1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_ADRH0]	= 0x0100,
208 
209 	[TXNLCR0]	= 0x0080,
210 	[TXALCR0]	= 0x0084,
211 	[RXNLCR0]	= 0x0088,
212 	[RXALCR0]	= 0x008C,
213 };
214 
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 	SH_ETH_OFFSET_DEFAULTS,
217 
218 	[ECMR]		= 0x0300,
219 	[RFLR]		= 0x0308,
220 	[ECSR]		= 0x0310,
221 	[ECSIPR]	= 0x0318,
222 	[PIR]		= 0x0320,
223 	[PSR]		= 0x0328,
224 	[RDMLR]		= 0x0340,
225 	[IPGR]		= 0x0350,
226 	[APR]		= 0x0354,
227 	[MPR]		= 0x0358,
228 	[RFCF]		= 0x0360,
229 	[TPAUSER]	= 0x0364,
230 	[TPAUSECR]	= 0x0368,
231 	[MAHR]		= 0x03c0,
232 	[MALR]		= 0x03c8,
233 	[TROCR]		= 0x03d0,
234 	[CDCR]		= 0x03d4,
235 	[LCCR]		= 0x03d8,
236 	[CNDCR]		= 0x03dc,
237 	[CEFCR]		= 0x03e4,
238 	[FRECR]		= 0x03e8,
239 	[TSFRCR]	= 0x03ec,
240 	[TLFRCR]	= 0x03f0,
241 	[RFCR]		= 0x03f4,
242 	[MAFCR]		= 0x03f8,
243 
244 	[EDMR]		= 0x0200,
245 	[EDTRR]		= 0x0208,
246 	[EDRRR]		= 0x0210,
247 	[TDLAR]		= 0x0218,
248 	[RDLAR]		= 0x0220,
249 	[EESR]		= 0x0228,
250 	[EESIPR]	= 0x0230,
251 	[TRSCER]	= 0x0238,
252 	[RMFCR]		= 0x0240,
253 	[TFTR]		= 0x0248,
254 	[FDR]		= 0x0250,
255 	[RMCR]		= 0x0258,
256 	[TFUCR]		= 0x0264,
257 	[RFOCR]		= 0x0268,
258 	[RMIIMODE]      = 0x026c,
259 	[FCFTR]		= 0x0270,
260 	[TRIMD]		= 0x027c,
261 };
262 
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 	SH_ETH_OFFSET_DEFAULTS,
265 
266 	[ECMR]		= 0x0100,
267 	[RFLR]		= 0x0108,
268 	[ECSR]		= 0x0110,
269 	[ECSIPR]	= 0x0118,
270 	[PIR]		= 0x0120,
271 	[PSR]		= 0x0128,
272 	[RDMLR]		= 0x0140,
273 	[IPGR]		= 0x0150,
274 	[APR]		= 0x0154,
275 	[MPR]		= 0x0158,
276 	[TPAUSER]	= 0x0164,
277 	[RFCF]		= 0x0160,
278 	[TPAUSECR]	= 0x0168,
279 	[BCFRR]		= 0x016c,
280 	[MAHR]		= 0x01c0,
281 	[MALR]		= 0x01c8,
282 	[TROCR]		= 0x01d0,
283 	[CDCR]		= 0x01d4,
284 	[LCCR]		= 0x01d8,
285 	[CNDCR]		= 0x01dc,
286 	[CEFCR]		= 0x01e4,
287 	[FRECR]		= 0x01e8,
288 	[TSFRCR]	= 0x01ec,
289 	[TLFRCR]	= 0x01f0,
290 	[RFCR]		= 0x01f4,
291 	[MAFCR]		= 0x01f8,
292 	[RTRATE]	= 0x01fc,
293 
294 	[EDMR]		= 0x0000,
295 	[EDTRR]		= 0x0008,
296 	[EDRRR]		= 0x0010,
297 	[TDLAR]		= 0x0018,
298 	[RDLAR]		= 0x0020,
299 	[EESR]		= 0x0028,
300 	[EESIPR]	= 0x0030,
301 	[TRSCER]	= 0x0038,
302 	[RMFCR]		= 0x0040,
303 	[TFTR]		= 0x0048,
304 	[FDR]		= 0x0050,
305 	[RMCR]		= 0x0058,
306 	[TFUCR]		= 0x0064,
307 	[RFOCR]		= 0x0068,
308 	[FCFTR]		= 0x0070,
309 	[RPADIR]	= 0x0078,
310 	[TRIMD]		= 0x007c,
311 	[RBWAR]		= 0x00c8,
312 	[RDFAR]		= 0x00cc,
313 	[TBRAR]		= 0x00d4,
314 	[TDFAR]		= 0x00d8,
315 };
316 
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 	SH_ETH_OFFSET_DEFAULTS,
319 
320 	[EDMR]		= 0x0000,
321 	[EDTRR]		= 0x0004,
322 	[EDRRR]		= 0x0008,
323 	[TDLAR]		= 0x000c,
324 	[RDLAR]		= 0x0010,
325 	[EESR]		= 0x0014,
326 	[EESIPR]	= 0x0018,
327 	[TRSCER]	= 0x001c,
328 	[RMFCR]		= 0x0020,
329 	[TFTR]		= 0x0024,
330 	[FDR]		= 0x0028,
331 	[RMCR]		= 0x002c,
332 	[EDOCR]		= 0x0030,
333 	[FCFTR]		= 0x0034,
334 	[RPADIR]	= 0x0038,
335 	[TRIMD]		= 0x003c,
336 	[RBWAR]		= 0x0040,
337 	[RDFAR]		= 0x0044,
338 	[TBRAR]		= 0x004c,
339 	[TDFAR]		= 0x0050,
340 
341 	[ECMR]		= 0x0160,
342 	[ECSR]		= 0x0164,
343 	[ECSIPR]	= 0x0168,
344 	[PIR]		= 0x016c,
345 	[MAHR]		= 0x0170,
346 	[MALR]		= 0x0174,
347 	[RFLR]		= 0x0178,
348 	[PSR]		= 0x017c,
349 	[TROCR]		= 0x0180,
350 	[CDCR]		= 0x0184,
351 	[LCCR]		= 0x0188,
352 	[CNDCR]		= 0x018c,
353 	[CEFCR]		= 0x0194,
354 	[FRECR]		= 0x0198,
355 	[TSFRCR]	= 0x019c,
356 	[TLFRCR]	= 0x01a0,
357 	[RFCR]		= 0x01a4,
358 	[MAFCR]		= 0x01a8,
359 	[IPGR]		= 0x01b4,
360 	[APR]		= 0x01b8,
361 	[MPR]		= 0x01bc,
362 	[TPAUSER]	= 0x01c4,
363 	[BCFR]		= 0x01cc,
364 
365 	[ARSTR]		= 0x0000,
366 	[TSU_CTRST]	= 0x0004,
367 	[TSU_FWEN0]	= 0x0010,
368 	[TSU_FWEN1]	= 0x0014,
369 	[TSU_FCM]	= 0x0018,
370 	[TSU_BSYSL0]	= 0x0020,
371 	[TSU_BSYSL1]	= 0x0024,
372 	[TSU_PRISL0]	= 0x0028,
373 	[TSU_PRISL1]	= 0x002c,
374 	[TSU_FWSL0]	= 0x0030,
375 	[TSU_FWSL1]	= 0x0034,
376 	[TSU_FWSLC]	= 0x0038,
377 	[TSU_QTAGM0]	= 0x0040,
378 	[TSU_QTAGM1]	= 0x0044,
379 	[TSU_ADQT0]	= 0x0048,
380 	[TSU_ADQT1]	= 0x004c,
381 	[TSU_FWSR]	= 0x0050,
382 	[TSU_FWINMK]	= 0x0054,
383 	[TSU_ADSBSY]	= 0x0060,
384 	[TSU_TEN]	= 0x0064,
385 	[TSU_POST1]	= 0x0070,
386 	[TSU_POST2]	= 0x0074,
387 	[TSU_POST3]	= 0x0078,
388 	[TSU_POST4]	= 0x007c,
389 
390 	[TXNLCR0]	= 0x0080,
391 	[TXALCR0]	= 0x0084,
392 	[RXNLCR0]	= 0x0088,
393 	[RXALCR0]	= 0x008c,
394 	[FWNLCR0]	= 0x0090,
395 	[FWALCR0]	= 0x0094,
396 	[TXNLCR1]	= 0x00a0,
397 	[TXALCR1]	= 0x00a0,
398 	[RXNLCR1]	= 0x00a8,
399 	[RXALCR1]	= 0x00ac,
400 	[FWNLCR1]	= 0x00b0,
401 	[FWALCR1]	= 0x00b4,
402 
403 	[TSU_ADRH0]	= 0x0100,
404 };
405 
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408 
sh_eth_write(struct net_device * ndev,u32 data,int enum_index)409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411 	struct sh_eth_private *mdp = netdev_priv(ndev);
412 	u16 offset = mdp->reg_offset[enum_index];
413 
414 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415 		return;
416 
417 	iowrite32(data, mdp->addr + offset);
418 }
419 
sh_eth_read(struct net_device * ndev,int enum_index)420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422 	struct sh_eth_private *mdp = netdev_priv(ndev);
423 	u16 offset = mdp->reg_offset[enum_index];
424 
425 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426 		return ~0U;
427 
428 	return ioread32(mdp->addr + offset);
429 }
430 
sh_eth_is_gether(struct sh_eth_private * mdp)431 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
432 {
433 	return mdp->reg_offset == sh_eth_offset_gigabit;
434 }
435 
sh_eth_is_rz_fast_ether(struct sh_eth_private * mdp)436 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
437 {
438 	return mdp->reg_offset == sh_eth_offset_fast_rz;
439 }
440 
sh_eth_select_mii(struct net_device * ndev)441 static void sh_eth_select_mii(struct net_device *ndev)
442 {
443 	u32 value = 0x0;
444 	struct sh_eth_private *mdp = netdev_priv(ndev);
445 
446 	switch (mdp->phy_interface) {
447 	case PHY_INTERFACE_MODE_GMII:
448 		value = 0x2;
449 		break;
450 	case PHY_INTERFACE_MODE_MII:
451 		value = 0x1;
452 		break;
453 	case PHY_INTERFACE_MODE_RMII:
454 		value = 0x0;
455 		break;
456 	default:
457 		netdev_warn(ndev,
458 			    "PHY interface mode was not setup. Set to MII.\n");
459 		value = 0x1;
460 		break;
461 	}
462 
463 	sh_eth_write(ndev, value, RMII_MII);
464 }
465 
sh_eth_set_duplex(struct net_device * ndev)466 static void sh_eth_set_duplex(struct net_device *ndev)
467 {
468 	struct sh_eth_private *mdp = netdev_priv(ndev);
469 
470 	if (mdp->duplex) /* Full */
471 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
472 	else		/* Half */
473 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
474 }
475 
476 /* There is CPU dependent code */
sh_eth_set_rate_r8a777x(struct net_device * ndev)477 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
478 {
479 	struct sh_eth_private *mdp = netdev_priv(ndev);
480 
481 	switch (mdp->speed) {
482 	case 10: /* 10BASE */
483 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
484 		break;
485 	case 100:/* 100BASE */
486 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
487 		break;
488 	default:
489 		break;
490 	}
491 }
492 
493 /* R8A7778/9 */
494 static struct sh_eth_cpu_data r8a777x_data = {
495 	.set_duplex	= sh_eth_set_duplex,
496 	.set_rate	= sh_eth_set_rate_r8a777x,
497 
498 	.register_type	= SH_ETH_REG_FAST_RCAR,
499 
500 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
501 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
502 	.eesipr_value	= 0x01ff009f,
503 
504 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
505 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
506 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
507 			  EESR_ECI,
508 	.fdr_value	= 0x00000f0f,
509 
510 	.apr		= 1,
511 	.mpr		= 1,
512 	.tpauser	= 1,
513 	.hw_swap	= 1,
514 };
515 
516 /* R8A7790/1 */
517 static struct sh_eth_cpu_data r8a779x_data = {
518 	.set_duplex	= sh_eth_set_duplex,
519 	.set_rate	= sh_eth_set_rate_r8a777x,
520 
521 	.register_type	= SH_ETH_REG_FAST_RCAR,
522 
523 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
524 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
525 	.eesipr_value	= 0x01ff009f,
526 
527 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
528 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
529 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
530 			  EESR_ECI,
531 	.fdr_value	= 0x00000f0f,
532 
533 	.trscer_err_mask = DESC_I_RINT8,
534 
535 	.apr		= 1,
536 	.mpr		= 1,
537 	.tpauser	= 1,
538 	.hw_swap	= 1,
539 	.rmiimode	= 1,
540 };
541 
sh_eth_set_rate_sh7724(struct net_device * ndev)542 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
543 {
544 	struct sh_eth_private *mdp = netdev_priv(ndev);
545 
546 	switch (mdp->speed) {
547 	case 10: /* 10BASE */
548 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
549 		break;
550 	case 100:/* 100BASE */
551 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
552 		break;
553 	default:
554 		break;
555 	}
556 }
557 
558 /* SH7724 */
559 static struct sh_eth_cpu_data sh7724_data = {
560 	.set_duplex	= sh_eth_set_duplex,
561 	.set_rate	= sh_eth_set_rate_sh7724,
562 
563 	.register_type	= SH_ETH_REG_FAST_SH4,
564 
565 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
566 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
567 	.eesipr_value	= 0x01ff009f,
568 
569 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
570 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
571 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
572 			  EESR_ECI,
573 
574 	.apr		= 1,
575 	.mpr		= 1,
576 	.tpauser	= 1,
577 	.hw_swap	= 1,
578 	.rpadir		= 1,
579 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
580 };
581 
sh_eth_set_rate_sh7757(struct net_device * ndev)582 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
583 {
584 	struct sh_eth_private *mdp = netdev_priv(ndev);
585 
586 	switch (mdp->speed) {
587 	case 10: /* 10BASE */
588 		sh_eth_write(ndev, 0, RTRATE);
589 		break;
590 	case 100:/* 100BASE */
591 		sh_eth_write(ndev, 1, RTRATE);
592 		break;
593 	default:
594 		break;
595 	}
596 }
597 
598 /* SH7757 */
599 static struct sh_eth_cpu_data sh7757_data = {
600 	.set_duplex	= sh_eth_set_duplex,
601 	.set_rate	= sh_eth_set_rate_sh7757,
602 
603 	.register_type	= SH_ETH_REG_FAST_SH4,
604 
605 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
606 
607 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610 			  EESR_ECI,
611 
612 	.irq_flags	= IRQF_SHARED,
613 	.apr		= 1,
614 	.mpr		= 1,
615 	.tpauser	= 1,
616 	.hw_swap	= 1,
617 	.no_ade		= 1,
618 	.rpadir		= 1,
619 	.rpadir_value   = 2 << 16,
620 	.rtrate		= 1,
621 };
622 
623 #define SH_GIGA_ETH_BASE	0xfee00000UL
624 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
