1 /*
2  *  linux/drivers/mmc/card/mmc_test.c
3  *
4  *  Copyright 2007-2008 Pierre Ossman
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or (at
9  * your option) any later version.
10  */
11 
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
17 
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
20 #include <linux/list.h>
21 
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 
27 #define RESULT_OK		0
28 #define RESULT_FAIL		1
29 #define RESULT_UNSUP_HOST	2
30 #define RESULT_UNSUP_CARD	3
31 
32 #define BUFFER_ORDER		2
33 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
34 
35 #define TEST_ALIGN_END		8
36 
37 /*
38  * Limit the test area size to the maximum MMC HC erase group size.  Note that
39  * the maximum SD allocation unit size is just 4MiB.
40  */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42 
43 /**
44  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45  * @page: first page in the allocation
46  * @order: order of the number of pages allocated
47  */
48 struct mmc_test_pages {
49 	struct page *page;
50 	unsigned int order;
51 };
52 
53 /**
54  * struct mmc_test_mem - allocated memory.
55  * @arr: array of allocations
56  * @cnt: number of allocations
57  */
58 struct mmc_test_mem {
59 	struct mmc_test_pages *arr;
60 	unsigned int cnt;
61 };
62 
63 /**
64  * struct mmc_test_area - information for performance tests.
65  * @max_sz: test area size (in bytes)
66  * @dev_addr: address on card at which to do performance tests
67  * @max_tfr: maximum transfer size allowed by driver (in bytes)
68  * @max_segs: maximum segments allowed by driver in scatterlist @sg
69  * @max_seg_sz: maximum segment size allowed by driver
70  * @blocks: number of (512 byte) blocks currently mapped by @sg
71  * @sg_len: length of currently mapped scatterlist @sg
72  * @mem: allocated memory
73  * @sg: scatterlist
74  */
75 struct mmc_test_area {
76 	unsigned long max_sz;
77 	unsigned int dev_addr;
78 	unsigned int max_tfr;
79 	unsigned int max_segs;
80 	unsigned int max_seg_sz;
81 	unsigned int blocks;
82 	unsigned int sg_len;
83 	struct mmc_test_mem *mem;
84 	struct scatterlist *sg;
85 };
86 
87 /**
88  * struct mmc_test_transfer_result - transfer results for performance tests.
89  * @link: double-linked list
90  * @count: amount of group of sectors to check
91  * @sectors: amount of sectors to check in one group
92  * @ts: time values of transfer
93  * @rate: calculated transfer rate
94  * @iops: I/O operations per second (times 100)
95  */
96 struct mmc_test_transfer_result {
97 	struct list_head link;
98 	unsigned int count;
99 	unsigned int sectors;
100 	struct timespec ts;
101 	unsigned int rate;
102 	unsigned int iops;
103 };
104 
105 /**
106  * struct mmc_test_general_result - results for tests.
107  * @link: double-linked list
108  * @card: card under test
109  * @testcase: number of test case
110  * @result: result of test run
111  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
112  */
113 struct mmc_test_general_result {
114 	struct list_head link;
115 	struct mmc_card *card;
116 	int testcase;
117 	int result;
118 	struct list_head tr_lst;
119 };
120 
121 /**
122  * struct mmc_test_dbgfs_file - debugfs related file.
123  * @link: double-linked list
124  * @card: card under test
125  * @file: file created under debugfs
126  */
127 struct mmc_test_dbgfs_file {
128 	struct list_head link;
129 	struct mmc_card *card;
130 	struct dentry *file;
131 };
132 
133 /**
134  * struct mmc_test_card - test information.
135  * @card: card under test
136  * @scratch: transfer buffer
137  * @buffer: transfer buffer
138  * @highmem: buffer for highmem tests
139  * @area: information for performance tests
140  * @gr: pointer to results of current testcase
141  */
142 struct mmc_test_card {
143 	struct mmc_card	*card;
144 
145 	u8		scratch[BUFFER_SIZE];
146 	u8		*buffer;
147 #ifdef CONFIG_HIGHMEM
148 	struct page	*highmem;
149 #endif
150 	struct mmc_test_area		area;
151 	struct mmc_test_general_result	*gr;
152 };
153 
154 enum mmc_test_prep_media {
155 	MMC_TEST_PREP_NONE = 0,
156 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
157 	MMC_TEST_PREP_ERASE = 1 << 1,
158 };
159 
160 struct mmc_test_multiple_rw {
161 	unsigned int *sg_len;
162 	unsigned int *bs;
163 	unsigned int len;
164 	unsigned int size;
165 	bool do_write;
166 	bool do_nonblock_req;
167 	enum mmc_test_prep_media prepare;
168 };
169 
170 struct mmc_test_async_req {
171 	struct mmc_async_req areq;
172 	struct mmc_test_card *test;
173 };
174 
175 /*******************************************************************/
176 /*  General helper functions                                       */
177 /*******************************************************************/
178 
179 /*
180  * Configure correct block size in card
181  */
mmc_test_set_blksize(struct mmc_test_card * test,unsigned size)182 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
183 {
184 	return mmc_set_blocklen(test->card, size);
185 }
186 
187 /*
188  * Fill in the mmc_request structure given a set of transfer parameters.
189  */
mmc_test_prepare_mrq(struct mmc_test_card * test,struct mmc_request * mrq,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)190 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
191 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
192 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
193 {
194 	BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
195 
196 	if (blocks > 1) {
197 		mrq->cmd->opcode = write ?
198 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
199 	} else {
200 		mrq->cmd->opcode = write ?
201 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
202 	}
203 
204 	mrq->cmd->arg = dev_addr;
205 	if (!mmc_card_blockaddr(test->card))
206 		mrq->cmd->arg <<= 9;
207 
208 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
209 
210 	if (blocks == 1)
211 		mrq->stop = NULL;
212 	else {
213 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
214 		mrq->stop->arg = 0;
215 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
216 	}
217 
218 	mrq->data->blksz = blksz;
219 	mrq->data->blocks = blocks;
220 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
221 	mrq->data->sg = sg;
222 	mrq->data->sg_len = sg_len;
223 
224 	mmc_set_data_timeout(mrq->data, test->card);
225 }
226 
mmc_test_busy(struct mmc_command * cmd)227 static int mmc_test_busy(struct mmc_command *cmd)
228 {
229 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
230 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
231 }
232 
233 /*
234  * Wait for the card to finish the busy state
235  */
mmc_test_wait_busy(struct mmc_test_card * test)236 static int mmc_test_wait_busy(struct mmc_test_card *test)
237 {
238 	int ret, busy;
239 	struct mmc_command cmd = {0};
240 
241 	busy = 0;
242 	do {
243 		memset(&cmd, 0, sizeof(struct mmc_command));
244 
245 		cmd.opcode = MMC_SEND_STATUS;
246 		cmd.arg = test->card->rca << 16;
247 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
248 
249 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
250 		if (ret)
251 			break;
252 
253 		if (!busy && mmc_test_busy(&cmd)) {
254 			busy = 1;
255 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
256 				pr_info("%s: Warning: Host did not "
257 					"wait for busy state to end.\n",
258 					mmc_hostname(test->card->host));
259 		}
260 	} while (mmc_test_busy(&cmd));
261 
262 	return ret;
263 }
264 
265 /*
266  * Transfer a single sector of kernel addressable data
267  */
mmc_test_buffer_transfer(struct mmc_test_card * test,u8 * buffer,unsigned addr,unsigned blksz,int write)268 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
269 	u8 *buffer, unsigned addr, unsigned blksz, int write)
270 {
271 	int ret;
272 
273 	struct mmc_request mrq = {0};
274 	struct mmc_command cmd = {0};
275 	struct mmc_command stop = {0};
276 	struct mmc_data data = {0};
277 
278 	struct scatterlist sg;
279 
280 	mrq.cmd = &cmd;
281 	mrq.data = &data;
282 	mrq.stop = &stop;
283 
284 	sg_init_one(&sg, buffer, blksz);
285 
286 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
287 
288 	mmc_wait_for_req(test->card->host, &mrq);
289 
290 	if (cmd.error)
291 		return cmd.error;
292 	if (data.error)
293 		return data.error;
294 
295 	ret = mmc_test_wait_busy(test);
296 	if (ret)
297 		return ret;
298 
299 	return 0;
300 }
301 
mmc_test_free_mem(struct mmc_test_mem * mem)302 static void mmc_test_free_mem(struct mmc_test_mem *mem)
303 {
304 	if (!mem)
305 		return;
306 	while (mem->cnt--)
307 		__free_pages(mem->arr[mem->cnt].page,
308 			     mem->arr[mem->cnt].order);
309 	kfree(mem->arr);
310 	kfree(mem);
311 }
312 
313 /*
314  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
315  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
316  * not exceed a maximum number of segments and try not to make segments much
317  * bigger than maximum segment size.
318  */
mmc_test_alloc_mem(unsigned long min_sz,unsigned long max_sz,unsigned int max_segs,unsigned int max_seg_sz)319 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
320 					       unsigned long max_sz,
321 					       unsigned int max_segs,
322 					       unsigned int max_seg_sz)
323 {
324 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
325 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
326 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
327 	unsigned long page_cnt = 0;
328 	unsigned long limit = nr_free_buffer_pages() >> 4;
329 	struct mmc_test_mem *mem;
330 
331 	if (max_page_cnt > limit)
332 		max_page_cnt = limit;
333 	if (min_page_cnt > max_page_cnt)
334 		min_page_cnt = max_page_cnt;
335 
336 	if (max_seg_page_cnt > max_page_cnt)
337 		max_seg_page_cnt = max_page_cnt;
338 
339 	if (max_segs > max_page_cnt)
340 		max_segs = max_page_cnt;
341 
342 	mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
343 	if (!mem)
344 		return NULL;
345 
346 	mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
347 			   GFP_KERNEL);
348 	if (!mem->arr)
349 		goto out_free;
350 
351 	while (max_page_cnt) {
352 		struct page *page;
353 		unsigned int order;
354 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
355 				__GFP_NORETRY;
356 
357 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
358 		while (1) {
359 			page = alloc_pages(flags, order);
360 			if (page || !order)
361 				break;
362 			order -= 1;
363 		}
364 		if (!page) {
365 			if (page_cnt < min_page_cnt)
366 				goto out_free;
367 			break;
368 		}
369 		mem->arr[mem->cnt].page = page;
370 		mem->arr[mem->cnt].order = order;
371 		mem->cnt += 1;
372 		if (max_page_cnt <= (1UL << order))
373 			break;
374 		max_page_cnt -= 1UL << order;
375 		page_cnt += 1UL << order;
376 		if (mem->cnt >= max_segs) {
377 			if (page_cnt < min_page_cnt)
378 				goto out_free;
379 			break;
380 		}
381 	}
382 
383 	return mem;
384 
385 out_free:
386 	mmc_test_free_mem(mem);
387 	return NULL;
388 }
389 
390 /*
391  * Map memory into a scatterlist.  Optionally allow the same memory to be
392  * mapped more than once.
393  */
mmc_test_map_sg(struct mmc_test_mem * mem,unsigned long size,struct scatterlist * sglist,int repeat,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len,int min_sg_len)394 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
395 			   struct scatterlist *sglist, int repeat,
396 			   unsigned int max_segs, unsigned int max_seg_sz,
397 			   unsigned int *sg_len, int min_sg_len)
398 {
399 	struct scatterlist *sg = NULL;
400 	unsigned int i;
401 	unsigned long sz = size;
402 
403 	sg_init_table(sglist, max_segs);
404 	if (min_sg_len > max_segs)
405 		min_sg_len = max_segs;
406 
407 	*sg_len = 0;
408 	do {
409 		for (i = 0; i < mem->cnt; i++) {
410 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
411 
412 			if (min_sg_len && (size / min_sg_len < len))
413 				len = ALIGN(size / min_sg_len, 512);
414 			if (len > sz)
415 				len = sz;
416 			if (len > max_seg_sz)
417 				len = max_seg_sz;
418 			if (sg)
419 				sg = sg_next(sg);
420 			else
421 				sg = sglist;
422 			if (!sg)
423 				return -EINVAL;
424 			sg_set_page(sg, mem->arr[i].page, len, 0);
425 			sz -= len;
426 			*sg_len += 1;
427 			if (!sz)
428 				break;
429 		}
430 	} while (sz && repeat);
431 
432 	if (sz)
433 		return -EINVAL;
434 
435 	if (sg)
436 		sg_mark_end(sg);
437 
438 	return 0;
439 }
440 
441 /*
442  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
443  * same memory to be mapped more than once.
