1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47 
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58 
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE  50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH  8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS  0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS  32
88 #endif
89 
90 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
91 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
93 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
94 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
95 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
96 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
97 static uint log            = CONFIG_NANDSIM_LOG;
98 static uint dbg            = CONFIG_NANDSIM_DBG;
99 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100 static unsigned int parts_num;
101 static char *badblocks = NULL;
102 static char *weakblocks = NULL;
103 static char *weakpages = NULL;
104 static unsigned int bitflips = 0;
105 static char *gravepages = NULL;
106 static unsigned int overridesize = 0;
107 static char *cache_file = NULL;
108 static unsigned int bbt;
109 static unsigned int bch;
110 static u_char id_bytes[8] = {
111 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115 	[4 ... 7] = 0xFF,
116 };
117 
118 module_param_array(id_bytes, byte, NULL, 0400);
119 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123 module_param(access_delay,   uint, 0400);
124 module_param(programm_delay, uint, 0400);
125 module_param(erase_delay,    uint, 0400);
126 module_param(output_cycle,   uint, 0400);
127 module_param(input_cycle,    uint, 0400);
128 module_param(bus_width,      uint, 0400);
129 module_param(do_delays,      uint, 0400);
130 module_param(log,            uint, 0400);
131 module_param(dbg,            uint, 0400);
132 module_param_array(parts, ulong, &parts_num, 0400);
133 module_param(badblocks,      charp, 0400);
134 module_param(weakblocks,     charp, 0400);
135 module_param(weakpages,      charp, 0400);
136 module_param(bitflips,       uint, 0400);
137 module_param(gravepages,     charp, 0400);
138 module_param(overridesize,   uint, 0400);
139 module_param(cache_file,     charp, 0400);
140 module_param(bbt,	     uint, 0400);
141 module_param(bch,	     uint, 0400);
142 
143 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
144 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
149 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
151 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
152 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
153 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
154 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
155 MODULE_PARM_DESC(log,            "Perform logging if not zero");
156 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
157 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
158 /* Page and erase block positions for the following parameters are independent of any partitions */
159 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
160 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161 				 " separated by commas e.g. 113:2 means eb 113"
162 				 " can be erased only twice before failing");
163 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
164 				 " separated by commas e.g. 1401:2 means page 1401"
165 				 " can be written only twice before failing");
166 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
167 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
168 				 " separated by commas e.g. 1401:2 means page 1401"
169 				 " can be read only twice before failing");
170 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
171 				 "The size is specified in erase blocks and as the exponent of a power of two"
172 				 " e.g. 5 means a size of 32 erase blocks");
173 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
174 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
176 				 "be correctable in 512-byte blocks");
177 
178 /* The largest possible page size */
179 #define NS_LARGEST_PAGE_SIZE	4096
180 
181 /* The prefix for simulator output */
182 #define NS_OUTPUT_PREFIX "[nandsim]"
183 
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187 #define NS_DBG(args...) \
188 	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193 #define NS_INFO(args...) \
194 	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
195 
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201 
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204 
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207 
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210 
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214 
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217 
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233 
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240 
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244 
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249 
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252 
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255 
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264 
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267 
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275 
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278 
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285 
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288 
289 struct nandsim_debug_info {
290 	struct dentry *dfs_root;
291 	struct dentry *dfs_wear_report;
292 };
293 
294 /*
295  * A union to represent flash memory contents and flash buffer.
296  */
297 union ns_mem {
298 	u_char *byte;    /* for byte access */
299 	uint16_t *word;  /* for 16-bit word access */
300 };
301 
302 /*
303  * The structure which describes all the internal simulator data.
304  */
305 struct nandsim {
306 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307 	unsigned int nbparts;
308 
309 	uint busw;              /* flash chip bus width (8 or 16) */
310 	u_char ids[8];          /* chip's ID bytes */
311 	uint32_t options;       /* chip's characteristic bits */
312 	uint32_t state;         /* current chip state */
313 	uint32_t nxstate;       /* next expected state */
314 
315 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
316 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317 	uint16_t npstates;      /* number of previous states saved */
318 	uint16_t stateidx;      /* current state index */
319 
320 	/* The simulated NAND flash pages array */
321 	union ns_mem *pages;
322 
323 	/* Slab allocator for nand pages */
324 	struct kmem_cache *nand_pages_slab;
325 
326 	/* Internal buffer of page + OOB size bytes */
327 	union ns_mem buf;
328 
329 	/* NAND flash "geometry" */
330 	struct {
331 		uint64_t totsz;     /* total flash size, bytes */
332 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
333 		uint pgsz;          /* NAND flash page size, bytes */
334 		uint oobsz;         /* page OOB area size, bytes */
335 		uint64_t totszoob;  /* total flash size including OOB, bytes */
336 		uint pgszoob;       /* page size including OOB , bytes*/
337 		uint secszoob;      /* sector size including OOB, bytes */
338 		uint pgnum;         /* total number of pages */
339 		uint pgsec;         /* number of pages per sector */
340 		uint secshift;      /* bits number in sector size */
341 		uint pgshift;       /* bits number in page size */
342 		uint pgaddrbytes;   /* bytes per page address */
343 		uint secaddrbytes;  /* bytes per sector address */
344 		uint idbytes;       /* the number ID bytes that this chip outputs */
345 	} geom;
346 
347 	/* NAND flash internal registers */
348 	struct {
349 		unsigned command; /* the command register */
350 		u_char   status;  /* the status register */
351 		uint     row;     /* the page number */
352 		uint     column;  /* the offset within page */
353 		uint     count;   /* internal counter */
354 		uint     num;     /* number of bytes which must be processed */
355 		uint     off;     /* fixed page offset */
356 	} regs;
357 
358 	/* NAND flash lines state */
359         struct {
360                 int ce;  /* chip Enable */
361                 int cle; /* command Latch Enable */
362                 int ale; /* address Latch Enable */
363                 int wp;  /* write Protect */
364         } lines;
365 
366 	/* Fields needed when using a cache file */
367 	struct file *cfile; /* Open file */
368 	unsigned long *pages_written; /* Which pages have been written */
369 	void *file_buf;
370 	struct page *held_pages[NS_MAX_HELD_PAGES];
371 	int held_cnt;
372 
373 	struct nandsim_debug_info dbg;
374 };
375 
376 /*
377  * Operations array. To perform any operation the simulator must pass
378  * through the correspondent states chain.
379  */
380 static struct nandsim_operations {
381 	uint32_t reqopts;  /* options which are required to perform the operation */
382 	uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384 	/* Read page + OOB from the beginning */
385 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 			STATE_DATAOUT, STATE_READY}},
387 	/* Read page + OOB from the second half */
388 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389 			STATE_DATAOUT, STATE_READY}},
390 	/* Read OOB */
391 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392 			STATE_DATAOUT, STATE_READY}},
393 	/* Program page starting from the beginning */
394 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396 	/* Program page starting from the beginning */
397 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399 	/* Program page starting from the second half */
400 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402 	/* Program OOB */
403 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405 	/* Erase sector */
406 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407 	/* Read status */
408 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409 	/* Read ID */
410 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411 	/* Large page devices read page */
412 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413 			       STATE_DATAOUT, STATE_READY}},
414 	/* Large page devices random page read */
415 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416 			       STATE_DATAOUT, STATE_READY}},
417 };
418 
419 struct weak_block {
420 	struct list_head list;
421 	unsigned int erase_block_no;
422 	unsigned int max_erases;
423 	unsigned int erases_done;
424 };
425 
426 static LIST_HEAD(weak_blocks);
427 
428 struct weak_page {
429 	struct list_head list;
430 	unsigned int page_no;
431 	unsigned int max_writes;
432 	unsigned int writes_done;
433 };
434 
435 static LIST_HEAD(weak_pages);
436 
437 struct grave_page {
438 	struct list_head list;
439 	unsigned int page_no;
440 	unsigned int max_reads;
441 	unsigned int reads_done;
442 };
443 
444 static LIST_HEAD(grave_pages);
445 
446 static unsigned long *erase_block_wear = NULL;
447 static unsigned int wear_eb_count = 0;
448 static unsigned long total_wear = 0;
449 
450 /* MTD structure for NAND controller */
451 static struct mtd_info *nsmtd;
452 
nandsim_debugfs_show(struct seq_file * m,void * private)453 static int nandsim_debugfs_show(struct seq_file *m, void *private)
454 {
455 	unsigned long wmin = -1, wmax = 0, avg;
456 	unsigned long deciles[10], decile_max[10], tot = 0;
457 	unsigned int i;
458 
459 	/* Calc wear stats */
460 	for (i = 0; i < wear_eb_count; ++i) {
461 		unsigned long wear = erase_block_wear[i];
462 		if (wear < wmin)
463 			wmin = wear;
464 		if (wear > wmax)
465 			wmax = wear;
466 		tot += wear;
467 	}
468 
469 	for (i = 0; i < 9; ++i) {
470 		deciles[i] = 0;
471 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
472 	}
473 	deciles[9] = 0;
474 	decile_max[9] = wmax;
475 	for (i = 0; i < wear_eb_count; ++i) {
476 		int d;
477 		unsigned long wear = erase_block_wear[i];
478 		for (d = 0; d < 10; ++d)
479 			if (wear <= decile_max[d]) {
480 				deciles[d] += 1;
481 				break;
482 			}
483 	}
484 	avg = tot / wear_eb_count;
485 
486 	/* Output wear report */
487 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
488 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
489 	seq_printf(m, "Average number of erases: %lu\n", avg);
490 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492 	for (i = 0; i < 10; ++i) {
493 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494 		if (from > decile_max[i])
495 			continue;
496 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497 			from,
498 			decile_max[i],
499 			deciles[i]);
500 	}
501 
502 	return 0;
503 }
504 
nandsim_debugfs_open(struct inode * inode,struct file * file)505 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
506 {
507 	return single_open(file, nandsim_debugfs_show, inode->i_private);
508 }
509 
510 static const struct file_operations dfs_fops = {
511 	.open		= nandsim_debugfs_open,
512 	.read		= seq_read,
513 	.llseek		= seq_lseek,
514 	.release	= single_release,
515 };
516 
517 /**
518  * nandsim_debugfs_create - initialize debugfs
519  * @dev: nandsim device description object
520  *
521  * This function creates all debugfs files for UBI device @ubi. Returns zero in
522  * case of success and a negative error code in case of failure.
