1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22 
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/internal/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31 
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34 
35 #define MAX_KEYLEN 32
36 
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40 
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48 
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52 
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59 
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63 
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66 
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74 
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81 
82 #define SEND_QID    29
83 #define RECV_QID    30
84 
85 #define CTL_FLAG_UNUSED		0x0000
86 #define CTL_FLAG_USED		0x1000
87 #define CTL_FLAG_PERFORM_ABLK	0x0001
88 #define CTL_FLAG_GEN_ICV	0x0002
89 #define CTL_FLAG_GEN_REVAES	0x0004
90 #define CTL_FLAG_PERFORM_AEAD	0x0008
91 #define CTL_FLAG_MASK		0x000f
92 
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96 
97 #define MD5_DIGEST_SIZE   16
98 
99 struct buffer_desc {
100 	u32 phys_next;
101 #ifdef __ARMEB__
102 	u16 buf_len;
103 	u16 pkt_len;
104 #else
105 	u16 pkt_len;
106 	u16 buf_len;
107 #endif
108 	u32 phys_addr;
109 	u32 __reserved[4];
110 	struct buffer_desc *next;
111 	enum dma_data_direction dir;
112 };
113 
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116 	u8 mode;		/* NPE_OP_*  operation mode */
117 	u8 init_len;
118 	u16 reserved;
119 #else
120 	u16 reserved;
121 	u8 init_len;
122 	u8 mode;		/* NPE_OP_*  operation mode */
123 #endif
124 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
125 	u32 icv_rev_aes;	/* icv or rev aes */
126 	u32 src_buf;
127 	u32 dst_buf;
128 #ifdef __ARMEB__
129 	u16 auth_offs;		/* Authentication start offset */
130 	u16 auth_len;		/* Authentication data length */
131 	u16 crypt_offs;		/* Cryption start offset */
132 	u16 crypt_len;		/* Cryption data length */
133 #else
134 	u16 auth_len;		/* Authentication data length */
135 	u16 auth_offs;		/* Authentication start offset */
136 	u16 crypt_len;		/* Cryption data length */
137 	u16 crypt_offs;		/* Cryption start offset */
138 #endif
139 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
140 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
141 
142 	/* Used by Host: 4*4 bytes*/
143 	unsigned ctl_flags;
144 	union {
145 		struct ablkcipher_request *ablk_req;
146 		struct aead_request *aead_req;
147 		struct crypto_tfm *tfm;
148 	} data;
149 	struct buffer_desc *regist_buf;
150 	u8 *regist_ptr;
151 };
152 
153 struct ablk_ctx {
154 	struct buffer_desc *src;
155 	struct buffer_desc *dst;
156 };
157 
158 struct aead_ctx {
159 	struct buffer_desc *src;
160 	struct buffer_desc *dst;
161 	struct scatterlist ivlist;
162 	/* used when the hmac is not on one sg entry */
163 	u8 *hmac_virt;
164 	int encrypt;
165 };
166 
167 struct ix_hash_algo {
168 	u32 cfgword;
169 	unsigned char *icv;
170 };
171 
172 struct ix_sa_dir {
173 	unsigned char *npe_ctx;
174 	dma_addr_t npe_ctx_phys;
175 	int npe_ctx_idx;
176 	u8 npe_mode;
177 };
178 
179 struct ixp_ctx {
180 	struct ix_sa_dir encrypt;
181 	struct ix_sa_dir decrypt;
182 	int authkey_len;
183 	u8 authkey[MAX_KEYLEN];
184 	int enckey_len;
185 	u8 enckey[MAX_KEYLEN];
186 	u8 salt[MAX_IVLEN];
187 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
188 	unsigned salted;
189 	atomic_t configuring;
190 	struct completion completion;
191 };
192 
193 struct ixp_alg {
194 	struct crypto_alg crypto;
195 	const struct ix_hash_algo *hash;
196 	u32 cfg_enc;
197 	u32 cfg_dec;
198 
199 	int registered;
200 };
201 
202 struct ixp_aead_alg {
203 	struct aead_alg crypto;
204 	const struct ix_hash_algo *hash;
205 	u32 cfg_enc;
206 	u32 cfg_dec;
207 
208 	int registered;
209 };
210 
211 static const struct ix_hash_algo hash_alg_md5 = {
212 	.cfgword	= 0xAA010004,
213 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216 static const struct ix_hash_algo hash_alg_sha1 = {
217 	.cfgword	= 0x00000005,
218 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
219 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
220 };
221 
222 static struct npe *npe_c;
223 static struct dma_pool *buffer_pool = NULL;
224 static struct dma_pool *ctx_pool = NULL;
225 
226 static struct crypt_ctl *crypt_virt = NULL;
227 static dma_addr_t crypt_phys;
228 
229 static int support_aes = 1;
230 
231 #define DRIVER_NAME "ixp4xx_crypto"
232 
233 static struct platform_device *pdev;
234 
crypt_virt2phys(struct crypt_ctl * virt)235 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
236 {
237 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
238 }
239 
crypt_phys2virt(dma_addr_t phys)240 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
241 {
242 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
243 }
244 
cipher_cfg_enc(struct crypto_tfm * tfm)245 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
246 {
247 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
248 }
249 
cipher_cfg_dec(struct crypto_tfm * tfm)250 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
251 {
252 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
253 }
254 
ix_hash(struct crypto_tfm * tfm)255 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
256 {
257 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
258 }
259 
setup_crypt_desc(void)260 static int setup_crypt_desc(void)
261 {
262 	struct device *dev = &pdev->dev;
