1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 
111 #define DEVICE_NAME "ipmi_si"
112 
113 static struct platform_driver ipmi_driver;
114 
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119 	/*
120 	 * Number of times the driver requested a timer while an operation
121 	 * was in progress.
122 	 */
123 	SI_STAT_short_timeouts = 0,
124 
125 	/*
126 	 * Number of times the driver requested a timer while nothing was in
127 	 * progress.
128 	 */
129 	SI_STAT_long_timeouts,
130 
131 	/* Number of times the interface was idle while being polled. */
132 	SI_STAT_idles,
133 
134 	/* Number of interrupts the driver handled. */
135 	SI_STAT_interrupts,
136 
137 	/* Number of time the driver got an ATTN from the hardware. */
138 	SI_STAT_attentions,
139 
140 	/* Number of times the driver requested flags from the hardware. */
141 	SI_STAT_flag_fetches,
142 
143 	/* Number of times the hardware didn't follow the state machine. */
144 	SI_STAT_hosed_count,
145 
146 	/* Number of completed messages. */
147 	SI_STAT_complete_transactions,
148 
149 	/* Number of IPMI events received from the hardware. */
150 	SI_STAT_events,
151 
152 	/* Number of watchdog pretimeouts. */
153 	SI_STAT_watchdog_pretimeouts,
154 
155 	/* Number of asynchronous messages received. */
156 	SI_STAT_incoming_messages,
157 
158 
159 	/* This *must* remain last, add new values above this. */
160 	SI_NUM_STATS
161 };
162 
163 struct smi_info {
164 	int                    intf_num;
165 	ipmi_smi_t             intf;
166 	struct si_sm_data      *si_sm;
167 	struct si_sm_handlers  *handlers;
168 	enum si_type           si_type;
169 	spinlock_t             si_lock;
170 	struct ipmi_smi_msg    *waiting_msg;
171 	struct ipmi_smi_msg    *curr_msg;
172 	enum si_intf_state     si_state;
173 
174 	/*
175 	 * Used to handle the various types of I/O that can occur with
176 	 * IPMI
177 	 */
178 	struct si_sm_io io;
179 	int (*io_setup)(struct smi_info *info);
180 	void (*io_cleanup)(struct smi_info *info);
181 	int (*irq_setup)(struct smi_info *info);
182 	void (*irq_cleanup)(struct smi_info *info);
183 	unsigned int io_size;
184 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 	void (*addr_source_cleanup)(struct smi_info *info);
186 	void *addr_source_data;
187 
188 	/*
189 	 * Per-OEM handler, called from handle_flags().  Returns 1
190 	 * when handle_flags() needs to be re-run or 0 indicating it
191 	 * set si_state itself.
192 	 */
193 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
194 
195 	/*
196 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 	 * is set to hold the flags until we are done handling everything
198 	 * from the flags.
199 	 */
200 #define RECEIVE_MSG_AVAIL	0x01
201 #define EVENT_MSG_BUFFER_FULL	0x02
202 #define WDT_PRE_TIMEOUT_INT	0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207 			     OEM1_DATA_AVAIL | \
208 			     OEM2_DATA_AVAIL)
209 	unsigned char       msg_flags;
210 
211 	/* Does the BMC have an event buffer? */
212 	bool		    has_event_buffer;
213 
214 	/*
215 	 * If set to true, this will request events the next time the
216 	 * state machine is idle.
217 	 */
218 	atomic_t            req_events;
219 
220 	/*
221 	 * If true, run the state machine to completion on every send
222 	 * call.  Generally used after a panic to make sure stuff goes
223 	 * out.
224 	 */
225 	bool                run_to_completion;
226 
227 	/* The I/O port of an SI interface. */
228 	int                 port;
229 
230 	/*
231 	 * The space between start addresses of the two ports.  For
232 	 * instance, if the first port is 0xca2 and the spacing is 4, then
233 	 * the second port is 0xca6.
234 	 */
235 	unsigned int        spacing;
236 
237 	/* zero if no irq; */
238 	int                 irq;
239 
240 	/* The timer for this si. */
241 	struct timer_list   si_timer;
242 
243 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 	bool		    timer_running;
245 
246 	/* The time (in jiffies) the last timeout occurred at. */
247 	unsigned long       last_timeout_jiffies;
248 
249 	/* Are we waiting for the events, pretimeouts, received msgs? */
250 	atomic_t            need_watch;
251 
252 	/*
253 	 * The driver will disable interrupts when it gets into a
254 	 * situation where it cannot handle messages due to lack of
255 	 * memory.  Once that situation clears up, it will re-enable
256 	 * interrupts.