625 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
sh_eth_chip_reset_giga(struct net_device * ndev)626 static void sh_eth_chip_reset_giga(struct net_device *ndev)
627 {
628 	int i;
629 	u32 mahr[2], malr[2];
630 
631 	/* save MAHR and MALR */
632 	for (i = 0; i < 2; i++) {
633 		malr[i] = ioread32((void *)GIGA_MALR(i));
634 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
635 	}
636 
637 	/* reset device */
638 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
639 	mdelay(1);
640 
641 	/* restore MAHR and MALR */
642 	for (i = 0; i < 2; i++) {
643 		iowrite32(malr[i], (void *)GIGA_MALR(i));
644 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
645 	}
646 }
647 
sh_eth_set_rate_giga(struct net_device * ndev)648 static void sh_eth_set_rate_giga(struct net_device *ndev)
649 {
650 	struct sh_eth_private *mdp = netdev_priv(ndev);
651 
652 	switch (mdp->speed) {
653 	case 10: /* 10BASE */
654 		sh_eth_write(ndev, 0x00000000, GECMR);
655 		break;
656 	case 100:/* 100BASE */
657 		sh_eth_write(ndev, 0x00000010, GECMR);
658 		break;
659 	case 1000: /* 1000BASE */
660 		sh_eth_write(ndev, 0x00000020, GECMR);
661 		break;
662 	default:
663 		break;
664 	}
665 }
666 
667 /* SH7757(GETHERC) */
668 static struct sh_eth_cpu_data sh7757_data_giga = {
669 	.chip_reset	= sh_eth_chip_reset_giga,
670 	.set_duplex	= sh_eth_set_duplex,
671 	.set_rate	= sh_eth_set_rate_giga,
672 
673 	.register_type	= SH_ETH_REG_GIGABIT,
674 
675 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
676 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
677 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
678 
679 	.tx_check	= EESR_TC1 | EESR_FTC,
680 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
681 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
682 			  EESR_TDE | EESR_ECI,
683 	.fdr_value	= 0x0000072f,
684 
685 	.irq_flags	= IRQF_SHARED,
686 	.apr		= 1,
687 	.mpr		= 1,
688 	.tpauser	= 1,
689 	.bculr		= 1,
690 	.hw_swap	= 1,
691 	.rpadir		= 1,
692 	.rpadir_value   = 2 << 16,
693 	.no_trimd	= 1,
694 	.no_ade		= 1,
695 	.tsu		= 1,
696 };
697 
sh_eth_chip_reset(struct net_device * ndev)698 static void sh_eth_chip_reset(struct net_device *ndev)
699 {
700 	struct sh_eth_private *mdp = netdev_priv(ndev);
701 
702 	/* reset device */
703 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
704 	mdelay(1);
705 }
706 
sh_eth_set_rate_gether(struct net_device * ndev)707 static void sh_eth_set_rate_gether(struct net_device *ndev)
708 {
709 	struct sh_eth_private *mdp = netdev_priv(ndev);
710 
711 	switch (mdp->speed) {
712 	case 10: /* 10BASE */
713 		sh_eth_write(ndev, GECMR_10, GECMR);
714 		break;
715 	case 100:/* 100BASE */
716 		sh_eth_write(ndev, GECMR_100, GECMR);
717 		break;
718 	case 1000: /* 1000BASE */
719 		sh_eth_write(ndev, GECMR_1000, GECMR);
720 		break;
721 	default:
722 		break;
723 	}
724 }
725 
726 /* SH7734 */
727 static struct sh_eth_cpu_data sh7734_data = {
728 	.chip_reset	= sh_eth_chip_reset,
729 	.set_duplex	= sh_eth_set_duplex,
730 	.set_rate	= sh_eth_set_rate_gether,
731 
732 	.register_type	= SH_ETH_REG_GIGABIT,
733 
734 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
735 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
736 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
737 
738 	.tx_check	= EESR_TC1 | EESR_FTC,
739 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
740 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
741 			  EESR_TDE | EESR_ECI,
742 
743 	.apr		= 1,
744 	.mpr		= 1,
745 	.tpauser	= 1,
746 	.bculr		= 1,
747 	.hw_swap	= 1,
748 	.no_trimd	= 1,
749 	.no_ade		= 1,
750 	.tsu		= 1,
751 	.hw_crc		= 1,
752 	.select_mii	= 1,
753 };
754 
755 /* SH7763 */
756 static struct sh_eth_cpu_data sh7763_data = {
757 	.chip_reset	= sh_eth_chip_reset,
758 	.set_duplex	= sh_eth_set_duplex,
759 	.set_rate	= sh_eth_set_rate_gether,
760 
761 	.register_type	= SH_ETH_REG_GIGABIT,
762 
763 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
764 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
765 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
766 
767 	.tx_check	= EESR_TC1 | EESR_FTC,
768 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
769 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
770 			  EESR_ECI,
771 
772 	.apr		= 1,
773 	.mpr		= 1,
774 	.tpauser	= 1,
775 	.bculr		= 1,
776 	.hw_swap	= 1,
777 	.no_trimd	= 1,
778 	.no_ade		= 1,
779 	.tsu		= 1,
780 	.irq_flags	= IRQF_SHARED,
781 };
782 
sh_eth_chip_reset_r8a7740(struct net_device * ndev)783 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
784 {
785 	struct sh_eth_private *mdp = netdev_priv(ndev);
786 
787 	/* reset device */
788 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
789 	mdelay(1);
790 
791 	sh_eth_select_mii(ndev);
792 }
793 
794 /* R8A7740 */
795 static struct sh_eth_cpu_data r8a7740_data = {
796 	.chip_reset	= sh_eth_chip_reset_r8a7740,
797 	.set_duplex	= sh_eth_set_duplex,
798 	.set_rate	= sh_eth_set_rate_gether,
799 
800 	.register_type	= SH_ETH_REG_GIGABIT,
801 
802 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
803 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
804 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
805 
806 	.tx_check	= EESR_TC1 | EESR_FTC,
807 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
808 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
809 			  EESR_TDE | EESR_ECI,
810 	.fdr_value	= 0x0000070f,
811 
812 	.apr		= 1,
813 	.mpr		= 1,
814 	.tpauser	= 1,
815 	.bculr		= 1,
816 	.hw_swap	= 1,
817 	.rpadir		= 1,
818 	.rpadir_value   = 2 << 16,
819 	.no_trimd	= 1,
820 	.no_ade		= 1,
821 	.tsu		= 1,
822 	.select_mii	= 1,
823 	.shift_rd0	= 1,
824 };
825 
826 /* R7S72100 */
827 static struct sh_eth_cpu_data r7s72100_data = {
828 	.chip_reset	= sh_eth_chip_reset,
829 	.set_duplex	= sh_eth_set_duplex,
830 
831 	.register_type	= SH_ETH_REG_FAST_RZ,
832 
833 	.ecsr_value	= ECSR_ICD,
834 	.ecsipr_value	= ECSIPR_ICDIP,
835 	.eesipr_value	= 0xff7f009f,
836 
837 	.tx_check	= EESR_TC1 | EESR_FTC,
838 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
839 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
840 			  EESR_TDE | EESR_ECI,
841 	.fdr_value	= 0x0000070f,
842 
843 	.no_psr		= 1,
844 	.apr		= 1,
845 	.mpr		= 1,
846 	.tpauser	= 1,
847 	.hw_swap	= 1,
848 	.rpadir		= 1,
849 	.rpadir_value   = 2 << 16,
850 	.no_trimd	= 1,
851 	.no_ade		= 1,
852 	.hw_crc		= 1,
853 	.tsu		= 1,
854 	.shift_rd0	= 1,
855 };
856 
857 static struct sh_eth_cpu_data sh7619_data = {
858 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
859 
860 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
861 
862 	.apr		= 1,
863 	.mpr		= 1,
864 	.tpauser	= 1,
865 	.hw_swap	= 1,
866 };
867 
868 static struct sh_eth_cpu_data sh771x_data = {
869 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
870 
871 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
872 	.tsu		= 1,
873 };
874 
sh_eth_set_default_cpu_data(struct sh_eth_cpu_data * cd)875 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
876 {
877 	if (!cd->ecsr_value)
878 		cd->ecsr_value = DEFAULT_ECSR_INIT;
879 
880 	if (!cd->ecsipr_value)
881 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
882 
883 	if (!cd->fcftr_value)
884 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
885 				  DEFAULT_FIFO_F_D_RFD;
886 
887 	if (!cd->fdr_value)
888 		cd->fdr_value = DEFAULT_FDR_INIT;
889 
890 	if (!cd->tx_check)
891 		cd->tx_check = DEFAULT_TX_CHECK;
892 
893 	if (!cd->eesr_err_check)
894 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
895 
896 	if (!cd->trscer_err_mask)
897 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
898 }
899 
sh_eth_check_reset(struct net_device * ndev)900 static int sh_eth_check_reset(struct net_device *ndev)
901 {
902 	int ret = 0;
903 	int cnt = 100;
904 
905 	while (cnt > 0) {
906 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
907 			break;
908 		mdelay(1);
909 		cnt--;
910 	}
911 	if (cnt <= 0) {
912 		netdev_err(ndev, "Device reset failed\n");
913 		ret = -ETIMEDOUT;
914 	}
915 	return ret;
916 }
917 
sh_eth_reset(struct net_device * ndev)918 static int sh_eth_reset(struct net_device *ndev)
919 {
920 	struct sh_eth_private *mdp = netdev_priv(ndev);
921 	int ret = 0;
922 
923 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
924 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
925 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
926 			     EDMR);
927 
928 		ret = sh_eth_check_reset(ndev);
929 		if (ret)
930 			return ret;
931 
932 		/* Table Init */
933 		sh_eth_write(ndev, 0x0, TDLAR);
934 		sh_eth_write(ndev, 0x0, TDFAR);
935 		sh_eth_write(ndev, 0x0, TDFXR);
936 		sh_eth_write(ndev, 0x0, TDFFR);
937 		sh_eth_write(ndev, 0x0, RDLAR);
938 		sh_eth_write(ndev, 0x0, RDFAR);
939 		sh_eth_write(ndev, 0x0, RDFXR);
940 		sh_eth_write(ndev, 0x0, RDFFR);
941 
942 		/* Reset HW CRC register */
943 		if (mdp->cd->hw_crc)
944 			sh_eth_write(ndev, 0x0, CSMR);
945 
946 		/* Select MII mode */
947 		if (mdp->cd->select_mii)
948 			sh_eth_select_mii(ndev);
949 	} else {
950 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
951 			     EDMR);
952 		mdelay(3);
953 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
954 			     EDMR);
955 	}
956 
957 	return ret;
958 }
959 
sh_eth_set_receive_align(struct sk_buff * skb)960 static void sh_eth_set_receive_align(struct sk_buff *skb)
961 {
962 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
963 
964 	if (reserve)
965 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
966 }
967 
968 
969 /* CPU <-> EDMAC endian convert */
cpu_to_edmac(struct sh_eth_private * mdp,u32 x)970 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
971 {
972 	switch (mdp->edmac_endian) {
973 	case EDMAC_LITTLE_ENDIAN:
974 		return cpu_to_le32(x);
975 	case EDMAC_BIG_ENDIAN:
976 		return cpu_to_be32(x);
977 	}
978 	return x;
979 }
980 
edmac_to_cpu(struct sh_eth_private * mdp,u32 x)981 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
982 {
983 	switch (mdp->edmac_endian) {
984 	case EDMAC_LITTLE_ENDIAN:
985 		return le32_to_cpu(x);
986 	case EDMAC_BIG_ENDIAN:
987 		return be32_to_cpu(x);
988 	}
989 	return x;
990 }
991 
992 /* Program the hardware MAC address from dev->dev_addr. */
update_mac_address(struct net_device * ndev)993 static void update_mac_address(struct net_device *ndev)
994 {
995 	sh_eth_write(ndev,
996 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
997 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
998 	sh_eth_write(ndev,
999 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1000 }
1001 
1002 /* Get MAC address from SuperH MAC address register
1003  *
1004  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1005  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1006  * When you want use this device, you must set MAC address in bootloader.