523  */
nandsim_debugfs_create(struct nandsim * dev)524 static int nandsim_debugfs_create(struct nandsim *dev)
525 {
526 	struct nandsim_debug_info *dbg = &dev->dbg;
527 	struct dentry *dent;
528 	int err;
529 
530 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
531 		return 0;
532 
533 	dent = debugfs_create_dir("nandsim", NULL);
534 	if (IS_ERR_OR_NULL(dent)) {
535 		int err = dent ? -ENODEV : PTR_ERR(dent);
536 
537 		NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
538 			err);
539 		return err;
540 	}
541 	dbg->dfs_root = dent;
542 
543 	dent = debugfs_create_file("wear_report", S_IRUSR,
544 				   dbg->dfs_root, dev, &dfs_fops);
545 	if (IS_ERR_OR_NULL(dent))
546 		goto out_remove;
547 	dbg->dfs_wear_report = dent;
548 
549 	return 0;
550 
551 out_remove:
552 	debugfs_remove_recursive(dbg->dfs_root);
553 	err = dent ? PTR_ERR(dent) : -ENODEV;
554 	return err;
555 }
556 
557 /**
558  * nandsim_debugfs_remove - destroy all debugfs files
559  */
nandsim_debugfs_remove(struct nandsim * ns)560 static void nandsim_debugfs_remove(struct nandsim *ns)
561 {
562 	if (IS_ENABLED(CONFIG_DEBUG_FS))
563 		debugfs_remove_recursive(ns->dbg.dfs_root);
564 }
565 
566 /*
567  * Allocate array of page pointers, create slab allocation for an array
568  * and initialize the array by NULL pointers.
569  *
570  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
571  */
alloc_device(struct nandsim * ns)572 static int alloc_device(struct nandsim *ns)
573 {
574 	struct file *cfile;
575 	int i, err;
576 
577 	if (cache_file) {
578 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
579 		if (IS_ERR(cfile))
580 			return PTR_ERR(cfile);
581 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
582 			NS_ERR("alloc_device: cache file not readable\n");
583 			err = -EINVAL;
584 			goto err_close;
585 		}
586 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
587 			NS_ERR("alloc_device: cache file not writeable\n");
588 			err = -EINVAL;
589 			goto err_close;
590 		}
591 		ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
592 					    sizeof(unsigned long));
593 		if (!ns->pages_written) {
594 			NS_ERR("alloc_device: unable to allocate pages written array\n");
595 			err = -ENOMEM;
596 			goto err_close;
597 		}
598 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
599 		if (!ns->file_buf) {
600 			NS_ERR("alloc_device: unable to allocate file buf\n");
601 			err = -ENOMEM;
602 			goto err_free;
603 		}
604 		ns->cfile = cfile;
605 		return 0;
606 	}
607 
608 	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
609 	if (!ns->pages) {
610 		NS_ERR("alloc_device: unable to allocate page array\n");
611 		return -ENOMEM;
612 	}
613 	for (i = 0; i < ns->geom.pgnum; i++) {
614 		ns->pages[i].byte = NULL;
615 	}
616 	ns->nand_pages_slab = kmem_cache_create("nandsim",
617 						ns->geom.pgszoob, 0, 0, NULL);
618 	if (!ns->nand_pages_slab) {
619 		NS_ERR("cache_create: unable to create kmem_cache\n");
620 		return -ENOMEM;
621 	}
622 
623 	return 0;
624 
625 err_free:
626 	vfree(ns->pages_written);
627 err_close:
628 	filp_close(cfile, NULL);
629 	return err;
630 }
631 
632 /*
633  * Free any allocated pages, and free the array of page pointers.
634  */
free_device(struct nandsim * ns)635 static void free_device(struct nandsim *ns)
636 {
637 	int i;
638 
639 	if (ns->cfile) {
640 		kfree(ns->file_buf);
641 		vfree(ns->pages_written);
642 		filp_close(ns->cfile, NULL);
643 		return;
644 	}
645 
646 	if (ns->pages) {
647 		for (i = 0; i < ns->geom.pgnum; i++) {
648 			if (ns->pages[i].byte)
649 				kmem_cache_free(ns->nand_pages_slab,
650 						ns->pages[i].byte);
651 		}
652 		kmem_cache_destroy(ns->nand_pages_slab);
653 		vfree(ns->pages);
654 	}
655 }
656 
get_partition_name(int i)657 static char *get_partition_name(int i)
658 {
659 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
660 }
661 
662 /*
663  * Initialize the nandsim structure.
664  *
665  * RETURNS: 0 if success, -ERRNO if failure.