257 	 */
258 	bool interrupt_disabled;
259 
260 	/*
261 	 * Does the BMC support events?
262 	 */
263 	bool supports_event_msg_buff;
264 
265 	/*
266 	 * Can we clear the global enables receive irq bit?
267 	 */
268 	bool cannot_clear_recv_irq_bit;
269 
270 	/*
271 	 * Did we get an attention that we did not handle?
272 	 */
273 	bool got_attn;
274 
275 	/* From the get device id response... */
276 	struct ipmi_device_id device_id;
277 
278 	/* Driver model stuff. */
279 	struct device *dev;
280 	struct platform_device *pdev;
281 
282 	/*
283 	 * True if we allocated the device, false if it came from
284 	 * someplace else (like PCI).
285 	 */
286 	bool dev_registered;
287 
288 	/* Slave address, could be reported from DMI. */
289 	unsigned char slave_addr;
290 
291 	/* Counters and things for the proc filesystem. */
292 	atomic_t stats[SI_NUM_STATS];
293 
294 	struct task_struct *thread;
295 
296 	struct list_head link;
297 	union ipmi_smi_info_union addr_info;
298 };
299 
300 #define smi_inc_stat(smi, stat) \
301 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302 #define smi_get_stat(smi, stat) \
303 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304 
305 #define SI_MAX_PARMS 4
306 
307 static int force_kipmid[SI_MAX_PARMS];
308 static int num_force_kipmid;
309 #ifdef CONFIG_PCI
310 static bool pci_registered;
311 #endif
312 #ifdef CONFIG_ACPI
313 static bool pnp_registered;
314 #endif
315 #ifdef CONFIG_PARISC
316 static bool parisc_registered;
317 #endif
318 
319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320 static int num_max_busy_us;
321 
322 static bool unload_when_empty = true;
323 
324 static int add_smi(struct smi_info *smi);
325 static int try_smi_init(struct smi_info *smi);
326 static void cleanup_one_si(struct smi_info *to_clean);
327 static void cleanup_ipmi_si(void);
328 
329 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)330 void debug_timestamp(char *msg)
331 {
332 	struct timespec64 t;
333 
334 	getnstimeofday64(&t);
335 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
336 }
337 #else
338 #define debug_timestamp(x)
339 #endif
340 
341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)342 static int register_xaction_notifier(struct notifier_block *nb)
343 {
344 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
345 }
346 
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)347 static void deliver_recv_msg(struct smi_info *smi_info,
348 			     struct ipmi_smi_msg *msg)
349 {
350 	/* Deliver the message to the upper layer. */
351 	if (smi_info->intf)
352 		ipmi_smi_msg_received(smi_info->intf, msg);
353 	else
354 		ipmi_free_smi_msg(msg);
355 }
356 
return_hosed_msg(struct smi_info * smi_info,int cCode)357 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
358 {
359 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
360 
361 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362 		cCode = IPMI_ERR_UNSPECIFIED;
363 	/* else use it as is */
364 
365 	/* Make it a response */
366 	msg->rsp[0] = msg->data[0] | 4;
367 	msg->rsp[1] = msg->data[1];
368 	msg->rsp[2] = cCode;
369 	msg->rsp_size = 3;
370 
371 	smi_info->curr_msg = NULL;
372 	deliver_recv_msg(smi_info, msg);
373 }
374 
start_next_msg(struct smi_info * smi_info)375 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376 {
377 	int              rv;
378 
379 	if (!smi_info->waiting_msg) {
380 		smi_info->curr_msg = NULL;
381 		rv = SI_SM_IDLE;
382 	} else {
383 		int err;
384 
385 		smi_info->curr_msg = smi_info->waiting_msg;
386 		smi_info->waiting_msg = NULL;
387 		debug_timestamp("Start2");
388 		err = atomic_notifier_call_chain(&xaction_notifier_list,
389 				0, smi_info);
390 		if (err & NOTIFY_STOP_MASK) {
391 			rv = SI_SM_CALL_WITHOUT_DELAY;
392 			goto out;
393 		}
394 		err = smi_info->handlers->start_transaction(
395 			smi_info->si_sm,
396 			smi_info->curr_msg->data,
397 			smi_info->curr_msg->data_size);
398 		if (err)
399 			return_hosed_msg(smi_info, err);
400 
401 		rv = SI_SM_CALL_WITHOUT_DELAY;
402 	}
403  out:
404 	return rv;
405 }
406 
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)407 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
408 {
409 	smi_info->last_timeout_jiffies = jiffies;
410 	mod_timer(&smi_info->si_timer, new_val);
411 	smi_info->timer_running = true;
412 }
413 
414 /*
415  * Start a new message and (re)start the timer and thread.