1007  *
1008  */
read_mac_address(struct net_device * ndev,unsigned char * mac)1009 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1010 {
1011 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1012 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1013 	} else {
1014 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
1015 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
1016 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
1017 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
1018 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
1019 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
1020 	}
1021 }
1022 
sh_eth_get_edtrr_trns(struct sh_eth_private * mdp)1023 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1024 {
1025 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1026 		return EDTRR_TRNS_GETHER;
1027 	else
1028 		return EDTRR_TRNS_ETHER;
1029 }
1030 
1031 struct bb_info {
1032 	void (*set_gate)(void *addr);
1033 	struct mdiobb_ctrl ctrl;
1034 	void *addr;
1035 	u32 mmd_msk;/* MMD */
1036 	u32 mdo_msk;
1037 	u32 mdi_msk;
1038 	u32 mdc_msk;
1039 };
1040 
1041 /* PHY bit set */
bb_set(void * addr,u32 msk)1042 static void bb_set(void *addr, u32 msk)
1043 {
1044 	iowrite32(ioread32(addr) | msk, addr);
1045 }
1046 
1047 /* PHY bit clear */
bb_clr(void * addr,u32 msk)1048 static void bb_clr(void *addr, u32 msk)
1049 {
1050 	iowrite32((ioread32(addr) & ~msk), addr);
1051 }
1052 
1053 /* PHY bit read */
bb_read(void * addr,u32 msk)1054 static int bb_read(void *addr, u32 msk)
1055 {
1056 	return (ioread32(addr) & msk) != 0;
1057 }
1058 
1059 /* Data I/O pin control */
sh_mmd_ctrl(struct mdiobb_ctrl * ctrl,int bit)1060 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1061 {
1062 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1063 
1064 	if (bitbang->set_gate)
1065 		bitbang->set_gate(bitbang->addr);
1066 
1067 	if (bit)
1068 		bb_set(bitbang->addr, bitbang->mmd_msk);
1069 	else
1070 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1071 }
1072 
1073 /* Set bit data*/
sh_set_mdio(struct mdiobb_ctrl * ctrl,int bit)1074 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1075 {
1076 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1077 
1078 	if (bitbang->set_gate)
1079 		bitbang->set_gate(bitbang->addr);
1080 
1081 	if (bit)
1082 		bb_set(bitbang->addr, bitbang->mdo_msk);
1083 	else
1084 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1085 }
1086 
1087 /* Get bit data*/
sh_get_mdio(struct mdiobb_ctrl * ctrl)1088 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1089 {
1090 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1091 
1092 	if (bitbang->set_gate)
1093 		bitbang->set_gate(bitbang->addr);
1094 
1095 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1096 }
1097 
1098 /* MDC pin control */
sh_mdc_ctrl(struct mdiobb_ctrl * ctrl,int bit)1099 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1102 
1103 	if (bitbang->set_gate)
1104 		bitbang->set_gate(bitbang->addr);
1105 
1106 	if (bit)
1107 		bb_set(bitbang->addr, bitbang->mdc_msk);
1108 	else
1109 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1110 }
1111 
1112 /* mdio bus control struct */
1113 static struct mdiobb_ops bb_ops = {
1114 	.owner = THIS_MODULE,
1115 	.set_mdc = sh_mdc_ctrl,
1116 	.set_mdio_dir = sh_mmd_ctrl,
1117 	.set_mdio_data = sh_set_mdio,
1118 	.get_mdio_data = sh_get_mdio,
1119 };
1120 
1121 /* free skb and descriptor buffer */
sh_eth_ring_free(struct net_device * ndev)1122 static void sh_eth_ring_free(struct net_device *ndev)
1123 {
1124 	struct sh_eth_private *mdp = netdev_priv(ndev);
1125 	int ringsize, i;
1126 
1127 	/* Free Rx skb ringbuffer */
1128 	if (mdp->rx_skbuff) {
1129 		for (i = 0; i < mdp->num_rx_ring; i++)
1130 			dev_kfree_skb(mdp->rx_skbuff[i]);
1131 	}
1132 	kfree(mdp->rx_skbuff);
1133 	mdp->rx_skbuff = NULL;
1134 
1135 	/* Free Tx skb ringbuffer */
1136 	if (mdp->tx_skbuff) {
1137 		for (i = 0; i < mdp->num_tx_ring; i++)
1138 			dev_kfree_skb(mdp->tx_skbuff[i]);
1139 	}
1140 	kfree(mdp->tx_skbuff);
1141 	mdp->tx_skbuff = NULL;
1142 
1143 	if (mdp->rx_ring) {
1144 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1145 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1146 				  mdp->rx_desc_dma);
1147 		mdp->rx_ring = NULL;
1148 	}
1149 
1150 	if (mdp->tx_ring) {
1151 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1152 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1153 				  mdp->tx_desc_dma);
1154 		mdp->tx_ring = NULL;
1155 	}
1156 }
1157 
1158 /* format skb and descriptor buffer */
sh_eth_ring_format(struct net_device * ndev)1159 static void sh_eth_ring_format(struct net_device *ndev)
1160 {
1161 	struct sh_eth_private *mdp = netdev_priv(ndev);
1162 	int i;
1163 	struct sk_buff *skb;
1164 	struct sh_eth_rxdesc *rxdesc = NULL;
1165 	struct sh_eth_txdesc *txdesc = NULL;
1166 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1167 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1168 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1169 	dma_addr_t dma_addr;
1170 	u32 buf_len;
1171 
1172 	mdp->cur_rx = 0;
1173 	mdp->cur_tx = 0;
1174 	mdp->dirty_rx = 0;
1175 	mdp->dirty_tx = 0;
1176 
1177 	memset(mdp->rx_ring, 0, rx_ringsize);
1178 
1179 	/* build Rx ring buffer */
1180 	for (i = 0; i < mdp->num_rx_ring; i++) {
1181 		/* skb */
1182 		mdp->rx_skbuff[i] = NULL;
1183 		skb = netdev_alloc_skb(ndev, skbuff_size);
1184 		if (skb == NULL)
1185 			break;
1186 		sh_eth_set_receive_align(skb);
1187 
1188 		/* The size of the buffer is a multiple of 32 bytes. */
1189 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1190 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1191 					  DMA_FROM_DEVICE);
1192 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1193 			kfree_skb(skb);
1194 			break;
1195 		}
1196 		mdp->rx_skbuff[i] = skb;
1197 
1198 		/* RX descriptor */
1199 		rxdesc = &mdp->rx_ring[i];
1200 		rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1201 		rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1202 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1203 
1204 		/* Rx descriptor address set */
1205 		if (i == 0) {
1206 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1207 			if (sh_eth_is_gether(mdp) ||
1208 			    sh_eth_is_rz_fast_ether(mdp))
1209 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1210 		}
1211 	}
1212 
1213 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1214 
1215 	/* Mark the last entry as wrapping the ring. */
1216 	if (rxdesc)
1217 		rxdesc->status |= cpu_to_edmac(mdp, RD_RDLE);
1218 
1219 	memset(mdp->tx_ring, 0, tx_ringsize);
1220 
1221 	/* build Tx ring buffer */
1222 	for (i = 0; i < mdp->num_tx_ring; i++) {
1223 		mdp->tx_skbuff[i] = NULL;
1224 		txdesc = &mdp->tx_ring[i];
1225 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1226 		txdesc->len = cpu_to_edmac(mdp, 0);
1227 		if (i == 0) {
1228 			/* Tx descriptor address set */
1229 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1230 			if (sh_eth_is_gether(mdp) ||
1231 			    sh_eth_is_rz_fast_ether(mdp))
1232 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1233 		}
1234 	}
1235 
1236 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1237 }
1238 
1239 /* Get skb and descriptor buffer */
sh_eth_ring_init(struct net_device * ndev)1240 static int sh_eth_ring_init(struct net_device *ndev)
1241 {
1242 	struct sh_eth_private *mdp = netdev_priv(ndev);
1243 	int rx_ringsize, tx_ringsize;
1244 
1245 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1246 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1247 	 * the first 2 bytes, and +16 gets room for the status word from the
1248 	 * card.
1249 	 */
1250 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1251 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1252 	if (mdp->cd->rpadir)
1253 		mdp->rx_buf_sz += NET_IP_ALIGN;
1254 
1255 	/* Allocate RX and TX skb rings */
1256 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1257 				 GFP_KERNEL);
1258 	if (!mdp->rx_skbuff)
1259 		return -ENOMEM;
1260 
1261 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1262 				 GFP_KERNEL);
1263 	if (!mdp->tx_skbuff)
1264 		goto ring_free;
1265 
1266 	/* Allocate all Rx descriptors. */
1267 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1268 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1269 					  GFP_KERNEL);
1270 	if (!mdp->rx_ring)
1271 		goto ring_free;
1272 
1273 	mdp->dirty_rx = 0;
1274 
1275 	/* Allocate all Tx descriptors. */
1276 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1277 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1278 					  GFP_KERNEL);
1279 	if (!mdp->tx_ring)
1280 		goto ring_free;
1281 	return 0;
1282 
1283 ring_free:
1284 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1285 	sh_eth_ring_free(ndev);
1286 
1287 	return -ENOMEM;
1288 }
1289 
sh_eth_dev_init(struct net_device * ndev,bool start)1290 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1291 {
1292 	int ret = 0;
1293 	struct sh_eth_private *mdp = netdev_priv(ndev);
1294 	u32 val;
1295 
1296 	/* Soft Reset */
1297 	ret = sh_eth_reset(ndev);
1298 	if (ret)
1299 		return ret;
1300 
1301 	if (mdp->cd->rmiimode)
1302 		sh_eth_write(ndev, 0x1, RMIIMODE);
1303 
1304 	/* Descriptor format */
1305 	sh_eth_ring_format(ndev);
1306 	if (mdp->cd->rpadir)
1307 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1308 
1309 	/* all sh_eth int mask */
1310 	sh_eth_write(ndev, 0, EESIPR);
1311 
1312 #if defined(__LITTLE_ENDIAN)
1313 	if (mdp->cd->hw_swap)
1314 		sh_eth_write(ndev, EDMR_EL, EDMR);
1315 	else
1316 #endif
1317 		sh_eth_write(ndev, 0, EDMR);
1318 
1319 	/* FIFO size set */
1320 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1321 	sh_eth_write(ndev, 0, TFTR);
1322 
1323 	/* Frame recv control (enable multiple-packets per rx irq) */
1324 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1325 
1326 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1327 
1328 	if (mdp->cd->bculr)
1329 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1330 
1331 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1332 
1333 	if (!mdp->cd->no_trimd)
1334 		sh_eth_write(ndev, 0, TRIMD);
1335 
1336 	/* Recv frame limit set register */
1337 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1338 		     RFLR);
1339 
1340 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1341 	if (start) {
1342 		mdp->irq_enabled = true;
1343 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1344 	}
1345 
1346 	/* PAUSE Prohibition */
1347 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1348 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1349 
1350 	sh_eth_write(ndev, val, ECMR);
1351 
1352 	if (mdp->cd->set_rate)
1353 		mdp->cd->set_rate(ndev);
1354 
1355 	/* E-MAC Status Register clear */
1356 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1357 
1358 	/* E-MAC Interrupt Enable register */
1359 	if (start)
1360 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1361 
1362 	/* Set MAC address */
1363 	update_mac_address(ndev);
1364 
1365 	/* mask reset */
1366 	if (mdp->cd->apr)
1367 		sh_eth_write(ndev, APR_AP, APR);
1368 	if (mdp->cd->mpr)
1369 		sh_eth_write(ndev, MPR_MP, MPR);
1370 	if (mdp->cd->tpauser)
1371 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1372 
1373 	if (start) {
1374 		/* Setting the Rx mode will start the Rx process. */
1375 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1376 
1377 		netif_start_queue(ndev);
1378 	}
1379 
1380 	return ret;
1381 }
1382 
sh_eth_dev_exit(struct net_device * ndev)1383 static void sh_eth_dev_exit(struct net_device *ndev)
1384 {
1385 	struct sh_eth_private *mdp = netdev_priv(ndev);
1386 	int i;
1387 
1388 	/* Deactivate all TX descriptors, so DMA should stop at next
1389 	 * packet boundary if it's currently running
1390 	 */
1391 	for (i = 0; i < mdp->num_tx_ring; i++)
1392 		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1393 
1394 	/* Disable TX FIFO egress to MAC */
1395 	sh_eth_rcv_snd_disable(ndev);
1396 
1397 	/* Stop RX DMA at next packet boundary */
1398 	sh_eth_write(ndev, 0, EDRRR);
1399 
1400 	/* Aside from TX DMA, we can't tell when the hardware is
1401 	 * really stopped, so we need to reset to make sure.
