739 		}
7740 
7741 		param->value = (crypt->ops->get_flags(crypt->priv) &
7742 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7743 
7744 		break;
7745 
7746 	case IW_AUTH_DROP_UNENCRYPTED:
7747 		param->value = ieee->drop_unencrypted;
7748 		break;
7749 
7750 	case IW_AUTH_80211_AUTH_ALG:
7751 		param->value = priv->ieee->sec.auth_mode;
7752 		break;
7753 
7754 	case IW_AUTH_WPA_ENABLED:
7755 		param->value = ieee->wpa_enabled;
7756 		break;
7757 
7758 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7759 		param->value = ieee->ieee802_1x;
7760 		break;
7761 
7762 	case IW_AUTH_ROAMING_CONTROL:
7763 	case IW_AUTH_PRIVACY_INVOKED:
7764 		param->value = ieee->privacy_invoked;
7765 		break;
7766 
7767 	default:
7768 		return -EOPNOTSUPP;
7769 	}
7770 	return 0;
7771 }
7772 
7773 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7774 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7775 				    struct iw_request_info *info,
7776 				    union iwreq_data *wrqu, char *extra)
7777 {
7778 	struct ipw2100_priv *priv = libipw_priv(dev);
7779 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7780 }
7781 
7782 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7783 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7784 				    struct iw_request_info *info,
7785 				    union iwreq_data *wrqu, char *extra)
7786 {
7787 	struct ipw2100_priv *priv = libipw_priv(dev);
7788 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7789 }
7790 
7791 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7792 static int ipw2100_wx_set_mlme(struct net_device *dev,
7793 			       struct iw_request_info *info,
7794 			       union iwreq_data *wrqu, char *extra)
7795 {
7796 	struct ipw2100_priv *priv = libipw_priv(dev);
7797 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
7798 	__le16 reason;
7799 
7800 	reason = cpu_to_le16(mlme->reason_code);
7801 
7802 	switch (mlme->cmd) {
7803 	case IW_MLME_DEAUTH:
7804 		// silently ignore
7805 		break;
7806 
7807 	case IW_MLME_DISASSOC:
7808 		ipw2100_disassociate_bssid(priv);
7809 		break;
7810 
7811 	default:
7812 		return -EOPNOTSUPP;
7813 	}
7814 	return 0;
7815 }
7816 
7817 /*
7818  *
7819  * IWPRIV handlers
7820  *
7821  */
7822 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7823 static int ipw2100_wx_set_promisc(struct net_device *dev,
7824 				  struct iw_request_info *info,
7825 				  union iwreq_data *wrqu, char *extra)
7826 {
7827 	struct ipw2100_priv *priv = libipw_priv(dev);
7828 	int *parms = (int *)extra;
7829 	int enable = (parms[0] > 0);
7830 	int err = 0;
7831 
7832 	mutex_lock(&priv->action_mutex);
7833 	if (!(priv->status & STATUS_INITIALIZED)) {
7834 		err = -EIO;
7835 		goto done;
7836 	}
7837 
7838 	if (enable) {
7839 		if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7840 			err = ipw2100_set_channel(priv, parms[1], 0);
7841 			goto done;
7842 		}
7843 		priv->channel = parms[1];
7844 		err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7845 	} else {
7846 		if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7847 			err = ipw2100_switch_mode(priv, priv->last_mode);
7848 	}
7849       done:
7850 	mutex_unlock(&priv->action_mutex);
7851 	return err;
7852 }
7853 
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7854 static int ipw2100_wx_reset(struct net_device *dev,
7855 			    struct iw_request_info *info,
7856 			    union iwreq_data *wrqu, char *extra)
7857 {
7858 	struct ipw2100_priv *priv = libipw_priv(dev);
7859 	if (priv->status & STATUS_INITIALIZED)
7860 		schedule_reset(priv);
7861 	return 0;
7862 }
7863 
7864 #endif
7865 
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7866 static int ipw2100_wx_set_powermode(struct net_device *dev,
7867 				    struct iw_request_info *info,
7868 				    union iwreq_data *wrqu, char *extra)
7869 {
7870 	struct ipw2100_priv *priv = libipw_priv(dev);
7871 	int err = 0, mode = *(int *)extra;
7872 
7873 	mutex_lock(&priv->action_mutex);
7874 	if (!(priv->status & STATUS_INITIALIZED)) {
7875 		err = -EIO;
7876 		goto done;
7877 	}
7878 
7879 	if ((mode < 0) || (mode > POWER_MODES))
7880 		mode = IPW_POWER_AUTO;
7881 
7882 	if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7883 		err = ipw2100_set_power_mode(priv, mode);