416  */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)417 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
418 			  unsigned int size)
419 {
420 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
421 
422 	if (smi_info->thread)
423 		wake_up_process(smi_info->thread);
424 
425 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
426 }
427 
start_check_enables(struct smi_info * smi_info,bool start_timer)428 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
429 {
430 	unsigned char msg[2];
431 
432 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
433 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
434 
435 	if (start_timer)
436 		start_new_msg(smi_info, msg, 2);
437 	else
438 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
439 	smi_info->si_state = SI_CHECKING_ENABLES;
440 }
441 
start_clear_flags(struct smi_info * smi_info,bool start_timer)442 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
443 {
444 	unsigned char msg[3];
445 
446 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
447 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
448 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
449 	msg[2] = WDT_PRE_TIMEOUT_INT;
450 
451 	if (start_timer)
452 		start_new_msg(smi_info, msg, 3);
453 	else
454 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
455 	smi_info->si_state = SI_CLEARING_FLAGS;
456 }
457 
start_getting_msg_queue(struct smi_info * smi_info)458 static void start_getting_msg_queue(struct smi_info *smi_info)
459 {
460 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
461 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
462 	smi_info->curr_msg->data_size = 2;
463 
464 	start_new_msg(smi_info, smi_info->curr_msg->data,
465 		      smi_info->curr_msg->data_size);
466 	smi_info->si_state = SI_GETTING_MESSAGES;
467 }
468 
start_getting_events(struct smi_info * smi_info)469 static void start_getting_events(struct smi_info *smi_info)
470 {
471 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
473 	smi_info->curr_msg->data_size = 2;
474 
475 	start_new_msg(smi_info, smi_info->curr_msg->data,
476 		      smi_info->curr_msg->data_size);
477 	smi_info->si_state = SI_GETTING_EVENTS;
478 }
479 
480 /*
481  * When we have a situtaion where we run out of memory and cannot
482  * allocate messages, we just leave them in the BMC and run the system
483  * polled until we can allocate some memory.  Once we have some
484  * memory, we will re-enable the interrupt.
485  *
486  * Note that we cannot just use disable_irq(), since the interrupt may
487  * be shared.
488  */
disable_si_irq(struct smi_info * smi_info,bool start_timer)489 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
490 {
491 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
492 		smi_info->interrupt_disabled = true;
493 		start_check_enables(smi_info, start_timer);
494 		return true;
495 	}
496 	return false;
497 }
498 
enable_si_irq(struct smi_info * smi_info)499 static inline bool enable_si_irq(struct smi_info *smi_info)
500 {
501 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
502 		smi_info->interrupt_disabled = false;
503 		start_check_enables(smi_info, true);
504 		return true;
505 	}
506 	return false;
507 }
508 
509 /*
510  * Allocate a message.  If unable to allocate, start the interrupt
511  * disable process and return NULL.  If able to allocate but
512  * interrupts are disabled, free the message and return NULL after
513  * starting the interrupt enable process.
514  */
alloc_msg_handle_irq(struct smi_info * smi_info)515 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
516 {
517 	struct ipmi_smi_msg *msg;
518 
519 	msg = ipmi_alloc_smi_msg();
520 	if (!msg) {
521 		if (!disable_si_irq(smi_info, true))
522 			smi_info->si_state = SI_NORMAL;
523 	} else if (enable_si_irq(smi_info)) {
524 		ipmi_free_smi_msg(msg);
525 		msg = NULL;
526 	}
527 	return msg;
528 }
529 
handle_flags(struct smi_info * smi_info)530 static void handle_flags(struct smi_info *smi_info)
531 {
532  retry:
533 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
534 		/* Watchdog pre-timeout */
535 		smi_inc_stat(smi_info, watchdog_pretimeouts);
536 
537 		start_clear_flags(smi_info, true);
538 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
539 		if (smi_info->intf)
540 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
541 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
542 		/* Messages available. */
543 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
544 		if (!smi_info->curr_msg)
545 			return;
546 
547 		start_getting_msg_queue(smi_info);
548 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
549 		/* Events available. */
550 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
551 		if (!smi_info->curr_msg)
552 			return;
553 
554 		start_getting_events(smi_info);
555 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
556 		   smi_info->oem_data_avail_handler) {
557 		if (smi_info->oem_data_avail_handler(smi_info))
558 			goto retry;
559 	} else
560 		smi_info->si_state = SI_NORMAL;
561 }
562 
563 /*
564  * Global enables we care about.
