1 /*
2  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  *
15  * We arbitrarily define a Type1 IOMMU as one matching the below code.
16  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17  * VT-d, but that makes it harder to re-use as theoretically anyone
18  * implementing a similar IOMMU could make use of this.  We expect the
19  * IOMMU to support the IOMMU API and have few to no restrictions around
20  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
21  * optimized for relatively static mappings of a userspace process with
22  * userpsace pages pinned into memory.  We also assume devices and IOMMU
23  * domains are PCI based as the IOMMU API is still centered around a
24  * device/bus interface rather than a group interface.
25  */
26 
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 
40 #define DRIVER_VERSION  "0.2"
41 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
42 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
43 
44 static bool allow_unsafe_interrupts;
45 module_param_named(allow_unsafe_interrupts,
46 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
47 MODULE_PARM_DESC(allow_unsafe_interrupts,
48 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
49 
50 static bool disable_hugepages;
51 module_param_named(disable_hugepages,
52 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(disable_hugepages,
54 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
55 
56 struct vfio_iommu {
57 	struct list_head	domain_list;
58 	struct mutex		lock;
59 	struct rb_root		dma_list;
60 	bool			v2;
61 	bool			nesting;
62 };
63 
64 struct vfio_domain {
65 	struct iommu_domain	*domain;
66 	struct list_head	next;
67 	struct list_head	group_list;
68 	int			prot;		/* IOMMU_CACHE */
69 	bool			fgsp;		/* Fine-grained super pages */
70 };
71 
72 struct vfio_dma {
73 	struct rb_node		node;
74 	dma_addr_t		iova;		/* Device address */
75 	unsigned long		vaddr;		/* Process virtual addr */
76 	size_t			size;		/* Map size (bytes) */
77 	int			prot;		/* IOMMU_READ/WRITE */
78 };
79 
80 struct vfio_group {
81 	struct iommu_group	*iommu_group;
82 	struct list_head	next;
83 };
84 
85 /*
86  * This code handles mapping and unmapping of user data buffers
87  * into DMA'ble space using the IOMMU
88  */
89 
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)90 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
91 				      dma_addr_t start, size_t size)
92 {
93 	struct rb_node *node = iommu->dma_list.rb_node;
94 
95 	while (node) {
96 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
97 
98 		if (start + size <= dma->iova)
99 			node = node->rb_left;
100 		else if (start >= dma->iova + dma->size)
101 			node = node->rb_right;
102 		else
103 			return dma;
104 	}
105 
106 	return NULL;
107 }
108 
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)109 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
110 {
111 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
112 	struct vfio_dma *dma;
113 
114 	while (*link) {
115 		parent = *link;
116 		dma = rb_entry(parent, struct vfio_dma, node);
117 
118 		if (new->iova + new->size <= dma->iova)
119 			link = &(*link)->rb_left;
120 		else
121 			link = &(*link)->rb_right;
122 	}
123 
124 	rb_link_node(&new->node, parent, link);
125 	rb_insert_color(&new->node, &iommu->dma_list);
126 }
127 
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)128 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
129 {
130 	rb_erase(&old->node, &iommu->dma_list);
131 }
132 
133 struct vwork {
134 	struct mm_struct	*mm;
135 	long			npage;
136 	struct work_struct	work;
137 };
138 
139 /* delayed decrement/increment for locked_vm */
vfio_lock_acct_bg(struct work_struct * work)140 static void vfio_lock_acct_bg(struct work_struct *work)
141 {
142 	struct vwork *vwork = container_of(work, struct vwork, work);
143 	struct mm_struct *mm;
144 
145 	mm = vwork->mm;
146 	down_write(&mm->mmap_sem);
147 	mm->locked_vm += vwork->npage;
148 	up_write(&mm->mmap_sem);
149 	mmput(mm);
150 	kfree(vwork);
151 }
152 
vfio_lock_acct(long npage)153 static void vfio_lock_acct(long npage)
154 {
155 	struct vwork *vwork;
156 	struct mm_struct *mm;
157 
158 	if (!current->mm || !npage)
159 		return; /* process exited or nothing to do */
160 
161 	if (down_write_trylock(&current->mm->mmap_sem)) {
162 		current->mm->locked_vm += npage;
163 		up_write(&current->mm->mmap_sem);
164 		return;
165 	}
166 
167 	/*
168 	 * Couldn't get mmap_sem lock, so must setup to update
169 	 * mm->locked_vm later. If locked_vm were atomic, we
170 	 * wouldn't need this silliness
171 	 */
172 	vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
173 	if (!vwork)
174 		return;
175 	mm = get_task_mm(current);
176 	if (!mm) {
177 		kfree(vwork);
178 		return;
179 	}
180 	INIT_WORK(&vwork->work, vfio_lock_acct_bg);
181 	vwork->mm = mm;
182 	vwork->npage = npage;
183 	schedule_work(&vwork->work);
184 }
185 
186 /*
187  * Some mappings aren't backed by a struct page, for example an mmap'd
188  * MMIO range for our own or another device.  These use a different
189  * pfn conversion and shouldn't be tracked as locked pages.