263 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
264 	crypt_virt = dma_alloc_coherent(dev,
265 			NPE_QLEN * sizeof(struct crypt_ctl),
266 			&crypt_phys, GFP_ATOMIC);
267 	if (!crypt_virt)
268 		return -ENOMEM;
269 	memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
270 	return 0;
271 }
272 
273 static spinlock_t desc_lock;
get_crypt_desc(void)274 static struct crypt_ctl *get_crypt_desc(void)
275 {
276 	int i;
277 	static int idx = 0;
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&desc_lock, flags);
281 
282 	if (unlikely(!crypt_virt))
283 		setup_crypt_desc();
284 	if (unlikely(!crypt_virt)) {
285 		spin_unlock_irqrestore(&desc_lock, flags);
286 		return NULL;
287 	}
288 	i = idx;
289 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
290 		if (++idx >= NPE_QLEN)
291 			idx = 0;
292 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
293 		spin_unlock_irqrestore(&desc_lock, flags);
294 		return crypt_virt +i;
295 	} else {
296 		spin_unlock_irqrestore(&desc_lock, flags);
297 		return NULL;
298 	}
299 }
300 
301 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)302 static struct crypt_ctl *get_crypt_desc_emerg(void)
303 {
304 	int i;
305 	static int idx = NPE_QLEN;
306 	struct crypt_ctl *desc;
307 	unsigned long flags;
308 
309 	desc = get_crypt_desc();
310 	if (desc)
311 		return desc;
312 	if (unlikely(!crypt_virt))
313 		return NULL;
314 
315 	spin_lock_irqsave(&emerg_lock, flags);
316 	i = idx;
317 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
318 		if (++idx >= NPE_QLEN_TOTAL)
319 			idx = NPE_QLEN;
320 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
321 		spin_unlock_irqrestore(&emerg_lock, flags);
322 		return crypt_virt +i;
323 	} else {
324 		spin_unlock_irqrestore(&emerg_lock, flags);
325 		return NULL;
326 	}
327 }
328 
free_buf_chain(struct device * dev,struct buffer_desc * buf,u32 phys)329 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
330 {
331 	while (buf) {
332 		struct buffer_desc *buf1;
333 		u32 phys1;
334 
335 		buf1 = buf->next;
336 		phys1 = buf->phys_next;
337 		dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
338 		dma_pool_free(buffer_pool, buf, phys);
339 		buf = buf1;
340 		phys = phys1;
341 	}
342 }
343 
344 static struct tasklet_struct crypto_done_tasklet;
345 
finish_scattered_hmac(struct crypt_ctl * crypt)346 static void finish_scattered_hmac(struct crypt_ctl *crypt)
347 {
348 	struct aead_request *req = crypt->data.aead_req;
349 	struct aead_ctx *req_ctx = aead_request_ctx(req);
350 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
351 	int authsize = crypto_aead_authsize(tfm);
352 	int decryptlen = req->assoclen + req->cryptlen - authsize;
353 
354 	if (req_ctx->encrypt) {
355 		scatterwalk_map_and_copy(req_ctx->hmac_virt,
356 			req->dst, decryptlen, authsize, 1);
357 	}
358 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
359 }
360 
one_packet(dma_addr_t phys)361 static void one_packet(dma_addr_t phys)
362 {
363 	struct device *dev = &pdev->dev;
364 	struct crypt_ctl *crypt;
365 	struct ixp_ctx *ctx;
366 	int failed;
367 
368 	failed = phys & 0x1 ? -EBADMSG : 0;
369 	phys &= ~0x3;
370 	crypt = crypt_phys2virt(phys);
371 
372 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
373 	case CTL_FLAG_PERFORM_AEAD: {
374 		struct aead_request *req = crypt->data.aead_req;
375 		struct aead_ctx *req_ctx = aead_request_ctx(req);
376 
377 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
378 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
379 		if (req_ctx->hmac_virt) {
380 			finish_scattered_hmac(crypt);
381 		}
382 		req->base.complete(&req->base, failed);
383 		break;
384 	}
385 	case CTL_FLAG_PERFORM_ABLK: {
386 		struct ablkcipher_request *req = crypt->data.ablk_req;
387 		struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388 
389 		if (req_ctx->dst) {
390 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391 		}
392 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393 		req->base.complete(&req->base, failed);
394 		break;
395 	}
396 	case CTL_FLAG_GEN_ICV:
397 		ctx = crypto_tfm_ctx(crypt->data.tfm);
398 		dma_pool_free(ctx_pool, crypt->regist_ptr,
399 				crypt->regist_buf->phys_addr);
400 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401 		if (atomic_dec_and_test(&ctx->configuring))
402 			complete(&ctx->completion);
403 		break;
404 	case CTL_FLAG_GEN_REVAES:
405 		ctx = crypto_tfm_ctx(crypt->data.tfm);
406 		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407 		if (atomic_dec_and_test(&ctx->configuring))
408 			complete(&ctx->completion);
409 		break;
410 	default:
411 		BUG();
412 	}
413 	crypt->ctl_flags = CTL_FLAG_UNUSED;
414 }
415 
irqhandler(void * _unused)416 static void irqhandler(void *_unused)
417 {
418 	tasklet_schedule(&crypto_done_tasklet);
419 }
420 
crypto_done_action(unsigned long arg)421 static void crypto_done_action(unsigned long arg)
422 {
423 	int i;
424 
425 	for(i=0; i<4; i++) {
426 		dma_addr_t phys = qmgr_get_entry(RECV_QID);
427 		if (!phys)
428 			return;
429 		one_packet(phys);
430 	}
431 	tasklet_schedule(&crypto_done_tasklet);
432 }
433 
init_ixp_crypto(struct device * dev)434 static int init_ixp_crypto(struct device *dev)
435 {
436 	int ret = -ENODEV;
437 	u32 msg[2] = { 0, 0 };
438 
439 	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440 				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441 		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442 		return ret;
443 	}
444 	npe_c = npe_request(NPE_ID);