444  */
mmc_test_map_sg_max_scatter(struct mmc_test_mem * mem,unsigned long sz,struct scatterlist * sglist,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len)445 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
446 				       unsigned long sz,
447 				       struct scatterlist *sglist,
448 				       unsigned int max_segs,
449 				       unsigned int max_seg_sz,
450 				       unsigned int *sg_len)
451 {
452 	struct scatterlist *sg = NULL;
453 	unsigned int i = mem->cnt, cnt;
454 	unsigned long len;
455 	void *base, *addr, *last_addr = NULL;
456 
457 	sg_init_table(sglist, max_segs);
458 
459 	*sg_len = 0;
460 	while (sz) {
461 		base = page_address(mem->arr[--i].page);
462 		cnt = 1 << mem->arr[i].order;
463 		while (sz && cnt) {
464 			addr = base + PAGE_SIZE * --cnt;
465 			if (last_addr && last_addr + PAGE_SIZE == addr)
466 				continue;
467 			last_addr = addr;
468 			len = PAGE_SIZE;
469 			if (len > max_seg_sz)
470 				len = max_seg_sz;
471 			if (len > sz)
472 				len = sz;
473 			if (sg)
474 				sg = sg_next(sg);
475 			else
476 				sg = sglist;
477 			if (!sg)
478 				return -EINVAL;
479 			sg_set_page(sg, virt_to_page(addr), len, 0);
480 			sz -= len;
481 			*sg_len += 1;
482 		}
483 		if (i == 0)
484 			i = mem->cnt;
485 	}
486 
487 	if (sg)
488 		sg_mark_end(sg);
489 
490 	return 0;
491 }
492 
493 /*
494  * Calculate transfer rate in bytes per second.
495  */
mmc_test_rate(uint64_t bytes,struct timespec * ts)496 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
497 {
498 	uint64_t ns;
499 
500 	ns = ts->tv_sec;
501 	ns *= 1000000000;
502 	ns += ts->tv_nsec;
503 
504 	bytes *= 1000000000;
505 
506 	while (ns > UINT_MAX) {
507 		bytes >>= 1;
508 		ns >>= 1;
509 	}
510 
511 	if (!ns)
512 		return 0;
513 
514 	do_div(bytes, (uint32_t)ns);
515 
516 	return bytes;
517 }
518 
519 /*
520  * Save transfer results for future usage
521  */
mmc_test_save_transfer_result(struct mmc_test_card * test,unsigned int count,unsigned int sectors,struct timespec ts,unsigned int rate,unsigned int iops)522 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
523 	unsigned int count, unsigned int sectors, struct timespec ts,
524 	unsigned int rate, unsigned int iops)
525 {
526 	struct mmc_test_transfer_result *tr;
527 
528 	if (!test->gr)
529 		return;
530 
531 	tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
532 	if (!tr)
533 		return;
534 
535 	tr->count = count;
536 	tr->sectors = sectors;
537 	tr->ts = ts;
538 	tr->rate = rate;
539 	tr->iops = iops;
540 
541 	list_add_tail(&tr->link, &test->gr->tr_lst);
542 }
543 
544 /*
545  * Print the transfer rate.
546  */
mmc_test_print_rate(struct mmc_test_card * test,uint64_t bytes,struct timespec * ts1,struct timespec * ts2)547 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
548 				struct timespec *ts1, struct timespec *ts2)
549 {
550 	unsigned int rate, iops, sectors = bytes >> 9;
551 	struct timespec ts;
552 
553 	ts = timespec_sub(*ts2, *ts1);
554 
555 	rate = mmc_test_rate(bytes, &ts);
556 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
557 
558 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
559 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
560 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
561 			 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
562 			 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
563 			 iops / 100, iops % 100);
564 
565 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
566 }
567 
568 /*
569  * Print the average transfer rate.
570  */
mmc_test_print_avg_rate(struct mmc_test_card * test,uint64_t bytes,unsigned int count,struct timespec * ts1,struct timespec * ts2)571 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
572 				    unsigned int count, struct timespec *ts1,
573 				    struct timespec *ts2)
574 {
575 	unsigned int rate, iops, sectors = bytes >> 9;
576 	uint64_t tot = bytes * count;
577 	struct timespec ts;
578 
579 	ts = timespec_sub(*ts2, *ts1);
580 
581 	rate = mmc_test_rate(tot, &ts);
582 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
583 
584 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
585 			 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
586 			 "%u.%02u IOPS, sg_len %d)\n",
587 			 mmc_hostname(test->card->host), count, sectors, count,
588 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
589 			 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
590 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
591 			 test->area.sg_len);
592 
593 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
594 }
595 
596 /*
597  * Return the card size in sectors.
598  */
mmc_test_capacity(struct mmc_card * card)599 static unsigned int mmc_test_capacity(struct mmc_card *card)
600 {
601 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
602 		return card->ext_csd.sectors;
603 	else
604 		return card->csd.capacity << (card->csd.read_blkbits - 9);
605 }
606 
607 /*******************************************************************/
608 /*  Test preparation and cleanup                                   */
609 /*******************************************************************/
610 
611 /*
612  * Fill the first couple of sectors of the card with known data
613  * so that bad reads/writes can be detected
614  */
__mmc_test_prepare(struct mmc_test_card * test,int write)615 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
616 {
617 	int ret, i;
618 
619 	ret = mmc_test_set_blksize(test, 512);
620 	if (ret)
621 		return ret;
622 
623 	if (write)
624 		memset(test->buffer, 0xDF, 512);
625 	else {
626 		for (i = 0;i < 512;i++)
627 			test->buffer[i] = i;
628 	}
629 
630 	for (i = 0;i < BUFFER_SIZE / 512;i++) {
631 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
632 		if (ret)
633 			return ret;
634 	}
635 
636 	return 0;
637 }
638 
mmc_test_prepare_write(struct mmc_test_card * test)639 static int mmc_test_prepare_write(struct mmc_test_card *test)
640 {
641 	return __mmc_test_prepare(test, 1);
642 }
643 
mmc_test_prepare_read(struct mmc_test_card * test)644 static int mmc_test_prepare_read(struct mmc_test_card *test)
645 {
646 	return __mmc_test_prepare(test, 0);
647 }
648 
mmc_test_cleanup(struct mmc_test_card * test)649 static int mmc_test_cleanup(struct mmc_test_card *test)
650 {
651 	int ret, i;
652 
653 	ret = mmc_test_set_blksize(test, 512);
654 	if (ret)
655 		return ret;
656 
657 	memset(test->buffer, 0, 512);
658 
659 	for (i = 0;i < BUFFER_SIZE / 512;i++) {
660 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
661 		if (ret)
662 			return ret;
663 	}
664 
665 	return 0;
666 }
667 
668 /*******************************************************************/
669 /*  Test execution helpers                                         */
670 /*******************************************************************/
671 
672 /*
673  * Modifies the mmc_request to perform the "short transfer" tests
674  */
mmc_test_prepare_broken_mrq(struct mmc_test_card * test,struct mmc_request * mrq,int write)675 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
676 	struct mmc_request *mrq, int write)
677 {
678 	BUG_ON(!mrq || !mrq->cmd || !mrq->data);
679 
680 	if (mrq->data->blocks > 1) {
681 		mrq->cmd->opcode = write ?
682 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
683 		mrq->stop = NULL;
684 	} else {
685 		mrq->cmd->opcode = MMC_SEND_STATUS;
686 		mrq->cmd->arg = test->card->rca << 16;
687 	}
688 }
689 
690 /*
691  * Checks that a normal transfer didn't have any errors
692  */
mmc_test_check_result(struct mmc_test_card * test,struct mmc_request * mrq)693 static int mmc_test_check_result(struct mmc_test_card *test,
694 				 struct mmc_request *mrq)
695 {
696 	int ret;
697 
698 	BUG_ON(!mrq || !mrq->cmd || !mrq->data);
699 
700 	ret = 0;
701 
702 	if (!ret && mrq->cmd->error)
703 		ret = mrq->cmd->error;
704 	if (!ret && mrq->data->error)
705 		ret = mrq->data->error;
706 	if (!ret && mrq->stop && mrq->stop->error)
707 		ret = mrq->stop->error;
708 	if (!ret && mrq->data->bytes_xfered !=
709 		mrq->data->blocks * mrq->data->blksz)
710 		ret = RESULT_FAIL;
711 
712 	if (ret == -EINVAL)
713 		ret = RESULT_UNSUP_HOST;
714 
715 	return ret;
716 }
717 
mmc_test_check_result_async(struct mmc_card * card,struct mmc_async_req * areq)718 static int mmc_test_check_result_async(struct mmc_card *card,
719 				       struct mmc_async_req *areq)
720 {
721 	struct mmc_test_async_req *test_async =
722 		container_of(areq, struct mmc_test_async_req, areq);
723 
724 	mmc_test_wait_busy(test_async->test);
725 
726 	return mmc_test_check_result(test_async->test, areq->mrq);
727 }
728 
729 /*
730  * Checks that a "short transfer" behaved as expected
731  */
mmc_test_check_broken_result(struct mmc_test_card * test,struct mmc_request * mrq)732 static int mmc_test_check_broken_result(struct mmc_test_card *test,
733 	struct mmc_request *mrq)
734 {
735 	int ret;
736 
737 	BUG_ON(!mrq || !mrq->cmd || !mrq->data);
738 
739 	ret = 0;
740 
741 	if (!ret && mrq->cmd->error)
742 		ret = mrq->cmd->error;
743 	if (!ret && mrq->data->error == 0)
744 		ret = RESULT_FAIL;
745 	if (!ret && mrq->data->error != -ETIMEDOUT)
746 		ret = mrq->data->error;
747 	if (!ret && mrq->stop && mrq->stop->error)
748 		ret = mrq->stop->error;
749 	if (mrq->data->blocks > 1) {
750 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
751 			ret = RESULT_FAIL;
752 	} else {
753 		if (!ret && mrq->data->bytes_xfered > 0)
754 			ret = RESULT_FAIL;
755 	}
756 
757 	if (ret == -EINVAL)
758 		ret = RESULT_UNSUP_HOST;
759 
760 	return ret;
761 }
762 
763 /*
764  * Tests nonblock transfer with certain parameters
765  */
mmc_test_nonblock_reset(struct mmc_request * mrq,struct mmc_command * cmd,struct mmc_command * stop,struct mmc_data * data)766 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
767 				    struct mmc_command *cmd,
768 				    struct mmc_command *stop,
769 				    struct mmc_data *data)
770 {
771 	memset(mrq, 0, sizeof(struct mmc_request));
772 	memset(cmd, 0, sizeof(struct mmc_command));
773 	memset(data, 0, sizeof(struct mmc_data));
774 	memset(stop, 0, sizeof(struct mmc_command));
775 
776 	mrq->cmd = cmd;
777 	mrq->data = data;
778 	mrq->stop = stop;
779 }
mmc_test_nonblock_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write,int count)780 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
781 				      struct scatterlist *sg, unsigned sg_len,
782 				      unsigned dev_addr, unsigned blocks,
783 				      unsigned blksz, int write, int count)
784 {
785 	struct mmc_request mrq1;
786 	struct mmc_command cmd1;
787 	struct mmc_command stop1;
788 	struct mmc_data data1;