190  */
is_invalid_reserved_pfn(unsigned long pfn)191 static bool is_invalid_reserved_pfn(unsigned long pfn)
192 {
193 	if (pfn_valid(pfn)) {
194 		bool reserved;
195 		struct page *tail = pfn_to_page(pfn);
196 		struct page *head = compound_head(tail);
197 		reserved = !!(PageReserved(head));
198 		if (head != tail) {
199 			/*
200 			 * "head" is not a dangling pointer
201 			 * (compound_head takes care of that)
202 			 * but the hugepage may have been split
203 			 * from under us (and we may not hold a
204 			 * reference count on the head page so it can
205 			 * be reused before we run PageReferenced), so
206 			 * we've to check PageTail before returning
207 			 * what we just read.
208 			 */
209 			smp_rmb();
210 			if (PageTail(tail))
211 				return reserved;
212 		}
213 		return PageReserved(tail);
214 	}
215 
216 	return true;
217 }
218 
put_pfn(unsigned long pfn,int prot)219 static int put_pfn(unsigned long pfn, int prot)
220 {
221 	if (!is_invalid_reserved_pfn(pfn)) {
222 		struct page *page = pfn_to_page(pfn);
223 		if (prot & IOMMU_WRITE)
224 			SetPageDirty(page);
225 		put_page(page);
226 		return 1;
227 	}
228 	return 0;
229 }
230 
vaddr_get_pfn(unsigned long vaddr,int prot,unsigned long * pfn)231 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
232 {
233 	struct page *page[1];
234 	struct vm_area_struct *vma;
235 	int ret = -EFAULT;
236 
237 	if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
238 		*pfn = page_to_pfn(page[0]);
239 		return 0;
240 	}
241 
242 	down_read(&current->mm->mmap_sem);
243 
244 	vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
245 
246 	if (vma && vma->vm_flags & VM_PFNMAP) {
247 		*pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
248 		if (is_invalid_reserved_pfn(*pfn))
249 			ret = 0;
250 	}
251 
252 	up_read(&current->mm->mmap_sem);
253 
254 	return ret;
255 }
256 
257 /*
258  * Attempt to pin pages.  We really don't want to track all the pfns and
259  * the iommu can only map chunks of consecutive pfns anyway, so get the
260  * first page and all consecutive pages with the same locking.