565  */
566 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
567 			     IPMI_BMC_EVT_MSG_INTR)
568 
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)569 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
570 				 bool *irq_on)
571 {
572 	u8 enables = 0;
573 
574 	if (smi_info->supports_event_msg_buff)
575 		enables |= IPMI_BMC_EVT_MSG_BUFF;
576 
577 	if ((smi_info->irq && !smi_info->interrupt_disabled) ||
578 	    smi_info->cannot_clear_recv_irq_bit)
579 		enables |= IPMI_BMC_RCV_MSG_INTR;
580 
581 	if (smi_info->supports_event_msg_buff &&
582 	    smi_info->irq && !smi_info->interrupt_disabled)
583 
584 		enables |= IPMI_BMC_EVT_MSG_INTR;
585 
586 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
587 
588 	return enables;
589 }
590 
check_bt_irq(struct smi_info * smi_info,bool irq_on)591 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
592 {
593 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
594 
595 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
596 
597 	if ((bool)irqstate == irq_on)
598 		return;
599 
600 	if (irq_on)
601 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
602 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
603 	else
604 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
605 }
606 
handle_transaction_done(struct smi_info * smi_info)607 static void handle_transaction_done(struct smi_info *smi_info)
608 {
609 	struct ipmi_smi_msg *msg;
610 
611 	debug_timestamp("Done");
612 	switch (smi_info->si_state) {
613 	case SI_NORMAL:
614 		if (!smi_info->curr_msg)
615 			break;
616 
617 		smi_info->curr_msg->rsp_size
618 			= smi_info->handlers->get_result(
619 				smi_info->si_sm,
620 				smi_info->curr_msg->rsp,
621 				IPMI_MAX_MSG_LENGTH);
622 
623 		/*
624 		 * Do this here becase deliver_recv_msg() releases the
625 		 * lock, and a new message can be put in during the
626 		 * time the lock is released.
627 		 */
628 		msg = smi_info->curr_msg;
629 		smi_info->curr_msg = NULL;
630 		deliver_recv_msg(smi_info, msg);
631 		break;
632 
633 	case SI_GETTING_FLAGS:
634 	{
635 		unsigned char msg[4];
636 		unsigned int  len;
637 
638 		/* We got the flags from the SMI, now handle them. */
639 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
640 		if (msg[2] != 0) {
641 			/* Error fetching flags, just give up for now. */
642 			smi_info->si_state = SI_NORMAL;
643 		} else if (len < 4) {
644 			/*
645 			 * Hmm, no flags.  That's technically illegal, but
646 			 * don't use uninitialized data.
647 			 */
648 			smi_info->si_state = SI_NORMAL;
649 		} else {
650 			smi_info->msg_flags = msg[3];
651 			handle_flags(smi_info);
652 		}
653 		break;
654 	}
655 
656 	case SI_CLEARING_FLAGS:
657 	{
658 		unsigned char msg[3];
659 
660 		/* We cleared the flags. */
661 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
662 		if (msg[2] != 0) {
663 			/* Error clearing flags */
664 			dev_warn(smi_info->dev,
665 				 "Error clearing flags: %2.2x\n", msg[2]);
666 		}
667 		smi_info->si_state = SI_NORMAL;
668 		break;
669 	}
670 
671 	case SI_GETTING_EVENTS:
672 	{
673 		smi_info->curr_msg->rsp_size
674 			= smi_info->handlers->get_result(
675 				smi_info->si_sm,
676 				smi_info->curr_msg->rsp,
677 				IPMI_MAX_MSG_LENGTH);
678 
679 		/*
680 		 * Do this here becase deliver_recv_msg() releases the
681 		 * lock, and a new message can be put in during the
682 		 * time the lock is released.
683 		 */
684 		msg = smi_info->curr_msg;
685 		smi_info->curr_msg = NULL;
686 		if (msg->rsp[2] != 0) {
687 			/* Error getting event, probably done. */
688 			msg->done(msg);
689 
690 			/* Take off the event flag. */
691 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
692 			handle_flags(smi_info);
693 		} else {
694 			smi_inc_stat(smi_info, events);
695 
696 			/*
697 			 * Do this before we deliver the message
698 			 * because delivering the message releases the
699 			 * lock and something else can mess with the
700 			 * state.