789 
790 	struct mmc_request mrq2;
791 	struct mmc_command cmd2;
792 	struct mmc_command stop2;
793 	struct mmc_data data2;
794 
795 	struct mmc_test_async_req test_areq[2];
796 	struct mmc_async_req *done_areq;
797 	struct mmc_async_req *cur_areq = &test_areq[0].areq;
798 	struct mmc_async_req *other_areq = &test_areq[1].areq;
799 	int i;
800 	int ret;
801 
802 	test_areq[0].test = test;
803 	test_areq[1].test = test;
804 
805 	mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
806 	mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
807 
808 	cur_areq->mrq = &mrq1;
809 	cur_areq->err_check = mmc_test_check_result_async;
810 	other_areq->mrq = &mrq2;
811 	other_areq->err_check = mmc_test_check_result_async;
812 
813 	for (i = 0; i < count; i++) {
814 		mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
815 				     blocks, blksz, write);
816 		done_areq = mmc_start_req(test->card->host, cur_areq, &ret);
817 
818 		if (ret || (!done_areq && i > 0))
819 			goto err;
820 
821 		if (done_areq) {
822 			if (done_areq->mrq == &mrq2)
823 				mmc_test_nonblock_reset(&mrq2, &cmd2,
824 							&stop2, &data2);
825 			else
826 				mmc_test_nonblock_reset(&mrq1, &cmd1,
827 							&stop1, &data1);
828 		}
829 		done_areq = cur_areq;
830 		cur_areq = other_areq;
831 		other_areq = done_areq;
832 		dev_addr += blocks;
833 	}
834 
835 	done_areq = mmc_start_req(test->card->host, NULL, &ret);
836 
837 	return ret;
838 err:
839 	return ret;
840 }
841 
842 /*
843  * Tests a basic transfer with certain parameters
844  */
mmc_test_simple_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)845 static int mmc_test_simple_transfer(struct mmc_test_card *test,
846 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
847 	unsigned blocks, unsigned blksz, int write)
848 {
849 	struct mmc_request mrq = {0};
850 	struct mmc_command cmd = {0};
851 	struct mmc_command stop = {0};
852 	struct mmc_data data = {0};
853 
854 	mrq.cmd = &cmd;
855 	mrq.data = &data;
856 	mrq.stop = &stop;
857 
858 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
859 		blocks, blksz, write);
860 
861 	mmc_wait_for_req(test->card->host, &mrq);
862 
863 	mmc_test_wait_busy(test);
864 
865 	return mmc_test_check_result(test, &mrq);
866 }
867 
868 /*
869  * Tests a transfer where the card will fail completely or partly
870  */
mmc_test_broken_transfer(struct mmc_test_card * test,unsigned blocks,unsigned blksz,int write)871 static int mmc_test_broken_transfer(struct mmc_test_card *test,
872 	unsigned blocks, unsigned blksz, int write)
873 {
874 	struct mmc_request mrq = {0};
875 	struct mmc_command cmd = {0};
876 	struct mmc_command stop = {0};
877 	struct mmc_data data = {0};
878 
879 	struct scatterlist sg;
880 
881 	mrq.cmd = &cmd;
882 	mrq.data = &data;
883 	mrq.stop = &stop;
884 
885 	sg_init_one(&sg, test->buffer, blocks * blksz);
886 
887 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
888 	mmc_test_prepare_broken_mrq(test, &mrq, write);
889 
890 	mmc_wait_for_req(test->card->host, &mrq);
891 
892 	mmc_test_wait_busy(test);
893 
894 	return mmc_test_check_broken_result(test, &mrq);
895 }
896 
897 /*
898  * Does a complete transfer test where data is also validated
899  *
900  * Note: mmc_test_prepare() must have been done before this call
901  */
mmc_test_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)902 static int mmc_test_transfer(struct mmc_test_card *test,
903 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
904 	unsigned blocks, unsigned blksz, int write)
905 {
906 	int ret, i;
907 	unsigned long flags;
908 
909 	if (write) {
910 		for (i = 0;i < blocks * blksz;i++)
911 			test->scratch[i] = i;
912 	} else {
913 		memset(test->scratch, 0, BUFFER_SIZE);
914 	}
915 	local_irq_save(flags);
916 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
917 	local_irq_restore(flags);
918 
919 	ret = mmc_test_set_blksize(test, blksz);
920 	if (ret)
921 		return ret;
922 
923 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
924 		blocks, blksz, write);
925 	if (ret)
926 		return ret;
927 
928 	if (write) {
929 		int sectors;
930 
931 		ret = mmc_test_set_blksize(test, 512);
932 		if (ret)
933 			return ret;
934 
935 		sectors = (blocks * blksz + 511) / 512;
936 		if ((sectors * 512) == (blocks * blksz))
937 			sectors++;
938 
939 		if ((sectors * 512) > BUFFER_SIZE)
940 			return -EINVAL;
941 
942 		memset(test->buffer, 0, sectors * 512);
943 
944 		for (i = 0;i < sectors;i++) {
945 			ret = mmc_test_buffer_transfer(test,
946 				test->buffer + i * 512,
947 				dev_addr + i, 512, 0);
948 			if (ret)
949 				return ret;
950 		}
951 
952 		for (i = 0;i < blocks * blksz;i++) {
953 			if (test->buffer[i] != (u8)i)
954 				return RESULT_FAIL;
955 		}
956 
957 		for (;i < sectors * 512;i++) {
958 			if (test->buffer[i] != 0xDF)
959 				return RESULT_FAIL;
960 		}
961 	} else {
962 		local_irq_save(flags);
963 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
964 		local_irq_restore(flags);
965 		for (i = 0;i < blocks * blksz;i++) {
966 			if (test->scratch[i] != (u8)i)
967 				return RESULT_FAIL;
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 /*******************************************************************/
975 /*  Tests                                                          */
976 /*******************************************************************/
977 
978 struct mmc_test_case {
979 	const char *name;
980 
981 	int (*prepare)(struct mmc_test_card *);
982 	int (*run)(struct mmc_test_card *);
983 	int (*cleanup)(struct mmc_test_card *);
984 };
985 
mmc_test_basic_write(struct mmc_test_card * test)986 static int mmc_test_basic_write(struct mmc_test_card *test)
987 {
988 	int ret;
989 	struct scatterlist sg;
990 
991 	ret = mmc_test_set_blksize(test, 512);
992 	if (ret)
993 		return ret;
994 
995 	sg_init_one(&sg, test->buffer, 512);
996 
997 	ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
998 	if (ret)
999 		return ret;
1000 
1001 	return 0;
1002 }
1003 
mmc_test_basic_read(struct mmc_test_card * test)1004 static int mmc_test_basic_read(struct mmc_test_card *test)
1005 {
1006 	int ret;
1007 	struct scatterlist sg;
1008 
1009 	ret = mmc_test_set_blksize(test, 512);
1010 	if (ret)
1011 		return ret;
1012 
1013 	sg_init_one(&sg, test->buffer, 512);
1014 
1015 	ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1016 	if (ret)
1017 		return ret;
1018 
1019 	return 0;
1020 }
1021 
mmc_test_verify_write(struct mmc_test_card * test)1022 static int mmc_test_verify_write(struct mmc_test_card *test)
1023 {
1024 	int ret;
1025 	struct scatterlist sg;
1026 
1027 	sg_init_one(&sg, test->buffer, 512);
1028 
1029 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1030 	if (ret)
1031 		return ret;
1032 
1033 	return 0;
1034 }
1035 
mmc_test_verify_read(struct mmc_test_card * test)1036 static int mmc_test_verify_read(struct mmc_test_card *test)
1037 {
1038 	int ret;
1039 	struct scatterlist sg;
1040 
1041 	sg_init_one(&sg, test->buffer, 512);
1042 
1043 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1044 	if (ret)
1045 		return ret;
1046 
1047 	return 0;
1048 }
1049 
mmc_test_multi_write(struct mmc_test_card * test)1050 static int mmc_test_multi_write(struct mmc_test_card *test)
1051 {
1052 	int ret;
1053 	unsigned int size;
1054 	struct scatterlist sg;
1055 
1056 	if (test->card->host->max_blk_count == 1)
1057 		return RESULT_UNSUP_HOST;
1058 
1059 	size = PAGE_SIZE * 2;
1060 	size = min(size, test->card->host->max_req_size);
1061 	size = min(size, test->card->host->max_seg_size);
1062 	size = min(size, test->card->host->max_blk_count * 512);
1063 
1064 	if (size < 1024)
1065 		return RESULT_UNSUP_HOST;
1066 
1067 	sg_init_one(&sg, test->buffer, size);
1068 
1069 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1070 	if (ret)
1071 		return ret;
1072 
1073 	return 0;
1074 }
1075 
mmc_test_multi_read(struct mmc_test_card * test)1076 static int mmc_test_multi_read(struct mmc_test_card *test)
1077 {
1078 	int ret;
1079 	unsigned int size;
1080 	struct scatterlist sg;
1081 
1082 	if (test->card->host->max_blk_count == 1)
1083 		return RESULT_UNSUP_HOST;
1084 
1085 	size = PAGE_SIZE * 2;
1086 	size = min(size, test->card->host->max_req_size);
1087 	size = min(size, test->card->host->max_seg_size);
1088 	size = min(size, test->card->host->max_blk_count * 512);
1089 
1090 	if (size < 1024)
1091 		return RESULT_UNSUP_HOST;
1092 
1093 	sg_init_one(&sg, test->buffer, size);
1094 
1095 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1096 	if (ret)
1097 		return ret;
1098 
1099 	return 0;
1100 }
1101 
mmc_test_pow2_write(struct mmc_test_card * test)1102 static int mmc_test_pow2_write(struct mmc_test_card *test)
1103 {
1104 	int ret, i;
1105 	struct scatterlist sg;
1106 
1107 	if (!test->card->csd.write_partial)
1108 		return RESULT_UNSUP_CARD;
1109 
1110 	for (i = 1; i < 512;i <<= 1) {
1111 		sg_init_one(&sg, test->buffer, i);
1112 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1113 		if (ret)
1114 			return ret;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
mmc_test_pow2_read(struct mmc_test_card * test)1120 static int mmc_test_pow2_read(struct mmc_test_card *test)
1121 {
1122 	int ret, i;
1123 	struct scatterlist sg;
1124 
1125 	if (!test->card->csd.read_partial)
1126 		return RESULT_UNSUP_CARD;
1127 
1128 	for (i = 1; i < 512;i <<= 1) {
1129 		sg_init_one(&sg, test->buffer, i);
1130 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
mmc_test_weird_write(struct mmc_test_card * test)1138 static int mmc_test_weird_write(struct mmc_test_card *test)
1139 {
1140 	int ret, i;
1141 	struct scatterlist sg;
1142 
1143 	if (!test->card->csd.write_partial)
1144 		return RESULT_UNSUP_CARD;
1145 
1146 	for (i = 3; i < 512;i += 7) {
1147 		sg_init_one(&sg, test->buffer, i);
1148 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1149 		if (ret)
1150 			return ret;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
mmc_test_weird_read(struct mmc_test_card * test)1156 static int mmc_test_weird_read(struct mmc_test_card *test)
1157 {
1158 	int ret, i;
1159 	struct scatterlist sg;
1160 
1161 	if (!test->card->csd.read_partial)
1162 		return RESULT_UNSUP_CARD;
1163 
1164 	for (i = 3; i < 512;i += 7) {
1165 		sg_init_one(&sg, test->buffer, i);
1166 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
mmc_test_align_write(struct mmc_test_card * test)1174 static int mmc_test_align_write(struct mmc_test_card *test)
1175 {
1176 	int ret, i;
1177 	struct scatterlist sg;
1178 
1179 	for (i = 1; i < TEST_ALIGN_END; i++) {
1180 		sg_init_one(&sg, test->buffer + i, 512);
1181 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