666  */
init_nandsim(struct mtd_info * mtd)667 static int init_nandsim(struct mtd_info *mtd)
668 {
669 	struct nand_chip *chip = mtd->priv;
670 	struct nandsim   *ns   = chip->priv;
671 	int i, ret = 0;
672 	uint64_t remains;
673 	uint64_t next_offset;
674 
675 	if (NS_IS_INITIALIZED(ns)) {
676 		NS_ERR("init_nandsim: nandsim is already initialized\n");
677 		return -EIO;
678 	}
679 
680 	/* Force mtd to not do delays */
681 	chip->chip_delay = 0;
682 
683 	/* Initialize the NAND flash parameters */
684 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
685 	ns->geom.totsz    = mtd->size;
686 	ns->geom.pgsz     = mtd->writesize;
687 	ns->geom.oobsz    = mtd->oobsize;
688 	ns->geom.secsz    = mtd->erasesize;
689 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
690 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
691 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
692 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
693 	ns->geom.pgshift  = chip->page_shift;
694 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
695 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
696 	ns->options = 0;
697 
698 	if (ns->geom.pgsz == 512) {
699 		ns->options |= OPT_PAGE512;
700 		if (ns->busw == 8)
701 			ns->options |= OPT_PAGE512_8BIT;
702 	} else if (ns->geom.pgsz == 2048) {
703 		ns->options |= OPT_PAGE2048;
704 	} else if (ns->geom.pgsz == 4096) {
705 		ns->options |= OPT_PAGE4096;
706 	} else {
707 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
708 		return -EIO;
709 	}
710 
711 	if (ns->options & OPT_SMALLPAGE) {
712 		if (ns->geom.totsz <= (32 << 20)) {
713 			ns->geom.pgaddrbytes  = 3;
714 			ns->geom.secaddrbytes = 2;
715 		} else {
716 			ns->geom.pgaddrbytes  = 4;
717 			ns->geom.secaddrbytes = 3;
718 		}
719 	} else {
720 		if (ns->geom.totsz <= (128 << 20)) {
721 			ns->geom.pgaddrbytes  = 4;
722 			ns->geom.secaddrbytes = 2;
723 		} else {
724 			ns->geom.pgaddrbytes  = 5;
725 			ns->geom.secaddrbytes = 3;
726 		}
727 	}
728 
729 	/* Fill the partition_info structure */
730 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
731 		NS_ERR("too many partitions.\n");
732 		ret = -EINVAL;
733 		goto error;
734 	}
735 	remains = ns->geom.totsz;
736 	next_offset = 0;
737 	for (i = 0; i < parts_num; ++i) {
738 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
739 
740 		if (!part_sz || part_sz > remains) {
741 			NS_ERR("bad partition size.\n");
742 			ret = -EINVAL;
743 			goto error;
744 		}
745 		ns->partitions[i].name   = get_partition_name(i);
746 		ns->partitions[i].offset = next_offset;
747 		ns->partitions[i].size   = part_sz;
748 		next_offset += ns->partitions[i].size;
749 		remains -= ns->partitions[i].size;
750 	}
751 	ns->nbparts = parts_num;
752 	if (remains) {
753 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
754 			NS_ERR("too many partitions.\n");
755 			ret = -EINVAL;
756 			goto error;
757 		}
758 		ns->partitions[i].name   = get_partition_name(i);
759 		ns->partitions[i].offset = next_offset;
760 		ns->partitions[i].size   = remains;
761 		ns->nbparts += 1;
762 	}
763 
764 	if (ns->busw == 16)
765 		NS_WARN("16-bit flashes support wasn't tested\n");
766 
767 	printk("flash size: %llu MiB\n",
768 			(unsigned long long)ns->geom.totsz >> 20);
769 	printk("page size: %u bytes\n",         ns->geom.pgsz);
770 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
771 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
772 	printk("pages number: %u\n",            ns->geom.pgnum);
773 	printk("pages per sector: %u\n",        ns->geom.pgsec);
774 	printk("bus width: %u\n",               ns->busw);
775 	printk("bits in sector size: %u\n",     ns->geom.secshift);
776 	printk("bits in page size: %u\n",       ns->geom.pgshift);
777 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
778 	printk("flash size with OOB: %llu KiB\n",
779 			(unsigned long long)ns->geom.totszoob >> 10);
780 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
781 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
782 	printk("options: %#x\n",                ns->options);
783 
784 	if ((ret = alloc_device(ns)) != 0)
785 		goto error;
786 
787 	/* Allocate / initialize the internal buffer */
788 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
789 	if (!ns->buf.byte) {
790 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
791 			ns->geom.pgszoob);
792 		ret = -ENOMEM;
793 		goto error;
794 	}
795 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
796 
797 	return 0;
798 
799 error:
800 	free_device(ns);
801 
802 	return ret;
803 }
804 
805 /*
806  * Free the nandsim structure.
807  */
free_nandsim(struct nandsim * ns)808 static void free_nandsim(struct nandsim *ns)
809 {
810 	kfree(ns->buf.byte);
811 	free_device(ns);
812 
813 	return;
814 }
815 
parse_badblocks(struct nandsim * ns,struct mtd_info * mtd)816 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
817 {
818 	char *w;
819 	int zero_ok;
820 	unsigned int erase_block_no;
821 	loff_t offset;
822 
823 	if (!badblocks)
824 		return 0;
825 	w = badblocks;
826 	do {
827 		zero_ok = (*w == '0' ? 1 : 0);
828 		erase_block_no = simple_strtoul(w, &w, 0);
829 		if (!zero_ok && !erase_block_no) {
830 			NS_ERR("invalid badblocks.\n");
831 			return -EINVAL;
832 		}
833 		offset = (loff_t)erase_block_no * ns->geom.secsz;
834 		if (mtd_block_markbad(mtd, offset)) {
835 			NS_ERR("invalid badblocks.\n");
836 			return -EINVAL;
837 		}
838 		if (*w == ',')
839 			w += 1;
840 	} while (*w);
841 	return 0;
842 }
843 
parse_weakblocks(void)844 static int parse_weakblocks(void)
845 {
846 	char *w;
847 	int zero_ok;
848 	unsigned int erase_block_no;
849 	unsigned int max_erases;
850 	struct weak_block *wb;
851 
852 	if (!weakblocks)
853 		return 0;
854 	w = weakblocks;
855 	do {
856 		zero_ok = (*w == '0' ? 1 : 0);
857 		erase_block_no = simple_strtoul(w, &w, 0);
858 		if (!zero_ok && !erase_block_no) {
859 			NS_ERR("invalid weakblocks.\n");
860 			return -EINVAL;
861 		}
862 		max_erases = 3;
863 		if (*w == ':') {
864 			w += 1;
865 			max_erases = simple_strtoul(w, &w, 0);
866 		}
867 		if (*w == ',')
868 			w += 1;
869 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
870 		if (!wb) {
871 			NS_ERR("unable to allocate memory.\n");
872 			return -ENOMEM;
873 		}
874 		wb->erase_block_no = erase_block_no;
875 		wb->max_erases = max_erases;
876 		list_add(&wb->list, &weak_blocks);
877 	} while (*w);
878 	return 0;
879 }
880 
erase_error(unsigned int erase_block_no)881 static int erase_error(unsigned int erase_block_no)
882 {
883 	struct weak_block *wb;
884 
885 	list_for_each_entry(wb, &weak_blocks, list)
886 		if (wb->erase_block_no == erase_block_no) {
887 			if (wb->erases_done >= wb->max_erases)
888 				return 1;
889 			wb->erases_done += 1;
890 			return 0;
891 		}
892 	return 0;
893 }
894 
parse_weakpages(void)895 static int parse_weakpages(void)
896 {
897 	char *w;
898 	int zero_ok;
899 	unsigned int page_no;
900 	unsigned int max_writes;
901 	struct weak_page *wp;
902 
903 	if (!weakpages)
904 		return 0;
905 	w = weakpages;
906 	do {
907 		zero_ok = (*w == '0' ? 1 : 0);
908 		page_no = simple_strtoul(w, &w, 0);
909 		if (!zero_ok && !page_no) {
910 			NS_ERR("invalid weakpagess.\n");
911 			return -EINVAL;
912 		}
913 		max_writes = 3;
914 		if (*w == ':') {
915 			w += 1;
916 			max_writes = simple_strtoul(w, &w, 0);
917 		}
918 		if (*w == ',')
919 			w += 1;
920 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
921 		if (!wp) {
922 			NS_ERR("unable to allocate memory.\n");
923 			return -ENOMEM;
924 		}
925 		wp->page_no = page_no;
926 		wp->max_writes = max_writes;
927 		list_add(&wp->list, &weak_pages);
928 	} while (*w);
929 	return 0;
930 }
931 
write_error(unsigned int page_no)932 static int write_error(unsigned int page_no)
933 {
934 	struct weak_page *wp;
935 
936 	list_for_each_entry(wp, &weak_pages, list)
937 		if (wp->page_no == page_no) {
938 			if (wp->writes_done >= wp->max_writes)
939 				return 1;
940 			wp->writes_done += 1;
941 			return 0;
942 		}
943 	return 0;
944 }
945 
parse_gravepages(void)946 static int parse_gravepages(void)
947 {
948 	char *g;
949 	int zero_ok;
950 	unsigned int page_no;
951 	unsigned int max_reads;
952 	struct grave_page *gp;
953 
954 	if (!gravepages)
955 		return 0;
956 	g = gravepages;
957 	do {
958 		zero_ok = (*g == '0' ? 1 : 0);
959 		page_no = simple_strtoul(g, &g, 0);
960 		if (!zero_ok && !page_no) {
961 			NS_ERR("invalid gravepagess.\n");
962 			return -EINVAL;
963 		}
964 		max_reads = 3;
965 		if (*g == ':') {
966 			g += 1;
967 			max_reads = simple_strtoul(g, &g, 0);
968 		}
969 		if (*g == ',')
970 			g += 1;
971 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
972 		if (!gp) {
973 			NS_ERR("unable to allocate memory.\n");
974 			return -ENOMEM;
975 		}
976 		gp->page_no = page_no;
977 		gp->max_reads = max_reads;
978 		list_add(&gp->list, &grave_pages);
979 	} while (*g);
980 	return 0;
981 }
982 
read_error(unsigned int page_no)983 static int read_error(unsigned int page_no)
984 {
985 	struct grave_page *gp;
986 
987 	list_for_each_entry(gp, &grave_pages, list)
988 		if (gp->page_no == page_no) {
989 			if (gp->reads_done >= gp->max_reads)
990 				return 1;
991 			gp->reads_done += 1;
992 			return 0;
993 		}
994 	return 0;
995 }
996 
free_lists(void)997 static void free_lists(void)
998 {
999 	struct list_head *pos, *n;
1000 	list_for_each_safe(pos, n, &weak_blocks) {
1001 		list_del(pos);
1002 		kfree(list_entry(pos, struct weak_block, list));
1003 	}
1004 	list_for_each_safe(pos, n, &weak_pages) {
1005 		list_del(pos);
1006 		kfree(list_entry(pos, struct weak_page, list));
1007 	}
1008 	list_for_each_safe(pos, n, &grave_pages) {
1009 		list_del(pos);
1010 		kfree(list_entry(pos, struct grave_page, list));
1011 	}
1012 	kfree(erase_block_wear);
1013 }
1014 
setup_wear_reporting(struct mtd_info * mtd)1015 static int setup_wear_reporting(struct mtd_info *mtd)
1016 {
1017 	size_t mem;
1018 
1019 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1020 	mem = wear_eb_count * sizeof(unsigned long);
1021 	if (mem / sizeof(unsigned long) != wear_eb_count) {
1022 		NS_ERR("Too many erase blocks for wear reporting\n");
1023 		return -ENOMEM;
1024 	}
1025 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1026 	if (!erase_block_wear) {
1027 		NS_ERR("Too many erase blocks for wear reporting\n");
1028 		return -ENOMEM;
1029 	}
1030 	return 0;
1031 }
1032 
update_wear(unsigned int erase_block_no)1033 static void update_wear(unsigned int erase_block_no)
1034 {
1035 	if (!erase_block_wear)
1036 		return;
1037 	total_wear += 1;
1038 	/*
1039 	 * TODO: Notify this through a debugfs entry,
1040 	 * instead of showing an error message.