1402 	 * Before doing that, wait for long enough to *probably*
1403 	 * finish transmitting the last packet and poll stats.
1404 	 */
1405 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1406 	sh_eth_get_stats(ndev);
1407 	sh_eth_reset(ndev);
1408 
1409 	/* Set MAC address again */
1410 	update_mac_address(ndev);
1411 }
1412 
1413 /* free Tx skb function */
sh_eth_txfree(struct net_device * ndev)1414 static int sh_eth_txfree(struct net_device *ndev)
1415 {
1416 	struct sh_eth_private *mdp = netdev_priv(ndev);
1417 	struct sh_eth_txdesc *txdesc;
1418 	int free_num = 0;
1419 	int entry = 0;
1420 
1421 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1422 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1423 		txdesc = &mdp->tx_ring[entry];
1424 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1425 			break;
1426 		/* TACT bit must be checked before all the following reads */
1427 		dma_rmb();
1428 		netif_info(mdp, tx_done, ndev,
1429 			   "tx entry %d status 0x%08x\n",
1430 			   entry, edmac_to_cpu(mdp, txdesc->status));
1431 		/* Free the original skb. */
1432 		if (mdp->tx_skbuff[entry]) {
1433 			dma_unmap_single(&ndev->dev,
1434 					 edmac_to_cpu(mdp, txdesc->addr),
1435 					 edmac_to_cpu(mdp, txdesc->len) >> 16,
1436 					 DMA_TO_DEVICE);
1437 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1438 			mdp->tx_skbuff[entry] = NULL;
1439 			free_num++;
1440 		}
1441 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1442 		if (entry >= mdp->num_tx_ring - 1)
1443 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1444 
1445 		ndev->stats.tx_packets++;
1446 		ndev->stats.tx_bytes += edmac_to_cpu(mdp, txdesc->len) >> 16;
1447 	}
1448 	return free_num;
1449 }
1450 
1451 /* Packet receive function */
sh_eth_rx(struct net_device * ndev,u32 intr_status,int * quota)1452 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1453 {
1454 	struct sh_eth_private *mdp = netdev_priv(ndev);
1455 	struct sh_eth_rxdesc *rxdesc;
1456 
1457 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1458 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1459 	int limit;
1460 	struct sk_buff *skb;
1461 	u16 pkt_len = 0;
1462 	u32 desc_status;
1463 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1464 	dma_addr_t dma_addr;
1465 	u32 buf_len;
1466 
1467 	boguscnt = min(boguscnt, *quota);
1468 	limit = boguscnt;
1469 	rxdesc = &mdp->rx_ring[entry];
1470 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1471 		/* RACT bit must be checked before all the following reads */
1472 		dma_rmb();
1473 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1474 		pkt_len = edmac_to_cpu(mdp, rxdesc->len) & RD_RFL;
1475 
1476 		if (--boguscnt < 0)
1477 			break;
1478 
1479 		netif_info(mdp, rx_status, ndev,
1480 			   "rx entry %d status 0x%08x len %d\n",
1481 			   entry, desc_status, pkt_len);
1482 
1483 		if (!(desc_status & RDFEND))
1484 			ndev->stats.rx_length_errors++;
1485 
1486 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1487 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1488 		 * bit 0. However, in case of the R8A7740 and R7S72100
1489 		 * the RFS bits are from bit 25 to bit 16. So, the
1490 		 * driver needs right shifting by 16.
1491 		 */
1492 		if (mdp->cd->shift_rd0)
1493 			desc_status >>= 16;
1494 
1495 		skb = mdp->rx_skbuff[entry];
1496 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1497 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1498 			ndev->stats.rx_errors++;
1499 			if (desc_status & RD_RFS1)
1500 				ndev->stats.rx_crc_errors++;
1501 			if (desc_status & RD_RFS2)
1502 				ndev->stats.rx_frame_errors++;
1503 			if (desc_status & RD_RFS3)
1504 				ndev->stats.rx_length_errors++;
1505 			if (desc_status & RD_RFS4)
1506 				ndev->stats.rx_length_errors++;
1507 			if (desc_status & RD_RFS6)
1508 				ndev->stats.rx_missed_errors++;
1509 			if (desc_status & RD_RFS10)
1510 				ndev->stats.rx_over_errors++;
1511 		} else	if (skb) {
1512 			dma_addr = edmac_to_cpu(mdp, rxdesc->addr);
1513 			if (!mdp->cd->hw_swap)
1514 				sh_eth_soft_swap(
1515 					phys_to_virt(ALIGN(dma_addr, 4)),
1516 					pkt_len + 2);
1517 			mdp->rx_skbuff[entry] = NULL;
1518 			if (mdp->cd->rpadir)
1519 				skb_reserve(skb, NET_IP_ALIGN);
1520 			dma_unmap_single(&ndev->dev, dma_addr,
1521 					 ALIGN(mdp->rx_buf_sz, 32),
1522 					 DMA_FROM_DEVICE);
1523 			skb_put(skb, pkt_len);
1524 			skb->protocol = eth_type_trans(skb, ndev);
1525 			netif_receive_skb(skb);
1526 			ndev->stats.rx_packets++;
1527 			ndev->stats.rx_bytes += pkt_len;
1528 			if (desc_status & RD_RFS8)
1529 				ndev->stats.multicast++;
1530 		}
1531 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1532 		rxdesc = &mdp->rx_ring[entry];
1533 	}
1534 
1535 	/* Refill the Rx ring buffers. */
1536 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1537 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1538 		rxdesc = &mdp->rx_ring[entry];
1539 		/* The size of the buffer is 32 byte boundary. */
1540 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1541 		rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1542 
1543 		if (mdp->rx_skbuff[entry] == NULL) {
1544 			skb = netdev_alloc_skb(ndev, skbuff_size);
1545 			if (skb == NULL)
1546 				break;	/* Better luck next round. */
1547 			sh_eth_set_receive_align(skb);
1548 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1549 						  buf_len, DMA_FROM_DEVICE);
1550 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1551 				kfree_skb(skb);
1552 				break;
1553 			}
1554 			mdp->rx_skbuff[entry] = skb;
1555 
1556 			skb_checksum_none_assert(skb);
1557 			rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1558 		}
1559 		dma_wmb(); /* RACT bit must be set after all the above writes */
1560 		if (entry >= mdp->num_rx_ring - 1)
1561 			rxdesc->status |=
1562 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDLE);
1563 		else
1564 			rxdesc->status |=
1565 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1566 	}
1567 
1568 	/* Restart Rx engine if stopped. */
1569 	/* If we don't need to check status, don't. -KDU */
1570 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1571 		/* fix the values for the next receiving if RDE is set */
1572 		if (intr_status & EESR_RDE &&
1573 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1574 			u32 count = (sh_eth_read(ndev, RDFAR) -
1575 				     sh_eth_read(ndev, RDLAR)) >> 4;
1576 
1577 			mdp->cur_rx = count;
1578 			mdp->dirty_rx = count;
1579 		}
1580 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1581 	}
1582 
1583 	*quota -= limit - boguscnt - 1;
1584 
1585 	return *quota <= 0;
1586 }
1587 
sh_eth_rcv_snd_disable(struct net_device * ndev)1588 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1589 {
1590 	/* disable tx and rx */
1591 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1592 		~(ECMR_RE | ECMR_TE), ECMR);
1593 }
1594 
sh_eth_rcv_snd_enable(struct net_device * ndev)1595 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1596 {
1597 	/* enable tx and rx */
1598 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1599 		(ECMR_RE | ECMR_TE), ECMR);
1600 }
1601 
1602 /* error control function */
sh_eth_error(struct net_device * ndev,u32 intr_status)1603 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1604 {
1605 	struct sh_eth_private *mdp = netdev_priv(ndev);
1606 	u32 felic_stat;
1607 	u32 link_stat;
1608 	u32 mask;
1609 
1610 	if (intr_status & EESR_ECI) {
1611 		felic_stat = sh_eth_read(ndev, ECSR);
1612 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1613 		if (felic_stat & ECSR_ICD)
1614 			ndev->stats.tx_carrier_errors++;
1615 		if (felic_stat & ECSR_LCHNG) {
1616 			/* Link Changed */
1617 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1618 				goto ignore_link;
1619 			} else {
1620 				link_stat = (sh_eth_read(ndev, PSR));
1621 				if (mdp->ether_link_active_low)
1622 					link_stat = ~link_stat;
1623 			}
1624 			if (!(link_stat & PHY_ST_LINK)) {
1625 				sh_eth_rcv_snd_disable(ndev);
1626 			} else {
1627 				/* Link Up */
1628 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1629 						   ~DMAC_M_ECI, EESIPR);
1630 				/* clear int */
1631 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1632 					     ECSR);
1633 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1634 						   DMAC_M_ECI, EESIPR);
1635 				/* enable tx and rx */
1636 				sh_eth_rcv_snd_enable(ndev);
1637 			}
1638 		}
1639 	}
1640 
1641 ignore_link:
1642 	if (intr_status & EESR_TWB) {
1643 		/* Unused write back interrupt */
1644 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1645 			ndev->stats.tx_aborted_errors++;
1646 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1647 		}
1648 	}
1649 
1650 	if (intr_status & EESR_RABT) {
1651 		/* Receive Abort int */
1652 		if (intr_status & EESR_RFRMER) {
1653 			/* Receive Frame Overflow int */
1654 			ndev->stats.rx_frame_errors++;
1655 		}
1656 	}
1657 
1658 	if (intr_status & EESR_TDE) {
1659 		/* Transmit Descriptor Empty int */
1660 		ndev->stats.tx_fifo_errors++;
1661 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1662 	}
1663 
1664 	if (intr_status & EESR_TFE) {
1665 		/* FIFO under flow */
1666 		ndev->stats.tx_fifo_errors++;
1667 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1668 	}
1669 
1670 	if (intr_status & EESR_RDE) {
1671 		/* Receive Descriptor Empty int */
1672 		ndev->stats.rx_over_errors++;
1673 	}
1674 
1675 	if (intr_status & EESR_RFE) {
1676 		/* Receive FIFO Overflow int */
1677 		ndev->stats.rx_fifo_errors++;
1678 	}
1679 
1680 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1681 		/* Address Error */
1682 		ndev->stats.tx_fifo_errors++;
1683 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1684 	}
1685 
1686 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1687 	if (mdp->cd->no_ade)
1688 		mask &= ~EESR_ADE;
1689 	if (intr_status & mask) {
1690 		/* Tx error */
1691 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1692 
1693 		/* dmesg */
1694 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1695 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1696 			   (u32)ndev->state, edtrr);
1697 		/* dirty buffer free */
1698 		sh_eth_txfree(ndev);
1699 
1700 		/* SH7712 BUG */
1701 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1702 			/* tx dma start */
1703 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1704 		}
1705 		/* wakeup */
1706 		netif_wake_queue(ndev);
1707 	}
1708 }
1709 
sh_eth_interrupt(int irq,void * netdev)1710 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1711 {
1712 	struct net_device *ndev = netdev;
1713 	struct sh_eth_private *mdp = netdev_priv(ndev);
1714 	struct sh_eth_cpu_data *cd = mdp->cd;
1715 	irqreturn_t ret = IRQ_NONE;
1716 	u32 intr_status, intr_enable;
1717 
1718 	spin_lock(&mdp->lock);
1719 
1720 	/* Get interrupt status */