mmc_test_align_read(struct mmc_test_card * test)1189 static int mmc_test_align_read(struct mmc_test_card *test)
1190 {
1191 	int ret, i;
1192 	struct scatterlist sg;
1193 
1194 	for (i = 1; i < TEST_ALIGN_END; i++) {
1195 		sg_init_one(&sg, test->buffer + i, 512);
1196 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
mmc_test_align_multi_write(struct mmc_test_card * test)1204 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1205 {
1206 	int ret, i;
1207 	unsigned int size;
1208 	struct scatterlist sg;
1209 
1210 	if (test->card->host->max_blk_count == 1)
1211 		return RESULT_UNSUP_HOST;
1212 
1213 	size = PAGE_SIZE * 2;
1214 	size = min(size, test->card->host->max_req_size);
1215 	size = min(size, test->card->host->max_seg_size);
1216 	size = min(size, test->card->host->max_blk_count * 512);
1217 
1218 	if (size < 1024)
1219 		return RESULT_UNSUP_HOST;
1220 
1221 	for (i = 1; i < TEST_ALIGN_END; i++) {
1222 		sg_init_one(&sg, test->buffer + i, size);
1223 		ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
mmc_test_align_multi_read(struct mmc_test_card * test)1231 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1232 {
1233 	int ret, i;
1234 	unsigned int size;
1235 	struct scatterlist sg;
1236 
1237 	if (test->card->host->max_blk_count == 1)
1238 		return RESULT_UNSUP_HOST;
1239 
1240 	size = PAGE_SIZE * 2;
1241 	size = min(size, test->card->host->max_req_size);
1242 	size = min(size, test->card->host->max_seg_size);
1243 	size = min(size, test->card->host->max_blk_count * 512);
1244 
1245 	if (size < 1024)
1246 		return RESULT_UNSUP_HOST;
1247 
1248 	for (i = 1; i < TEST_ALIGN_END; i++) {
1249 		sg_init_one(&sg, test->buffer + i, size);
1250 		ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1251 		if (ret)
1252 			return ret;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
mmc_test_xfersize_write(struct mmc_test_card * test)1258 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1259 {
1260 	int ret;
1261 
1262 	ret = mmc_test_set_blksize(test, 512);
1263 	if (ret)
1264 		return ret;
1265 
1266 	ret = mmc_test_broken_transfer(test, 1, 512, 1);
1267 	if (ret)
1268 		return ret;
1269 
1270 	return 0;
1271 }
1272 
mmc_test_xfersize_read(struct mmc_test_card * test)1273 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1274 {
1275 	int ret;
1276 
1277 	ret = mmc_test_set_blksize(test, 512);
1278 	if (ret)
1279 		return ret;
1280 
1281 	ret = mmc_test_broken_transfer(test, 1, 512, 0);
1282 	if (ret)
1283 		return ret;
1284 
1285 	return 0;
1286 }
1287 
mmc_test_multi_xfersize_write(struct mmc_test_card * test)1288 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1289 {
1290 	int ret;
1291 
1292 	if (test->card->host->max_blk_count == 1)
1293 		return RESULT_UNSUP_HOST;
1294 
1295 	ret = mmc_test_set_blksize(test, 512);
1296 	if (ret)
1297 		return ret;
1298 
1299 	ret = mmc_test_broken_transfer(test, 2, 512, 1);
1300 	if (ret)
1301 		return ret;
1302 
1303 	return 0;
1304 }
1305 
mmc_test_multi_xfersize_read(struct mmc_test_card * test)1306 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1307 {
1308 	int ret;
1309 
1310 	if (test->card->host->max_blk_count == 1)
1311 		return RESULT_UNSUP_HOST;
1312 
1313 	ret = mmc_test_set_blksize(test, 512);
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = mmc_test_broken_transfer(test, 2, 512, 0);
1318 	if (ret)
1319 		return ret;
1320 
1321 	return 0;
1322 }
1323 
1324 #ifdef CONFIG_HIGHMEM
1325 
mmc_test_write_high(struct mmc_test_card * test)1326 static int mmc_test_write_high(struct mmc_test_card *test)
1327 {
1328 	int ret;
1329 	struct scatterlist sg;
1330 
1331 	sg_init_table(&sg, 1);
1332 	sg_set_page(&sg, test->highmem, 512, 0);
1333 
1334 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1335 	if (ret)
1336 		return ret;
1337 
1338 	return 0;
1339 }
1340 
mmc_test_read_high(struct mmc_test_card * test)1341 static int mmc_test_read_high(struct mmc_test_card *test)
1342 {
1343 	int ret;
1344 	struct scatterlist sg;
1345 
1346 	sg_init_table(&sg, 1);
1347 	sg_set_page(&sg, test->highmem, 512, 0);
1348 
1349 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1350 	if (ret)
1351 		return ret;
1352 
1353 	return 0;
1354 }
1355 
mmc_test_multi_write_high(struct mmc_test_card * test)1356 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1357 {
1358 	int ret;
1359 	unsigned int size;
1360 	struct scatterlist sg;
1361 
1362 	if (test->card->host->max_blk_count == 1)
1363 		return RESULT_UNSUP_HOST;
1364 
1365 	size = PAGE_SIZE * 2;
1366 	size = min(size, test->card->host->max_req_size);
1367 	size = min(size, test->card->host->max_seg_size);
1368 	size = min(size, test->card->host->max_blk_count * 512);
1369 
1370 	if (size < 1024)
1371 		return RESULT_UNSUP_HOST;
1372 
1373 	sg_init_table(&sg, 1);
1374 	sg_set_page(&sg, test->highmem, size, 0);
1375 
1376 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1377 	if (ret)
1378 		return ret;
1379 
1380 	return 0;
1381 }
1382 
mmc_test_multi_read_high(struct mmc_test_card * test)1383 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1384 {
1385 	int ret;
1386 	unsigned int size;
1387 	struct scatterlist sg;
1388 
1389 	if (test->card->host->max_blk_count == 1)
1390 		return RESULT_UNSUP_HOST;
1391 
1392 	size = PAGE_SIZE * 2;
1393 	size = min(size, test->card->host->max_req_size);
1394 	size = min(size, test->card->host->max_seg_size);
1395 	size = min(size, test->card->host->max_blk_count * 512);
1396 
1397 	if (size < 1024)
1398 		return RESULT_UNSUP_HOST;
1399 
1400 	sg_init_table(&sg, 1);
1401 	sg_set_page(&sg, test->highmem, size, 0);
1402 
1403 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1404 	if (ret)
1405 		return ret;
1406 
1407 	return 0;
1408 }
1409 
1410 #else
1411 
mmc_test_no_highmem(struct mmc_test_card * test)1412 static int mmc_test_no_highmem(struct mmc_test_card *test)
1413 {
1414 	pr_info("%s: Highmem not configured - test skipped\n",
1415 	       mmc_hostname(test->card->host));
1416 	return 0;
1417 }
1418 
1419 #endif /* CONFIG_HIGHMEM */
1420 
1421 /*
1422  * Map sz bytes so that it can be transferred.
1423  */
mmc_test_area_map(struct mmc_test_card * test,unsigned long sz,int max_scatter,int min_sg_len)1424 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1425 			     int max_scatter, int min_sg_len)
1426 {
1427 	struct mmc_test_area *t = &test->area;
1428 	int err;
1429 
1430 	t->blocks = sz >> 9;
1431 
1432 	if (max_scatter) {
1433 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1434 						  t->max_segs, t->max_seg_sz,
1435 				       &t->sg_len);
1436 	} else {
1437 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1438 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1439 	}
1440 	if (err)
1441 		pr_info("%s: Failed to map sg list\n",
1442 		       mmc_hostname(test->card->host));
1443 	return err;
1444 }
1445 
1446 /*
1447  * Transfer bytes mapped by mmc_test_area_map().
1448  */
mmc_test_area_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write)1449 static int mmc_test_area_transfer(struct mmc_test_card *test,
1450 				  unsigned int dev_addr, int write)
1451 {
1452 	struct mmc_test_area *t = &test->area;
1453 
1454 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1455 					t->blocks, 512, write);
1456 }
1457 
1458 /*
1459  * Map and transfer bytes for multiple transfers.
1460  */
mmc_test_area_io_seq(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed,int count,bool nonblock,int min_sg_len)1461 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1462 				unsigned int dev_addr, int write,
1463 				int max_scatter, int timed, int count,
1464 				bool nonblock, int min_sg_len)
1465 {
1466 	struct timespec ts1, ts2;
1467 	int ret = 0;
1468 	int i;
1469 	struct mmc_test_area *t = &test->area;
1470 
1471 	/*
1472 	 * In the case of a maximally scattered transfer, the maximum transfer
1473 	 * size is further limited by using PAGE_SIZE segments.
1474 	 */
1475 	if (max_scatter) {
1476 		struct mmc_test_area *t = &test->area;
1477 		unsigned long max_tfr;
1478 
1479 		if (t->max_seg_sz >= PAGE_SIZE)
1480 			max_tfr = t->max_segs * PAGE_SIZE;
1481 		else
1482 			max_tfr = t->max_segs * t->max_seg_sz;
1483 		if (sz > max_tfr)
1484 			sz = max_tfr;
1485 	}
1486 
1487 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1488 	if (ret)
1489 		return ret;
1490 
1491 	if (timed)
1492 		getnstimeofday(&ts1);
1493 	if (nonblock)
1494 		ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1495 				 dev_addr, t->blocks, 512, write, count);
1496 	else
1497 		for (i = 0; i < count && ret == 0; i++) {
1498 			ret = mmc_test_area_transfer(test, dev_addr, write);
1499 			dev_addr += sz >> 9;
1500 		}
1501 
1502 	if (ret)
1503 		return ret;
1504 
1505 	if (timed)
1506 		getnstimeofday(&ts2);
1507 
1508 	if (timed)
1509 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1510 
1511 	return 0;
1512 }
1513 
mmc_test_area_io(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed)1514 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1515 			    unsigned int dev_addr, int write, int max_scatter,
1516 			    int timed)
1517 {
1518 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1519 				    timed, 1, false, 0);
1520 }
1521 
1522 /*
1523  * Write the test area entirely.
1524  */
mmc_test_area_fill(struct mmc_test_card * test)1525 static int mmc_test_area_fill(struct mmc_test_card *test)
1526 {
1527 	struct mmc_test_area *t = &test->area;
1528 
1529 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1530 }
1531 
1532 /*
1533  * Erase the test area entirely.
1534  */
mmc_test_area_erase(struct mmc_test_card * test)1535 static int mmc_test_area_erase(struct mmc_test_card *test)
1536 {
1537 	struct mmc_test_area *t = &test->area;
1538 
1539 	if (!mmc_can_erase(test->card))
1540 		return 0;
1541 
1542 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1543 			 MMC_ERASE_ARG);
1544 }
1545 
1546 /*
1547  * Cleanup struct mmc_test_area.
1548  */
mmc_test_area_cleanup(struct mmc_test_card * test)1549 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1550 {
1551 	struct mmc_test_area *t = &test->area;
1552 
1553 	kfree(t->sg);
1554 	mmc_test_free_mem(t->mem);
1555 
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Initialize an area for testing large transfers.  The test area is set to the
1561  * middle of the card because cards may have different charateristics at the
1562  * front (for FAT file system optimization).  Optionally, the area is erased
1563  * (if the card supports it) which may improve write performance.  Optionally,
1564  * the area is filled with data for subsequent read tests.