1041 	 */
1042 	if (total_wear == 0)
1043 		NS_ERR("Erase counter total overflow\n");
1044 	erase_block_wear[erase_block_no] += 1;
1045 	if (erase_block_wear[erase_block_no] == 0)
1046 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1047 }
1048 
1049 /*
1050  * Returns the string representation of 'state' state.
1051  */
get_state_name(uint32_t state)1052 static char *get_state_name(uint32_t state)
1053 {
1054 	switch (NS_STATE(state)) {
1055 		case STATE_CMD_READ0:
1056 			return "STATE_CMD_READ0";
1057 		case STATE_CMD_READ1:
1058 			return "STATE_CMD_READ1";
1059 		case STATE_CMD_PAGEPROG:
1060 			return "STATE_CMD_PAGEPROG";
1061 		case STATE_CMD_READOOB:
1062 			return "STATE_CMD_READOOB";
1063 		case STATE_CMD_READSTART:
1064 			return "STATE_CMD_READSTART";
1065 		case STATE_CMD_ERASE1:
1066 			return "STATE_CMD_ERASE1";
1067 		case STATE_CMD_STATUS:
1068 			return "STATE_CMD_STATUS";
1069 		case STATE_CMD_SEQIN:
1070 			return "STATE_CMD_SEQIN";
1071 		case STATE_CMD_READID:
1072 			return "STATE_CMD_READID";
1073 		case STATE_CMD_ERASE2:
1074 			return "STATE_CMD_ERASE2";
1075 		case STATE_CMD_RESET:
1076 			return "STATE_CMD_RESET";
1077 		case STATE_CMD_RNDOUT:
1078 			return "STATE_CMD_RNDOUT";
1079 		case STATE_CMD_RNDOUTSTART:
1080 			return "STATE_CMD_RNDOUTSTART";
1081 		case STATE_ADDR_PAGE:
1082 			return "STATE_ADDR_PAGE";
1083 		case STATE_ADDR_SEC:
1084 			return "STATE_ADDR_SEC";
1085 		case STATE_ADDR_ZERO:
1086 			return "STATE_ADDR_ZERO";
1087 		case STATE_ADDR_COLUMN:
1088 			return "STATE_ADDR_COLUMN";
1089 		case STATE_DATAIN:
1090 			return "STATE_DATAIN";
1091 		case STATE_DATAOUT:
1092 			return "STATE_DATAOUT";
1093 		case STATE_DATAOUT_ID:
1094 			return "STATE_DATAOUT_ID";
1095 		case STATE_DATAOUT_STATUS:
1096 			return "STATE_DATAOUT_STATUS";
1097 		case STATE_READY:
1098 			return "STATE_READY";
1099 		case STATE_UNKNOWN:
1100 			return "STATE_UNKNOWN";
1101 	}
1102 
1103 	NS_ERR("get_state_name: unknown state, BUG\n");
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * Check if command is valid.
1109  *
1110  * RETURNS: 1 if wrong command, 0 if right.
1111  */
check_command(int cmd)1112 static int check_command(int cmd)
1113 {
1114 	switch (cmd) {
1115 
1116 	case NAND_CMD_READ0:
1117 	case NAND_CMD_READ1:
1118 	case NAND_CMD_READSTART:
1119 	case NAND_CMD_PAGEPROG:
1120 	case NAND_CMD_READOOB:
1121 	case NAND_CMD_ERASE1:
1122 	case NAND_CMD_STATUS:
1123 	case NAND_CMD_SEQIN:
1124 	case NAND_CMD_READID:
1125 	case NAND_CMD_ERASE2:
1126 	case NAND_CMD_RESET:
1127 	case NAND_CMD_RNDOUT:
1128 	case NAND_CMD_RNDOUTSTART:
1129 		return 0;
1130 
1131 	default:
1132 		return 1;
1133 	}
1134 }
1135 
1136 /*
1137  * Returns state after command is accepted by command number.
1138  */
get_state_by_command(unsigned command)1139 static uint32_t get_state_by_command(unsigned command)
1140 {
1141 	switch (command) {
1142 		case NAND_CMD_READ0:
1143 			return STATE_CMD_READ0;
1144 		case NAND_CMD_READ1:
1145 			return STATE_CMD_READ1;
1146 		case NAND_CMD_PAGEPROG:
1147 			return STATE_CMD_PAGEPROG;
1148 		case NAND_CMD_READSTART:
1149 			return STATE_CMD_READSTART;
1150 		case NAND_CMD_READOOB:
1151 			return STATE_CMD_READOOB;
1152 		case NAND_CMD_ERASE1:
1153 			return STATE_CMD_ERASE1;
1154 		case NAND_CMD_STATUS:
1155 			return STATE_CMD_STATUS;
1156 		case NAND_CMD_SEQIN:
1157 			return STATE_CMD_SEQIN;
1158 		case NAND_CMD_READID:
1159 			return STATE_CMD_READID;
1160 		case NAND_CMD_ERASE2:
1161 			return STATE_CMD_ERASE2;
1162 		case NAND_CMD_RESET:
1163 			return STATE_CMD_RESET;
1164 		case NAND_CMD_RNDOUT:
1165 			return STATE_CMD_RNDOUT;
1166 		case NAND_CMD_RNDOUTSTART:
1167 			return STATE_CMD_RNDOUTSTART;
1168 	}
1169 
1170 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Move an address byte to the correspondent internal register.
1176  */
accept_addr_byte(struct nandsim * ns,u_char bt)1177 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1178 {
1179 	uint byte = (uint)bt;
1180 
1181 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1182 		ns->regs.column |= (byte << 8 * ns->regs.count);
1183 	else {
1184 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1185 						ns->geom.pgaddrbytes +
1186 						ns->geom.secaddrbytes));
1187 	}
1188 
1189 	return;
1190 }
1191 
1192 /*
1193  * Switch to STATE_READY state.
1194  */
switch_to_ready_state(struct nandsim * ns,u_char status)1195 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1196 {
1197 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1198 
1199 	ns->state       = STATE_READY;
1200 	ns->nxstate     = STATE_UNKNOWN;
1201 	ns->op          = NULL;
1202 	ns->npstates    = 0;
1203 	ns->stateidx    = 0;
1204 	ns->regs.num    = 0;
1205 	ns->regs.count  = 0;
1206 	ns->regs.off    = 0;
1207 	ns->regs.row    = 0;
1208 	ns->regs.column = 0;
1209 	ns->regs.status = status;
1210 }
1211 
1212 /*
1213  * If the operation isn't known yet, try to find it in the global array
1214  * of supported operations.
1215  *
1216  * Operation can be unknown because of the following.
1217  *   1. New command was accepted and this is the first call to find the
1218  *      correspondent states chain. In this case ns->npstates = 0;
1219  *   2. There are several operations which begin with the same command(s)
1220  *      (for example program from the second half and read from the
1221  *      second half operations both begin with the READ1 command). In this
1222  *      case the ns->pstates[] array contains previous states.
1223  *
1224  * Thus, the function tries to find operation containing the following
1225  * states (if the 'flag' parameter is 0):
1226  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1227  *
1228  * If (one and only one) matching operation is found, it is accepted (
1229  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1230  * zeroed).
1231  *
1232  * If there are several matches, the current state is pushed to the
1233  * ns->pstates.
1234  *
1235  * The operation can be unknown only while commands are input to the chip.