261  */
vfio_pin_pages(unsigned long vaddr,long npage,int prot,unsigned long * pfn_base)262 static long vfio_pin_pages(unsigned long vaddr, long npage,
263 			   int prot, unsigned long *pfn_base)
264 {
265 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
266 	bool lock_cap = capable(CAP_IPC_LOCK);
267 	long ret, i;
268 	bool rsvd;
269 
270 	if (!current->mm)
271 		return -ENODEV;
272 
273 	ret = vaddr_get_pfn(vaddr, prot, pfn_base);
274 	if (ret)
275 		return ret;
276 
277 	rsvd = is_invalid_reserved_pfn(*pfn_base);
278 
279 	if (!rsvd && !lock_cap && current->mm->locked_vm + 1 > limit) {
280 		put_pfn(*pfn_base, prot);
281 		pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
282 			limit << PAGE_SHIFT);
283 		return -ENOMEM;
284 	}
285 
286 	if (unlikely(disable_hugepages)) {
287 		if (!rsvd)
288 			vfio_lock_acct(1);
289 		return 1;
290 	}
291 
292 	/* Lock all the consecutive pages from pfn_base */
293 	for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
294 		unsigned long pfn = 0;
295 
296 		ret = vaddr_get_pfn(vaddr, prot, &pfn);
297 		if (ret)
298 			break;
299 
300 		if (pfn != *pfn_base + i ||
301 		    rsvd != is_invalid_reserved_pfn(pfn)) {
302 			put_pfn(pfn, prot);
303 			break;
304 		}
305 
306 		if (!rsvd && !lock_cap &&
307 		    current->mm->locked_vm + i + 1 > limit) {
308 			put_pfn(pfn, prot);
309 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
310 				__func__, limit << PAGE_SHIFT);
311 			break;
312 		}
313 	}
314 
315 	if (!rsvd)
316 		vfio_lock_acct(i);
317 
318 	return i;
319 }
320 
vfio_unpin_pages(unsigned long pfn,long npage,int prot,bool do_accounting)321 static long vfio_unpin_pages(unsigned long pfn, long npage,
322 			     int prot, bool do_accounting)
323 {
324 	unsigned long unlocked = 0;
325 	long i;
326 
327 	for (i = 0; i < npage; i++)
328 		unlocked += put_pfn(pfn++, prot);
329 
330 	if (do_accounting)
331 		vfio_lock_acct(-unlocked);
332 
333 	return unlocked;
334 }
335 
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma)336 static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma)
337 {
338 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
339 	struct vfio_domain *domain, *d;
340 	long unlocked = 0;
341 
342 	if (!dma->size)
343 		return;
344 	/*
345 	 * We use the IOMMU to track the physical addresses, otherwise we'd
346 	 * need a much more complicated tracking system.  Unfortunately that
347 	 * means we need to use one of the iommu domains to figure out the
348 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
349 	 * no iommu translations remaining when the pages are unpinned.
350 	 */
351 	domain = d = list_first_entry(&iommu->domain_list,
352 				      struct vfio_domain, next);
353 
354 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
355 		iommu_unmap(d->domain, dma->iova, dma->size);
356 		cond_resched();
357 	}
358 
359 	while (iova < end) {
360 		size_t unmapped, len;
361 		phys_addr_t phys, next;
362 
363 		phys = iommu_iova_to_phys(domain->domain, iova);
364 		if (WARN_ON(!phys)) {
365 			iova += PAGE_SIZE;
366 			continue;
367 		}
368 
369 		/*
370 		 * To optimize for fewer iommu_unmap() calls, each of which
371 		 * may require hardware cache flushing, try to find the
372 		 * largest contiguous physical memory chunk to unmap.
373 		 */
374 		for (len = PAGE_SIZE;
375 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
376 			next = iommu_iova_to_phys(domain->domain, iova + len);
377 			if (next != phys + len)
378 				break;
379 		}
380 
381 		unmapped = iommu_unmap(domain->domain, iova, len);
382 		if (WARN_ON(!unmapped))
383 			break;
384 
385 		unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
386 					     unmapped >> PAGE_SHIFT,
387 					     dma->prot, false);
388 		iova += unmapped;
389 
390 		cond_resched();
391 	}
392 
393 	vfio_lock_acct(-unlocked);
394 }
395 
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)396 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
397 {
398 	vfio_unmap_unpin(iommu, dma);
399 	vfio_unlink_dma(iommu, dma);
400 	kfree(dma);
401 }
402 
vfio_pgsize_bitmap(struct vfio_iommu * iommu)403 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
404 {
405 	struct vfio_domain *domain;
406 	unsigned long bitmap = PAGE_MASK;
407 
408 	mutex_lock(&iommu->lock);
409 	list_for_each_entry(domain, &iommu->domain_list, next)
410 		bitmap &= domain->domain->ops->pgsize_bitmap;
411 	mutex_unlock(&iommu->lock);
412 
413 	return bitmap;
414 }
415 
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap)416 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
417 			     struct vfio_iommu_type1_dma_unmap *unmap)
418 {
419 	uint64_t mask;
420 	struct vfio_dma *dma;
421 	size_t unmapped = 0;
422 	int ret = 0;
423 
424 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
425 
426 	if (unmap->iova & mask)
427 		return -EINVAL;
428 	if (!unmap->size || unmap->size & mask)
429 		return -EINVAL;
430 
431 	WARN_ON(mask & PAGE_MASK);
432 
433 	mutex_lock(&iommu->lock);
434 
435 	/*
436 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
437 	 * avoid tracking individual mappings.  This means that the granularity
438 	 * of the original mapping was lost and the user was allowed to attempt
439 	 * to unmap any range.  Depending on the contiguousness of physical
440 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
441 	 * or may not have worked.  We only guaranteed unmap granularity
442 	 * matching the original mapping; even though it was untracked here,
443 	 * the original mappings are reflected in IOMMU mappings.  This
444 	 * resulted in a couple unusual behaviors.  First, if a range is not
445 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
446 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
447 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
448 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
449 	 * This also returns success and the returned unmap size reflects the
450 	 * actual size unmapped.