1565  */
mmc_test_area_init(struct mmc_test_card * test,int erase,int fill)1566 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1567 {
1568 	struct mmc_test_area *t = &test->area;
1569 	unsigned long min_sz = 64 * 1024, sz;
1570 	int ret;
1571 
1572 	ret = mmc_test_set_blksize(test, 512);
1573 	if (ret)
1574 		return ret;
1575 
1576 	/* Make the test area size about 4MiB */
1577 	sz = (unsigned long)test->card->pref_erase << 9;
1578 	t->max_sz = sz;
1579 	while (t->max_sz < 4 * 1024 * 1024)
1580 		t->max_sz += sz;
1581 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1582 		t->max_sz -= sz;
1583 
1584 	t->max_segs = test->card->host->max_segs;
1585 	t->max_seg_sz = test->card->host->max_seg_size;
1586 	t->max_seg_sz -= t->max_seg_sz % 512;
1587 
1588 	t->max_tfr = t->max_sz;
1589 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1590 		t->max_tfr = test->card->host->max_blk_count << 9;
1591 	if (t->max_tfr > test->card->host->max_req_size)
1592 		t->max_tfr = test->card->host->max_req_size;
1593 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1594 		t->max_tfr = t->max_segs * t->max_seg_sz;
1595 
1596 	/*
1597 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1598 	 * because the same memory can be mapped into the scatterlist more than
1599 	 * once.  Also, take into account the limits imposed on scatterlist
1600 	 * segments by the host driver.
1601 	 */
1602 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1603 				    t->max_seg_sz);
1604 	if (!t->mem)
1605 		return -ENOMEM;
1606 
1607 	t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1608 	if (!t->sg) {
1609 		ret = -ENOMEM;
1610 		goto out_free;
1611 	}
1612 
1613 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1614 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1615 
1616 	if (erase) {
1617 		ret = mmc_test_area_erase(test);
1618 		if (ret)
1619 			goto out_free;
1620 	}
1621 
1622 	if (fill) {
1623 		ret = mmc_test_area_fill(test);
1624 		if (ret)
1625 			goto out_free;
1626 	}
1627 
1628 	return 0;
1629 
1630 out_free:
1631 	mmc_test_area_cleanup(test);
1632 	return ret;
1633 }
1634 
1635 /*
1636  * Prepare for large transfers.  Do not erase the test area.
1637  */
mmc_test_area_prepare(struct mmc_test_card * test)1638 static int mmc_test_area_prepare(struct mmc_test_card *test)
1639 {
1640 	return mmc_test_area_init(test, 0, 0);
1641 }
1642 
1643 /*
1644  * Prepare for large transfers.  Do erase the test area.
1645  */
mmc_test_area_prepare_erase(struct mmc_test_card * test)1646 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1647 {
1648 	return mmc_test_area_init(test, 1, 0);
1649 }
1650 
1651 /*
1652  * Prepare for large transfers.  Erase and fill the test area.
1653  */
mmc_test_area_prepare_fill(struct mmc_test_card * test)1654 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1655 {
1656 	return mmc_test_area_init(test, 1, 1);
1657 }
1658 
1659 /*
1660  * Test best-case performance.  Best-case performance is expected from
1661  * a single large transfer.
1662  *
1663  * An additional option (max_scatter) allows the measurement of the same
1664  * transfer but with no contiguous pages in the scatter list.  This tests
1665  * the efficiency of DMA to handle scattered pages.
1666  */
mmc_test_best_performance(struct mmc_test_card * test,int write,int max_scatter)1667 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1668 				     int max_scatter)
1669 {
1670 	struct mmc_test_area *t = &test->area;
1671 
1672 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1673 				max_scatter, 1);
1674 }
1675 
1676 /*
1677  * Best-case read performance.
1678  */
mmc_test_best_read_performance(struct mmc_test_card * test)1679 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1680 {
1681 	return mmc_test_best_performance(test, 0, 0);
1682 }
1683 
1684 /*
1685  * Best-case write performance.
1686  */
mmc_test_best_write_performance(struct mmc_test_card * test)1687 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1688 {
1689 	return mmc_test_best_performance(test, 1, 0);
1690 }
1691 
1692 /*
1693  * Best-case read performance into scattered pages.
1694  */
mmc_test_best_read_perf_max_scatter(struct mmc_test_card * test)1695 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1696 {
1697 	return mmc_test_best_performance(test, 0, 1);
1698 }
1699 
1700 /*
1701  * Best-case write performance from scattered pages.
1702  */
mmc_test_best_write_perf_max_scatter(struct mmc_test_card * test)1703 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1704 {
1705 	return mmc_test_best_performance(test, 1, 1);
1706 }
1707 
1708 /*
1709  * Single read performance by transfer size.
1710  */
mmc_test_profile_read_perf(struct mmc_test_card * test)1711 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1712 {
1713 	struct mmc_test_area *t = &test->area;
1714 	unsigned long sz;
1715 	unsigned int dev_addr;
1716 	int ret;
1717 
1718 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1719 		dev_addr = t->dev_addr + (sz >> 9);
1720 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1721 		if (ret)
1722 			return ret;
1723 	}
1724 	sz = t->max_tfr;
1725 	dev_addr = t->dev_addr;
1726 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1727 }
1728 
1729 /*
1730  * Single write performance by transfer size.
1731  */
mmc_test_profile_write_perf(struct mmc_test_card * test)1732 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1733 {
1734 	struct mmc_test_area *t = &test->area;
1735 	unsigned long sz;
1736 	unsigned int dev_addr;
1737 	int ret;
1738 
1739 	ret = mmc_test_area_erase(test);
1740 	if (ret)
1741 		return ret;
1742 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1743 		dev_addr = t->dev_addr + (sz >> 9);
1744 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1745 		if (ret)
1746 			return ret;
1747 	}
1748 	ret = mmc_test_area_erase(test);
1749 	if (ret)
1750 		return ret;
1751 	sz = t->max_tfr;
1752 	dev_addr = t->dev_addr;
1753 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1754 }
1755 
1756 /*
1757  * Single trim performance by transfer size.
1758  */
mmc_test_profile_trim_perf(struct mmc_test_card * test)1759 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1760 {
1761 	struct mmc_test_area *t = &test->area;
1762 	unsigned long sz;
1763 	unsigned int dev_addr;
1764 	struct timespec ts1, ts2;
1765 	int ret;
1766 
1767 	if (!mmc_can_trim(test->card))
1768 		return RESULT_UNSUP_CARD;
1769 
1770 	if (!mmc_can_erase(test->card))
1771 		return RESULT_UNSUP_HOST;
1772 
1773 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1774 		dev_addr = t->dev_addr + (sz >> 9);
1775 		getnstimeofday(&ts1);
1776 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1777 		if (ret)
1778 			return ret;
1779 		getnstimeofday(&ts2);
1780 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1781 	}
1782 	dev_addr = t->dev_addr;
1783 	getnstimeofday(&ts1);
1784 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1785 	if (ret)
1786 		return ret;
1787 	getnstimeofday(&ts2);
1788 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1789 	return 0;
1790 }
1791 
mmc_test_seq_read_perf(struct mmc_test_card * test,unsigned long sz)1792 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1793 {
1794 	struct mmc_test_area *t = &test->area;
1795 	unsigned int dev_addr, i, cnt;
1796 	struct timespec ts1, ts2;
1797 	int ret;
1798 
1799 	cnt = t->max_sz / sz;
1800 	dev_addr = t->dev_addr;
1801 	getnstimeofday(&ts1);
1802 	for (i = 0; i < cnt; i++) {
1803 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1804 		if (ret)
1805 			return ret;
1806 		dev_addr += (sz >> 9);
1807 	}
1808 	getnstimeofday(&ts2);
1809 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Consecutive read performance by transfer size.
1815  */
mmc_test_profile_seq_read_perf(struct mmc_test_card * test)1816 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1817 {
1818 	struct mmc_test_area *t = &test->area;
1819 	unsigned long sz;
1820 	int ret;
1821 
1822 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1823 		ret = mmc_test_seq_read_perf(test, sz);
1824 		if (ret)
1825 			return ret;
1826 	}
1827 	sz = t->max_tfr;
1828 	return mmc_test_seq_read_perf(test, sz);
1829 }
1830 
mmc_test_seq_write_perf(struct mmc_test_card * test,unsigned long sz)1831 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1832 {
1833 	struct mmc_test_area *t = &test->area;
1834 	unsigned int dev_addr, i, cnt;
1835 	struct timespec ts1, ts2;
1836 	int ret;
1837 
1838 	ret = mmc_test_area_erase(test);
1839 	if (ret)
1840 		return ret;
1841 	cnt = t->max_sz / sz;
1842 	dev_addr = t->dev_addr;
1843 	getnstimeofday(&ts1);
1844 	for (i = 0; i < cnt; i++) {
1845 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1846 		if (ret)
1847 			return ret;
1848 		dev_addr += (sz >> 9);
1849 	}
1850 	getnstimeofday(&ts2);
1851 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Consecutive write performance by transfer size.
1857  */
mmc_test_profile_seq_write_perf(struct mmc_test_card * test)1858 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1859 {
1860 	struct mmc_test_area *t = &test->area;
1861 	unsigned long sz;
1862 	int ret;
1863 
1864 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1865 		ret = mmc_test_seq_write_perf(test, sz);
1866 		if (ret)
1867 			return ret;
1868 	}
1869 	sz = t->max_tfr;
1870 	return mmc_test_seq_write_perf(test, sz);
1871 }
1872 
1873 /*
1874  * Consecutive trim performance by transfer size.
1875  */
mmc_test_profile_seq_trim_perf(struct mmc_test_card * test)1876 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1877 {
1878 	struct mmc_test_area *t = &test->area;
1879 	unsigned long sz;
1880 	unsigned int dev_addr, i, cnt;
1881 	struct timespec ts1, ts2;
1882 	int ret;
1883 
1884 	if (!mmc_can_trim(test->card))
1885 		return RESULT_UNSUP_CARD;
1886 
1887 	if (!mmc_can_erase(test->card))
1888 		return RESULT_UNSUP_HOST;
1889 
1890 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1891 		ret = mmc_test_area_erase(test);
1892 		if (ret)
1893 			return ret;
1894 		ret = mmc_test_area_fill(test);
1895 		if (ret)
1896 			return ret;
1897 		cnt = t->max_sz / sz;
1898 		dev_addr = t->dev_addr;
1899 		getnstimeofday(&ts1);
1900 		for (i = 0; i < cnt; i++) {
1901 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1902 					MMC_TRIM_ARG);
1903 			if (ret)
1904 				return ret;
1905 			dev_addr += (sz >> 9);
1906 		}
1907 		getnstimeofday(&ts2);
1908 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1909 	}
1910 	return 0;
1911 }
1912 
1913 static unsigned int rnd_next = 1;
1914 
mmc_test_rnd_num(unsigned int rnd_cnt)1915 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1916 {
1917 	uint64_t r;
1918 
1919 	rnd_next = rnd_next * 1103515245 + 12345;
1920 	r = (rnd_next >> 16) & 0x7fff;
1921 	return (r * rnd_cnt) >> 15;
1922 }
1923 
mmc_test_rnd_perf(struct mmc_test_card * test,int write,int print,unsigned long sz)1924 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1925 			     unsigned long sz)
1926 {
1927 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1928 	unsigned int ssz;
1929 	struct timespec ts1, ts2, ts;
1930 	int ret;
1931 
1932 	ssz = sz >> 9;
1933 
1934 	rnd_addr = mmc_test_capacity(test->card) / 4;
1935 	range1 = rnd_addr / test->card->pref_erase;
1936 	range2 = range1 / ssz;
1937 
1938 	getnstimeofday(&ts1);
1939 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1940 		getnstimeofday(&ts2);
1941 		ts = timespec_sub(ts2, ts1);
1942 		if (ts.tv_sec >= 10)
1943 			break;
1944 		ea = mmc_test_rnd_num(range1);
1945 		if (ea == last_ea)
1946 			ea -= 1;
1947 		last_ea = ea;
1948 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1949 			   ssz * mmc_test_rnd_num(range2);
1950 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1951 		if (ret)
1952 			return ret;
1953 	}
1954 	if (print)
1955 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1956 	return 0;
1957 }
1958 
mmc_test_random_perf(struct mmc_test_card * test,int write)1959 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1960 {
1961 	struct mmc_test_area *t = &test->area;
1962 	unsigned int next;
1963 	unsigned long sz;
1964 	int ret;
1965 
1966 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1967 		/*
1968 		 * When writing, try to get more consistent results by running
1969 		 * the test twice with exactly the same I/O but outputting the
1970 		 * results only for the 2nd run.