701 			 */
702 			handle_flags(smi_info);
703 
704 			deliver_recv_msg(smi_info, msg);
705 		}
706 		break;
707 	}
708 
709 	case SI_GETTING_MESSAGES:
710 	{
711 		smi_info->curr_msg->rsp_size
712 			= smi_info->handlers->get_result(
713 				smi_info->si_sm,
714 				smi_info->curr_msg->rsp,
715 				IPMI_MAX_MSG_LENGTH);
716 
717 		/*
718 		 * Do this here becase deliver_recv_msg() releases the
719 		 * lock, and a new message can be put in during the
720 		 * time the lock is released.
721 		 */
722 		msg = smi_info->curr_msg;
723 		smi_info->curr_msg = NULL;
724 		if (msg->rsp[2] != 0) {
725 			/* Error getting event, probably done. */
726 			msg->done(msg);
727 
728 			/* Take off the msg flag. */
729 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
730 			handle_flags(smi_info);
731 		} else {
732 			smi_inc_stat(smi_info, incoming_messages);
733 
734 			/*
735 			 * Do this before we deliver the message
736 			 * because delivering the message releases the
737 			 * lock and something else can mess with the
738 			 * state.
739 			 */
740 			handle_flags(smi_info);
741 
742 			deliver_recv_msg(smi_info, msg);
743 		}
744 		break;
745 	}
746 
747 	case SI_CHECKING_ENABLES:
748 	{
749 		unsigned char msg[4];
750 		u8 enables;
751 		bool irq_on;
752 
753 		/* We got the flags from the SMI, now handle them. */
754 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
755 		if (msg[2] != 0) {
756 			dev_warn(smi_info->dev,
757 				 "Couldn't get irq info: %x.\n", msg[2]);
758 			dev_warn(smi_info->dev,
759 				 "Maybe ok, but ipmi might run very slowly.\n");
760 			smi_info->si_state = SI_NORMAL;
761 			break;
762 		}
763 		enables = current_global_enables(smi_info, 0, &irq_on);
764 		if (smi_info->si_type == SI_BT)
765 			/* BT has its own interrupt enable bit. */
766 			check_bt_irq(smi_info, irq_on);
767 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
768 			/* Enables are not correct, fix them. */
769 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
770 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
771 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
772 			smi_info->handlers->start_transaction(
773 				smi_info->si_sm, msg, 3);
774 			smi_info->si_state = SI_SETTING_ENABLES;
775 		} else if (smi_info->supports_event_msg_buff) {
776 			smi_info->curr_msg = ipmi_alloc_smi_msg();
777 			if (!smi_info->curr_msg) {
778 				smi_info->si_state = SI_NORMAL;
779 				break;
780 			}
781 			start_getting_msg_queue(smi_info);
782 		} else {
783 			smi_info->si_state = SI_NORMAL;
784 		}
785 		break;
786 	}
787 
788 	case SI_SETTING_ENABLES:
789 	{
790 		unsigned char msg[4];
791 
792 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
793 		if (msg[2] != 0)
794 			dev_warn(smi_info->dev,
795 				 "Could not set the global enables: 0x%x.\n",
796 				 msg[2]);
797 
798 		if (smi_info->supports_event_msg_buff) {
799 			smi_info->curr_msg = ipmi_alloc_smi_msg();
800 			if (!smi_info->curr_msg) {
801 				smi_info->si_state = SI_NORMAL;
802 				break;
803 			}
804 			start_getting_msg_queue(smi_info);
805 		} else {
806 			smi_info->si_state = SI_NORMAL;
807 		}
808 		break;
809 	}
810 	}
811 }
812 
813 /*
814  * Called on timeouts and events.  Timeouts should pass the elapsed
815  * time, interrupts should pass in zero.  Must be called with
816  * si_lock held and interrupts disabled.
817  */
smi_event_handler(struct smi_info * smi_info,int time)818 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
819 					   int time)
820 {
821 	enum si_sm_result si_sm_result;
822 
823  restart:
824 	/*
825 	 * There used to be a loop here that waited a little while
826 	 * (around 25us) before giving up.  That turned out to be
827 	 * pointless, the minimum delays I was seeing were in the 300us
828 	 * range, which is far too long to wait in an interrupt.  So
829 	 * we just run until the state machine tells us something
830 	 * happened or it needs a delay.