451 	 *
452 	 * We attempt to maintain compatibility with this "v1" interface, but
453 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
454 	 * request offset from the beginning of the original mapping will
455 	 * return success with zero sized unmap.  And an unmap request covering
456 	 * the first iova of mapping will unmap the entire range.
457 	 *
458 	 * The v2 version of this interface intends to be more deterministic.
459 	 * Unmap requests must fully cover previous mappings.  Multiple
460 	 * mappings may still be unmaped by specifying large ranges, but there
461 	 * must not be any previous mappings bisected by the range.  An error
462 	 * will be returned if these conditions are not met.  The v2 interface
463 	 * will only return success and a size of zero if there were no
464 	 * mappings within the range.
465 	 */
466 	if (iommu->v2) {
467 		dma = vfio_find_dma(iommu, unmap->iova, 0);
468 		if (dma && dma->iova != unmap->iova) {
469 			ret = -EINVAL;
470 			goto unlock;
471 		}
472 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
473 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
474 			ret = -EINVAL;
475 			goto unlock;
476 		}
477 	}
478 
479 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
480 		if (!iommu->v2 && unmap->iova > dma->iova)
481 			break;
482 		unmapped += dma->size;
483 		vfio_remove_dma(iommu, dma);
484 	}
485 
486 unlock:
487 	mutex_unlock(&iommu->lock);
488 
489 	/* Report how much was unmapped */
490 	unmap->size = unmapped;
491 
492 	return ret;
493 }
494 
495 /*
496  * Turns out AMD IOMMU has a page table bug where it won't map large pages
497  * to a region that previously mapped smaller pages.  This should be fixed
498  * soon, so this is just a temporary workaround to break mappings down into
499  * PAGE_SIZE.  Better to map smaller pages than nothing.