1971 		 */
1972 		if (write) {
1973 			next = rnd_next;
1974 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1975 			if (ret)
1976 				return ret;
1977 			rnd_next = next;
1978 		}
1979 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1980 		if (ret)
1981 			return ret;
1982 	}
1983 	sz = t->max_tfr;
1984 	if (write) {
1985 		next = rnd_next;
1986 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1987 		if (ret)
1988 			return ret;
1989 		rnd_next = next;
1990 	}
1991 	return mmc_test_rnd_perf(test, write, 1, sz);
1992 }
1993 
1994 /*
1995  * Random read performance by transfer size.
1996  */
mmc_test_random_read_perf(struct mmc_test_card * test)1997 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1998 {
1999 	return mmc_test_random_perf(test, 0);
2000 }
2001 
2002 /*
2003  * Random write performance by transfer size.
2004  */
mmc_test_random_write_perf(struct mmc_test_card * test)2005 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2006 {
2007 	return mmc_test_random_perf(test, 1);
2008 }
2009 
mmc_test_seq_perf(struct mmc_test_card * test,int write,unsigned int tot_sz,int max_scatter)2010 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2011 			     unsigned int tot_sz, int max_scatter)
2012 {
2013 	struct mmc_test_area *t = &test->area;
2014 	unsigned int dev_addr, i, cnt, sz, ssz;
2015 	struct timespec ts1, ts2;
2016 	int ret;
2017 
2018 	sz = t->max_tfr;
2019 
2020 	/*
2021 	 * In the case of a maximally scattered transfer, the maximum transfer
2022 	 * size is further limited by using PAGE_SIZE segments.
2023 	 */
2024 	if (max_scatter) {
2025 		unsigned long max_tfr;
2026 
2027 		if (t->max_seg_sz >= PAGE_SIZE)
2028 			max_tfr = t->max_segs * PAGE_SIZE;
2029 		else
2030 			max_tfr = t->max_segs * t->max_seg_sz;
2031 		if (sz > max_tfr)
2032 			sz = max_tfr;
2033 	}
2034 
2035 	ssz = sz >> 9;
2036 	dev_addr = mmc_test_capacity(test->card) / 4;
2037 	if (tot_sz > dev_addr << 9)
2038 		tot_sz = dev_addr << 9;
2039 	cnt = tot_sz / sz;
2040 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2041 
2042 	getnstimeofday(&ts1);
2043 	for (i = 0; i < cnt; i++) {
2044 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2045 				       max_scatter, 0);
2046 		if (ret)
2047 			return ret;
2048 		dev_addr += ssz;
2049 	}
2050 	getnstimeofday(&ts2);
2051 
2052 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2053 
2054 	return 0;
2055 }
2056 
mmc_test_large_seq_perf(struct mmc_test_card * test,int write)2057 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2058 {
2059 	int ret, i;
2060 
2061 	for (i = 0; i < 10; i++) {
2062 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2063 		if (ret)
2064 			return ret;
2065 	}
2066 	for (i = 0; i < 5; i++) {
2067 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2068 		if (ret)
2069 			return ret;
2070 	}
2071 	for (i = 0; i < 3; i++) {
2072 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2073 		if (ret)
2074 			return ret;
2075 	}
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * Large sequential read performance.
2082  */
mmc_test_large_seq_read_perf(struct mmc_test_card * test)2083 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2084 {
2085 	return mmc_test_large_seq_perf(test, 0);
2086 }
2087 
2088 /*
2089  * Large sequential write performance.
2090  */
mmc_test_large_seq_write_perf(struct mmc_test_card * test)2091 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2092 {
2093 	return mmc_test_large_seq_perf(test, 1);
2094 }
2095 
mmc_test_rw_multiple(struct mmc_test_card * test,struct mmc_test_multiple_rw * tdata,unsigned int reqsize,unsigned int size,int min_sg_len)2096 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2097 				struct mmc_test_multiple_rw *tdata,
2098 				unsigned int reqsize, unsigned int size,
2099 				int min_sg_len)
2100 {
2101 	unsigned int dev_addr;
2102 	struct mmc_test_area *t = &test->area;
2103 	int ret = 0;
2104 
2105 	/* Set up test area */
2106 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2107 		size = mmc_test_capacity(test->card) / 2 * 512;
2108 	if (reqsize > t->max_tfr)
2109 		reqsize = t->max_tfr;
2110 	dev_addr = mmc_test_capacity(test->card) / 4;
2111 	if ((dev_addr & 0xffff0000))
2112 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2113 	else
2114 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2115 	if (!dev_addr)
2116 		goto err;
2117 
2118 	if (reqsize > size)
2119 		return 0;
2120 
2121 	/* prepare test area */
2122 	if (mmc_can_erase(test->card) &&
2123 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2124 		ret = mmc_erase(test->card, dev_addr,
2125 				size / 512, MMC_SECURE_ERASE_ARG);
2126 		if (ret)
2127 			ret = mmc_erase(test->card, dev_addr,
2128 					size / 512, MMC_ERASE_ARG);
2129 		if (ret)
2130 			goto err;
2131 	}
2132 
2133 	/* Run test */
2134 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2135 				   tdata->do_write, 0, 1, size / reqsize,
2136 				   tdata->do_nonblock_req, min_sg_len);
2137 	if (ret)
2138 		goto err;
2139 
2140 	return ret;
2141  err:
2142 	pr_info("[%s] error\n", __func__);
2143 	return ret;
2144 }
2145 
mmc_test_rw_multiple_size(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2146 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2147 				     struct mmc_test_multiple_rw *rw)
2148 {
2149 	int ret = 0;
2150 	int i;
2151 	void *pre_req = test->card->host->ops->pre_req;
2152 	void *post_req = test->card->host->ops->post_req;
2153 
2154 	if (rw->do_nonblock_req &&
2155 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2156 		pr_info("error: only one of pre/post is defined\n");
2157 		return -EINVAL;
2158 	}
2159 
2160 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2161 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2162 		if (ret)
2163 			break;
2164 	}
2165 	return ret;
2166 }
2167 
mmc_test_rw_multiple_sg_len(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2168 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2169 				       struct mmc_test_multiple_rw *rw)
2170 {
2171 	int ret = 0;
2172 	int i;
2173 
2174 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2175 		ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2176 					   rw->sg_len[i]);
2177 		if (ret)
2178 			break;
2179 	}
2180 	return ret;
2181 }
2182 
2183 /*
2184  * Multiple blocking write 4k to 4 MB chunks
2185  */
mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card * test)2186 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2187 {
2188 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2189 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2190 	struct mmc_test_multiple_rw test_data = {
2191 		.bs = bs,
2192 		.size = TEST_AREA_MAX_SIZE,
2193 		.len = ARRAY_SIZE(bs),
2194 		.do_write = true,
2195 		.do_nonblock_req = false,
2196 		.prepare = MMC_TEST_PREP_ERASE,
2197 	};
2198 
2199 	return mmc_test_rw_multiple_size(test, &test_data);
2200 };
2201 
2202 /*
2203  * Multiple non-blocking write 4k to 4 MB chunks
2204  */
mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card * test)2205 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2206 {
2207 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2208 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2209 	struct mmc_test_multiple_rw test_data = {
2210 		.bs = bs,
2211 		.size = TEST_AREA_MAX_SIZE,
2212 		.len = ARRAY_SIZE(bs),
2213 		.do_write = true,
2214 		.do_nonblock_req = true,
2215 		.prepare = MMC_TEST_PREP_ERASE,
2216 	};
2217 
2218 	return mmc_test_rw_multiple_size(test, &test_data);
2219 }
2220 
2221 /*
2222  * Multiple blocking read 4k to 4 MB chunks
2223  */
mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card * test)2224 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2225 {
2226 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2227 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2228 	struct mmc_test_multiple_rw test_data = {
2229 		.bs = bs,
2230 		.size = TEST_AREA_MAX_SIZE,
2231 		.len = ARRAY_SIZE(bs),
2232 		.do_write = false,
2233 		.do_nonblock_req = false,
2234 		.prepare = MMC_TEST_PREP_NONE,
2235 	};
2236 
2237 	return mmc_test_rw_multiple_size(test, &test_data);
2238 }
2239 
2240 /*
2241  * Multiple non-blocking read 4k to 4 MB chunks
2242  */
mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card * test)2243 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2244 {
2245 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2246 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2247 	struct mmc_test_multiple_rw test_data = {
2248 		.bs = bs,
2249 		.size = TEST_AREA_MAX_SIZE,
2250 		.len = ARRAY_SIZE(bs),
2251 		.do_write = false,
2252 		.do_nonblock_req = true,
2253 		.prepare = MMC_TEST_PREP_NONE,
2254 	};
2255 
2256 	return mmc_test_rw_multiple_size(test, &test_data);
2257 }
2258 
2259 /*
2260  * Multiple blocking write 1 to 512 sg elements
2261  */
mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card * test)2262 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2263 {
2264 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2265 				 1 << 7, 1 << 8, 1 << 9};
2266 	struct mmc_test_multiple_rw test_data = {
2267 		.sg_len = sg_len,
2268 		.size = TEST_AREA_MAX_SIZE,
2269 		.len = ARRAY_SIZE(sg_len),
2270 		.do_write = true,
2271 		.do_nonblock_req = false,
2272 		.prepare = MMC_TEST_PREP_ERASE,
2273 	};
2274 
2275 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2276 };
2277 
2278 /*
2279  * Multiple non-blocking write 1 to 512 sg elements
2280  */
mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card * test)2281 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2282 {
2283 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2284 				 1 << 7, 1 << 8, 1 << 9};
2285 	struct mmc_test_multiple_rw test_data = {
2286 		.sg_len = sg_len,
2287 		.size = TEST_AREA_MAX_SIZE,
2288 		.len = ARRAY_SIZE(sg_len),
2289 		.do_write = true,
2290 		.do_nonblock_req = true,
2291 		.prepare = MMC_TEST_PREP_ERASE,
2292 	};
2293 
2294 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2295 }
2296 
2297 /*
2298  * Multiple blocking read 1 to 512 sg elements
2299  */
mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card * test)2300 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2301 {
2302 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2303 				 1 << 7, 1 << 8, 1 << 9};
2304 	struct mmc_test_multiple_rw test_data = {
2305 		.sg_len = sg_len,
2306 		.size = TEST_AREA_MAX_SIZE,
2307 		.len = ARRAY_SIZE(sg_len),
2308 		.do_write = false,
2309 		.do_nonblock_req = false,
2310 		.prepare = MMC_TEST_PREP_NONE,
2311 	};
2312 
2313 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2314 }
2315 
2316 /*
2317  * Multiple non-blocking read 1 to 512 sg elements
2318  */
mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card * test)2319 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2320 {
2321 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2322 				 1 << 7, 1 << 8, 1 << 9};
2323 	struct mmc_test_multiple_rw test_data = {
2324 		.sg_len = sg_len,
2325 		.size = TEST_AREA_MAX_SIZE,
2326 		.len = ARRAY_SIZE(sg_len),
2327 		.do_write = false,
2328 		.do_nonblock_req = true,
2329 		.prepare = MMC_TEST_PREP_NONE,
2330 	};
2331 
2332 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2333 }
2334 
2335 /*
2336  * eMMC hardware reset.