445 	if (!npe_c)
446 		return ret;
447 
448 	if (!npe_running(npe_c)) {
449 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450 		if (ret) {
451 			return ret;
452 		}
453 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454 			goto npe_error;
455 	} else {
456 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
457 			goto npe_error;
458 
459 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
460 			goto npe_error;
461 	}
462 
463 	switch ((msg[1]>>16) & 0xff) {
464 	case 3:
465 		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
466 				npe_name(npe_c));
467 		support_aes = 0;
468 		break;
469 	case 4:
470 	case 5:
471 		support_aes = 1;
472 		break;
473 	default:
474 		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
475 			npe_name(npe_c));
476 		return -ENODEV;
477 	}
478 	/* buffer_pool will also be used to sometimes store the hmac,
479 	 * so assure it is large enough
480 	 */
481 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482 	buffer_pool = dma_pool_create("buffer", dev,
483 			sizeof(struct buffer_desc), 32, 0);
484 	ret = -ENOMEM;
485 	if (!buffer_pool) {
486 		goto err;
487 	}
488 	ctx_pool = dma_pool_create("context", dev,
489 			NPE_CTX_LEN, 16, 0);
490 	if (!ctx_pool) {
491 		goto err;
492 	}
493 	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494 				 "ixp_crypto:out", NULL);
495 	if (ret)
496 		goto err;
497 	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498 				 "ixp_crypto:in", NULL);
499 	if (ret) {
500 		qmgr_release_queue(SEND_QID);
501 		goto err;
502 	}
503 	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505 
506 	qmgr_enable_irq(RECV_QID);
507 	return 0;
508 
509 npe_error:
510 	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511 	ret = -EIO;
512 err:
513 	if (ctx_pool)
514 		dma_pool_destroy(ctx_pool);
515 	if (buffer_pool)
516 		dma_pool_destroy(buffer_pool);
517 	npe_release(npe_c);
518 	return ret;
519 }
520 
release_ixp_crypto(struct device * dev)521 static void release_ixp_crypto(struct device *dev)
522 {
523 	qmgr_disable_irq(RECV_QID);
524 	tasklet_kill(&crypto_done_tasklet);
525 
526 	qmgr_release_queue(SEND_QID);
527 	qmgr_release_queue(RECV_QID);
528 
529 	dma_pool_destroy(ctx_pool);
530 	dma_pool_destroy(buffer_pool);
531 
532 	npe_release(npe_c);
533 
534 	if (crypt_virt) {
535 		dma_free_coherent(dev,
536 			NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
537 			crypt_virt, crypt_phys);
538 	}
539 	return;
540 }
541 
reset_sa_dir(struct ix_sa_dir * dir)542 static void reset_sa_dir(struct ix_sa_dir *dir)
543 {
544 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
545 	dir->npe_ctx_idx = 0;
546 	dir->npe_mode = 0;
547 }
548 
init_sa_dir(struct ix_sa_dir * dir)549 static int init_sa_dir(struct ix_sa_dir *dir)
550 {
551 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
552 	if (!dir->npe_ctx) {
553 		return -ENOMEM;
554 	}
555 	reset_sa_dir(dir);
556 	return 0;
557 }
558 
free_sa_dir(struct ix_sa_dir * dir)559 static void free_sa_dir(struct ix_sa_dir *dir)
560 {
561 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
562 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
563 }
564 
init_tfm(struct crypto_tfm * tfm)565 static int init_tfm(struct crypto_tfm *tfm)
566 {
567 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
568 	int ret;
569 
570 	atomic_set(&ctx->configuring, 0);
571 	ret = init_sa_dir(&ctx->encrypt);
572 	if (ret)
573 		return ret;
574 	ret = init_sa_dir(&ctx->decrypt);
575 	if (ret) {
576 		free_sa_dir(&ctx->encrypt);
577 	}
578 	return ret;
579 }
580 
init_tfm_ablk(struct crypto_tfm * tfm)581 static int init_tfm_ablk(struct crypto_tfm *tfm)
582 {
583 	tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
584 	return init_tfm(tfm);
585 }
586 
init_tfm_aead(struct crypto_aead * tfm)587 static int init_tfm_aead(struct crypto_aead *tfm)
588 {
589 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
590 	return init_tfm(crypto_aead_tfm(tfm));
591 }
592 
exit_tfm(struct crypto_tfm * tfm)593 static void exit_tfm(struct crypto_tfm *tfm)
594 {
595 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
596 	free_sa_dir(&ctx->encrypt);
597 	free_sa_dir(&ctx->decrypt);
598 }
599 
exit_tfm_aead(struct crypto_aead * tfm)600 static void exit_tfm_aead(struct crypto_aead *tfm)
601 {
602 	exit_tfm(crypto_aead_tfm(tfm));
603 }
604 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)605 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
606 		int init_len, u32 ctx_addr, const u8 *key, int key_len)
607 {
608 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
609 	struct crypt_ctl *crypt;
610 	struct buffer_desc *buf;
611 	int i;
612 	u8 *pad;
613 	u32 pad_phys, buf_phys;
614 
615 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
616 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
617 	if (!pad)
618 		return -ENOMEM;
619 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
620 	if (!buf) {
621 		dma_pool_free(ctx_pool, pad, pad_phys);
622 		return -ENOMEM;
623 	}
624 	crypt = get_crypt_desc_emerg();
625 	if (!crypt) {
626 		dma_pool_free(ctx_pool, pad, pad_phys);
627 		dma_pool_free(buffer_pool, buf, buf_phys);
628 		return -EAGAIN;
629 	}
630 
631 	memcpy(pad, key, key_len);
632 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
633 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
634 		pad[i] ^= xpad;
635 	}
636 
637 	crypt->data.tfm = tfm;
638 	crypt->regist_ptr = pad;
639 	crypt->regist_buf = buf;
640 
641 	crypt->auth_offs = 0;