7884       done:
7885 	mutex_unlock(&priv->action_mutex);
7886 	return err;
7887 }
7888 
7889 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7890 static int ipw2100_wx_get_powermode(struct net_device *dev,
7891 				    struct iw_request_info *info,
7892 				    union iwreq_data *wrqu, char *extra)
7893 {
7894 	/*
7895 	 * This can be called at any time.  No action lock required
7896 	 */
7897 
7898 	struct ipw2100_priv *priv = libipw_priv(dev);
7899 	int level = IPW_POWER_LEVEL(priv->power_mode);
7900 	s32 timeout, period;
7901 
7902 	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7903 		snprintf(extra, MAX_POWER_STRING,
7904 			 "Power save level: %d (Off)", level);
7905 	} else {
7906 		switch (level) {
7907 		case IPW_POWER_MODE_CAM:
7908 			snprintf(extra, MAX_POWER_STRING,
7909 				 "Power save level: %d (None)", level);
7910 			break;
7911 		case IPW_POWER_AUTO:
7912 			snprintf(extra, MAX_POWER_STRING,
7913 				 "Power save level: %d (Auto)", level);
7914 			break;
7915 		default:
7916 			timeout = timeout_duration[level - 1] / 1000;
7917 			period = period_duration[level - 1] / 1000;
7918 			snprintf(extra, MAX_POWER_STRING,
7919 				 "Power save level: %d "
7920 				 "(Timeout %dms, Period %dms)",
7921 				 level, timeout, period);
7922 		}
7923 	}
7924 
7925 	wrqu->data.length = strlen(extra) + 1;
7926 
7927 	return 0;
7928 }
7929 
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7930 static int ipw2100_wx_set_preamble(struct net_device *dev,
7931 				   struct iw_request_info *info,
7932 				   union iwreq_data *wrqu, char *extra)
7933 {
7934 	struct ipw2100_priv *priv = libipw_priv(dev);
7935 	int err, mode = *(int *)extra;
7936 
7937 	mutex_lock(&priv->action_mutex);
7938 	if (!(priv->status & STATUS_INITIALIZED)) {
7939 		err = -EIO;
7940 		goto done;
7941 	}
7942 
7943 	if (mode == 1)
7944 		priv->config |= CFG_LONG_PREAMBLE;
7945 	else if (mode == 0)
7946 		priv->config &= ~CFG_LONG_PREAMBLE;
7947 	else {
7948 		err = -EINVAL;
7949 		goto done;
7950 	}
7951 
7952 	err = ipw2100_system_config(priv, 0);
7953 
7954       done:
7955 	mutex_unlock(&priv->action_mutex);
7956 	return err;
7957 }
7958 
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7959 static int ipw2100_wx_get_preamble(struct net_device *dev,
7960 				   struct iw_request_info *info,
7961 				   union iwreq_data *wrqu, char *extra)
7962 {
7963 	/*
7964 	 * This can be called at any time.  No action lock required
7965 	 */
7966 
7967 	struct ipw2100_priv *priv = libipw_priv(dev);
7968 
7969 	if (priv->config & CFG_LONG_PREAMBLE)
7970 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7971 	else
7972 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7973 
7974 	return 0;
7975 }
7976 
7977 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7978 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7979 				    struct iw_request_info *info,
7980 				    union iwreq_data *wrqu, char *extra)
7981 {
7982 	struct ipw2100_priv *priv = libipw_priv(dev);
7983 	int err, mode = *(int *)extra;
7984 
7985 	mutex_lock(&priv->action_mutex);
7986 	if (!(priv->status & STATUS_INITIALIZED)) {
7987 		err = -EIO;
7988 		goto done;
7989 	}
7990 
7991 	if (mode == 1)
7992 		priv->config |= CFG_CRC_CHECK;
7993 	else if (mode == 0)
7994 		priv->config &= ~CFG_CRC_CHECK;
7995 	else {
7996 		err = -EINVAL;
7997 		goto done;
7998 	}
7999 	err = 0;
8000 
8001       done:
8002 	mutex_unlock(&priv->action_mutex);
8003 	return err;
8004 }
8005 
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8006 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8007 				    struct iw_request_info *info,
8008 				    union iwreq_data *wrqu, char *extra)
8009 {
8010 	/*
8011 	 * This can be called at any time.  No action lock required
8012 	 */
8013 
8014 	struct ipw2100_priv *priv = libipw_priv(dev);
8015 
8016 	if (priv->config & CFG_CRC_CHECK)
8017 		snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8018 	else
8019 		snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8020 
8021 	return 0;
8022 }
8023 #endif				/* CONFIG_IPW2100_MONITOR */
8024 
8025 static iw_handler ipw2100_wx_handlers[] = {