500  */
map_try_harder(struct vfio_domain * domain,dma_addr_t iova,unsigned long pfn,long npage,int prot)501 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
502 			  unsigned long pfn, long npage, int prot)
503 {
504 	long i;
505 	int ret;
506 
507 	for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
508 		ret = iommu_map(domain->domain, iova,
509 				(phys_addr_t)pfn << PAGE_SHIFT,
510 				PAGE_SIZE, prot | domain->prot);
511 		if (ret)
512 			break;
513 	}
514 
515 	for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
516 		iommu_unmap(domain->domain, iova, PAGE_SIZE);
517 
518 	return ret;
519 }
520 
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)521 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
522 			  unsigned long pfn, long npage, int prot)
523 {
524 	struct vfio_domain *d;
525 	int ret;
526 
527 	list_for_each_entry(d, &iommu->domain_list, next) {
528 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
529 				npage << PAGE_SHIFT, prot | d->prot);
530 		if (ret) {
531 			if (ret != -EBUSY ||
532 			    map_try_harder(d, iova, pfn, npage, prot))
533 				goto unwind;
534 		}
535 
536 		cond_resched();
537 	}
538 
539 	return 0;
540 
541 unwind:
542 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
543 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
544 
545 	return ret;
546 }
547 
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)548 static int vfio_dma_do_map(struct vfio_iommu *iommu,
549 			   struct vfio_iommu_type1_dma_map *map)
550 {
551 	dma_addr_t iova = map->iova;
552 	unsigned long vaddr = map->vaddr;
553 	size_t size = map->size;
554 	long npage;
555 	int ret = 0, prot = 0;
556 	uint64_t mask;
557 	struct vfio_dma *dma;
558 	unsigned long pfn;
559 
560 	/* Verify that none of our __u64 fields overflow */
561 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
562 		return -EINVAL;
563 
564 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
565 
566 	WARN_ON(mask & PAGE_MASK);
567 
568 	/* READ/WRITE from device perspective */
569 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
570 		prot |= IOMMU_WRITE;
571 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
572 		prot |= IOMMU_READ;
573 
574 	if (!prot || !size || (size | iova | vaddr) & mask)
575 		return -EINVAL;
576 
577 	/* Don't allow IOVA or virtual address wrap */
578 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
579 		return -EINVAL;
580 
581 	mutex_lock(&iommu->lock);
582 
583 	if (vfio_find_dma(iommu, iova, size)) {
584 		mutex_unlock(&iommu->lock);
585 		return -EEXIST;
586 	}
587 
588 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
589 	if (!dma) {
590 		mutex_unlock(&iommu->lock);
591 		return -ENOMEM;
592 	}
593 
594 	dma->iova = iova;
595 	dma->vaddr = vaddr;
596 	dma->prot = prot;
597 
598 	/* Insert zero-sized and grow as we map chunks of it */
599 	vfio_link_dma(iommu, dma);
600 
601 	while (size) {
602 		/* Pin a contiguous chunk of memory */
603 		npage = vfio_pin_pages(vaddr + dma->size,
604 				       size >> PAGE_SHIFT, prot, &pfn);
605 		if (npage <= 0) {
606 			WARN_ON(!npage);
607 			ret = (int)npage;
608 			break;
609 		}
610 
611 		/* Map it! */
612 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, prot);
613 		if (ret) {
614 			vfio_unpin_pages(pfn, npage, prot, true);
615 			break;
616 		}
617 
618 		size -= npage << PAGE_SHIFT;
619 		dma->size += npage << PAGE_SHIFT;
620 	}
621 
622 	if (ret)
623 		vfio_remove_dma(iommu, dma);
624 
625 	mutex_unlock(&iommu->lock);
626 	return ret;
627 }
628 
vfio_bus_type(struct device * dev,void * data)629 static int vfio_bus_type(struct device *dev, void *data)
630 {
631 	struct bus_type **bus = data;
632 
633 	if (*bus && *bus != dev->bus)
634 		return -EINVAL;
635 
636 	*bus = dev->bus;
637 
638 	return 0;
639 }
640 
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)641 static int vfio_iommu_replay(struct vfio_iommu *iommu,
642 			     struct vfio_domain *domain)
643 {
644 	struct vfio_domain *d;
645 	struct rb_node *n;
646 	int ret;
647 
648 	/* Arbitrarily pick the first domain in the list for lookups */
649 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
650 	n = rb_first(&iommu->dma_list);
651 
652 	/* If there's not a domain, there better not be any mappings */
653 	if (WARN_ON(n && !d))
654 		return -EINVAL;
655 
656 	for (; n; n = rb_next(n)) {
657 		struct vfio_dma *dma;
658 		dma_addr_t iova;
659 
660 		dma = rb_entry(n, struct vfio_dma, node);
661 		iova = dma->iova;
662 
663 		while (iova < dma->iova + dma->size) {
664 			phys_addr_t phys = iommu_iova_to_phys(d->domain, iova);
665 			size_t size;
666 
667 			if (WARN_ON(!phys)) {
668 				iova += PAGE_SIZE;
669 				continue;
670 			}
671 
672 			size = PAGE_SIZE;
673 
674 			while (iova + size < dma->iova + dma->size &&
675 			       phys + size == iommu_iova_to_phys(d->domain,
676 								 iova + size))
677 				size += PAGE_SIZE;
678 
679 			ret = iommu_map(domain->domain, iova, phys,
680 					size, dma->prot | domain->prot);
681 			if (ret)
682 				return ret;
683 
684 			iova += size;
685 		}
686 	}
687 
688 	return 0;
689 }
690 
691 /*
692  * We change our unmap behavior slightly depending on whether the IOMMU
693  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
694  * for practically any contiguous power-of-two mapping we give it.  This means
695  * we don't need to look for contiguous chunks ourselves to make unmapping
696  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
697  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
698  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
699  * hugetlbfs is in use.