2337  */
mmc_test_hw_reset(struct mmc_test_card * test)2338 static int mmc_test_hw_reset(struct mmc_test_card *test)
2339 {
2340 	struct mmc_card *card = test->card;
2341 	struct mmc_host *host = card->host;
2342 	int err;
2343 
2344 	if (!mmc_card_mmc(card) || !mmc_can_reset(card))
2345 		return RESULT_UNSUP_CARD;
2346 
2347 	err = mmc_hw_reset(host);
2348 	if (!err)
2349 		return RESULT_OK;
2350 	else if (err == -EOPNOTSUPP)
2351 		return RESULT_UNSUP_HOST;
2352 
2353 	return RESULT_FAIL;
2354 }
2355 
2356 static const struct mmc_test_case mmc_test_cases[] = {
2357 	{
2358 		.name = "Basic write (no data verification)",
2359 		.run = mmc_test_basic_write,
2360 	},
2361 
2362 	{
2363 		.name = "Basic read (no data verification)",
2364 		.run = mmc_test_basic_read,
2365 	},
2366 
2367 	{
2368 		.name = "Basic write (with data verification)",
2369 		.prepare = mmc_test_prepare_write,
2370 		.run = mmc_test_verify_write,
2371 		.cleanup = mmc_test_cleanup,
2372 	},
2373 
2374 	{
2375 		.name = "Basic read (with data verification)",
2376 		.prepare = mmc_test_prepare_read,
2377 		.run = mmc_test_verify_read,
2378 		.cleanup = mmc_test_cleanup,
2379 	},
2380 
2381 	{
2382 		.name = "Multi-block write",
2383 		.prepare = mmc_test_prepare_write,
2384 		.run = mmc_test_multi_write,
2385 		.cleanup = mmc_test_cleanup,
2386 	},
2387 
2388 	{
2389 		.name = "Multi-block read",
2390 		.prepare = mmc_test_prepare_read,
2391 		.run = mmc_test_multi_read,
2392 		.cleanup = mmc_test_cleanup,
2393 	},
2394 
2395 	{
2396 		.name = "Power of two block writes",
2397 		.prepare = mmc_test_prepare_write,
2398 		.run = mmc_test_pow2_write,
2399 		.cleanup = mmc_test_cleanup,
2400 	},
2401 
2402 	{
2403 		.name = "Power of two block reads",
2404 		.prepare = mmc_test_prepare_read,
2405 		.run = mmc_test_pow2_read,
2406 		.cleanup = mmc_test_cleanup,
2407 	},
2408 
2409 	{
2410 		.name = "Weird sized block writes",
2411 		.prepare = mmc_test_prepare_write,
2412 		.run = mmc_test_weird_write,
2413 		.cleanup = mmc_test_cleanup,
2414 	},
2415 
2416 	{
2417 		.name = "Weird sized block reads",
2418 		.prepare = mmc_test_prepare_read,
2419 		.run = mmc_test_weird_read,
2420 		.cleanup = mmc_test_cleanup,
2421 	},
2422 
2423 	{
2424 		.name = "Badly aligned write",
2425 		.prepare = mmc_test_prepare_write,
2426 		.run = mmc_test_align_write,
2427 		.cleanup = mmc_test_cleanup,
2428 	},
2429 
2430 	{
2431 		.name = "Badly aligned read",
2432 		.prepare = mmc_test_prepare_read,
2433 		.run = mmc_test_align_read,
2434 		.cleanup = mmc_test_cleanup,
2435 	},
2436 
2437 	{
2438 		.name = "Badly aligned multi-block write",
2439 		.prepare = mmc_test_prepare_write,
2440 		.run = mmc_test_align_multi_write,
2441 		.cleanup = mmc_test_cleanup,
2442 	},
2443 
2444 	{
2445 		.name = "Badly aligned multi-block read",
2446 		.prepare = mmc_test_prepare_read,
2447 		.run = mmc_test_align_multi_read,
2448 		.cleanup = mmc_test_cleanup,
2449 	},
2450 
2451 	{
2452 		.name = "Correct xfer_size at write (start failure)",
2453 		.run = mmc_test_xfersize_write,
2454 	},
2455 
2456 	{
2457 		.name = "Correct xfer_size at read (start failure)",
2458 		.run = mmc_test_xfersize_read,
2459 	},
2460 
2461 	{
2462 		.name = "Correct xfer_size at write (midway failure)",
2463 		.run = mmc_test_multi_xfersize_write,
2464 	},
2465 
2466 	{
2467 		.name = "Correct xfer_size at read (midway failure)",
2468 		.run = mmc_test_multi_xfersize_read,
2469 	},
2470 
2471 #ifdef CONFIG_HIGHMEM
2472 
2473 	{
2474 		.name = "Highmem write",
2475 		.prepare = mmc_test_prepare_write,
2476 		.run = mmc_test_write_high,
2477 		.cleanup = mmc_test_cleanup,
2478 	},
2479 
2480 	{
2481 		.name = "Highmem read",
2482 		.prepare = mmc_test_prepare_read,
2483 		.run = mmc_test_read_high,
2484 		.cleanup = mmc_test_cleanup,
2485 	},
2486 
2487 	{
2488 		.name = "Multi-block highmem write",
2489 		.prepare = mmc_test_prepare_write,
2490 		.run = mmc_test_multi_write_high,
2491 		.cleanup = mmc_test_cleanup,
2492 	},
2493 
2494 	{
2495 		.name = "Multi-block highmem read",
2496 		.prepare = mmc_test_prepare_read,
2497 		.run = mmc_test_multi_read_high,
2498 		.cleanup = mmc_test_cleanup,
2499 	},
2500 
2501 #else
2502 
2503 	{
2504 		.name = "Highmem write",
2505 		.run = mmc_test_no_highmem,
2506 	},
2507 
2508 	{
2509 		.name = "Highmem read",
2510 		.run = mmc_test_no_highmem,
2511 	},
2512 
2513 	{
2514 		.name = "Multi-block highmem write",
2515 		.run = mmc_test_no_highmem,
2516 	},
2517 
2518 	{
2519 		.name = "Multi-block highmem read",
2520 		.run = mmc_test_no_highmem,
2521 	},
2522 
2523 #endif /* CONFIG_HIGHMEM */
2524 
2525 	{
2526 		.name = "Best-case read performance",
2527 		.prepare = mmc_test_area_prepare_fill,
2528 		.run = mmc_test_best_read_performance,
2529 		.cleanup = mmc_test_area_cleanup,
2530 	},
2531 
2532 	{
2533 		.name = "Best-case write performance",
2534 		.prepare = mmc_test_area_prepare_erase,
2535 		.run = mmc_test_best_write_performance,
2536 		.cleanup = mmc_test_area_cleanup,
2537 	},
2538 
2539 	{
2540 		.name = "Best-case read performance into scattered pages",
2541 		.prepare = mmc_test_area_prepare_fill,
2542 		.run = mmc_test_best_read_perf_max_scatter,
2543 		.cleanup = mmc_test_area_cleanup,
2544 	},
2545 
2546 	{
2547 		.name = "Best-case write performance from scattered pages",
2548 		.prepare = mmc_test_area_prepare_erase,
2549 		.run = mmc_test_best_write_perf_max_scatter,
2550 		.cleanup = mmc_test_area_cleanup,
2551 	},
2552 
2553 	{
2554 		.name = "Single read performance by transfer size",
2555 		.prepare = mmc_test_area_prepare_fill,
2556 		.run = mmc_test_profile_read_perf,
2557 		.cleanup = mmc_test_area_cleanup,
2558 	},
2559 
2560 	{
2561 		.name = "Single write performance by transfer size",
2562 		.prepare = mmc_test_area_prepare,
2563 		.run = mmc_test_profile_write_perf,
2564 		.cleanup = mmc_test_area_cleanup,
2565 	},
2566 
2567 	{
2568 		.name = "Single trim performance by transfer size",
2569 		.prepare = mmc_test_area_prepare_fill,
2570 		.run = mmc_test_profile_trim_perf,
2571 		.cleanup = mmc_test_area_cleanup,
2572 	},
2573 
2574 	{
2575 		.name = "Consecutive read performance by transfer size",
2576 		.prepare = mmc_test_area_prepare_fill,
2577 		.run = mmc_test_profile_seq_read_perf,
2578 		.cleanup = mmc_test_area_cleanup,
2579 	},
2580 
2581 	{
2582 		.name = "Consecutive write performance by transfer size",
2583 		.prepare = mmc_test_area_prepare,
2584 		.run = mmc_test_profile_seq_write_perf,
2585 		.cleanup = mmc_test_area_cleanup,
2586 	},
2587 
2588 	{
2589 		.name = "Consecutive trim performance by transfer size",
2590 		.prepare = mmc_test_area_prepare,
2591 		.run = mmc_test_profile_seq_trim_perf,
2592 		.cleanup = mmc_test_area_cleanup,
2593 	},
2594 
2595 	{
2596 		.name = "Random read performance by transfer size",
2597 		.prepare = mmc_test_area_prepare,
2598 		.run = mmc_test_random_read_perf,
2599 		.cleanup = mmc_test_area_cleanup,
2600 	},
2601 
2602 	{
2603 		.name = "Random write performance by transfer size",
2604 		.prepare = mmc_test_area_prepare,
2605 		.run = mmc_test_random_write_perf,
2606 		.cleanup = mmc_test_area_cleanup,
2607 	},
2608 
2609 	{
2610 		.name = "Large sequential read into scattered pages",
2611 		.prepare = mmc_test_area_prepare,
2612 		.run = mmc_test_large_seq_read_perf,
2613 		.cleanup = mmc_test_area_cleanup,
2614 	},
2615 
2616 	{
2617 		.name = "Large sequential write from scattered pages",
2618 		.prepare = mmc_test_area_prepare,
2619 		.run = mmc_test_large_seq_write_perf,
2620 		.cleanup = mmc_test_area_cleanup,
2621 	},
2622 
2623 	{
2624 		.name = "Write performance with blocking req 4k to 4MB",
2625 		.prepare = mmc_test_area_prepare,
2626 		.run = mmc_test_profile_mult_write_blocking_perf,
2627 		.cleanup = mmc_test_area_cleanup,
2628 	},
2629 
2630 	{
2631 		.name = "Write performance with non-blocking req 4k to 4MB",
2632 		.prepare = mmc_test_area_prepare,
2633 		.run = mmc_test_profile_mult_write_nonblock_perf,
2634 		.cleanup = mmc_test_area_cleanup,
2635 	},
2636 
2637 	{
2638 		.name = "Read performance with blocking req 4k to 4MB",
2639 		.prepare = mmc_test_area_prepare,
2640 		.run = mmc_test_profile_mult_read_blocking_perf,
2641 		.cleanup = mmc_test_area_cleanup,
2642 	},
2643 
2644 	{
2645 		.name = "Read performance with non-blocking req 4k to 4MB",
2646 		.prepare = mmc_test_area_prepare,
2647 		.run = mmc_test_profile_mult_read_nonblock_perf,
2648 		.cleanup = mmc_test_area_cleanup,
2649 	},
2650 
2651 	{
2652 		.name = "Write performance blocking req 1 to 512 sg elems",
2653 		.prepare = mmc_test_area_prepare,
2654 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2655 		.cleanup = mmc_test_area_cleanup,
2656 	},
2657 
2658 	{
2659 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2660 		.prepare = mmc_test_area_prepare,
2661 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2662 		.cleanup = mmc_test_area_cleanup,
2663 	},
2664 
2665 	{
2666 		.name = "Read performance blocking req 1 to 512 sg elems",
2667 		.prepare = mmc_test_area_prepare,
2668 		.run = mmc_test_profile_sglen_r_blocking_perf,
2669 		.cleanup = mmc_test_area_cleanup,
2670 	},
2671 
2672 	{
2673 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2674 		.prepare = mmc_test_area_prepare,
2675 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2676 		.cleanup = mmc_test_area_cleanup,
2677 	},
2678 
2679 	{
2680 		.name = "eMMC hardware reset",
2681 		.run = mmc_test_hw_reset,
2682 	},
2683 };
2684 
2685 static DEFINE_MUTEX(mmc_test_lock);
2686 
2687 static LIST_HEAD(mmc_test_result);
2688 
mmc_test_run(struct mmc_test_card * test,int testcase)2689 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2690 {
2691 	int i, ret;
2692 
2693 	pr_info("%s: Starting tests of card %s...\n",
2694 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2695 
2696 	mmc_claim_host(test->card->host);
2697 
2698 	for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2699 		struct mmc_test_general_result *gr;
2700 
2701 		if (testcase && ((i + 1) != testcase))
2702 			continue;
2703 
2704 		pr_info("%s: Test case %d. %s...\n",
2705 			mmc_hostname(test->card->host), i + 1,
2706 			mmc_test_cases[i].name);
2707 
2708 		if (mmc_test_cases[i].prepare) {
2709 			ret = mmc_test_cases[i].prepare(test);
2710 			if (ret) {
2711 				pr_info("%s: Result: Prepare "
2712 					"stage failed! (%d)\n",
2713 					mmc_hostname(test->card->host),
2714 					ret);
2715 				continue;
2716 			}
2717 		}
2718 
2719 		gr = kzalloc(sizeof(struct mmc_test_general_result),
2720 			GFP_KERNEL);
2721 		if (gr) {
2722 			INIT_LIST_HEAD(&gr->tr_lst);
2723 
2724 			/* Assign data what we know already */
2725 			gr->card = test->card;
2726 			gr->testcase = i;
2727 
2728 			/* Append container to global one */
2729 			list_add_tail(&gr->link, &mmc_test_result);
2730 
2731 			/*
2732 			 * Save the pointer to created container in our private
2733 			 * structure.