642 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
643 	crypt->crypto_ctx = ctx_addr;
644 	crypt->src_buf = buf_phys;
645 	crypt->icv_rev_aes = target;
646 	crypt->mode = NPE_OP_HASH_GEN_ICV;
647 	crypt->init_len = init_len;
648 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
649 
650 	buf->next = 0;
651 	buf->buf_len = HMAC_PAD_BLOCKLEN;
652 	buf->pkt_len = 0;
653 	buf->phys_addr = pad_phys;
654 
655 	atomic_inc(&ctx->configuring);
656 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
657 	BUG_ON(qmgr_stat_overflow(SEND_QID));
658 	return 0;
659 }
660 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)661 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
662 		const u8 *key, int key_len, unsigned digest_len)
663 {
664 	u32 itarget, otarget, npe_ctx_addr;
665 	unsigned char *cinfo;
666 	int init_len, ret = 0;
667 	u32 cfgword;
668 	struct ix_sa_dir *dir;
669 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
670 	const struct ix_hash_algo *algo;
671 
672 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
673 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
674 	algo = ix_hash(tfm);
675 
676 	/* write cfg word to cryptinfo */
677 	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
678 #ifndef __ARMEB__
679 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
680 #endif
681 	*(u32*)cinfo = cpu_to_be32(cfgword);
682 	cinfo += sizeof(cfgword);
683 
684 	/* write ICV to cryptinfo */
685 	memcpy(cinfo, algo->icv, digest_len);
686 	cinfo += digest_len;
687 
688 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
689 				+ sizeof(algo->cfgword);
690 	otarget = itarget + digest_len;
691 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
692 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
693 
694 	dir->npe_ctx_idx += init_len;
695 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
696 
697 	if (!encrypt)
698 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
699 
700 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
701 			init_len, npe_ctx_addr, key, key_len);
702 	if (ret)
703 		return ret;
704 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
705 			init_len, npe_ctx_addr, key, key_len);
706 }
707 
gen_rev_aes_key(struct crypto_tfm * tfm)708 static int gen_rev_aes_key(struct crypto_tfm *tfm)
709 {
710 	struct crypt_ctl *crypt;
711 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
712 	struct ix_sa_dir *dir = &ctx->decrypt;
713 
714 	crypt = get_crypt_desc_emerg();
715 	if (!crypt) {
716 		return -EAGAIN;
717 	}
718 	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
719 
720 	crypt->data.tfm = tfm;
721 	crypt->crypt_offs = 0;
722 	crypt->crypt_len = AES_BLOCK128;
723 	crypt->src_buf = 0;
724 	crypt->crypto_ctx = dir->npe_ctx_phys;
725 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
726 	crypt->mode = NPE_OP_ENC_GEN_KEY;
727 	crypt->init_len = dir->npe_ctx_idx;
728 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
729 
730 	atomic_inc(&ctx->configuring);
731 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
732 	BUG_ON(qmgr_stat_overflow(SEND_QID));
733 	return 0;
734 }
735 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)736 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
737 		const u8 *key, int key_len)
738 {
739 	u8 *cinfo;
740 	u32 cipher_cfg;
741 	u32 keylen_cfg = 0;
742 	struct ix_sa_dir *dir;
743 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
744 	u32 *flags = &tfm->crt_flags;
745 
746 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
747 	cinfo = dir->npe_ctx;
748 
749 	if (encrypt) {
750 		cipher_cfg = cipher_cfg_enc(tfm);
751 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
752 	} else {
753 		cipher_cfg = cipher_cfg_dec(tfm);
754 	}
755 	if (cipher_cfg & MOD_AES) {
756 		switch (key_len) {
757 		case 16: keylen_cfg = MOD_AES128; break;
758 		case 24: keylen_cfg = MOD_AES192; break;
759 		case 32: keylen_cfg = MOD_AES256; break;
760 		default:
761 			*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
762 			return -EINVAL;
763 		}
764 		cipher_cfg |= keylen_cfg;
765 	} else if (cipher_cfg & MOD_3DES) {
766 		const u32 *K = (const u32 *)key;
767 		if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
768 			     !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
769 		{
770 			*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
771 			return -EINVAL;
772 		}
773 	} else {
774 		u32 tmp[DES_EXPKEY_WORDS];
775 		if (des_ekey(tmp, key) == 0) {
776 			*flags |= CRYPTO_TFM_RES_WEAK_KEY;
777 		}
778 	}
779 	/* write cfg word to cryptinfo */
780 	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
781 	cinfo += sizeof(cipher_cfg);
782 
783 	/* write cipher key to cryptinfo */
784 	memcpy(cinfo, key, key_len);
785 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
786 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
787 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
788 		key_len = DES3_EDE_KEY_SIZE;
789 	}
790 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
791 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
792 	if ((cipher_cfg & MOD_AES) && !encrypt) {
793 		return gen_rev_aes_key(tfm);
794 	}
795 	return 0;
796 }
797 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)798 static struct buffer_desc *chainup_buffers(struct device *dev,
799 		struct scatterlist *sg,	unsigned nbytes,
800 		struct buffer_desc *buf, gfp_t flags,
801 		enum dma_data_direction dir)
802 {
803 	for (; nbytes > 0; sg = sg_next(sg)) {
804 		unsigned len = min(nbytes, sg->length);