1721 	intr_status = sh_eth_read(ndev, EESR);
1722 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1723 	 * enabled since it's the one that  comes thru regardless of the mask,
1724 	 * and we need to fully handle it in sh_eth_error() in order to quench
1725 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1726 	 */
1727 	intr_enable = sh_eth_read(ndev, EESIPR);
1728 	intr_status &= intr_enable | DMAC_M_ECI;
1729 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1730 		ret = IRQ_HANDLED;
1731 	else
1732 		goto out;
1733 
1734 	if (!likely(mdp->irq_enabled)) {
1735 		sh_eth_write(ndev, 0, EESIPR);
1736 		goto out;
1737 	}
1738 
1739 	if (intr_status & EESR_RX_CHECK) {
1740 		if (napi_schedule_prep(&mdp->napi)) {
1741 			/* Mask Rx interrupts */
1742 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1743 				     EESIPR);
1744 			__napi_schedule(&mdp->napi);
1745 		} else {
1746 			netdev_warn(ndev,
1747 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1748 				    intr_status, intr_enable);
1749 		}
1750 	}
1751 
1752 	/* Tx Check */
1753 	if (intr_status & cd->tx_check) {
1754 		/* Clear Tx interrupts */
1755 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1756 
1757 		sh_eth_txfree(ndev);
1758 		netif_wake_queue(ndev);
1759 	}
1760 
1761 	if (intr_status & cd->eesr_err_check) {
1762 		/* Clear error interrupts */
1763 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1764 
1765 		sh_eth_error(ndev, intr_status);
1766 	}
1767 
1768 out:
1769 	spin_unlock(&mdp->lock);
1770 
1771 	return ret;
1772 }
1773 
sh_eth_poll(struct napi_struct * napi,int budget)1774 static int sh_eth_poll(struct napi_struct *napi, int budget)
1775 {
1776 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1777 						  napi);
1778 	struct net_device *ndev = napi->dev;
1779 	int quota = budget;
1780 	u32 intr_status;
1781 
1782 	for (;;) {
1783 		intr_status = sh_eth_read(ndev, EESR);
1784 		if (!(intr_status & EESR_RX_CHECK))
1785 			break;
1786 		/* Clear Rx interrupts */
1787 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1788 
1789 		if (sh_eth_rx(ndev, intr_status, &quota))
1790 			goto out;
1791 	}
1792 
1793 	napi_complete(napi);
1794 
1795 	/* Reenable Rx interrupts */
1796 	if (mdp->irq_enabled)
1797 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1798 out:
1799 	return budget - quota;
1800 }
1801 
1802 /* PHY state control function */
sh_eth_adjust_link(struct net_device * ndev)1803 static void sh_eth_adjust_link(struct net_device *ndev)
1804 {
1805 	struct sh_eth_private *mdp = netdev_priv(ndev);
1806 	struct phy_device *phydev = mdp->phydev;
1807 	int new_state = 0;
1808 
1809 	if (phydev->link) {
1810 		if (phydev->duplex != mdp->duplex) {
1811 			new_state = 1;
1812 			mdp->duplex = phydev->duplex;
1813 			if (mdp->cd->set_duplex)
1814 				mdp->cd->set_duplex(ndev);
1815 		}
1816 
1817 		if (phydev->speed != mdp->speed) {
1818 			new_state = 1;
1819 			mdp->speed = phydev->speed;
1820 			if (mdp->cd->set_rate)
1821 				mdp->cd->set_rate(ndev);
1822 		}
1823 		if (!mdp->link) {
1824 			sh_eth_write(ndev,
1825 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1826 				     ECMR);
1827 			new_state = 1;
1828 			mdp->link = phydev->link;
1829 			if (mdp->cd->no_psr || mdp->no_ether_link)
1830 				sh_eth_rcv_snd_enable(ndev);
1831 		}
1832 	} else if (mdp->link) {
1833 		new_state = 1;
1834 		mdp->link = 0;
1835 		mdp->speed = 0;
1836 		mdp->duplex = -1;
1837 		if (mdp->cd->no_psr || mdp->no_ether_link)
1838 			sh_eth_rcv_snd_disable(ndev);
1839 	}
1840 
1841 	if (new_state && netif_msg_link(mdp))
1842 		phy_print_status(phydev);
1843 }
1844 
1845 /* PHY init function */
sh_eth_phy_init(struct net_device * ndev)1846 static int sh_eth_phy_init(struct net_device *ndev)
1847 {
1848 	struct device_node *np = ndev->dev.parent->of_node;
1849 	struct sh_eth_private *mdp = netdev_priv(ndev);
1850 	struct phy_device *phydev = NULL;
1851 
1852 	mdp->link = 0;
1853 	mdp->speed = 0;
1854 	mdp->duplex = -1;
1855 
1856 	/* Try connect to PHY */
1857 	if (np) {
1858 		struct device_node *pn;
1859 
1860 		pn = of_parse_phandle(np, "phy-handle", 0);
1861 		phydev = of_phy_connect(ndev, pn,
1862 					sh_eth_adjust_link, 0,
1863 					mdp->phy_interface);
1864 
1865 		if (!phydev)
1866 			phydev = ERR_PTR(-ENOENT);
1867 	} else {
1868 		char phy_id[MII_BUS_ID_SIZE + 3];
1869 
1870 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1871 			 mdp->mii_bus->id, mdp->phy_id);
1872 
1873 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1874 				     mdp->phy_interface);
1875 	}
1876 
1877 	if (IS_ERR(phydev)) {
1878 		netdev_err(ndev, "failed to connect PHY\n");
1879 		return PTR_ERR(phydev);
1880 	}
1881 
1882 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1883 		    phydev->addr, phydev->irq, phydev->drv->name);
1884 
1885 	mdp->phydev = phydev;
1886 
1887 	return 0;
1888 }
1889 
1890 /* PHY control start function */
sh_eth_phy_start(struct net_device * ndev)1891 static int sh_eth_phy_start(struct net_device *ndev)
1892 {
1893 	struct sh_eth_private *mdp = netdev_priv(ndev);
1894 	int ret;
1895 
1896 	ret = sh_eth_phy_init(ndev);
1897 	if (ret)
1898 		return ret;
1899 
1900 	phy_start(mdp->phydev);
1901 
1902 	return 0;
1903 }
1904 
sh_eth_get_settings(struct net_device * ndev,struct ethtool_cmd * ecmd)1905 static int sh_eth_get_settings(struct net_device *ndev,
1906 			       struct ethtool_cmd *ecmd)
1907 {
1908 	struct sh_eth_private *mdp = netdev_priv(ndev);
1909 	unsigned long flags;
1910 	int ret;
1911 
1912 	if (!mdp->phydev)
1913 		return -ENODEV;
1914 
1915 	spin_lock_irqsave(&mdp->lock, flags);
1916 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1917 	spin_unlock_irqrestore(&mdp->lock, flags);
1918 
1919 	return ret;
1920 }
1921 
sh_eth_set_settings(struct net_device * ndev,struct ethtool_cmd * ecmd)1922 static int sh_eth_set_settings(struct net_device *ndev,
1923 			       struct ethtool_cmd *ecmd)
1924 {
1925 	struct sh_eth_private *mdp = netdev_priv(ndev);
1926 	unsigned long flags;
1927 	int ret;
1928 
1929 	if (!mdp->phydev)
1930 		return -ENODEV;
1931 
1932 	spin_lock_irqsave(&mdp->lock, flags);
1933 
1934 	/* disable tx and rx */
1935 	sh_eth_rcv_snd_disable(ndev);
1936 
1937 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1938 	if (ret)
1939 		goto error_exit;
1940 
1941 	if (ecmd->duplex == DUPLEX_FULL)
1942 		mdp->duplex = 1;
1943 	else
1944 		mdp->duplex = 0;
1945 
1946 	if (mdp->cd->set_duplex)
1947 		mdp->cd->set_duplex(ndev);
1948 
1949 error_exit:
1950 	mdelay(1);
1951 
1952 	/* enable tx and rx */
1953 	sh_eth_rcv_snd_enable(ndev);
1954 
1955 	spin_unlock_irqrestore(&mdp->lock, flags);
1956 
1957 	return ret;
1958 }
1959 
1960 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1961  * version must be bumped as well.  Just adding registers up to that
1962  * limit is fine, as long as the existing register indices don't
1963  * change.
1964  */
1965 #define SH_ETH_REG_DUMP_VERSION		1
1966 #define SH_ETH_REG_DUMP_MAX_REGS	256
1967 
__sh_eth_get_regs(struct net_device * ndev,u32 * buf)1968 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1969 {
1970 	struct sh_eth_private *mdp = netdev_priv(ndev);
1971 	struct sh_eth_cpu_data *cd = mdp->cd;
1972 	u32 *valid_map;
1973 	size_t len;
1974 
1975 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1976 
1977 	/* Dump starts with a bitmap that tells ethtool which
1978 	 * registers are defined for this chip.
1979 	 */
1980 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1981 	if (buf) {
1982 		valid_map = buf;
1983 		buf += len;
1984 	} else {
1985 		valid_map = NULL;
1986 	}
1987 
1988 	/* Add a register to the dump, if it has a defined offset.
1989 	 * This automatically skips most undefined registers, but for
1990 	 * some it is also necessary to check a capability flag in
1991 	 * struct sh_eth_cpu_data.
1992 	 */
1993 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1994 #define add_reg_from(reg, read_expr) do {				\
1995 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1996 			if (buf) {					\
1997 				mark_reg_valid(reg);			\
1998 				*buf++ = read_expr;			\
1999 			}						\
2000 			++len;						\
2001 		}							\
2002 	} while (0)
2003 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2004 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2005 
2006 	add_reg(EDSR);
2007 	add_reg(EDMR);
2008 	add_reg(EDTRR);
2009 	add_reg(EDRRR);
2010 	add_reg(EESR);
2011 	add_reg(EESIPR);
2012 	add_reg(TDLAR);
2013 	add_reg(TDFAR);
2014 	add_reg(TDFXR);
2015 	add_reg(TDFFR);
2016 	add_reg(RDLAR);
2017 	add_reg(RDFAR);
2018 	add_reg(RDFXR);
2019 	add_reg(RDFFR);
2020 	add_reg(TRSCER);
2021 	add_reg(RMFCR);
2022 	add_reg(TFTR);
2023 	add_reg(FDR);
2024 	add_reg(RMCR);
2025 	add_reg(TFUCR);
2026 	add_reg(RFOCR);
2027 	if (cd->rmiimode)
2028 		add_reg(RMIIMODE);
2029 	add_reg(FCFTR);
2030 	if (cd->rpadir)
2031 		add_reg(RPADIR);
2032 	if (!cd->no_trimd)
2033 		add_reg(TRIMD);
2034 	add_reg(ECMR);
2035 	add_reg(ECSR);
2036 	add_reg(ECSIPR);
2037 	add_reg(PIR);
2038 	if (!cd->no_psr)
2039 		add_reg(PSR);
2040 	add_reg(RDMLR);
2041 	add_reg(RFLR);
2042 	add_reg(IPGR);
2043 	if (cd->apr)
2044 		add_reg(APR);
2045 	if (cd->mpr)
2046 		add_reg(MPR);
2047 	add_reg(RFCR);
2048 	add_reg(RFCF);
2049 	if (cd->tpauser)
2050 		add_reg(TPAUSER);
2051 	add_reg(TPAUSECR);
2052 	add_reg(GECMR);
2053 	if (cd->bculr)
2054 		add_reg(BCULR);
2055 	add_reg(MAHR);
2056 	add_reg(MALR);
2057 	add_reg(TROCR);
2058 	add_reg(CDCR);
2059 	add_reg(LCCR);
2060 	add_reg(CNDCR);
2061 	add_reg(CEFCR);
2062 	add_reg(FRECR);
2063 	add_reg(TSFRCR);
2064 	add_reg(TLFRCR);
2065 	add_reg(CERCR);
2066 	add_reg(CEECR);
2067 	add_reg(MAFCR);
2068 	if (cd->rtrate)
2069 		add_reg(RTRATE);
2070 	if (cd->hw_crc)
2071 		add_reg(CSMR);
2072 	if (cd->select_mii)
2073 		add_reg(RMII_MII);
2074 	add_reg(ARSTR);
2075 	if (cd->tsu) {
2076 		add_tsu_reg(TSU_CTRST);
2077 		add_tsu_reg(TSU_FWEN0);
2078 		add_tsu_reg(TSU_FWEN1);
2079 		add_tsu_reg(TSU_FCM);
2080 		add_tsu_reg(TSU_BSYSL0);
2081 		add_tsu_reg(TSU_BSYSL1);
2082 		add_tsu_reg(TSU_PRISL0);
2083 		add_tsu_reg(TSU_PRISL1);
2084 		add_tsu_reg(TSU_FWSL0);
2085 		add_tsu_reg(TSU_FWSL1);
2086 		add_tsu_reg(TSU_FWSLC);
2087 		add_tsu_reg(TSU_QTAG0);
2088 		add_tsu_reg(TSU_QTAG1);
2089 		add_tsu_reg(TSU_QTAGM0);
2090 		add_tsu_reg(TSU_QTAGM1);
2091 		add_tsu_reg(TSU_FWSR);
2092 		add_tsu_reg(TSU_FWINMK);
2093 		add_tsu_reg(TSU_ADQT0);
2094 		add_tsu_reg(TSU_ADQT1);
2095 		add_tsu_reg(TSU_VTAG0);
2096 		add_tsu_reg(TSU_VTAG1);
2097 		add_tsu_reg(TSU_ADSBSY);
2098 		add_tsu_reg(TSU_TEN);
2099 		add_tsu_reg(TSU_POST1);
2100 		add_tsu_reg(TSU_POST2);
2101 		add_tsu_reg(TSU_POST3);
2102 		add_tsu_reg(TSU_POST4);
2103 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2104 			/* This is the start of a table, not just a single
2105 			 * register.