8026 	IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8027 	IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8028 	IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8029 	IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8030 	IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8031 	IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8032 	IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8033 	IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8034 	IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8035 	IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8036 	IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8037 	IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8038 	IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8039 	IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8040 	IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8041 	IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8042 	IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8043 	IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8044 	IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8045 	IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8046 	IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8047 	IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8048 	IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8049 	IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8050 	IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8051 	IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8052 	IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8053 	IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8054 	IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8055 	IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8056 	IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8057 	IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8058 	IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8059 	IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8060 	IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8061 };
8062 
8063 #define IPW2100_PRIV_SET_MONITOR	SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET		SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER		SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER		SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE	SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE	SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK	SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK	SIOCIWFIRSTPRIV+7
8071 
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8073 
8074 #ifdef CONFIG_IPW2100_MONITOR
8075 	{
8076 	 IPW2100_PRIV_SET_MONITOR,
8077 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8078 	{
8079 	 IPW2100_PRIV_RESET,
8080 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif				/* CONFIG_IPW2100_MONITOR */
8082 
8083 	{
8084 	 IPW2100_PRIV_SET_POWER,
8085 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8086 	{
8087 	 IPW2100_PRIV_GET_POWER,
8088 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089 	 "get_power"},
8090 	{
8091 	 IPW2100_PRIV_SET_LONGPREAMBLE,
8092 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8093 	{
8094 	 IPW2100_PRIV_GET_LONGPREAMBLE,
8095 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8097 	{
8098 	 IPW2100_PRIV_SET_CRC_CHECK,
8099 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8100 	{
8101 	 IPW2100_PRIV_GET_CRC_CHECK,
8102 	 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif				/* CONFIG_IPW2100_MONITOR */
8104 };
8105 
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108 	ipw2100_wx_set_promisc,
8109 	ipw2100_wx_reset,
8110 #else				/* CONFIG_IPW2100_MONITOR */
8111 	NULL,
8112 	NULL,
8113 #endif				/* CONFIG_IPW2100_MONITOR */
8114 	ipw2100_wx_set_powermode,
8115 	ipw2100_wx_get_powermode,
8116 	ipw2100_wx_set_preamble,
8117 	ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119 	ipw2100_wx_set_crc_check,
8120 	ipw2100_wx_get_crc_check,
8121 #else				/* CONFIG_IPW2100_MONITOR */
8122 	NULL,
8123 	NULL,
8124 #endif				/* CONFIG_IPW2100_MONITOR */
8125 };
8126 
8127 /*
8128  * Get wireless statistics.