2734 			 */
2735 			test->gr = gr;
2736 		}
2737 
2738 		ret = mmc_test_cases[i].run(test);
2739 		switch (ret) {
2740 		case RESULT_OK:
2741 			pr_info("%s: Result: OK\n",
2742 				mmc_hostname(test->card->host));
2743 			break;
2744 		case RESULT_FAIL:
2745 			pr_info("%s: Result: FAILED\n",
2746 				mmc_hostname(test->card->host));
2747 			break;
2748 		case RESULT_UNSUP_HOST:
2749 			pr_info("%s: Result: UNSUPPORTED "
2750 				"(by host)\n",
2751 				mmc_hostname(test->card->host));
2752 			break;
2753 		case RESULT_UNSUP_CARD:
2754 			pr_info("%s: Result: UNSUPPORTED "
2755 				"(by card)\n",
2756 				mmc_hostname(test->card->host));
2757 			break;
2758 		default:
2759 			pr_info("%s: Result: ERROR (%d)\n",
2760 				mmc_hostname(test->card->host), ret);
2761 		}
2762 
2763 		/* Save the result */
2764 		if (gr)
2765 			gr->result = ret;
2766 
2767 		if (mmc_test_cases[i].cleanup) {
2768 			ret = mmc_test_cases[i].cleanup(test);
2769 			if (ret) {
2770 				pr_info("%s: Warning: Cleanup "
2771 					"stage failed! (%d)\n",
2772 					mmc_hostname(test->card->host),
2773 					ret);
2774 			}
2775 		}
2776 	}
2777 
2778 	mmc_release_host(test->card->host);
2779 
2780 	pr_info("%s: Tests completed.\n",
2781 		mmc_hostname(test->card->host));
2782 }
2783 
mmc_test_free_result(struct mmc_card * card)2784 static void mmc_test_free_result(struct mmc_card *card)
2785 {
2786 	struct mmc_test_general_result *gr, *grs;
2787 
2788 	mutex_lock(&mmc_test_lock);
2789 
2790 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
2791 		struct mmc_test_transfer_result *tr, *trs;
2792 
2793 		if (card && gr->card != card)
2794 			continue;
2795 
2796 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
2797 			list_del(&tr->link);
2798 			kfree(tr);
2799 		}
2800 
2801 		list_del(&gr->link);
2802 		kfree(gr);
2803 	}
2804 
2805 	mutex_unlock(&mmc_test_lock);
2806 }
2807 
2808 static LIST_HEAD(mmc_test_file_test);
2809 
mtf_test_show(struct seq_file * sf,void * data)2810 static int mtf_test_show(struct seq_file *sf, void *data)
2811 {
2812 	struct mmc_card *card = (struct mmc_card *)sf->private;
2813 	struct mmc_test_general_result *gr;
2814 
2815 	mutex_lock(&mmc_test_lock);
2816 
2817 	list_for_each_entry(gr, &mmc_test_result, link) {
2818 		struct mmc_test_transfer_result *tr;
2819 
2820 		if (gr->card != card)
2821 			continue;
2822 
2823 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
2824 
2825 		list_for_each_entry(tr, &gr->tr_lst, link) {
2826 			seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
2827 				tr->count, tr->sectors,
2828 				(unsigned long)tr->ts.tv_sec,
2829 				(unsigned long)tr->ts.tv_nsec,
2830 				tr->rate, tr->iops / 100, tr->iops % 100);
2831 		}
2832 	}
2833 
2834 	mutex_unlock(&mmc_test_lock);
2835 
2836 	return 0;
2837 }
2838 
mtf_test_open(struct inode * inode,struct file * file)2839 static int mtf_test_open(struct inode *inode, struct file *file)
2840 {
2841 	return single_open(file, mtf_test_show, inode->i_private);
2842 }
2843 
mtf_test_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)2844 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
2845 	size_t count, loff_t *pos)
2846 {
2847 	struct seq_file *sf = (struct seq_file *)file->private_data;
2848 	struct mmc_card *card = (struct mmc_card *)sf->private;
2849 	struct mmc_test_card *test;
2850 	long testcase;
2851 	int ret;
2852 
2853 	ret = kstrtol_from_user(buf, count, 10, &testcase);
2854 	if (ret)
2855 		return ret;
2856 
2857 	test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
2858 	if (!test)
2859 		return -ENOMEM;
2860 
2861 	/*
2862 	 * Remove all test cases associated with given card. Thus we have only
2863 	 * actual data of the last run.
2864 	 */
2865 	mmc_test_free_result(card);
2866 
2867 	test->card = card;
2868 
2869 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
2870 #ifdef CONFIG_HIGHMEM
2871 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
2872 #endif
2873 
2874 #ifdef CONFIG_HIGHMEM
2875 	if (test->buffer && test->highmem) {
2876 #else
2877 	if (test->buffer) {
2878 #endif
2879 		mutex_lock(&mmc_test_lock);
2880 		mmc_test_run(test, testcase);
2881 		mutex_unlock(&mmc_test_lock);
2882 	}
2883 
2884 #ifdef CONFIG_HIGHMEM
2885 	__free_pages(test->highmem, BUFFER_ORDER);
2886 #endif
2887 	kfree(test->buffer);
2888 	kfree(test);
2889 
2890 	return count;
2891 }
2892 
2893 static const struct file_operations mmc_test_fops_test = {
2894 	.open		= mtf_test_open,
2895 	.read		= seq_read,
2896 	.write		= mtf_test_write,
2897 	.llseek		= seq_lseek,
2898 	.release	= single_release,
2899 };
2900 
2901 static int mtf_testlist_show(struct seq_file *sf, void *data)
2902 {
2903 	int i;
2904 
2905 	mutex_lock(&mmc_test_lock);
2906 
2907 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
2908 		seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
2909 
2910 	mutex_unlock(&mmc_test_lock);
2911 
2912 	return 0;
2913 }
2914 
2915 static int mtf_testlist_open(struct inode *inode, struct file *file)
2916 {
2917 	return single_open(file, mtf_testlist_show, inode->i_private);
2918 }
2919 
2920 static const struct file_operations mmc_test_fops_testlist = {
2921 	.open		= mtf_testlist_open,
2922 	.read		= seq_read,
2923 	.llseek		= seq_lseek,
2924 	.release	= single_release,
2925 };
2926 
2927 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
2928 {
2929 	struct mmc_test_dbgfs_file *df, *dfs;
2930 
2931 	mutex_lock(&mmc_test_lock);
2932 
2933 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
2934 		if (card && df->card != card)
2935 			continue;
2936 		debugfs_remove(df->file);
2937 		list_del(&df->link);
2938 		kfree(df);
2939 	}
2940 
2941 	mutex_unlock(&mmc_test_lock);
2942 }
2943 
2944 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
2945 	const char *name, umode_t mode, const struct file_operations *fops)
2946 {
2947 	struct dentry *file = NULL;
2948 	struct mmc_test_dbgfs_file *df;
2949 
2950 	if (card->debugfs_root)
2951 		file = debugfs_create_file(name, mode, card->debugfs_root,
2952 			card, fops);
2953 
2954 	if (IS_ERR_OR_NULL(file)) {
2955 		dev_err(&card->dev,
2956 			"Can't create %s. Perhaps debugfs is disabled.\n",
2957 			name);
2958 		return -ENODEV;
2959 	}
2960 
2961 	df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
2962 	if (!df) {
2963 		debugfs_remove(file);
2964 		dev_err(&card->dev,
2965 			"Can't allocate memory for internal usage.\n");
2966 		return -ENOMEM;
2967 	}
2968 
2969 	df->card = card;
2970 	df->file = file;
2971 
2972 	list_add(&df->link, &mmc_test_file_test);
2973 	return 0;
2974 }
2975 
2976 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
2977 {
2978 	int ret;
2979 
2980 	mutex_lock(&mmc_test_lock);
2981 
2982 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
2983 		&mmc_test_fops_test);
2984 	if (ret)
2985 		goto err;
2986 
2987 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
2988 		&mmc_test_fops_testlist);
2989 	if (ret)
2990 		goto err;
2991 
2992 err:
2993 	mutex_unlock(&mmc_test_lock);
2994 
2995 	return ret;
2996 }
2997 
2998 static int mmc_test_probe(struct mmc_card *card)
2999 {
3000 	int ret;
3001 
3002 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3003 		return -ENODEV;
3004 
3005 	ret = mmc_test_register_dbgfs_file(card);
3006 	if (ret)
3007 		return ret;
3008 
3009 	dev_info(&card->dev, "Card claimed for testing.\n");
3010 
3011 	return 0;
3012 }
3013 
3014 static void mmc_test_remove(struct mmc_card *card)
3015 {
3016 	mmc_test_free_result(card);
3017 	mmc_test_free_dbgfs_file(card);
3018 }
3019 
3020 static void mmc_test_shutdown(struct mmc_card *card)
3021 {
3022 }
3023 
3024 static struct mmc_driver mmc_driver = {
3025 	.drv		= {
3026 		.name	= "mmc_test",
3027 	},
3028 	.probe		= mmc_test_probe,
3029 	.remove		= mmc_test_remove,
3030 	.shutdown	= mmc_test_shutdown,
3031 };
3032 
3033 static int __init mmc_test_init(void)
3034 {
3035 	return mmc_register_driver(&mmc_driver);
3036 }
3037 
3038 static void __exit mmc_test_exit(void)
3039 {
3040 	/* Clear stalled data if card is still plugged */
3041 	mmc_test_free_result(NULL);
3042 	mmc_test_free_dbgfs_file(NULL);
3043 
3044 	mmc_unregister_driver(&mmc_driver);
3045 }
3046 
3047 module_init(mmc_test_init);
3048 module_exit(mmc_test_exit);
3049 
3050 MODULE_LICENSE("GPL");
3051 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3052 MODULE_AUTHOR("Pierre Ossman");
3053