805 		struct buffer_desc *next_buf;
806 		u32 next_buf_phys;
807 		void *ptr;
808 
809 		nbytes -= len;
810 		ptr = page_address(sg_page(sg)) + sg->offset;
811 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
812 		if (!next_buf) {
813 			buf = NULL;
814 			break;
815 		}
816 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
817 		buf->next = next_buf;
818 		buf->phys_next = next_buf_phys;
819 		buf = next_buf;
820 
821 		buf->phys_addr = sg_dma_address(sg);
822 		buf->buf_len = len;
823 		buf->dir = dir;
824 	}
825 	buf->next = NULL;
826 	buf->phys_next = 0;
827 	return buf;
828 }
829 
ablk_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)830 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
831 			unsigned int key_len)
832 {
833 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
834 	u32 *flags = &tfm->base.crt_flags;
835 	int ret;
836 
837 	init_completion(&ctx->completion);
838 	atomic_inc(&ctx->configuring);
839 
840 	reset_sa_dir(&ctx->encrypt);
841 	reset_sa_dir(&ctx->decrypt);
842 
843 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
844 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
845 
846 	ret = setup_cipher(&tfm->base, 0, key, key_len);
847 	if (ret)
848 		goto out;
849 	ret = setup_cipher(&tfm->base, 1, key, key_len);
850 	if (ret)
851 		goto out;
852 
853 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
854 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
855 			ret = -EINVAL;
856 		} else {
857 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
858 		}
859 	}
860 out:
861 	if (!atomic_dec_and_test(&ctx->configuring))
862 		wait_for_completion(&ctx->completion);
863 	return ret;
864 }
865 
ablk_rfc3686_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)866 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
867 		unsigned int key_len)
868 {
869 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
870 
871 	/* the nonce is stored in bytes at end of key */
872 	if (key_len < CTR_RFC3686_NONCE_SIZE)
873 		return -EINVAL;
874 
875 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
876 			CTR_RFC3686_NONCE_SIZE);
877 
878 	key_len -= CTR_RFC3686_NONCE_SIZE;
879 	return ablk_setkey(tfm, key, key_len);
880 }
881 
ablk_perform(struct ablkcipher_request * req,int encrypt)882 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
883 {
884 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
885 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
886 	unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
887 	struct ix_sa_dir *dir;
888 	struct crypt_ctl *crypt;
889 	unsigned int nbytes = req->nbytes;
890 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
891 	struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
892 	struct buffer_desc src_hook;
893 	struct device *dev = &pdev->dev;
894 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
895 				GFP_KERNEL : GFP_ATOMIC;
896 
897 	if (qmgr_stat_full(SEND_QID))
898 		return -EAGAIN;
899 	if (atomic_read(&ctx->configuring))
900 		return -EAGAIN;
901 
902 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
903 
904 	crypt = get_crypt_desc();
905 	if (!crypt)
906 		return -ENOMEM;
907 
908 	crypt->data.ablk_req = req;
909 	crypt->crypto_ctx = dir->npe_ctx_phys;
910 	crypt->mode = dir->npe_mode;
911 	crypt->init_len = dir->npe_ctx_idx;
912 
913 	crypt->crypt_offs = 0;
914 	crypt->crypt_len = nbytes;
915 
916 	BUG_ON(ivsize && !req->info);
917 	memcpy(crypt->iv, req->info, ivsize);
918 	if (req->src != req->dst) {
919 		struct buffer_desc dst_hook;
920 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
921 		/* This was never tested by Intel
922 		 * for more than one dst buffer, I think. */
923 		req_ctx->dst = NULL;
924 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
925 					flags, DMA_FROM_DEVICE))
926 			goto free_buf_dest;
927 		src_direction = DMA_TO_DEVICE;
928 		req_ctx->dst = dst_hook.next;
929 		crypt->dst_buf = dst_hook.phys_next;
930 	} else {
931 		req_ctx->dst = NULL;
932 	}
933 	req_ctx->src = NULL;
934 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
935 				flags, src_direction))
936 		goto free_buf_src;
937 
938 	req_ctx->src = src_hook.next;
939 	crypt->src_buf = src_hook.phys_next;
940 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
941 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
942 	BUG_ON(qmgr_stat_overflow(SEND_QID));
943 	return -EINPROGRESS;
944 
945 free_buf_src:
946 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
947 free_buf_dest:
948 	if (req->src != req->dst) {
949 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
950 	}
951 	crypt->ctl_flags = CTL_FLAG_UNUSED;
952 	return -ENOMEM;
953 }
954 
ablk_encrypt(struct ablkcipher_request * req)955 static int ablk_encrypt(struct ablkcipher_request *req)
956 {
957 	return ablk_perform(req, 1);
958 }
959 
ablk_decrypt(struct ablkcipher_request * req)960 static int ablk_decrypt(struct ablkcipher_request *req)
961 {
962 	return ablk_perform(req, 0);
963 }
964 
ablk_rfc3686_crypt(struct ablkcipher_request * req)965 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
966 {
967 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
968 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
969 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
970 	u8 *info = req->info;
971 	int ret;
972 
973 	/* set up counter block */
974         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
975 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
976 