8129  * Called by /proc/net/wireless
8130  * Also called by SIOCGIWSTATS
8131  */
ipw2100_wx_wireless_stats(struct net_device * dev)8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8133 {
8134 	enum {
8135 		POOR = 30,
8136 		FAIR = 60,
8137 		GOOD = 80,
8138 		VERY_GOOD = 90,
8139 		EXCELLENT = 95,
8140 		PERFECT = 100
8141 	};
8142 	int rssi_qual;
8143 	int tx_qual;
8144 	int beacon_qual;
8145 	int quality;
8146 
8147 	struct ipw2100_priv *priv = libipw_priv(dev);
8148 	struct iw_statistics *wstats;
8149 	u32 rssi, tx_retries, missed_beacons, tx_failures;
8150 	u32 ord_len = sizeof(u32);
8151 
8152 	if (!priv)
8153 		return (struct iw_statistics *)NULL;
8154 
8155 	wstats = &priv->wstats;
8156 
8157 	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8158 	 * ipw2100_wx_wireless_stats seems to be called before fw is
8159 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8160 	 * and associated; if not associcated, the values are all meaningless
8161 	 * anyway, so set them all to NULL and INVALID */
8162 	if (!(priv->status & STATUS_ASSOCIATED)) {
8163 		wstats->miss.beacon = 0;
8164 		wstats->discard.retries = 0;
8165 		wstats->qual.qual = 0;
8166 		wstats->qual.level = 0;
8167 		wstats->qual.noise = 0;
8168 		wstats->qual.updated = 7;
8169 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8170 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8171 		return wstats;
8172 	}
8173 
8174 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8175 				&missed_beacons, &ord_len))
8176 		goto fail_get_ordinal;
8177 
8178 	/* If we don't have a connection the quality and level is 0 */
8179 	if (!(priv->status & STATUS_ASSOCIATED)) {
8180 		wstats->qual.qual = 0;
8181 		wstats->qual.level = 0;
8182 	} else {
8183 		if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8184 					&rssi, &ord_len))
8185 			goto fail_get_ordinal;
8186 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8187 		if (rssi < 10)
8188 			rssi_qual = rssi * POOR / 10;
8189 		else if (rssi < 15)
8190 			rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8191 		else if (rssi < 20)
8192 			rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8193 		else if (rssi < 30)
8194 			rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8195 			    10 + GOOD;
8196 		else
8197 			rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8198 			    10 + VERY_GOOD;
8199 
8200 		if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8201 					&tx_retries, &ord_len))
8202 			goto fail_get_ordinal;
8203 
8204 		if (tx_retries > 75)
8205 			tx_qual = (90 - tx_retries) * POOR / 15;
8206 		else if (tx_retries > 70)
8207 			tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8208 		else if (tx_retries > 65)
8209 			tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8210 		else if (tx_retries > 50)
8211 			tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8212 			    15 + GOOD;
8213 		else
8214 			tx_qual = (50 - tx_retries) *
8215 			    (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8216 
8217 		if (missed_beacons > 50)
8218 			beacon_qual = (60 - missed_beacons) * POOR / 10;
8219 		else if (missed_beacons > 40)
8220 			beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8221 			    10 + POOR;
8222 		else if (missed_beacons > 32)
8223 			beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8224 			    18 + FAIR;
8225 		else if (missed_beacons > 20)
8226 			beacon_qual = (32 - missed_beacons) *
8227 			    (VERY_GOOD - GOOD) / 20 + GOOD;
8228 		else
8229 			beacon_qual = (20 - missed_beacons) *
8230 			    (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8231 
8232 		quality = min(tx_qual, rssi_qual);
8233 		quality = min(beacon_qual, quality);
8234 
8235 #ifdef CONFIG_IPW2100_DEBUG
8236 		if (beacon_qual == quality)
8237 			IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8238 		else if (tx_qual == quality)
8239 			IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8240 		else if (quality != 100)
8241 			IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8242 		else
8243 			IPW_DEBUG_WX("Quality not clamped.\n");