700  */
vfio_test_domain_fgsp(struct vfio_domain * domain)701 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
702 {
703 	struct page *pages;
704 	int ret, order = get_order(PAGE_SIZE * 2);
705 
706 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
707 	if (!pages)
708 		return;
709 
710 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
711 			IOMMU_READ | IOMMU_WRITE | domain->prot);
712 	if (!ret) {
713 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
714 
715 		if (unmapped == PAGE_SIZE)
716 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
717 		else
718 			domain->fgsp = true;
719 	}
720 
721 	__free_pages(pages, order);
722 }
723 
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group)724 static int vfio_iommu_type1_attach_group(void *iommu_data,
725 					 struct iommu_group *iommu_group)
726 {
727 	struct vfio_iommu *iommu = iommu_data;
728 	struct vfio_group *group, *g;
729 	struct vfio_domain *domain, *d;
730 	struct bus_type *bus = NULL;
731 	int ret;
732 
733 	mutex_lock(&iommu->lock);
734 
735 	list_for_each_entry(d, &iommu->domain_list, next) {
736 		list_for_each_entry(g, &d->group_list, next) {
737 			if (g->iommu_group != iommu_group)
738 				continue;
739 
740 			mutex_unlock(&iommu->lock);
741 			return -EINVAL;
742 		}
743 	}
744 
745 	group = kzalloc(sizeof(*group), GFP_KERNEL);
746 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
747 	if (!group || !domain) {
748 		ret = -ENOMEM;
749 		goto out_free;
750 	}
751 
752 	group->iommu_group = iommu_group;
753 
754 	/* Determine bus_type in order to allocate a domain */
755 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
756 	if (ret)
757 		goto out_free;
758 
759 	domain->domain = iommu_domain_alloc(bus);
760 	if (!domain->domain) {
761 		ret = -EIO;
762 		goto out_free;
763 	}
764 
765 	if (iommu->nesting) {
766 		int attr = 1;
767 
768 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
769 					    &attr);
770 		if (ret)
771 			goto out_domain;
772 	}
773 
774 	ret = iommu_attach_group(domain->domain, iommu_group);
775 	if (ret)
776 		goto out_domain;
777 
778 	INIT_LIST_HEAD(&domain->group_list);
779 	list_add(&group->next, &domain->group_list);
780 
781 	if (!allow_unsafe_interrupts &&
782 	    !iommu_capable(bus, IOMMU_CAP_INTR_REMAP)) {
783 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
784 		       __func__);
785 		ret = -EPERM;
786 		goto out_detach;
787 	}
788 
789 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
790 		domain->prot |= IOMMU_CACHE;
791 
792 	/*
793 	 * Try to match an existing compatible domain.  We don't want to
794 	 * preclude an IOMMU driver supporting multiple bus_types and being
795 	 * able to include different bus_types in the same IOMMU domain, so
796 	 * we test whether the domains use the same iommu_ops rather than
797 	 * testing if they're on the same bus_type.