2106 			 */
2107 			if (buf) {
2108 				unsigned int i;
2109 
2110 				mark_reg_valid(TSU_ADRH0);
2111 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2112 					*buf++ = ioread32(
2113 						mdp->tsu_addr +
2114 						mdp->reg_offset[TSU_ADRH0] +
2115 						i * 4);
2116 			}
2117 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2118 		}
2119 	}
2120 
2121 #undef mark_reg_valid
2122 #undef add_reg_from
2123 #undef add_reg
2124 #undef add_tsu_reg
2125 
2126 	return len * 4;
2127 }
2128 
sh_eth_get_regs_len(struct net_device * ndev)2129 static int sh_eth_get_regs_len(struct net_device *ndev)
2130 {
2131 	return __sh_eth_get_regs(ndev, NULL);
2132 }
2133 
sh_eth_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * buf)2134 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2135 			    void *buf)
2136 {
2137 	struct sh_eth_private *mdp = netdev_priv(ndev);
2138 
2139 	regs->version = SH_ETH_REG_DUMP_VERSION;
2140 
2141 	pm_runtime_get_sync(&mdp->pdev->dev);
2142 	__sh_eth_get_regs(ndev, buf);
2143 	pm_runtime_put_sync(&mdp->pdev->dev);
2144 }
2145 
sh_eth_nway_reset(struct net_device * ndev)2146 static int sh_eth_nway_reset(struct net_device *ndev)
2147 {
2148 	struct sh_eth_private *mdp = netdev_priv(ndev);
2149 	unsigned long flags;
2150 	int ret;
2151 
2152 	if (!mdp->phydev)
2153 		return -ENODEV;
2154 
2155 	spin_lock_irqsave(&mdp->lock, flags);
2156 	ret = phy_start_aneg(mdp->phydev);
2157 	spin_unlock_irqrestore(&mdp->lock, flags);
2158 
2159 	return ret;
2160 }
2161 
sh_eth_get_msglevel(struct net_device * ndev)2162 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2163 {
2164 	struct sh_eth_private *mdp = netdev_priv(ndev);
2165 	return mdp->msg_enable;
2166 }
2167 
sh_eth_set_msglevel(struct net_device * ndev,u32 value)2168 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2169 {
2170 	struct sh_eth_private *mdp = netdev_priv(ndev);
2171 	mdp->msg_enable = value;
2172 }
2173 
2174 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2175 	"rx_current", "tx_current",
2176 	"rx_dirty", "tx_dirty",
2177 };
2178 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2179 
sh_eth_get_sset_count(struct net_device * netdev,int sset)2180 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2181 {
2182 	switch (sset) {
2183 	case ETH_SS_STATS:
2184 		return SH_ETH_STATS_LEN;
2185 	default:
2186 		return -EOPNOTSUPP;
2187 	}
2188 }
2189 
sh_eth_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * stats,u64 * data)2190 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2191 				     struct ethtool_stats *stats, u64 *data)
2192 {
2193 	struct sh_eth_private *mdp = netdev_priv(ndev);
2194 	int i = 0;
2195 
2196 	/* device-specific stats */
2197 	data[i++] = mdp->cur_rx;
2198 	data[i++] = mdp->cur_tx;
2199 	data[i++] = mdp->dirty_rx;
2200 	data[i++] = mdp->dirty_tx;
2201 }
2202 
sh_eth_get_strings(struct net_device * ndev,u32 stringset,u8 * data)2203 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2204 {
2205 	switch (stringset) {
2206 	case ETH_SS_STATS:
2207 		memcpy(data, *sh_eth_gstrings_stats,
2208 		       sizeof(sh_eth_gstrings_stats));
2209 		break;
2210 	}
2211 }
2212 
sh_eth_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)2213 static void sh_eth_get_ringparam(struct net_device *ndev,
2214 				 struct ethtool_ringparam *ring)
2215 {
2216 	struct sh_eth_private *mdp = netdev_priv(ndev);
2217 
2218 	ring->rx_max_pending = RX_RING_MAX;
2219 	ring->tx_max_pending = TX_RING_MAX;
2220 	ring->rx_pending = mdp->num_rx_ring;
2221 	ring->tx_pending = mdp->num_tx_ring;
2222 }
2223 
sh_eth_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)2224 static int sh_eth_set_ringparam(struct net_device *ndev,
2225 				struct ethtool_ringparam *ring)
2226 {
2227 	struct sh_eth_private *mdp = netdev_priv(ndev);
2228 	int ret;
2229 
2230 	if (ring->tx_pending > TX_RING_MAX ||
2231 	    ring->rx_pending > RX_RING_MAX ||
2232 	    ring->tx_pending < TX_RING_MIN ||
2233 	    ring->rx_pending < RX_RING_MIN)
2234 		return -EINVAL;
2235 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2236 		return -EINVAL;
2237 
2238 	if (netif_running(ndev)) {
2239 		netif_device_detach(ndev);
2240 		netif_tx_disable(ndev);
2241 
2242 		/* Serialise with the interrupt handler and NAPI, then
2243 		 * disable interrupts.  We have to clear the
2244 		 * irq_enabled flag first to ensure that interrupts
2245 		 * won't be re-enabled.
2246 		 */
2247 		mdp->irq_enabled = false;
2248 		synchronize_irq(ndev->irq);
2249 		napi_synchronize(&mdp->napi);
2250 		sh_eth_write(ndev, 0x0000, EESIPR);
2251 
2252 		sh_eth_dev_exit(ndev);
2253 
2254 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2255 		sh_eth_ring_free(ndev);
2256 	}
2257 
2258 	/* Set new parameters */
2259 	mdp->num_rx_ring = ring->rx_pending;
2260 	mdp->num_tx_ring = ring->tx_pending;
2261 
2262 	if (netif_running(ndev)) {
2263 		ret = sh_eth_ring_init(ndev);
2264 		if (ret < 0) {
2265 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2266 				   __func__);
2267 			return ret;
2268 		}
2269 		ret = sh_eth_dev_init(ndev, false);
2270 		if (ret < 0) {
2271 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2272 				   __func__);
2273 			return ret;
2274 		}
2275 
2276 		mdp->irq_enabled = true;
2277 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2278 		/* Setting the Rx mode will start the Rx process. */
2279 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2280 		netif_device_attach(ndev);
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static const struct ethtool_ops sh_eth_ethtool_ops = {
2287 	.get_settings	= sh_eth_get_settings,
2288 	.set_settings	= sh_eth_set_settings,
2289 	.get_regs_len	= sh_eth_get_regs_len,
2290 	.get_regs	= sh_eth_get_regs,
2291 	.nway_reset	= sh_eth_nway_reset,
2292 	.get_msglevel	= sh_eth_get_msglevel,
2293 	.set_msglevel	= sh_eth_set_msglevel,
2294 	.get_link	= ethtool_op_get_link,
2295 	.get_strings	= sh_eth_get_strings,
2296 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2297 	.get_sset_count     = sh_eth_get_sset_count,
2298 	.get_ringparam	= sh_eth_get_ringparam,
2299 	.set_ringparam	= sh_eth_set_ringparam,
2300 };
2301 
2302 /* network device open function */
sh_eth_open(struct net_device * ndev)2303 static int sh_eth_open(struct net_device *ndev)
2304 {
2305 	int ret = 0;
2306 	struct sh_eth_private *mdp = netdev_priv(ndev);
2307 
2308 	pm_runtime_get_sync(&mdp->pdev->dev);
2309 
2310 	napi_enable(&mdp->napi);
2311 
2312 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2313 			  mdp->cd->irq_flags, ndev->name, ndev);
2314 	if (ret) {
2315 		netdev_err(ndev, "Can not assign IRQ number\n");
2316 		goto out_napi_off;
2317 	}
2318 
2319 	/* Descriptor set */
2320 	ret = sh_eth_ring_init(ndev);
2321 	if (ret)
2322 		goto out_free_irq;
2323 
2324 	/* device init */
2325 	ret = sh_eth_dev_init(ndev, true);
2326 	if (ret)
2327 		goto out_free_irq;
2328 
2329 	/* PHY control start*/
2330 	ret = sh_eth_phy_start(ndev);
2331 	if (ret)
2332 		goto out_free_irq;
2333 
2334 	mdp->is_opened = 1;
2335 
2336 	return ret;
2337 
2338 out_free_irq:
2339 	free_irq(ndev->irq, ndev);
2340 out_napi_off:
2341 	napi_disable(&mdp->napi);
2342 	pm_runtime_put_sync(&mdp->pdev->dev);
2343 	return ret;
2344 }
2345 
2346 /* Timeout function */
sh_eth_tx_timeout(struct net_device * ndev)2347 static void sh_eth_tx_timeout(struct net_device *ndev)
2348 {
2349 	struct sh_eth_private *mdp = netdev_priv(ndev);
2350 	struct sh_eth_rxdesc *rxdesc;
2351 	int i;
2352 
2353 	netif_stop_queue(ndev);
2354 
2355 	netif_err(mdp, timer, ndev,
2356 		  "transmit timed out, status %8.8x, resetting...\n",
2357 		  sh_eth_read(ndev, EESR));
2358 
2359 	/* tx_errors count up */
2360 	ndev->stats.tx_errors++;
2361 
2362 	/* Free all the skbuffs in the Rx queue. */
2363 	for (i = 0; i < mdp->num_rx_ring; i++) {
2364 		rxdesc = &mdp->rx_ring[i];
2365 		rxdesc->status = cpu_to_edmac(mdp, 0);
2366 		rxdesc->addr = cpu_to_edmac(mdp, 0xBADF00D0);
2367 		dev_kfree_skb(mdp->rx_skbuff[i]);
2368 		mdp->rx_skbuff[i] = NULL;
2369 	}
2370 	for (i = 0; i < mdp->num_tx_ring; i++) {
2371 		dev_kfree_skb(mdp->tx_skbuff[i]);
2372 		mdp->tx_skbuff[i] = NULL;
2373 	}
2374 
2375 	/* device init */
2376 	sh_eth_dev_init(ndev, true);
2377 }
2378 
2379 /* Packet transmit function */
sh_eth_start_xmit(struct sk_buff * skb,struct net_device * ndev)2380 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2381 {
2382 	struct sh_eth_private *mdp = netdev_priv(ndev);
2383 	struct sh_eth_txdesc *txdesc;
2384 	dma_addr_t dma_addr;
2385 	u32 entry;
2386 	unsigned long flags;
2387 
2388 	spin_lock_irqsave(&mdp->lock, flags);
2389 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2390 		if (!sh_eth_txfree(ndev)) {
2391 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2392 			netif_stop_queue(ndev);
2393 			spin_unlock_irqrestore(&mdp->lock, flags);
2394 			return NETDEV_TX_BUSY;
2395 		}
2396 	}
2397 	spin_unlock_irqrestore(&mdp->lock, flags);
2398 
2399 	if (skb_put_padto(skb, ETH_ZLEN))
2400 		return NETDEV_TX_OK;
2401 
2402 	entry = mdp->cur_tx % mdp->num_tx_ring;
2403 	mdp->tx_skbuff[entry] = skb;
2404 	txdesc = &mdp->tx_ring[entry];
2405 	/* soft swap. */
2406 	if (!mdp->cd->hw_swap)
2407 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2408 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2409 				  DMA_TO_DEVICE);
2410 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2411 		kfree_skb(skb);
2412 		return NETDEV_TX_OK;
2413 	}
2414 	txdesc->addr = cpu_to_edmac(mdp, dma_addr);
2415 	txdesc->len  = cpu_to_edmac(mdp, skb->len << 16);
2416 
2417 	dma_wmb(); /* TACT bit must be set after all the above writes */
2418 	if (entry >= mdp->num_tx_ring - 1)
2419 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2420 	else
2421 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2422 
2423 	mdp->cur_tx++;
2424 
2425 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2426 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2427 
2428 	return NETDEV_TX_OK;
2429 }
2430 
2431 /* The statistics registers have write-clear behaviour, which means we
2432  * will lose any increment between the read and write.  We mitigate
2433  * this by only clearing when we read a non-zero value, so we will
2434  * never falsely report a total of zero.
2435  */
2436 static void
sh_eth_update_stat(struct net_device * ndev,unsigned long * stat,int reg)2437 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2438 {
2439 	u32 delta = sh_eth_read(ndev, reg);
2440 
2441 	if (delta) {
2442 		*stat += delta;
2443 		sh_eth_write(ndev, 0, reg);
2444 	}
2445 }
2446 
sh_eth_get_stats(struct net_device * ndev)2447 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2448 {
2449 	struct sh_eth_private *mdp = netdev_priv(ndev);
2450 
2451 	if (sh_eth_is_rz_fast_ether(mdp))
2452 		return &ndev->stats;
2453 
2454 	if (!mdp->is_opened)
2455 		return &ndev->stats;
2456 
2457 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2458 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2459 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2460 
2461 	if (sh_eth_is_gether(mdp)) {
2462 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2463 				   CERCR);
2464 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2465 				   CEECR);
2466 	} else {
2467 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2468 				   CNDCR);
2469 	}
2470 
2471 	return &ndev->stats;
2472 }
2473 
2474 /* device close function */
sh_eth_close(struct net_device * ndev)2475 static int sh_eth_close(struct net_device *ndev)
2476 {
2477 	struct sh_eth_private *mdp = netdev_priv(ndev);
2478 
2479 	netif_stop_queue(ndev);
2480 
2481 	/* Serialise with the interrupt handler and NAPI, then disable
2482 	 * interrupts.  We have to clear the irq_enabled flag first to
2483 	 * ensure that interrupts won't be re-enabled.