1236  * As soon as address command is accepted, the operation must be known.
1237  * In such situation the function is called with 'flag' != 0, and the
1238  * operation is searched using the following pattern:
1239  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1240  *
1241  * It is supposed that this pattern must either match one operation or
1242  * none. There can't be ambiguity in that case.
1243  *
1244  * If no matches found, the function does the following:
1245  *   1. if there are saved states present, try to ignore them and search
1246  *      again only using the last command. If nothing was found, switch
1247  *      to the STATE_READY state.
1248  *   2. if there are no saved states, switch to the STATE_READY state.
1249  *
1250  * RETURNS: -2 - no matched operations found.
1251  *          -1 - several matches.
1252  *           0 - operation is found.
1253  */
find_operation(struct nandsim * ns,uint32_t flag)1254 static int find_operation(struct nandsim *ns, uint32_t flag)
1255 {
1256 	int opsfound = 0;
1257 	int i, j, idx = 0;
1258 
1259 	for (i = 0; i < NS_OPER_NUM; i++) {
1260 
1261 		int found = 1;
1262 
1263 		if (!(ns->options & ops[i].reqopts))
1264 			/* Ignore operations we can't perform */
1265 			continue;
1266 
1267 		if (flag) {
1268 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1269 				continue;
1270 		} else {
1271 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1272 				continue;
1273 		}
1274 
1275 		for (j = 0; j < ns->npstates; j++)
1276 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1277 				&& (ns->options & ops[idx].reqopts)) {
1278 				found = 0;
1279 				break;
1280 			}
1281 
1282 		if (found) {
1283 			idx = i;
1284 			opsfound += 1;
1285 		}
1286 	}
1287 
1288 	if (opsfound == 1) {
1289 		/* Exact match */
1290 		ns->op = &ops[idx].states[0];
1291 		if (flag) {
1292 			/*
1293 			 * In this case the find_operation function was
1294 			 * called when address has just began input. But it isn't
1295 			 * yet fully input and the current state must
1296 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1297 			 * state must be the next state (ns->nxstate).
1298 			 */
1299 			ns->stateidx = ns->npstates - 1;
1300 		} else {
1301 			ns->stateidx = ns->npstates;
1302 		}
1303 		ns->npstates = 0;
1304 		ns->state = ns->op[ns->stateidx];
1305 		ns->nxstate = ns->op[ns->stateidx + 1];
1306 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1307 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1308 		return 0;
1309 	}
1310 
1311 	if (opsfound == 0) {
1312 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1313 		if (ns->npstates != 0) {
1314 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1315 					get_state_name(ns->state));
1316 			ns->npstates = 0;
1317 			return find_operation(ns, 0);
1318 
1319 		}
1320 		NS_DBG("find_operation: no operations found\n");
1321 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1322 		return -2;
1323 	}
1324 
1325 	if (flag) {
1326 		/* This shouldn't happen */
1327 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1328 		return -2;
1329 	}
1330 
1331 	NS_DBG("find_operation: there is still ambiguity\n");
1332 
1333 	ns->pstates[ns->npstates++] = ns->state;
1334 
1335 	return -1;
1336 }
1337 
put_pages(struct nandsim * ns)1338 static void put_pages(struct nandsim *ns)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < ns->held_cnt; i++)
1343 		page_cache_release(ns->held_pages[i]);
1344 }
1345 
1346 /* Get page cache pages in advance to provide NOFS memory allocation */
get_pages(struct nandsim * ns,struct file * file,size_t count,loff_t pos)1347 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1348 {
1349 	pgoff_t index, start_index, end_index;
1350 	struct page *page;
1351 	struct address_space *mapping = file->f_mapping;
1352 
1353 	start_index = pos >> PAGE_CACHE_SHIFT;
1354 	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1355 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1356 		return -EINVAL;
1357 	ns->held_cnt = 0;
1358 	for (index = start_index; index <= end_index; index++) {
1359 		page = find_get_page(mapping, index);
1360 		if (page == NULL) {
1361 			page = find_or_create_page(mapping, index, GFP_NOFS);
1362 			if (page == NULL) {
1363 				write_inode_now(mapping->host, 1);
1364 				page = find_or_create_page(mapping, index, GFP_NOFS);
1365 			}
1366 			if (page == NULL) {
1367 				put_pages(ns);
1368 				return -ENOMEM;
1369 			}
1370 			unlock_page(page);
1371 		}
1372 		ns->held_pages[ns->held_cnt++] = page;
1373 	}
1374 	return 0;
1375 }
1376 
set_memalloc(void)1377 static int set_memalloc(void)
1378 {
1379 	if (current->flags & PF_MEMALLOC)
1380 		return 0;
1381 	current->flags |= PF_MEMALLOC;
1382 	return 1;
1383 }
1384 
clear_memalloc(int memalloc)1385 static void clear_memalloc(int memalloc)
1386 {
1387 	if (memalloc)
1388 		current->flags &= ~PF_MEMALLOC;
1389 }
1390 
read_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1391 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1392 {
1393 	ssize_t tx;
1394 	int err, memalloc;
1395 
1396 	err = get_pages(ns, file, count, pos);
1397 	if (err)
1398 		return err;
1399 	memalloc = set_memalloc();
1400 	tx = kernel_read(file, pos, buf, count);
1401 	clear_memalloc(memalloc);
1402 	put_pages(ns);
1403 	return tx;
1404 }
1405 
write_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1406 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1407 {
1408 	ssize_t tx;
1409 	int err, memalloc;
1410 
1411 	err = get_pages(ns, file, count, pos);
1412 	if (err)
1413 		return err;
1414 	memalloc = set_memalloc();
1415 	tx = kernel_write(file, buf, count, pos);
1416 	clear_memalloc(memalloc);
1417 	put_pages(ns);
1418 	return tx;
1419 }
1420 
1421 /*
1422  * Returns a pointer to the current page.
1423  */
NS_GET_PAGE(struct nandsim * ns)1424 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1425 {
1426 	return &(ns->pages[ns->regs.row]);
1427 }
1428 
1429 /*
1430  * Retuns a pointer to the current byte, within the current page.
1431  */
NS_PAGE_BYTE_OFF(struct nandsim * ns)1432 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1433 {
1434 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1435 }
1436 
do_read_error(struct nandsim * ns,int num)1437 static int do_read_error(struct nandsim *ns, int num)
1438 {
1439 	unsigned int page_no = ns->regs.row;
1440 
1441 	if (read_error(page_no)) {
1442 		prandom_bytes(ns->buf.byte, num);
1443 		NS_WARN("simulating read error in page %u\n", page_no);
1444 		return 1;
1445 	}
1446 	return 0;
1447 }
1448 
do_bit_flips(struct nandsim * ns,int num)1449 static void do_bit_flips(struct nandsim *ns, int num)
1450 {
1451 	if (bitflips && prandom_u32() < (1 << 22)) {
1452 		int flips = 1;
1453 		if (bitflips > 1)
1454 			flips = (prandom_u32() % (int) bitflips) + 1;
1455 		while (flips--) {
1456 			int pos = prandom_u32() % (num * 8);
1457 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1458 			NS_WARN("read_page: flipping bit %d in page %d "
1459 				"reading from %d ecc: corrected=%u failed=%u\n",
1460 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1461 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1462 		}
1463 	}
1464 }
1465 
1466 /*
1467  * Fill the NAND buffer with data read from the specified page.
1468  */
read_page(struct nandsim * ns,int num)1469 static void read_page(struct nandsim *ns, int num)
1470 {
1471 	union ns_mem *mypage;
1472 
1473 	if (ns->cfile) {
1474 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1475 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1476 			memset(ns->buf.byte, 0xFF, num);
1477 		} else {
1478 			loff_t pos;
1479 			ssize_t tx;
1480 
1481 			NS_DBG("read_page: page %d written, reading from %d\n",
1482 				ns->regs.row, ns->regs.column + ns->regs.off);
1483 			if (do_read_error(ns, num))
1484 				return;
1485 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1486 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1487 			if (tx != num) {
1488 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1489 				return;
1490 			}
1491 			do_bit_flips(ns, num);
1492 		}
1493 		return;
1494 	}
1495 
1496 	mypage = NS_GET_PAGE(ns);
1497 	if (mypage->byte == NULL) {
1498 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1499 		memset(ns->buf.byte, 0xFF, num);
1500 	} else {
1501 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1502 			ns->regs.row, ns->regs.column + ns->regs.off);
1503 		if (do_read_error(ns, num))
1504 			return;
1505 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1506 		do_bit_flips(ns, num);
1507 	}
1508 }
1509 
1510 /*
1511  * Erase all pages in the specified sector.