8244 #endif
8245 
8246 		wstats->qual.qual = quality;
8247 		wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8248 	}
8249 
8250 	wstats->qual.noise = 0;
8251 	wstats->qual.updated = 7;
8252 	wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8253 
8254 	/* FIXME: this is percent and not a # */
8255 	wstats->miss.beacon = missed_beacons;
8256 
8257 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8258 				&tx_failures, &ord_len))
8259 		goto fail_get_ordinal;
8260 	wstats->discard.retries = tx_failures;
8261 
8262 	return wstats;
8263 
8264       fail_get_ordinal:
8265 	IPW_DEBUG_WX("failed querying ordinals.\n");
8266 
8267 	return (struct iw_statistics *)NULL;
8268 }
8269 
8270 static struct iw_handler_def ipw2100_wx_handler_def = {
8271 	.standard = ipw2100_wx_handlers,
8272 	.num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8273 	.num_private = ARRAY_SIZE(ipw2100_private_handler),
8274 	.num_private_args = ARRAY_SIZE(ipw2100_private_args),
8275 	.private = (iw_handler *) ipw2100_private_handler,
8276 	.private_args = (struct iw_priv_args *)ipw2100_private_args,
8277 	.get_wireless_stats = ipw2100_wx_wireless_stats,
8278 };
8279 
ipw2100_wx_event_work(struct work_struct * work)8280 static void ipw2100_wx_event_work(struct work_struct *work)
8281 {
8282 	struct ipw2100_priv *priv =
8283 		container_of(work, struct ipw2100_priv, wx_event_work.work);
8284 	union iwreq_data wrqu;
8285 	unsigned int len = ETH_ALEN;
8286 
8287 	if (priv->status & STATUS_STOPPING)
8288 		return;
8289 
8290 	mutex_lock(&priv->action_mutex);
8291 
8292 	IPW_DEBUG_WX("enter\n");
8293 
8294 	mutex_unlock(&priv->action_mutex);
8295 
8296 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8297 
8298 	/* Fetch BSSID from the hardware */
8299 	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8300 	    priv->status & STATUS_RF_KILL_MASK ||
8301 	    ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8302 				&priv->bssid, &len)) {
8303 		eth_zero_addr(wrqu.ap_addr.sa_data);
8304 	} else {
8305 		/* We now have the BSSID, so can finish setting to the full
8306 		 * associated state */
8307 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8308 		memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8309 		priv->status &= ~STATUS_ASSOCIATING;
8310 		priv->status |= STATUS_ASSOCIATED;
8311 		netif_carrier_on(priv->net_dev);
8312 		netif_wake_queue(priv->net_dev);
8313 	}
8314 
8315 	if (!(priv->status & STATUS_ASSOCIATED)) {
8316 		IPW_DEBUG_WX("Configuring ESSID\n");
8317 		mutex_lock(&priv->action_mutex);
8318 		/* This is a disassociation event, so kick the firmware to
8319 		 * look for another AP */
8320 		if (priv->config & CFG_STATIC_ESSID)
8321 			ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8322 					  0);
8323 		else
8324 			ipw2100_set_essid(priv, NULL, 0, 0);
8325 		mutex_unlock(&priv->action_mutex);
8326 	}
8327 
8328 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8329 }
8330 
8331 #define IPW2100_FW_MAJOR_VERSION 1
8332 #define IPW2100_FW_MINOR_VERSION 3
8333 
8334 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8335 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8336 
8337 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8338                              IPW2100_FW_MAJOR_VERSION)
8339 
8340 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8341 "." __stringify(IPW2100_FW_MINOR_VERSION)
8342 
8343 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8344 
8345 /*
8346 
8347 BINARY FIRMWARE HEADER FORMAT
8348 
8349 offset      length   desc
8350 0           2        version
8351 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8352 4           4        fw_len
8353 8           4        uc_len
8354 C           fw_len   firmware data
8355 12 + fw_len uc_len   microcode data
8356 
8357 */
8358 
8359 struct ipw2100_fw_header {
8360 	short version;
8361 	short mode;
8362 	unsigned int fw_size;
8363 	unsigned int uc_size;
8364 } __packed;
8365 
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8366 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8367 {