2484 	 */
2485 	mdp->irq_enabled = false;
2486 	synchronize_irq(ndev->irq);
2487 	napi_disable(&mdp->napi);
2488 	sh_eth_write(ndev, 0x0000, EESIPR);
2489 
2490 	sh_eth_dev_exit(ndev);
2491 
2492 	/* PHY Disconnect */
2493 	if (mdp->phydev) {
2494 		phy_stop(mdp->phydev);
2495 		phy_disconnect(mdp->phydev);
2496 		mdp->phydev = NULL;
2497 	}
2498 
2499 	free_irq(ndev->irq, ndev);
2500 
2501 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2502 	sh_eth_ring_free(ndev);
2503 
2504 	pm_runtime_put_sync(&mdp->pdev->dev);
2505 
2506 	mdp->is_opened = 0;
2507 
2508 	return 0;
2509 }
2510 
2511 /* ioctl to device function */
sh_eth_do_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2512 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2513 {
2514 	struct sh_eth_private *mdp = netdev_priv(ndev);
2515 	struct phy_device *phydev = mdp->phydev;
2516 
2517 	if (!netif_running(ndev))
2518 		return -EINVAL;
2519 
2520 	if (!phydev)
2521 		return -ENODEV;
2522 
2523 	return phy_mii_ioctl(phydev, rq, cmd);
2524 }
2525 
2526 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
sh_eth_tsu_get_post_reg_offset(struct sh_eth_private * mdp,int entry)2527 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2528 					    int entry)
2529 {
2530 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2531 }
2532 
sh_eth_tsu_get_post_mask(int entry)2533 static u32 sh_eth_tsu_get_post_mask(int entry)
2534 {
2535 	return 0x0f << (28 - ((entry % 8) * 4));
2536 }
2537 
sh_eth_tsu_get_post_bit(struct sh_eth_private * mdp,int entry)2538 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2539 {
2540 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2541 }
2542 
sh_eth_tsu_enable_cam_entry_post(struct net_device * ndev,int entry)2543 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2544 					     int entry)
2545 {
2546 	struct sh_eth_private *mdp = netdev_priv(ndev);
2547 	u32 tmp;
2548 	void *reg_offset;
2549 
2550 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2551 	tmp = ioread32(reg_offset);
2552 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2553 }
2554 
sh_eth_tsu_disable_cam_entry_post(struct net_device * ndev,int entry)2555 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2556 					      int entry)
2557 {
2558 	struct sh_eth_private *mdp = netdev_priv(ndev);
2559 	u32 post_mask, ref_mask, tmp;
2560 	void *reg_offset;
2561 
2562 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2563 	post_mask = sh_eth_tsu_get_post_mask(entry);
2564 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2565 
2566 	tmp = ioread32(reg_offset);
2567 	iowrite32(tmp & ~post_mask, reg_offset);
2568 
2569 	/* If other port enables, the function returns "true" */
2570 	return tmp & ref_mask;
2571 }
2572 
sh_eth_tsu_busy(struct net_device * ndev)2573 static int sh_eth_tsu_busy(struct net_device *ndev)
2574 {
2575 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2576 	struct sh_eth_private *mdp = netdev_priv(ndev);
2577 
2578 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2579 		udelay(10);
2580 		timeout--;
2581 		if (timeout <= 0) {
2582 			netdev_err(ndev, "%s: timeout\n", __func__);
2583 			return -ETIMEDOUT;
2584 		}
2585 	}
2586 
2587 	return 0;
2588 }
2589 
sh_eth_tsu_write_entry(struct net_device * ndev,void * reg,const u8 * addr)2590 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2591 				  const u8 *addr)
2592 {
2593 	u32 val;
2594 
2595 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2596 	iowrite32(val, reg);
2597 	if (sh_eth_tsu_busy(ndev) < 0)
2598 		return -EBUSY;
2599 
2600 	val = addr[4] << 8 | addr[5];
2601 	iowrite32(val, reg + 4);
2602 	if (sh_eth_tsu_busy(ndev) < 0)
2603 		return -EBUSY;
2604 
2605 	return 0;
2606 }
2607 
sh_eth_tsu_read_entry(void * reg,u8 * addr)2608 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2609 {
2610 	u32 val;
2611 
2612 	val = ioread32(reg);
2613 	addr[0] = (val >> 24) & 0xff;
2614 	addr[1] = (val >> 16) & 0xff;
2615 	addr[2] = (val >> 8) & 0xff;
2616 	addr[3] = val & 0xff;
2617 	val = ioread32(reg + 4);
2618 	addr[4] = (val >> 8) & 0xff;
2619 	addr[5] = val & 0xff;
2620 }
2621 
2622 
sh_eth_tsu_find_entry(struct net_device * ndev,const u8 * addr)2623 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2624 {
2625 	struct sh_eth_private *mdp = netdev_priv(ndev);
2626 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2627 	int i;
2628 	u8 c_addr[ETH_ALEN];
2629 
2630 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2631 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2632 		if (ether_addr_equal(addr, c_addr))
2633 			return i;
2634 	}
2635 
2636 	return -ENOENT;
2637 }
2638 
sh_eth_tsu_find_empty(struct net_device * ndev)2639 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2640 {
2641 	u8 blank[ETH_ALEN];
2642 	int entry;
2643 
2644 	memset(blank, 0, sizeof(blank));
2645 	entry = sh_eth_tsu_find_entry(ndev, blank);
2646 	return (entry < 0) ? -ENOMEM : entry;
2647 }
2648 
sh_eth_tsu_disable_cam_entry_table(struct net_device * ndev,int entry)2649 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2650 					      int entry)
2651 {
2652 	struct sh_eth_private *mdp = netdev_priv(ndev);
2653 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2654 	int ret;
2655 	u8 blank[ETH_ALEN];
2656 
2657 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2658 			 ~(1 << (31 - entry)), TSU_TEN);
2659 
2660 	memset(blank, 0, sizeof(blank));
2661 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2662 	if (ret < 0)
2663 		return ret;
2664 	return 0;
2665 }
2666 
sh_eth_tsu_add_entry(struct net_device * ndev,const u8 * addr)2667 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2668 {
2669 	struct sh_eth_private *mdp = netdev_priv(ndev);
2670 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2671 	int i, ret;
2672 
2673 	if (!mdp->cd->tsu)
2674 		return 0;
2675 
2676 	i = sh_eth_tsu_find_entry(ndev, addr);
2677 	if (i < 0) {
2678 		/* No entry found, create one */
2679 		i = sh_eth_tsu_find_empty(ndev);
2680 		if (i < 0)
2681 			return -ENOMEM;
2682 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2683 		if (ret < 0)
2684 			return ret;
2685 
2686 		/* Enable the entry */
2687 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2688 				 (1 << (31 - i)), TSU_TEN);
2689 	}
2690 
2691 	/* Entry found or created, enable POST */
2692 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2693 
2694 	return 0;
2695 }
2696 
sh_eth_tsu_del_entry(struct net_device * ndev,const u8 * addr)2697 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2698 {
2699 	struct sh_eth_private *mdp = netdev_priv(ndev);
2700 	int i, ret;
2701 
2702 	if (!mdp->cd->tsu)
2703 		return 0;
2704 
2705 	i = sh_eth_tsu_find_entry(ndev, addr);
2706 	if (i) {
2707 		/* Entry found */
2708 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2709 			goto done;
2710 
2711 		/* Disable the entry if both ports was disabled */
2712 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2713 		if (ret < 0)
2714 			return ret;
2715 	}
2716 done:
2717 	return 0;
2718 }
2719 
sh_eth_tsu_purge_all(struct net_device * ndev)2720 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2721 {
2722 	struct sh_eth_private *mdp = netdev_priv(ndev);
2723 	int i, ret;
2724 
2725 	if (!mdp->cd->tsu)
2726 		return 0;
2727 
2728 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2729 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2730 			continue;
2731 
2732 		/* Disable the entry if both ports was disabled */
2733 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2734 		if (ret < 0)
2735 			return ret;
2736 	}
2737 
2738 	return 0;
2739 }
2740 
sh_eth_tsu_purge_mcast(struct net_device * ndev)2741 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2742 {
2743 	struct sh_eth_private *mdp = netdev_priv(ndev);
2744 	u8 addr[ETH_ALEN];
2745 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2746 	int i;
2747 
2748 	if (!mdp->cd->tsu)
2749 		return;
2750 
2751 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2752 		sh_eth_tsu_read_entry(reg_offset, addr);
2753 		if (is_multicast_ether_addr(addr))
2754 			sh_eth_tsu_del_entry(ndev, addr);
2755 	}
2756 }
2757 
2758 /* Update promiscuous flag and multicast filter */
sh_eth_set_rx_mode(struct net_device * ndev)2759 static void sh_eth_set_rx_mode(struct net_device *ndev)
2760 {
2761 	struct sh_eth_private *mdp = netdev_priv(ndev);
2762 	u32 ecmr_bits;
2763 	int mcast_all = 0;
2764 	unsigned long flags;
2765 
2766 	spin_lock_irqsave(&mdp->lock, flags);
2767 	/* Initial condition is MCT = 1, PRM = 0.
2768 	 * Depending on ndev->flags, set PRM or clear MCT
2769 	 */
2770 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2771 	if (mdp->cd->tsu)
2772 		ecmr_bits |= ECMR_MCT;
2773 
2774 	if (!(ndev->flags & IFF_MULTICAST)) {
2775 		sh_eth_tsu_purge_mcast(ndev);
2776 		mcast_all = 1;
2777 	}
2778 	if (ndev->flags & IFF_ALLMULTI) {
2779 		sh_eth_tsu_purge_mcast(ndev);
2780 		ecmr_bits &= ~ECMR_MCT;
2781 		mcast_all = 1;
2782 	}
2783 
2784 	if (ndev->flags & IFF_PROMISC) {
2785 		sh_eth_tsu_purge_all(ndev);
2786 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2787 	} else if (mdp->cd->tsu) {
2788 		struct netdev_hw_addr *ha;
2789 		netdev_for_each_mc_addr(ha, ndev) {
2790 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2791 				continue;
2792 
2793 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2794 				if (!mcast_all) {
2795 					sh_eth_tsu_purge_mcast(ndev);
2796 					ecmr_bits &= ~ECMR_MCT;
2797 					mcast_all = 1;
2798 				}
2799 			}
2800 		}
2801 	}
2802 
2803 	/* update the ethernet mode */
2804 	sh_eth_write(ndev, ecmr_bits, ECMR);
2805 
2806 	spin_unlock_irqrestore(&mdp->lock, flags);
2807 }
2808 
sh_eth_get_vtag_index(struct sh_eth_private * mdp)2809 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2810 {
2811 	if (!mdp->port)
2812 		return TSU_VTAG0;
2813 	else
2814 		return TSU_VTAG1;
2815 }
2816 
sh_eth_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2817 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2818 				  __be16 proto, u16 vid)
2819 {
2820 	struct sh_eth_private *mdp = netdev_priv(ndev);
2821 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2822 
2823 	if (unlikely(!mdp->cd->tsu))
2824 		return -EPERM;
2825 
2826 	/* No filtering if vid = 0 */
2827 	if (!vid)
2828 		return 0;
2829 
2830 	mdp->vlan_num_ids++;
2831 
2832 	/* The controller has one VLAN tag HW filter. So, if the filter is
2833 	 * already enabled, the driver disables it and the filte
2834 	 */
2835 	if (mdp->vlan_num_ids > 1) {
2836 		/* disable VLAN filter */
2837 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2838 		return 0;
2839 	}
2840 
2841 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2842 			 vtag_reg_index);
2843 
2844 	return 0;
2845 }
2846 
sh_eth_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2847 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2848 				   __be16 proto, u16 vid)
2849 {
2850 	struct sh_eth_private *mdp = netdev_priv(ndev);
2851 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2852 
2853 	if (unlikely(!mdp->cd->tsu))
2854 		return -EPERM;
2855 
2856 	/* No filtering if vid = 0 */
2857 	if (!vid)
2858 		return 0;
2859 
2860 	mdp->vlan_num_ids--;
2861 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2862 
2863 	return 0;
2864 }
2865 
2866 /* SuperH's TSU register init function */
sh_eth_tsu_init(struct sh_eth_private * mdp)2867 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2868 {
2869 	if (sh_eth_is_rz_fast_ether(mdp)) {
2870 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2871 		return;
2872 	}
2873 
2874 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2875 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2876 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2877 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2878 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2879 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2880 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2881 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2882 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2883 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2884 	if (sh_eth_is_gether(mdp)) {
2885 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2886 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2887 	} else {
2888 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2889 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2890 	}
2891 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2892 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2893 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2894 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2895 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2896 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2897 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2898 }
2899 
2900 /* MDIO bus release function */
sh_mdio_release(struct sh_eth_private * mdp)2901 static int sh_mdio_release(struct sh_eth_private *mdp)
2902 {
2903 	/* unregister mdio bus */
2904 	mdiobus_unregister(mdp->mii_bus);
2905 
2906 	/* free bitbang info */
2907 	free_mdio_bitbang(mdp->mii_bus);
2908 
2909 	return 0;
2910 }
2911 
2912 /* MDIO bus init function */