1512  */
erase_sector(struct nandsim * ns)1513 static void erase_sector(struct nandsim *ns)
1514 {
1515 	union ns_mem *mypage;
1516 	int i;
1517 
1518 	if (ns->cfile) {
1519 		for (i = 0; i < ns->geom.pgsec; i++)
1520 			if (__test_and_clear_bit(ns->regs.row + i,
1521 						 ns->pages_written)) {
1522 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1523 			}
1524 		return;
1525 	}
1526 
1527 	mypage = NS_GET_PAGE(ns);
1528 	for (i = 0; i < ns->geom.pgsec; i++) {
1529 		if (mypage->byte != NULL) {
1530 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1531 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1532 			mypage->byte = NULL;
1533 		}
1534 		mypage++;
1535 	}
1536 }
1537 
1538 /*
1539  * Program the specified page with the contents from the NAND buffer.
1540  */
prog_page(struct nandsim * ns,int num)1541 static int prog_page(struct nandsim *ns, int num)
1542 {
1543 	int i;
1544 	union ns_mem *mypage;
1545 	u_char *pg_off;
1546 
1547 	if (ns->cfile) {
1548 		loff_t off;
1549 		ssize_t tx;
1550 		int all;
1551 
1552 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1553 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1554 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1555 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1556 			all = 1;
1557 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1558 		} else {
1559 			all = 0;
1560 			tx = read_file(ns, ns->cfile, pg_off, num, off);
1561 			if (tx != num) {
1562 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1563 				return -1;
1564 			}
1565 		}
1566 		for (i = 0; i < num; i++)
1567 			pg_off[i] &= ns->buf.byte[i];
1568 		if (all) {
1569 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1570 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1571 			if (tx != ns->geom.pgszoob) {
1572 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1573 				return -1;
1574 			}
1575 			__set_bit(ns->regs.row, ns->pages_written);
1576 		} else {
1577 			tx = write_file(ns, ns->cfile, pg_off, num, off);
1578 			if (tx != num) {
1579 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1580 				return -1;
1581 			}
1582 		}
1583 		return 0;
1584 	}
1585 
1586 	mypage = NS_GET_PAGE(ns);
1587 	if (mypage->byte == NULL) {
1588 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1589 		/*
1590 		 * We allocate memory with GFP_NOFS because a flash FS may
1591 		 * utilize this. If it is holding an FS lock, then gets here,
1592 		 * then kernel memory alloc runs writeback which goes to the FS
1593 		 * again and deadlocks. This was seen in practice.
1594 		 */
1595 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1596 		if (mypage->byte == NULL) {
1597 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1598 			return -1;
1599 		}
1600 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1601 	}
1602 
1603 	pg_off = NS_PAGE_BYTE_OFF(ns);
1604 	for (i = 0; i < num; i++)
1605 		pg_off[i] &= ns->buf.byte[i];
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * If state has any action bit, perform this action.
1612  *
1613  * RETURNS: 0 if success, -1 if error.
1614  */
do_state_action(struct nandsim * ns,uint32_t action)1615 static int do_state_action(struct nandsim *ns, uint32_t action)
1616 {
1617 	int num;
1618 	int busdiv = ns->busw == 8 ? 1 : 2;
1619 	unsigned int erase_block_no, page_no;
1620 
1621 	action &= ACTION_MASK;
1622 
1623 	/* Check that page address input is correct */
1624 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1625 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1626 		return -1;
1627 	}
1628 
1629 	switch (action) {
1630 
1631 	case ACTION_CPY:
1632 		/*
1633 		 * Copy page data to the internal buffer.
1634 		 */
1635 
1636 		/* Column shouldn't be very large */
1637 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1638 			NS_ERR("do_state_action: column number is too large\n");
1639 			break;
1640 		}
1641 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1642 		read_page(ns, num);
1643 
1644 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1645 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1646 
1647 		if (ns->regs.off == 0)
1648 			NS_LOG("read page %d\n", ns->regs.row);
1649 		else if (ns->regs.off < ns->geom.pgsz)
1650 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1651 		else
1652 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1653 
1654 		NS_UDELAY(access_delay);
1655 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1656 
1657 		break;
1658 
1659 	case ACTION_SECERASE:
1660 		/*
1661 		 * Erase sector.
1662 		 */
1663 
1664 		if (ns->lines.wp) {
1665 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1666 			return -1;
1667 		}
1668 
1669 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1670 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1671 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1672 			return -1;
1673 		}
1674 
1675 		ns->regs.row = (ns->regs.row <<
1676 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1677 		ns->regs.column = 0;
1678 
1679 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1680 
1681 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1682 				ns->regs.row, NS_RAW_OFFSET(ns));
1683 		NS_LOG("erase sector %u\n", erase_block_no);
1684 
1685 		erase_sector(ns);
1686 
1687 		NS_MDELAY(erase_delay);
1688 
1689 		if (erase_block_wear)
1690 			update_wear(erase_block_no);
1691 
1692 		if (erase_error(erase_block_no)) {
1693 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1694 			return -1;
1695 		}
1696 
1697 		break;
1698 
1699 	case ACTION_PRGPAGE:
1700 		/*
1701 		 * Program page - move internal buffer data to the page.
1702 		 */
1703 
1704 		if (ns->lines.wp) {
1705 			NS_WARN("do_state_action: device is write-protected, programm\n");
1706 			return -1;
1707 		}
1708 
1709 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1710 		if (num != ns->regs.count) {
1711 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1712 					ns->regs.count, num);
1713 			return -1;
1714 		}
1715 
1716 		if (prog_page(ns, num) == -1)
1717 			return -1;
1718 
1719 		page_no = ns->regs.row;
1720 
1721 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1722 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1723 		NS_LOG("programm page %d\n", ns->regs.row);
1724 
1725 		NS_UDELAY(programm_delay);
1726 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1727 
1728 		if (write_error(page_no)) {
1729 			NS_WARN("simulating write failure in page %u\n", page_no);
1730 			return -1;
1731 		}
1732 
1733 		break;
1734 
1735 	case ACTION_ZEROOFF:
1736 		NS_DBG("do_state_action: set internal offset to 0\n");
1737 		ns->regs.off = 0;
1738 		break;
1739 
1740 	case ACTION_HALFOFF:
1741 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1742 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1743 				"byte page size 8x chips\n");
1744 			return -1;
1745 		}
1746 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1747 		ns->regs.off = ns->geom.pgsz/2;
1748 		break;
1749 
1750 	case ACTION_OOBOFF:
1751 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1752 		ns->regs.off = ns->geom.pgsz;
1753 		break;
1754 
1755 	default:
1756 		NS_DBG("do_state_action: BUG! unknown action\n");
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * Switch simulator's state.
1764  */
switch_state(struct nandsim * ns)1765 static void switch_state(struct nandsim *ns)
1766 {
1767 	if (ns->op) {
1768 		/*
1769 		 * The current operation have already been identified.
1770 		 * Just follow the states chain.
1771 		 */
1772 
1773 		ns->stateidx += 1;
1774 		ns->state = ns->nxstate;
1775 		ns->nxstate = ns->op[ns->stateidx + 1];
1776 
1777 		NS_DBG("switch_state: operation is known, switch to the next state, "
1778 			"state: %s, nxstate: %s\n",
1779 			get_state_name(ns->state), get_state_name(ns->nxstate));
1780 
1781 		/* See, whether we need to do some action */
1782 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1783 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1784 			return;
1785 		}
1786 
1787 	} else {
1788 		/*
1789 		 * We don't yet know which operation we perform.
1790 		 * Try to identify it.
1791 		 */
1792 
1793 		/*
1794 		 *  The only event causing the switch_state function to
1795 		 *  be called with yet unknown operation is new command.