977 	/* initialize counter portion of counter block */
978 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
979 		cpu_to_be32(1);
980 
981 	req->info = iv;
982 	ret = ablk_perform(req, 1);
983 	req->info = info;
984 	return ret;
985 }
986 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)987 static int aead_perform(struct aead_request *req, int encrypt,
988 		int cryptoffset, int eff_cryptlen, u8 *iv)
989 {
990 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
991 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
992 	unsigned ivsize = crypto_aead_ivsize(tfm);
993 	unsigned authsize = crypto_aead_authsize(tfm);
994 	struct ix_sa_dir *dir;
995 	struct crypt_ctl *crypt;
996 	unsigned int cryptlen;
997 	struct buffer_desc *buf, src_hook;
998 	struct aead_ctx *req_ctx = aead_request_ctx(req);
999 	struct device *dev = &pdev->dev;
1000 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1001 				GFP_KERNEL : GFP_ATOMIC;
1002 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1003 	unsigned int lastlen;
1004 
1005 	if (qmgr_stat_full(SEND_QID))
1006 		return -EAGAIN;
1007 	if (atomic_read(&ctx->configuring))
1008 		return -EAGAIN;
1009 
1010 	if (encrypt) {
1011 		dir = &ctx->encrypt;
1012 		cryptlen = req->cryptlen;
1013 	} else {
1014 		dir = &ctx->decrypt;
1015 		/* req->cryptlen includes the authsize when decrypting */
1016 		cryptlen = req->cryptlen -authsize;
1017 		eff_cryptlen -= authsize;
1018 	}
1019 	crypt = get_crypt_desc();
1020 	if (!crypt)
1021 		return -ENOMEM;
1022 
1023 	crypt->data.aead_req = req;
1024 	crypt->crypto_ctx = dir->npe_ctx_phys;
1025 	crypt->mode = dir->npe_mode;
1026 	crypt->init_len = dir->npe_ctx_idx;
1027 
1028 	crypt->crypt_offs = cryptoffset;
1029 	crypt->crypt_len = eff_cryptlen;
1030 
1031 	crypt->auth_offs = 0;
1032 	crypt->auth_len = req->assoclen + cryptlen;
1033 	BUG_ON(ivsize && !req->iv);
1034 	memcpy(crypt->iv, req->iv, ivsize);
1035 
1036 	req_ctx->dst = NULL;
1037 
1038 	if (req->src != req->dst) {
1039 		struct buffer_desc dst_hook;
1040 
1041 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1042 		src_direction = DMA_TO_DEVICE;
1043 
1044 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1045 				      &dst_hook, flags, DMA_FROM_DEVICE);
1046 		req_ctx->dst = dst_hook.next;
1047 		crypt->dst_buf = dst_hook.phys_next;
1048 
1049 		if (!buf)
1050 			goto free_buf_dst;
1051 
1052 		if (encrypt) {
1053 			lastlen = buf->buf_len;
1054 			if (lastlen >= authsize)
1055 				crypt->icv_rev_aes = buf->phys_addr +
1056 						     buf->buf_len - authsize;
1057 		}
1058 	}
1059 
1060 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1061 			      &src_hook, flags, src_direction);
1062 	req_ctx->src = src_hook.next;
1063 	crypt->src_buf = src_hook.phys_next;
1064 	if (!buf)
1065 		goto free_buf_src;
1066 
1067 	if (!encrypt || !req_ctx->dst) {
1068 		lastlen = buf->buf_len;
1069 		if (lastlen >= authsize)
1070 			crypt->icv_rev_aes = buf->phys_addr +
1071 					     buf->buf_len - authsize;
1072 	}
1073 
1074 	if (unlikely(lastlen < authsize)) {
1075 		/* The 12 hmac bytes are scattered,
1076 		 * we need to copy them into a safe buffer */
1077 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1078 				&crypt->icv_rev_aes);
1079 		if (unlikely(!req_ctx->hmac_virt))
1080 			goto free_buf_src;
1081 		if (!encrypt) {
1082 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1083 				req->src, cryptlen, authsize, 0);
1084 		}
1085 		req_ctx->encrypt = encrypt;
1086 	} else {
1087 		req_ctx->hmac_virt = NULL;
1088 	}
1089 
1090 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1091 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1092 	BUG_ON(qmgr_stat_overflow(SEND_QID));
1093 	return -EINPROGRESS;
1094 
1095 free_buf_src:
1096 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1097 free_buf_dst:
1098 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1099 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1100 	return -ENOMEM;
1101 }
1102 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1103 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1104 {
1105 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1106 	u32 *flags = &tfm->base.crt_flags;
1107 	unsigned digest_len = crypto_aead_maxauthsize(tfm);
1108 	int ret;
1109 
1110 	if (!ctx->enckey_len && !ctx->authkey_len)
1111 		return 0;
1112 	init_completion(&ctx->completion);
1113 	atomic_inc(&ctx->configuring);
1114 
1115 	reset_sa_dir(&ctx->encrypt);
1116 	reset_sa_dir(&ctx->decrypt);
1117 
1118 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1119 	if (ret)
1120 		goto out;
1121 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1122 	if (ret)
1123 		goto out;
1124 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1125 			ctx->authkey_len, digest_len);
1126 	if (ret)
1127 		goto out;
1128 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1129 			ctx->authkey_len, digest_len);
1130 	if (ret)
1131 		goto out;
1132 
1133 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1134 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1135 			ret = -EINVAL;
1136 			goto out;
1137 		} else {
1138 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1139 		}
1140 	}
1141 out:
1142 	if (!atomic_dec_and_test(&ctx->configuring))
1143 		wait_for_completion(&ctx->completion);
1144 	return ret;
1145 }
1146 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1147 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1148 {
1149 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1150 