798 	 */
799 	list_for_each_entry(d, &iommu->domain_list, next) {
800 		if (d->domain->ops == domain->domain->ops &&
801 		    d->prot == domain->prot) {
802 			iommu_detach_group(domain->domain, iommu_group);
803 			if (!iommu_attach_group(d->domain, iommu_group)) {
804 				list_add(&group->next, &d->group_list);
805 				iommu_domain_free(domain->domain);
806 				kfree(domain);
807 				mutex_unlock(&iommu->lock);
808 				return 0;
809 			}
810 
811 			ret = iommu_attach_group(domain->domain, iommu_group);
812 			if (ret)
813 				goto out_domain;
814 		}
815 	}
816 
817 	vfio_test_domain_fgsp(domain);
818 
819 	/* replay mappings on new domains */
820 	ret = vfio_iommu_replay(iommu, domain);
821 	if (ret)
822 		goto out_detach;
823 
824 	list_add(&domain->next, &iommu->domain_list);
825 
826 	mutex_unlock(&iommu->lock);
827 
828 	return 0;
829 
830 out_detach:
831 	iommu_detach_group(domain->domain, iommu_group);
832 out_domain:
833 	iommu_domain_free(domain->domain);
834 out_free:
835 	kfree(domain);
836 	kfree(group);
837 	mutex_unlock(&iommu->lock);
838 	return ret;
839 }
840 
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)841 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
842 {
843 	struct rb_node *node;
844 
845 	while ((node = rb_first(&iommu->dma_list)))
846 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
847 }
848 
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)849 static void vfio_iommu_type1_detach_group(void *iommu_data,
850 					  struct iommu_group *iommu_group)
851 {
852 	struct vfio_iommu *iommu = iommu_data;
853 	struct vfio_domain *domain;
854 	struct vfio_group *group;
855 
856 	mutex_lock(&iommu->lock);
857 
858 	list_for_each_entry(domain, &iommu->domain_list, next) {
859 		list_for_each_entry(group, &domain->group_list, next) {
860 			if (group->iommu_group != iommu_group)
861 				continue;
862 
863 			iommu_detach_group(domain->domain, iommu_group);
864 			list_del(&group->next);
865 			kfree(group);
866 			/*
867 			 * Group ownership provides privilege, if the group
868 			 * list is empty, the domain goes away.  If it's the
869 			 * last domain, then all the mappings go away too.
870 			 */
871 			if (list_empty(&domain->group_list)) {
872 				if (list_is_singular(&iommu->domain_list))
873 					vfio_iommu_unmap_unpin_all(iommu);
874 				iommu_domain_free(domain->domain);
875 				list_del(&domain->next);
876 				kfree(domain);
877 			}
878 			goto done;
879 		}
880 	}
881 
882 done:
883 	mutex_unlock(&iommu->lock);
884 }
885 
vfio_iommu_type1_open(unsigned long arg)886 static void *vfio_iommu_type1_open(unsigned long arg)
887 {
888 	struct vfio_iommu *iommu;
889 
890 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
891 	if (!iommu)
892 		return ERR_PTR(-ENOMEM);
893 
894 	switch (arg) {
895 	case VFIO_TYPE1_IOMMU:
896 		break;
897 	case VFIO_TYPE1_NESTING_IOMMU:
898 		iommu->nesting = true;
899 	case VFIO_TYPE1v2_IOMMU:
900 		iommu->v2 = true;
901 		break;
902 	default:
903 		kfree(iommu);
904 		return ERR_PTR(-EINVAL);
905 	}
906 
907 	INIT_LIST_HEAD(&iommu->domain_list);
908 	iommu->dma_list = RB_ROOT;
909 	mutex_init(&iommu->lock);
910 
911 	return iommu;
912 }
913 
vfio_iommu_type1_release(void * iommu_data)914 static void vfio_iommu_type1_release(void *iommu_data)
915 {
916 	struct vfio_iommu *iommu = iommu_data;
917 	struct vfio_domain *domain, *domain_tmp;
918 	struct vfio_group *group, *group_tmp;
919 
920 	vfio_iommu_unmap_unpin_all(iommu);
921 
922 	list_for_each_entry_safe(domain, domain_tmp,
923 				 &iommu->domain_list, next) {
924 		list_for_each_entry_safe(group, group_tmp,
925 					 &domain->group_list, next) {
926 			iommu_detach_group(domain->domain, group->iommu_group);