1796 		 */
1797 		ns->state = get_state_by_command(ns->regs.command);
1798 
1799 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1800 
1801 		if (find_operation(ns, 0) != 0)
1802 			return;
1803 
1804 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1805 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1806 			return;
1807 		}
1808 	}
1809 
1810 	/* For 16x devices column means the page offset in words */
1811 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1812 		NS_DBG("switch_state: double the column number for 16x device\n");
1813 		ns->regs.column <<= 1;
1814 	}
1815 
1816 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1817 		/*
1818 		 * The current state is the last. Return to STATE_READY
1819 		 */
1820 
1821 		u_char status = NS_STATUS_OK(ns);
1822 
1823 		/* In case of data states, see if all bytes were input/output */
1824 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1825 			&& ns->regs.count != ns->regs.num) {
1826 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1827 					ns->regs.num - ns->regs.count);
1828 			status = NS_STATUS_FAILED(ns);
1829 		}
1830 
1831 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1832 
1833 		switch_to_ready_state(ns, status);
1834 
1835 		return;
1836 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1837 		/*
1838 		 * If the next state is data input/output, switch to it now
1839 		 */
1840 
1841 		ns->state      = ns->nxstate;
1842 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1843 		ns->regs.num   = ns->regs.count = 0;
1844 
1845 		NS_DBG("switch_state: the next state is data I/O, switch, "
1846 			"state: %s, nxstate: %s\n",
1847 			get_state_name(ns->state), get_state_name(ns->nxstate));
1848 
1849 		/*
1850 		 * Set the internal register to the count of bytes which
1851 		 * are expected to be input or output
1852 		 */
1853 		switch (NS_STATE(ns->state)) {
1854 			case STATE_DATAIN:
1855 			case STATE_DATAOUT:
1856 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1857 				break;
1858 
1859 			case STATE_DATAOUT_ID:
1860 				ns->regs.num = ns->geom.idbytes;
1861 				break;
1862 
1863 			case STATE_DATAOUT_STATUS:
1864 				ns->regs.count = ns->regs.num = 0;
1865 				break;
1866 
1867 			default:
1868 				NS_ERR("switch_state: BUG! unknown data state\n");
1869 		}
1870 
1871 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1872 		/*
1873 		 * If the next state is address input, set the internal
1874 		 * register to the number of expected address bytes
1875 		 */
1876 
1877 		ns->regs.count = 0;
1878 
1879 		switch (NS_STATE(ns->nxstate)) {
1880 			case STATE_ADDR_PAGE:
1881 				ns->regs.num = ns->geom.pgaddrbytes;
1882 
1883 				break;
1884 			case STATE_ADDR_SEC:
1885 				ns->regs.num = ns->geom.secaddrbytes;
1886 				break;
1887 
1888 			case STATE_ADDR_ZERO:
1889 				ns->regs.num = 1;
1890 				break;
1891 
1892 			case STATE_ADDR_COLUMN:
1893 				/* Column address is always 2 bytes */
1894 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1895 				break;
1896 
1897 			default:
1898 				NS_ERR("switch_state: BUG! unknown address state\n");
1899 		}
1900 	} else {
1901 		/*
1902 		 * Just reset internal counters.
1903 		 */
1904 
1905 		ns->regs.num = 0;
1906 		ns->regs.count = 0;
1907 	}
1908 }
1909 
ns_nand_read_byte(struct mtd_info * mtd)1910 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1911 {
1912 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1913 	u_char outb = 0x00;
1914 
1915 	/* Sanity and correctness checks */
1916 	if (!ns->lines.ce) {
1917 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1918 		return outb;
1919 	}
1920 	if (ns->lines.ale || ns->lines.cle) {
1921 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1922 		return outb;
1923 	}
1924 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1925 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1926 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1927 		return outb;
1928 	}
1929 
1930 	/* Status register may be read as many times as it is wanted */
1931 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1932 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1933 		return ns->regs.status;
1934 	}
1935 
1936 	/* Check if there is any data in the internal buffer which may be read */
1937 	if (ns->regs.count == ns->regs.num) {
1938 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1939 		return outb;
1940 	}
1941 
1942 	switch (NS_STATE(ns->state)) {
1943 		case STATE_DATAOUT:
1944 			if (ns->busw == 8) {
1945 				outb = ns->buf.byte[ns->regs.count];
1946 				ns->regs.count += 1;
1947 			} else {
1948 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1949 				ns->regs.count += 2;
1950 			}
1951 			break;
1952 		case STATE_DATAOUT_ID:
1953 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1954 			outb = ns->ids[ns->regs.count];
1955 			ns->regs.count += 1;
1956 			break;
1957 		default:
1958 			BUG();
1959 	}
1960 
1961 	if (ns->regs.count == ns->regs.num) {
1962 		NS_DBG("read_byte: all bytes were read\n");
1963 
1964 		if (NS_STATE(ns->nxstate) == STATE_READY)
1965 			switch_state(ns);
1966 	}
1967 
1968 	return outb;
1969 }
1970 
ns_nand_write_byte(struct mtd_info * mtd,u_char byte)1971 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1972 {
1973 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1974 
1975 	/* Sanity and correctness checks */
1976 	if (!ns->lines.ce) {
1977 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1978 		return;
1979 	}
1980 	if (ns->lines.ale && ns->lines.cle) {
1981 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1982 		return;
1983 	}
1984 
1985 	if (ns->lines.cle == 1) {
1986 		/*
1987 		 * The byte written is a command.
1988 		 */
1989 
1990 		if (byte == NAND_CMD_RESET) {
1991 			NS_LOG("reset chip\n");
1992 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1993 			return;
1994 		}
1995 
1996 		/* Check that the command byte is correct */
1997 		if (check_command(byte)) {
1998 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1999 			return;
2000 		}
2001 
2002 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2003 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
2004 			int row = ns->regs.row;
2005 
2006 			switch_state(ns);
2007 			if (byte == NAND_CMD_RNDOUT)
2008 				ns->regs.row = row;
2009 		}
2010 
2011 		/* Check if chip is expecting command */
2012 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2013 			/* Do not warn if only 2 id bytes are read */
2014 			if (!(ns->regs.command == NAND_CMD_READID &&
2015 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2016 				/*
2017 				 * We are in situation when something else (not command)
2018 				 * was expected but command was input. In this case ignore
2019 				 * previous command(s)/state(s) and accept the last one.
2020 				 */
2021 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2022 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2023 			}
2024 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2025 		}
2026 
2027 		NS_DBG("command byte corresponding to %s state accepted\n",
2028 			get_state_name(get_state_by_command(byte)));
2029 		ns->regs.command = byte;
2030 		switch_state(ns);
2031 
2032 	} else if (ns->lines.ale == 1) {
2033 		/*
2034 		 * The byte written is an address.
2035 		 */
2036 
2037 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2038 
2039 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2040 
2041 			if (find_operation(ns, 1) < 0)
2042 				return;
2043 
2044 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2045 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2046 				return;
2047 			}
2048 
2049 			ns->regs.count = 0;
2050 			switch (NS_STATE(ns->nxstate)) {
2051 				case STATE_ADDR_PAGE:
2052 					ns->regs.num = ns->geom.pgaddrbytes;
2053 					break;
2054 				case STATE_ADDR_SEC:
2055 					ns->regs.num = ns->geom.secaddrbytes;
2056 					break;
2057 				case STATE_ADDR_ZERO:
2058 					ns->regs.num = 1;
2059 					break;
2060 				default:
2061 					BUG();
2062 			}
2063 		}
2064 
2065 		/* Check that chip is expecting address */
2066 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2067 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2068 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2069 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070 			return;
2071 		}
2072 
2073 		/* Check if this is expected byte */
2074 		if (ns->regs.count == ns->regs.num) {
2075 			NS_ERR("write_byte: no more address bytes expected\n");
2076 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2077 			return;
2078 		}
2079 
2080 		accept_addr_byte(ns, byte);
2081 
2082 		ns->regs.count += 1;
2083 
2084 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2085 				(uint)byte, ns->regs.count, ns->regs.num);
2086 
2087 		if (ns->regs.count == ns->regs.num) {
2088 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2089 			switch_state(ns);
2090 		}
2091 
2092 	} else {
2093 		/*
2094 		 * The byte written is an input data.