1151 	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1152 		return -EINVAL;
1153 	return aead_setup(tfm, authsize);
1154 }
1155 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1156 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1157 			unsigned int keylen)
1158 {
1159 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1160 	struct crypto_authenc_keys keys;
1161 
1162 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1163 		goto badkey;
1164 
1165 	if (keys.authkeylen > sizeof(ctx->authkey))
1166 		goto badkey;
1167 
1168 	if (keys.enckeylen > sizeof(ctx->enckey))
1169 		goto badkey;
1170 
1171 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1172 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1173 	ctx->authkey_len = keys.authkeylen;
1174 	ctx->enckey_len = keys.enckeylen;
1175 
1176 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1177 badkey:
1178 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1179 	return -EINVAL;
1180 }
1181 
aead_encrypt(struct aead_request * req)1182 static int aead_encrypt(struct aead_request *req)
1183 {
1184 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1185 }
1186 
aead_decrypt(struct aead_request * req)1187 static int aead_decrypt(struct aead_request *req)
1188 {
1189 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1190 }
1191 
1192 static struct ixp_alg ixp4xx_algos[] = {
1193 {
1194 	.crypto	= {
1195 		.cra_name	= "cbc(des)",
1196 		.cra_blocksize	= DES_BLOCK_SIZE,
1197 		.cra_u		= { .ablkcipher = {
1198 			.min_keysize	= DES_KEY_SIZE,
1199 			.max_keysize	= DES_KEY_SIZE,
1200 			.ivsize		= DES_BLOCK_SIZE,
1201 			.geniv		= "eseqiv",
1202 			}
1203 		}
1204 	},
1205 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1206 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1207 
1208 }, {
1209 	.crypto	= {
1210 		.cra_name	= "ecb(des)",
1211 		.cra_blocksize	= DES_BLOCK_SIZE,
1212 		.cra_u		= { .ablkcipher = {
1213 			.min_keysize	= DES_KEY_SIZE,
1214 			.max_keysize	= DES_KEY_SIZE,
1215 			}
1216 		}
1217 	},
1218 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1219 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1220 }, {
1221 	.crypto	= {
1222 		.cra_name	= "cbc(des3_ede)",
1223 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1224 		.cra_u		= { .ablkcipher = {
1225 			.min_keysize	= DES3_EDE_KEY_SIZE,
1226 			.max_keysize	= DES3_EDE_KEY_SIZE,
1227 			.ivsize		= DES3_EDE_BLOCK_SIZE,
1228 			.geniv		= "eseqiv",
1229 			}
1230 		}
1231 	},
1232 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1233 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1234 }, {
1235 	.crypto	= {
1236 		.cra_name	= "ecb(des3_ede)",
1237 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1238 		.cra_u		= { .ablkcipher = {
1239 			.min_keysize	= DES3_EDE_KEY_SIZE,
1240 			.max_keysize	= DES3_EDE_KEY_SIZE,
1241 			}
1242 		}
1243 	},
1244 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1245 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1246 }, {
1247 	.crypto	= {
1248 		.cra_name	= "cbc(aes)",
1249 		.cra_blocksize	= AES_BLOCK_SIZE,
1250 		.cra_u		= { .ablkcipher = {
1251 			.min_keysize	= AES_MIN_KEY_SIZE,
1252 			.max_keysize	= AES_MAX_KEY_SIZE,
1253 			.ivsize		= AES_BLOCK_SIZE,
1254 			.geniv		= "eseqiv",
1255 			}
1256 		}
1257 	},
1258 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1259 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1260 }, {
1261 	.crypto	= {
1262 		.cra_name	= "ecb(aes)",
1263 		.cra_blocksize	= AES_BLOCK_SIZE,
1264 		.cra_u		= { .ablkcipher = {
1265 			.min_keysize	= AES_MIN_KEY_SIZE,
1266 			.max_keysize	= AES_MAX_KEY_SIZE,
1267 			}
1268 		}
1269 	},
1270 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1271 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1272 }, {
1273 	.crypto	= {
1274 		.cra_name	= "ctr(aes)",
1275 		.cra_blocksize	= AES_BLOCK_SIZE,
1276 		.cra_u		= { .ablkcipher = {
1277 			.min_keysize	= AES_MIN_KEY_SIZE,
1278 			.max_keysize	= AES_MAX_KEY_SIZE,
1279 			.ivsize		= AES_BLOCK_SIZE,
1280 			.geniv		= "eseqiv",
1281 			}
1282 		}
1283 	},
1284 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1285 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1286 }, {
1287 	.crypto	= {
1288 		.cra_name	= "rfc3686(ctr(aes))",
1289 		.cra_blocksize	= AES_BLOCK_SIZE,
1290 		.cra_u		= { .ablkcipher = {
1291 			.min_keysize	= AES_MIN_KEY_SIZE,
1292 			.max_keysize	= AES_MAX_KEY_SIZE,
1293 			.ivsize		= AES_BLOCK_SIZE,
1294 			.geniv		= "eseqiv",
1295 			.setkey		= ablk_rfc3686_setkey,
1296 			.encrypt	= ablk_rfc3686_crypt,
1297 			.decrypt	= ablk_rfc3686_crypt }
1298 		}
1299 	},
1300 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1301 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1302 } };
1303 
1304 static struct ixp_aead_alg ixp4xx_aeads[] = {
1305 {
1306 	.crypto	= {
1307 		.base = {
1308 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1309 			.cra_blocksize	= DES_BLOCK_SIZE,
1310 		},
1311 		.ivsize		= DES_BLOCK_SIZE,
1312 		.maxauthsize	= MD5_DIGEST_SIZE,
1313 	},
1314 	.hash = &hash_alg_md5,
1315 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1316 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1317 }, {
1318 	.crypto	= {
1319 		.base = {
1320 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1321 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1322 		},
1323 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1324 		.maxauthsize	= MD5_DIGEST_SIZE,
1325 	},
1326 	.hash = &hash_alg_md5,