927 			list_del(&group->next);
928 			kfree(group);
929 		}
930 		iommu_domain_free(domain->domain);
931 		list_del(&domain->next);
932 		kfree(domain);
933 	}
934 
935 	kfree(iommu);
936 }
937 
vfio_domains_have_iommu_cache(struct vfio_iommu * iommu)938 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
939 {
940 	struct vfio_domain *domain;
941 	int ret = 1;
942 
943 	mutex_lock(&iommu->lock);
944 	list_for_each_entry(domain, &iommu->domain_list, next) {
945 		if (!(domain->prot & IOMMU_CACHE)) {
946 			ret = 0;
947 			break;
948 		}
949 	}
950 	mutex_unlock(&iommu->lock);
951 
952 	return ret;
953 }
954 
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)955 static long vfio_iommu_type1_ioctl(void *iommu_data,
956 				   unsigned int cmd, unsigned long arg)
957 {
958 	struct vfio_iommu *iommu = iommu_data;
959 	unsigned long minsz;
960 
961 	if (cmd == VFIO_CHECK_EXTENSION) {
962 		switch (arg) {
963 		case VFIO_TYPE1_IOMMU:
964 		case VFIO_TYPE1v2_IOMMU:
965 		case VFIO_TYPE1_NESTING_IOMMU:
966 			return 1;
967 		case VFIO_DMA_CC_IOMMU:
968 			if (!iommu)
969 				return 0;
970 			return vfio_domains_have_iommu_cache(iommu);
971 		default:
972 			return 0;
973 		}
974 	} else if (cmd == VFIO_IOMMU_GET_INFO) {
975 		struct vfio_iommu_type1_info info;
976 
977 		minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
978 
979 		if (copy_from_user(&info, (void __user *)arg, minsz))
980 			return -EFAULT;
981 
982 		if (info.argsz < minsz)
983 			return -EINVAL;
984 
985 		info.flags = 0;
986 
987 		info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
988 
989 		return copy_to_user((void __user *)arg, &info, minsz) ?
990 			-EFAULT : 0;
991 
992 	} else if (cmd == VFIO_IOMMU_MAP_DMA) {
993 		struct vfio_iommu_type1_dma_map map;
994 		uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
995 				VFIO_DMA_MAP_FLAG_WRITE;
996 
997 		minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
998 
999 		if (copy_from_user(&map, (void __user *)arg, minsz))
1000 			return -EFAULT;
1001 
1002 		if (map.argsz < minsz || map.flags & ~mask)
1003 			return -EINVAL;
1004 
1005 		return vfio_dma_do_map(iommu, &map);
1006 
1007 	} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1008 		struct vfio_iommu_type1_dma_unmap unmap;
1009 		long ret;
1010 
1011 		minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1012 
1013 		if (copy_from_user(&unmap, (void __user *)arg, minsz))
1014 			return -EFAULT;
1015 
1016 		if (unmap.argsz < minsz || unmap.flags)
1017 			return -EINVAL;
1018 
1019 		ret = vfio_dma_do_unmap(iommu, &unmap);
1020 		if (ret)
1021 			return ret;
1022 
1023 		return copy_to_user((void __user *)arg, &unmap, minsz) ?
1024 			-EFAULT : 0;
1025 	}
1026 
1027 	return -ENOTTY;
1028 }
1029 
1030 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1031 	.name		= "vfio-iommu-type1",
1032 	.owner		= THIS_MODULE,
1033 	.open		= vfio_iommu_type1_open,
1034 	.release	= vfio_iommu_type1_release,
1035 	.ioctl		= vfio_iommu_type1_ioctl,
1036 	.attach_group	= vfio_iommu_type1_attach_group,
1037 	.detach_group	= vfio_iommu_type1_detach_group,
1038 };
1039 
vfio_iommu_type1_init(void)1040 static int __init vfio_iommu_type1_init(void)
1041 {
1042 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1043 }
1044 
vfio_iommu_type1_cleanup(void)1045 static void __exit vfio_iommu_type1_cleanup(void)
1046 {
1047 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1048 }
1049 
1050 module_init(vfio_iommu_type1_init);
1051 module_exit(vfio_iommu_type1_cleanup);
1052 
1053 MODULE_VERSION(DRIVER_VERSION);
1054 MODULE_LICENSE("GPL v2");
1055 MODULE_AUTHOR(DRIVER_AUTHOR);
1056 MODULE_DESCRIPTION(DRIVER_DESC);
1057