2095 		 */
2096 
2097 		/* Check that chip is expecting data input */
2098 		if (!(ns->state & STATE_DATAIN_MASK)) {
2099 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2100 				"switch to %s\n", (uint)byte,
2101 				get_state_name(ns->state), get_state_name(STATE_READY));
2102 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2103 			return;
2104 		}
2105 
2106 		/* Check if this is expected byte */
2107 		if (ns->regs.count == ns->regs.num) {
2108 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2109 					ns->regs.num);
2110 			return;
2111 		}
2112 
2113 		if (ns->busw == 8) {
2114 			ns->buf.byte[ns->regs.count] = byte;
2115 			ns->regs.count += 1;
2116 		} else {
2117 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2118 			ns->regs.count += 2;
2119 		}
2120 	}
2121 
2122 	return;
2123 }
2124 
ns_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int bitmask)2125 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2126 {
2127 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2128 
2129 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2130 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2131 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2132 
2133 	if (cmd != NAND_CMD_NONE)
2134 		ns_nand_write_byte(mtd, cmd);
2135 }
2136 
ns_device_ready(struct mtd_info * mtd)2137 static int ns_device_ready(struct mtd_info *mtd)
2138 {
2139 	NS_DBG("device_ready\n");
2140 	return 1;
2141 }
2142 
ns_nand_read_word(struct mtd_info * mtd)2143 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2144 {
2145 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2146 
2147 	NS_DBG("read_word\n");
2148 
2149 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2150 }
2151 
ns_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)2152 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2153 {
2154 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2155 
2156 	/* Check that chip is expecting data input */
2157 	if (!(ns->state & STATE_DATAIN_MASK)) {
2158 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2159 			"switch to STATE_READY\n", get_state_name(ns->state));
2160 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2161 		return;
2162 	}
2163 
2164 	/* Check if these are expected bytes */
2165 	if (ns->regs.count + len > ns->regs.num) {
2166 		NS_ERR("write_buf: too many input bytes\n");
2167 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2168 		return;
2169 	}
2170 
2171 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2172 	ns->regs.count += len;
2173 
2174 	if (ns->regs.count == ns->regs.num) {
2175 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2176 	}
2177 }
2178 
ns_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)2179 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2180 {
2181 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2182 
2183 	/* Sanity and correctness checks */
2184 	if (!ns->lines.ce) {
2185 		NS_ERR("read_buf: chip is disabled\n");
2186 		return;
2187 	}
2188 	if (ns->lines.ale || ns->lines.cle) {
2189 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2190 		return;
2191 	}
2192 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2193 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2194 			get_state_name(ns->state));
2195 		return;
2196 	}
2197 
2198 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2199 		int i;
2200 
2201 		for (i = 0; i < len; i++)
2202 			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2203 
2204 		return;
2205 	}
2206 
2207 	/* Check if these are expected bytes */
2208 	if (ns->regs.count + len > ns->regs.num) {
2209 		NS_ERR("read_buf: too many bytes to read\n");
2210 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2211 		return;
2212 	}
2213 
2214 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2215 	ns->regs.count += len;
2216 
2217 	if (ns->regs.count == ns->regs.num) {
2218 		if (NS_STATE(ns->nxstate) == STATE_READY)
2219 			switch_state(ns);
2220 	}
2221 
2222 	return;
2223 }
2224 
2225 /*
2226  * Module initialization function
2227  */
ns_init_module(void)2228 static int __init ns_init_module(void)
2229 {
2230 	struct nand_chip *chip;
2231 	struct nandsim *nand;
2232 	int retval = -ENOMEM, i;
2233 
2234 	if (bus_width != 8 && bus_width != 16) {
2235 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2236 		return -EINVAL;
2237 	}
2238 
2239 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2240 	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2241 				+ sizeof(struct nandsim), GFP_KERNEL);
2242 	if (!nsmtd) {
2243 		NS_ERR("unable to allocate core structures.\n");
2244 		return -ENOMEM;
2245 	}
2246 	chip        = (struct nand_chip *)(nsmtd + 1);
2247         nsmtd->priv = (void *)chip;
2248 	nand        = (struct nandsim *)(chip + 1);
2249 	chip->priv  = (void *)nand;
2250 
2251 	/*
2252 	 * Register simulator's callbacks.
2253 	 */
2254 	chip->cmd_ctrl	 = ns_hwcontrol;
2255 	chip->read_byte  = ns_nand_read_byte;
2256 	chip->dev_ready  = ns_device_ready;
2257 	chip->write_buf  = ns_nand_write_buf;
2258 	chip->read_buf   = ns_nand_read_buf;
2259 	chip->read_word  = ns_nand_read_word;
2260 	chip->ecc.mode   = NAND_ECC_SOFT;
2261 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2262 	/* and 'badblocks' parameters to work */
2263 	chip->options   |= NAND_SKIP_BBTSCAN;
2264 
2265 	switch (bbt) {
2266 	case 2:
2267 		 chip->bbt_options |= NAND_BBT_NO_OOB;
2268 	case 1:
2269 		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2270 	case 0:
2271 		break;
2272 	default:
2273 		NS_ERR("bbt has to be 0..2\n");
2274 		retval = -EINVAL;
2275 		goto error;
2276 	}
2277 	/*
2278 	 * Perform minimum nandsim structure initialization to handle
2279 	 * the initial ID read command correctly
2280 	 */
2281 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2282 		nand->geom.idbytes = 8;
2283 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2284 		nand->geom.idbytes = 6;
2285 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2286 		nand->geom.idbytes = 4;
2287 	else
2288 		nand->geom.idbytes = 2;
2289 	nand->regs.status = NS_STATUS_OK(nand);
2290 	nand->nxstate = STATE_UNKNOWN;
2291 	nand->options |= OPT_PAGE512; /* temporary value */
2292 	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2293 	if (bus_width == 16) {
2294 		nand->busw = 16;
2295 		chip->options |= NAND_BUSWIDTH_16;
2296 	}
2297 
2298 	nsmtd->owner = THIS_MODULE;
2299 
2300 	if ((retval = parse_weakblocks()) != 0)
2301 		goto error;
2302 
2303 	if ((retval = parse_weakpages()) != 0)
2304 		goto error;
2305 
2306 	if ((retval = parse_gravepages()) != 0)
2307 		goto error;
2308 
2309 	retval = nand_scan_ident(nsmtd, 1, NULL);
2310 	if (retval) {
2311 		NS_ERR("cannot scan NAND Simulator device\n");
2312 		if (retval > 0)
2313 			retval = -ENXIO;
2314 		goto error;
2315 	}
2316 
2317 	if (bch) {
2318 		unsigned int eccsteps, eccbytes;
2319 		if (!mtd_nand_has_bch()) {
2320 			NS_ERR("BCH ECC support is disabled\n");
2321 			retval = -EINVAL;
2322 			goto error;
2323 		}
2324 		/* use 512-byte ecc blocks */
2325 		eccsteps = nsmtd->writesize/512;
2326 		eccbytes = (bch*13+7)/8;
2327 		/* do not bother supporting small page devices */
2328 		if ((nsmtd->oobsize < 64) || !eccsteps) {
2329 			NS_ERR("bch not available on small page devices\n");
2330 			retval = -EINVAL;
2331 			goto error;
2332 		}
2333 		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2334 			NS_ERR("invalid bch value %u\n", bch);
2335 			retval = -EINVAL;
2336 			goto error;
2337 		}
2338 		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2339 		chip->ecc.size = 512;
2340 		chip->ecc.strength = bch;
2341 		chip->ecc.bytes = eccbytes;
2342 		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2343 	}
2344 
2345 	retval = nand_scan_tail(nsmtd);
2346 	if (retval) {
2347 		NS_ERR("can't register NAND Simulator\n");
2348 		if (retval > 0)
2349 			retval = -ENXIO;
2350 		goto error;
2351 	}
2352 
2353 	if (overridesize) {
2354 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2355 		if (new_size >> overridesize != nsmtd->erasesize) {
2356 			NS_ERR("overridesize is too big\n");
2357 			retval = -EINVAL;
2358 			goto err_exit;
2359 		}
2360 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2361 		nsmtd->size = new_size;
2362 		chip->chipsize = new_size;
2363 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2364 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2365 	}
2366 
2367 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2368 		goto err_exit;
2369 
2370 	if ((retval = nandsim_debugfs_create(nand)) != 0)
2371 		goto err_exit;
2372 
2373 	if ((retval = init_nandsim(nsmtd)) != 0)
2374 		goto err_exit;
2375 
2376 	if ((retval = chip->scan_bbt(nsmtd)) != 0)
2377 		goto err_exit;
2378 
2379 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2380 		goto err_exit;
2381 
2382 	/* Register NAND partitions */
2383 	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2384 				     nand->nbparts);
2385 	if (retval != 0)
2386 		goto err_exit;
2387 
2388         return 0;
2389 
2390 err_exit:
2391 	free_nandsim(nand);
2392 	nand_release(nsmtd);
2393 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2394 		kfree(nand->partitions[i].name);
2395 error:
2396 	kfree(nsmtd);
2397 	free_lists();
2398 
2399 	return retval;
2400 }
2401 
2402 module_init(ns_init_module);
2403 
2404 /*
2405  * Module clean-up function
2406  */
ns_cleanup_module(void)2407 static void __exit ns_cleanup_module(void)
2408 {
2409 	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2410 	int i;
2411 
2412 	nandsim_debugfs_remove(ns);
2413 	free_nandsim(ns);    /* Free nandsim private resources */
2414 	nand_release(nsmtd); /* Unregister driver */
2415 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2416 		kfree(ns->partitions[i].name);
2417 	kfree(nsmtd);        /* Free other structures */
2418 	free_lists();
2419 }
2420 
2421 module_exit(ns_cleanup_module);
2422 
2423 MODULE_LICENSE ("GPL");
2424 MODULE_AUTHOR ("Artem B. Bityuckiy");
2425 MODULE_DESCRIPTION ("The NAND flash simulator");
2426