sh_mdio_init(struct sh_eth_private * mdp,struct sh_eth_plat_data * pd)2913 static int sh_mdio_init(struct sh_eth_private *mdp,
2914 			struct sh_eth_plat_data *pd)
2915 {
2916 	int ret, i;
2917 	struct bb_info *bitbang;
2918 	struct platform_device *pdev = mdp->pdev;
2919 	struct device *dev = &mdp->pdev->dev;
2920 
2921 	/* create bit control struct for PHY */
2922 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2923 	if (!bitbang)
2924 		return -ENOMEM;
2925 
2926 	/* bitbang init */
2927 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2928 	bitbang->set_gate = pd->set_mdio_gate;
2929 	bitbang->mdi_msk = PIR_MDI;
2930 	bitbang->mdo_msk = PIR_MDO;
2931 	bitbang->mmd_msk = PIR_MMD;
2932 	bitbang->mdc_msk = PIR_MDC;
2933 	bitbang->ctrl.ops = &bb_ops;
2934 
2935 	/* MII controller setting */
2936 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2937 	if (!mdp->mii_bus)
2938 		return -ENOMEM;
2939 
2940 	/* Hook up MII support for ethtool */
2941 	mdp->mii_bus->name = "sh_mii";
2942 	mdp->mii_bus->parent = dev;
2943 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2944 		 pdev->name, pdev->id);
2945 
2946 	/* PHY IRQ */
2947 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2948 					       GFP_KERNEL);
2949 	if (!mdp->mii_bus->irq) {
2950 		ret = -ENOMEM;
2951 		goto out_free_bus;
2952 	}
2953 
2954 	/* register MDIO bus */
2955 	if (dev->of_node) {
2956 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2957 	} else {
2958 		for (i = 0; i < PHY_MAX_ADDR; i++)
2959 			mdp->mii_bus->irq[i] = PHY_POLL;
2960 		if (pd->phy_irq > 0)
2961 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2962 
2963 		ret = mdiobus_register(mdp->mii_bus);
2964 	}
2965 
2966 	if (ret)
2967 		goto out_free_bus;
2968 
2969 	return 0;
2970 
2971 out_free_bus:
2972 	free_mdio_bitbang(mdp->mii_bus);
2973 	return ret;
2974 }
2975 
sh_eth_get_register_offset(int register_type)2976 static const u16 *sh_eth_get_register_offset(int register_type)
2977 {
2978 	const u16 *reg_offset = NULL;
2979 
2980 	switch (register_type) {
2981 	case SH_ETH_REG_GIGABIT:
2982 		reg_offset = sh_eth_offset_gigabit;
2983 		break;
2984 	case SH_ETH_REG_FAST_RZ:
2985 		reg_offset = sh_eth_offset_fast_rz;
2986 		break;
2987 	case SH_ETH_REG_FAST_RCAR:
2988 		reg_offset = sh_eth_offset_fast_rcar;
2989 		break;
2990 	case SH_ETH_REG_FAST_SH4:
2991 		reg_offset = sh_eth_offset_fast_sh4;
2992 		break;
2993 	case SH_ETH_REG_FAST_SH3_SH2:
2994 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2995 		break;
2996 	default:
2997 		break;
2998 	}
2999 
3000 	return reg_offset;
3001 }
3002 
3003 static const struct net_device_ops sh_eth_netdev_ops = {
3004 	.ndo_open		= sh_eth_open,
3005 	.ndo_stop		= sh_eth_close,
3006 	.ndo_start_xmit		= sh_eth_start_xmit,
3007 	.ndo_get_stats		= sh_eth_get_stats,
3008 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3009 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3010 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3011 	.ndo_validate_addr	= eth_validate_addr,
3012 	.ndo_set_mac_address	= eth_mac_addr,
3013 	.ndo_change_mtu		= eth_change_mtu,
3014 };
3015 
3016 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3017 	.ndo_open		= sh_eth_open,
3018 	.ndo_stop		= sh_eth_close,
3019 	.ndo_start_xmit		= sh_eth_start_xmit,
3020 	.ndo_get_stats		= sh_eth_get_stats,
3021 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3022 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3023 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3024 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3025 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3026 	.ndo_validate_addr	= eth_validate_addr,
3027 	.ndo_set_mac_address	= eth_mac_addr,
3028 	.ndo_change_mtu		= eth_change_mtu,
3029 };
3030 
3031 #ifdef CONFIG_OF
sh_eth_parse_dt(struct device * dev)3032 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3033 {
3034 	struct device_node *np = dev->of_node;
3035 	struct sh_eth_plat_data *pdata;
3036 	const char *mac_addr;
3037 
3038 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3039 	if (!pdata)
3040 		return NULL;
3041 
3042 	pdata->phy_interface = of_get_phy_mode(np);
3043 
3044 	mac_addr = of_get_mac_address(np);
3045 	if (mac_addr)
3046 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3047 
3048 	pdata->no_ether_link =
3049 		of_property_read_bool(np, "renesas,no-ether-link");
3050 	pdata->ether_link_active_low =
3051 		of_property_read_bool(np, "renesas,ether-link-active-low");
3052 
3053 	return pdata;
3054 }
3055 
3056 static const struct of_device_id sh_eth_match_table[] = {
3057 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3058 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3059 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3060 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3061 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3062 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3063 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3064 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3065 	{ }
3066 };
3067 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3068 #else
sh_eth_parse_dt(struct device * dev)3069 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3070 {
3071 	return NULL;
3072 }
3073 #endif
3074 
sh_eth_drv_probe(struct platform_device * pdev)3075 static int sh_eth_drv_probe(struct platform_device *pdev)
3076 {
3077 	int ret, devno = 0;
3078 	struct resource *res;
3079 	struct net_device *ndev = NULL;
3080 	struct sh_eth_private *mdp = NULL;
3081 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3082 	const struct platform_device_id *id = platform_get_device_id(pdev);
3083 
3084 	/* get base addr */
3085 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3086 
3087 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3088 	if (!ndev)
3089 		return -ENOMEM;
3090 
3091 	pm_runtime_enable(&pdev->dev);
3092 	pm_runtime_get_sync(&pdev->dev);
3093 
3094 	devno = pdev->id;
3095 	if (devno < 0)
3096 		devno = 0;
3097 
3098 	ndev->dma = -1;
3099 	ret = platform_get_irq(pdev, 0);
3100 	if (ret < 0)
3101 		goto out_release;
3102 	ndev->irq = ret;
3103 
3104 	SET_NETDEV_DEV(ndev, &pdev->dev);
3105 
3106 	mdp = netdev_priv(ndev);
3107 	mdp->num_tx_ring = TX_RING_SIZE;
3108 	mdp->num_rx_ring = RX_RING_SIZE;
3109 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3110 	if (IS_ERR(mdp->addr)) {
3111 		ret = PTR_ERR(mdp->addr);
3112 		goto out_release;
3113 	}
3114 
3115 	ndev->base_addr = res->start;
3116 
3117 	spin_lock_init(&mdp->lock);
3118 	mdp->pdev = pdev;
3119 
3120 	if (pdev->dev.of_node)
3121 		pd = sh_eth_parse_dt(&pdev->dev);
3122 	if (!pd) {
3123 		dev_err(&pdev->dev, "no platform data\n");
3124 		ret = -EINVAL;
3125 		goto out_release;
3126 	}
3127 
3128 	/* get PHY ID */
3129 	mdp->phy_id = pd->phy;
3130 	mdp->phy_interface = pd->phy_interface;
3131 	/* EDMAC endian */
3132 	mdp->edmac_endian = pd->edmac_endian;
3133 	mdp->no_ether_link = pd->no_ether_link;
3134 	mdp->ether_link_active_low = pd->ether_link_active_low;
3135 
3136 	/* set cpu data */
3137 	if (id) {
3138 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3139 	} else	{
3140 		const struct of_device_id *match;
3141 
3142 		match = of_match_device(of_match_ptr(sh_eth_match_table),
3143 					&pdev->dev);
3144 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
3145 	}
3146 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3147 	if (!mdp->reg_offset) {
3148 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3149 			mdp->cd->register_type);
3150 		ret = -EINVAL;
3151 		goto out_release;
3152 	}
3153 	sh_eth_set_default_cpu_data(mdp->cd);
3154 
3155 	/* set function */
3156 	if (mdp->cd->tsu)
3157 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3158 	else
3159 		ndev->netdev_ops = &sh_eth_netdev_ops;
3160 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3161 	ndev->watchdog_timeo = TX_TIMEOUT;
3162 
3163 	/* debug message level */
3164 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3165 
3166 	/* read and set MAC address */
3167 	read_mac_address(ndev, pd->mac_addr);
3168 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3169 		dev_warn(&pdev->dev,
3170 			 "no valid MAC address supplied, using a random one.\n");
3171 		eth_hw_addr_random(ndev);
3172 	}
3173 
3174 	/* ioremap the TSU registers */
3175 	if (mdp->cd->tsu) {
3176 		struct resource *rtsu;
3177 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3178 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3179 		if (IS_ERR(mdp->tsu_addr)) {
3180 			ret = PTR_ERR(mdp->tsu_addr);
3181 			goto out_release;
3182 		}
3183 		mdp->port = devno % 2;
3184 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3185 	}
3186 
3187 	/* initialize first or needed device */
3188 	if (!devno || pd->needs_init) {
3189 		if (mdp->cd->chip_reset)
3190 			mdp->cd->chip_reset(ndev);
3191 
3192 		if (mdp->cd->tsu) {
3193 			/* TSU init (Init only)*/
3194 			sh_eth_tsu_init(mdp);
3195 		}
3196 	}
3197 
3198 	if (mdp->cd->rmiimode)
3199 		sh_eth_write(ndev, 0x1, RMIIMODE);
3200 
3201 	/* MDIO bus init */
3202 	ret = sh_mdio_init(mdp, pd);
3203 	if (ret) {
3204 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3205 		goto out_release;
3206 	}
3207 
3208 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3209 
3210 	/* network device register */
3211 	ret = register_netdev(ndev);
3212 	if (ret)
3213 		goto out_napi_del;
3214 
3215 	/* print device information */
3216 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3217 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3218 
3219 	pm_runtime_put(&pdev->dev);
3220 	platform_set_drvdata(pdev, ndev);
3221 
3222 	return ret;
3223 
3224 out_napi_del:
3225 	netif_napi_del(&mdp->napi);
3226 	sh_mdio_release(mdp);
3227 
3228 out_release:
3229 	/* net_dev free */
3230 	if (ndev)
3231 		free_netdev(ndev);
3232 
3233 	pm_runtime_put(&pdev->dev);
3234 	pm_runtime_disable(&pdev->dev);
3235 	return ret;
3236 }
3237 
sh_eth_drv_remove(struct platform_device * pdev)3238 static int sh_eth_drv_remove(struct platform_device *pdev)
3239 {
3240 	struct net_device *ndev = platform_get_drvdata(pdev);
3241 	struct sh_eth_private *mdp = netdev_priv(ndev);
3242 
3243 	unregister_netdev(ndev);
3244 	netif_napi_del(&mdp->napi);
3245 	sh_mdio_release(mdp);
3246 	pm_runtime_disable(&pdev->dev);
3247 	free_netdev(ndev);
3248 
3249 	return 0;
3250 }
3251 
3252 #ifdef CONFIG_PM
3253 #ifdef CONFIG_PM_SLEEP
sh_eth_suspend(struct device * dev)3254 static int sh_eth_suspend(struct device *dev)
3255 {
3256 	struct net_device *ndev = dev_get_drvdata(dev);
3257 	int ret = 0;
3258 
3259 	if (netif_running(ndev)) {
3260 		netif_device_detach(ndev);
3261 		ret = sh_eth_close(ndev);
3262 	}
3263 
3264 	return ret;
3265 }
3266 
sh_eth_resume(struct device * dev)3267 static int sh_eth_resume(struct device *dev)
3268 {
3269 	struct net_device *ndev = dev_get_drvdata(dev);
3270 	int ret = 0;
3271 
3272 	if (netif_running(ndev)) {
3273 		ret = sh_eth_open(ndev);
3274 		if (ret < 0)
3275 			return ret;
3276 		netif_device_attach(ndev);
3277 	}
3278 
3279 	return ret;
3280 }
3281 #endif
3282 
sh_eth_runtime_nop(struct device * dev)3283 static int sh_eth_runtime_nop(struct device *dev)
3284 {
3285 	/* Runtime PM callback shared between ->runtime_suspend()
3286 	 * and ->runtime_resume(). Simply returns success.
3287 	 *
3288 	 * This driver re-initializes all registers after
3289 	 * pm_runtime_get_sync() anyway so there is no need
3290 	 * to save and restore registers here.
3291 	 */
3292 	return 0;
3293 }
3294 
3295 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3296 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3297 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3298 };
3299 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3300 #else
3301 #define SH_ETH_PM_OPS NULL
3302 #endif
3303 
3304 static struct platform_device_id sh_eth_id_table[] = {
3305 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3306 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3307 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3308 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3309 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3310 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3311 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3312 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3313 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3314 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3315 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3316 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3317 	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3318 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3319 	{ }
3320 };
3321 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3322 
3323 static struct platform_driver sh_eth_driver = {
3324 	.probe = sh_eth_drv_probe,
3325 	.remove = sh_eth_drv_remove,
3326 	.id_table = sh_eth_id_table,
3327 	.driver = {
3328 		   .name = CARDNAME,
3329 		   .pm = SH_ETH_PM_OPS,
3330 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3331 	},
3332 };
3333 
3334 module_platform_driver(sh_eth_driver);
3335 
3336 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3337 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3338 MODULE_LICENSE("GPL v2");
3339