1327 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1328 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1329 }, {
1330 	.crypto	= {
1331 		.base = {
1332 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1333 			.cra_blocksize	= DES_BLOCK_SIZE,
1334 		},
1335 			.ivsize		= DES_BLOCK_SIZE,
1336 			.maxauthsize	= SHA1_DIGEST_SIZE,
1337 	},
1338 	.hash = &hash_alg_sha1,
1339 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1340 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1341 }, {
1342 	.crypto	= {
1343 		.base = {
1344 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1345 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1346 		},
1347 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1348 		.maxauthsize	= SHA1_DIGEST_SIZE,
1349 	},
1350 	.hash = &hash_alg_sha1,
1351 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1352 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1353 }, {
1354 	.crypto	= {
1355 		.base = {
1356 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1357 			.cra_blocksize	= AES_BLOCK_SIZE,
1358 		},
1359 		.ivsize		= AES_BLOCK_SIZE,
1360 		.maxauthsize	= MD5_DIGEST_SIZE,
1361 	},
1362 	.hash = &hash_alg_md5,
1363 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1364 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1365 }, {
1366 	.crypto	= {
1367 		.base = {
1368 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1369 			.cra_blocksize	= AES_BLOCK_SIZE,
1370 		},
1371 		.ivsize		= AES_BLOCK_SIZE,
1372 		.maxauthsize	= SHA1_DIGEST_SIZE,
1373 	},
1374 	.hash = &hash_alg_sha1,
1375 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1376 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1377 } };
1378 
1379 #define IXP_POSTFIX "-ixp4xx"
1380 
1381 static const struct platform_device_info ixp_dev_info __initdata = {
1382 	.name		= DRIVER_NAME,
1383 	.id		= 0,
1384 	.dma_mask	= DMA_BIT_MASK(32),
1385 };
1386 
ixp_module_init(void)1387 static int __init ixp_module_init(void)
1388 {
1389 	int num = ARRAY_SIZE(ixp4xx_algos);
1390 	int i, err;
1391 
1392 	pdev = platform_device_register_full(&ixp_dev_info);
1393 	if (IS_ERR(pdev))
1394 		return PTR_ERR(pdev);
1395 
1396 	spin_lock_init(&desc_lock);
1397 	spin_lock_init(&emerg_lock);
1398 
1399 	err = init_ixp_crypto(&pdev->dev);
1400 	if (err) {
1401 		platform_device_unregister(pdev);
1402 		return err;
1403 	}
1404 	for (i=0; i< num; i++) {
1405 		struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1406 
1407 		if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1408 			"%s"IXP_POSTFIX, cra->cra_name) >=
1409 			CRYPTO_MAX_ALG_NAME)
1410 		{
1411 			continue;
1412 		}
1413 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1414 			continue;
1415 		}
1416 
1417 		/* block ciphers */
1418 		cra->cra_type = &crypto_ablkcipher_type;
1419 		cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1420 				 CRYPTO_ALG_KERN_DRIVER_ONLY |
1421 				 CRYPTO_ALG_ASYNC;
1422 		if (!cra->cra_ablkcipher.setkey)
1423 			cra->cra_ablkcipher.setkey = ablk_setkey;
1424 		if (!cra->cra_ablkcipher.encrypt)
1425 			cra->cra_ablkcipher.encrypt = ablk_encrypt;
1426 		if (!cra->cra_ablkcipher.decrypt)
1427 			cra->cra_ablkcipher.decrypt = ablk_decrypt;
1428 		cra->cra_init = init_tfm_ablk;
1429 
1430 		cra->cra_ctxsize = sizeof(struct ixp_ctx);
1431 		cra->cra_module = THIS_MODULE;
1432 		cra->cra_alignmask = 3;
1433 		cra->cra_priority = 300;
1434 		cra->cra_exit = exit_tfm;
1435 		if (crypto_register_alg(cra))
1436 			printk(KERN_ERR "Failed to register '%s'\n",
1437 				cra->cra_name);
1438 		else
1439 			ixp4xx_algos[i].registered = 1;
1440 	}
1441 
1442 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1443 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1444 
1445 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1446 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1447 		    CRYPTO_MAX_ALG_NAME)
1448 			continue;
1449 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1450 			continue;
1451 
1452 		/* authenc */
1453 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1454 				      CRYPTO_ALG_ASYNC;
1455 		cra->setkey = aead_setkey;
1456 		cra->setauthsize = aead_setauthsize;
1457 		cra->encrypt = aead_encrypt;
1458 		cra->decrypt = aead_decrypt;
1459 		cra->init = init_tfm_aead;
1460 		cra->exit = exit_tfm_aead;
1461 
1462 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1463 		cra->base.cra_module = THIS_MODULE;
1464 		cra->base.cra_alignmask = 3;
1465 		cra->base.cra_priority = 300;
1466 
1467 		if (crypto_register_aead(cra))
1468 			printk(KERN_ERR "Failed to register '%s'\n",
1469 				cra->base.cra_driver_name);
1470 		else
1471 			ixp4xx_aeads[i].registered = 1;
1472 	}
1473 	return 0;
1474 }
1475 
ixp_module_exit(void)1476 static void __exit ixp_module_exit(void)
1477 {
1478 	int num = ARRAY_SIZE(ixp4xx_algos);
1479 	int i;
1480 
1481 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1482 		if (ixp4xx_aeads[i].registered)
1483 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1484 	}
1485 
1486 	for (i=0; i< num; i++) {
1487 		if (ixp4xx_algos[i].registered)
1488 			crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1489 	}
1490 	release_ixp_crypto(&pdev->dev);
1491 	platform_device_unregister(pdev);
1492 }
1493 
1494 module_init(ixp_module_init);
1495 module_exit(ixp_module_exit);
1496 
1497 MODULE_LICENSE("GPL");
1498 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1499 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1500 
1501