8368 	struct ipw2100_fw_header *h =
8369 	    (struct ipw2100_fw_header *)fw->fw_entry->data;
8370 
8371 	if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8372 		printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8373 		       "(detected version id of %u). "
8374 		       "See Documentation/networking/README.ipw2100\n",
8375 		       h->version);
8376 		return 1;
8377 	}
8378 
8379 	fw->version = h->version;
8380 	fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8381 	fw->fw.size = h->fw_size;
8382 	fw->uc.data = fw->fw.data + h->fw_size;
8383 	fw->uc.size = h->uc_size;
8384 
8385 	return 0;
8386 }
8387 
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8388 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8389 				struct ipw2100_fw *fw)
8390 {
8391 	char *fw_name;
8392 	int rc;
8393 
8394 	IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8395 		       priv->net_dev->name);
8396 
8397 	switch (priv->ieee->iw_mode) {
8398 	case IW_MODE_ADHOC:
8399 		fw_name = IPW2100_FW_NAME("-i");
8400 		break;
8401 #ifdef CONFIG_IPW2100_MONITOR
8402 	case IW_MODE_MONITOR:
8403 		fw_name = IPW2100_FW_NAME("-p");
8404 		break;
8405 #endif
8406 	case IW_MODE_INFRA:
8407 	default:
8408 		fw_name = IPW2100_FW_NAME("");
8409 		break;
8410 	}
8411 
8412 	rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8413 
8414 	if (rc < 0) {
8415 		printk(KERN_ERR DRV_NAME ": "
8416 		       "%s: Firmware '%s' not available or load failed.\n",
8417 		       priv->net_dev->name, fw_name);
8418 		return rc;
8419 	}
8420 	IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8421 		       fw->fw_entry->size);
8422 
8423 	ipw2100_mod_firmware_load(fw);
8424 
8425 	return 0;
8426 }
8427 
8428 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8429 #ifdef CONFIG_IPW2100_MONITOR
8430 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8431 #endif
8432 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8433 
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8434 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8435 				     struct ipw2100_fw *fw)
8436 {
8437 	fw->version = 0;
8438 	release_firmware(fw->fw_entry);
8439 	fw->fw_entry = NULL;
8440 }
8441 
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8442 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8443 				 size_t max)
8444 {
8445 	char ver[MAX_FW_VERSION_LEN];
8446 	u32 len = MAX_FW_VERSION_LEN;
8447 	u32 tmp;
8448 	int i;
8449 	/* firmware version is an ascii string (max len of 14) */
8450 	if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8451 		return -EIO;
8452 	tmp = max;
8453 	if (len >= max)
8454 		len = max - 1;
8455 	for (i = 0; i < len; i++)
8456 		buf[i] = ver[i];
8457 	buf[i] = '\0';
8458 	return tmp;
8459 }
8460 
ipw2100_get_ucodeversion(struct ipw2100_priv * priv,char * buf,size_t max)8461 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8462 				    size_t max)
8463 {
8464 	u32 ver;
8465 	u32 len = sizeof(ver);
8466 	/* microcode version is a 32 bit integer */
8467 	if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8468 		return -EIO;
8469 	return snprintf(buf, max, "%08X", ver);
8470 }
8471 
8472 /*
8473  * On exit, the firmware will have been freed from the fw list
8474  */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8475 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8476 {
8477 	/* firmware is constructed of N contiguous entries, each entry is
8478 	 * structured as:
8479 	 *
8480 	 * offset    sie         desc
8481 	 * 0         4           address to write to
8482 	 * 4         2           length of data run
8483 	 * 6         length      data
8484 	 */
8485 	unsigned int addr;
8486 	unsigned short len;
8487 
8488 	const unsigned char *firmware_data = fw->fw.data;
8489 	unsigned int firmware_data_left = fw->fw.size;
8490 
8491 	while (firmware_data_left > 0) {
8492 		addr = *(u32 *) (firmware_data);
8493 		firmware_data += 4;
8494 		firmware_data_left -= 4;
8495 
8496 		len = *(u16 *) (firmware_data);
8497 		firmware_data += 2;
8498 		firmware_data_left -= 2;
8499 
8500 		if (len > 32) {
8501 			printk(KERN_ERR DRV_NAME ": "
8502 			       "Invalid firmware run-length of %d bytes\n",
8503 			       len);
8504 			return -EINVAL;
8505 		}
8506 
8507 		write_nic_memory(priv->net_dev, addr, len, firmware_data);
8508 		firmware_data += len;
8509 		firmware_data_left -= len;
8510 	}
8511 
8512 	return 0;
8513 }
8514 
8515 struct symbol_alive_response {
8516 	u8 cmd_id;
8517 	u8 seq_num;
8518 	u8 ucode_rev;
8519 	u8 eeprom_valid;
8520 	u16 valid_flags;
8521 	u8 IEEE_addr[6];
8522 	u16 flags;
8523 	u16 pcb_rev;
8524 	u16 clock_settle_time;	// 1us LSB
8525 	u16 powerup_settle_time;	// 1us LSB
8526 	u16 hop_settle_time;	// 1us LSB
8527 	u8 date[3];		// month, day, year
8528 	u8 time[2];		// hours, minutes
8529 	u8 ucode_valid;
8530 };
8531 
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8532 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8533 				  struct ipw2100_fw *fw)
8534 {
8535 	struct net_device *dev = priv->net_dev;
8536 	const unsigned char *microcode_data = fw->uc.data;
8537 	unsigned int microcode_data_left = fw->uc.size;
8538 	void __iomem *reg = priv->ioaddr;
8539 
8540 	struct symbol_alive_response response;
8541 	int i, j;
8542 	u8 data;
8543 
8544 	/* Symbol control */
8545 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8546 	readl(reg);
8547 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8548 	readl(reg);
8549 
8550 	/* HW config */
8551 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8552 	readl(reg);
8553 	write_nic_byte(dev, 0x210014, 0x72);	/* fifo width =16 */
8554 	readl(reg);
8555 
8556 	/* EN_CS_ACCESS bit to reset control store pointer */
8557 	write_nic_byte(dev, 0x210000, 0x40);
8558 	readl(reg);
8559 	write_nic_byte(dev, 0x210000, 0x0);
8560 	readl(reg);
8561 	write_nic_byte(dev, 0x210000, 0x40);
8562 	readl(reg);
8563 
8564 	/* copy microcode from buffer into Symbol */
8565 
8566 	while (microcode_data_left > 0) {
8567 		write_nic_byte(dev, 0x210010, *microcode_data++);
8568 		write_nic_byte(dev, 0x210010, *microcode_data++);
8569 		microcode_data_left -= 2;
8570 	}
8571 
8572 	/* EN_CS_ACCESS bit to reset the control store pointer */
8573 	write_nic_byte(dev, 0x210000, 0x0);
8574 	readl(reg);
8575 
8576 	/* Enable System (Reg 0)
8577 	 * first enable causes garbage in RX FIFO */
8578 	write_nic_byte(dev, 0x210000, 0x0);
8579 	readl(reg);
8580 	write_nic_byte(dev, 0x210000, 0x80);
8581 	readl(reg);
8582 
8583 	/* Reset External Baseband Reg */
8584 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8585 	readl(reg);
8586 	write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8587 	readl(reg);
8588 
8589 	/* HW Config (Reg 5) */
8590 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8591 	readl(reg);
8592 	write_nic_byte(dev, 0x210014, 0x72);	// fifo width =16
8593 	readl(reg);
8594 
8595 	/* Enable System (Reg 0)
8596 	 * second enable should be OK */
8597 	write_nic_byte(dev, 0x210000, 0x00);	// clear enable system
8598 	readl(reg);
8599 	write_nic_byte(dev, 0x210000, 0x80);	// set enable system
8600 
8601 	/* check Symbol is enabled - upped this from 5 as it wasn't always
8602 	 * catching the update */
8603 	for (i = 0; i < 10; i++) {
8604 		udelay(10);
8605 
8606 		/* check Dino is enabled bit */
8607 		read_nic_byte(dev, 0x210000, &data);
8608 		if (data & 0x1)
8609 			break;
8610 	}
8611 
8612 	if (i == 10) {
8613 		printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8614 		       dev->name);
8615 		return -EIO;
8616 	}
8617 
8618 	/* Get Symbol alive response */
8619 	for (i = 0; i < 30; i++) {
8620 		/* Read alive response structure */
8621 		for (j = 0;
8622 		     j < (sizeof(struct symbol_alive_response) >> 1); j++)
8623 			read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8624 
8625 		if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8626 			break;
8627 		udelay(10);
8628 	}
8629 
8630 	if (i == 30) {
8631 		printk(KERN_ERR DRV_NAME
8632 		       ": %s: No response from Symbol - hw not alive\n",
8633 		       dev->name);
8634 		printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8635 		return -EIO;
8636 	}
8637 
8638 	return 0;
8639 }
8640