831 	 */
832 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
833 	time = 0;
834 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
835 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
836 
837 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
838 		smi_inc_stat(smi_info, complete_transactions);
839 
840 		handle_transaction_done(smi_info);
841 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
842 	} else if (si_sm_result == SI_SM_HOSED) {
843 		smi_inc_stat(smi_info, hosed_count);
844 
845 		/*
846 		 * Do the before return_hosed_msg, because that
847 		 * releases the lock.
848 		 */
849 		smi_info->si_state = SI_NORMAL;
850 		if (smi_info->curr_msg != NULL) {
851 			/*
852 			 * If we were handling a user message, format
853 			 * a response to send to the upper layer to
854 			 * tell it about the error.
855 			 */
856 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
857 		}
858 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
859 	}
860 
861 	/*
862 	 * We prefer handling attn over new messages.  But don't do
863 	 * this if there is not yet an upper layer to handle anything.
864 	 */
865 	if (likely(smi_info->intf) &&
866 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
867 		unsigned char msg[2];
868 
869 		if (smi_info->si_state != SI_NORMAL) {
870 			/*
871 			 * We got an ATTN, but we are doing something else.
872 			 * Handle the ATTN later.
873 			 */
874 			smi_info->got_attn = true;
875 		} else {
876 			smi_info->got_attn = false;
877 			smi_inc_stat(smi_info, attentions);
878 
879 			/*
880 			 * Got a attn, send down a get message flags to see
881 			 * what's causing it.  It would be better to handle
882 			 * this in the upper layer, but due to the way
883 			 * interrupts work with the SMI, that's not really
884 			 * possible.
885 			 */
886 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
887 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
888 
889 			start_new_msg(smi_info, msg, 2);
890 			smi_info->si_state = SI_GETTING_FLAGS;
891 			goto restart;
892 		}
893 	}
894 
895 	/* If we are currently idle, try to start the next message. */
896 	if (si_sm_result == SI_SM_IDLE) {
897 		smi_inc_stat(smi_info, idles);
898 
899 		si_sm_result = start_next_msg(smi_info);
900 		if (si_sm_result != SI_SM_IDLE)
901 			goto restart;
902 	}
903 
904 	if ((si_sm_result == SI_SM_IDLE)
905 	    && (atomic_read(&smi_info->req_events))) {
906 		/*
907 		 * We are idle and the upper layer requested that I fetch
908 		 * events, so do so.
909 		 */
910 		atomic_set(&smi_info->req_events, 0);
911 
912 		/*
913 		 * Take this opportunity to check the interrupt and
914 		 * message enable state for the BMC.  The BMC can be
915 		 * asynchronously reset, and may thus get interrupts
916 		 * disable and messages disabled.
917 		 */
918 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
919 			start_check_enables(smi_info, true);
920 		} else {
921 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
922 			if (!smi_info->curr_msg)
923 				goto out;
924 
925 			start_getting_events(smi_info);
926 		}
927 		goto restart;
928 	}
929  out:
930 	return si_sm_result;
931 }
932 
check_start_timer_thread(struct smi_info * smi_info)933 static void check_start_timer_thread(struct smi_info *smi_info)
934 {
935 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
936 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
937 
938 		if (smi_info->thread)
939 			wake_up_process(smi_info->thread);
940 
941 		start_next_msg(smi_info);
942 		smi_event_handler(smi_info, 0);
943 	}
944 }
945 
sender(void * send_info,struct ipmi_smi_msg * msg)946 static void sender(void                *send_info,
947 		   struct ipmi_smi_msg *msg)
948 {
949 	struct smi_info   *smi_info = send_info;
950 	enum si_sm_result result;
951 	unsigned long     flags;
952 
953 	debug_timestamp("Enqueue");
954 
955 	if (smi_info->run_to_completion) {
956 		/*
957 		 * If we are running to completion, start it and run
958 		 * transactions until everything is clear.
959 		 */
960 		smi_info->waiting_msg = msg;
961 
962 		/*
963 		 * Run to completion means we are single-threaded, no
964 		 * need for locks.
965 		 */
966 
967 		result = smi_event_handler(smi_info, 0);
968 		while (result != SI_SM_IDLE) {
969 			udelay(SI_SHORT_TIMEOUT_USEC);
970 			result = smi_event_handler(smi_info,
971 						   SI_SHORT_TIMEOUT_USEC);
972 		}
973 		return;
974 	}
975 
976 	spin_lock_irqsave(&smi_info->si_lock, flags);
977 	/*
978 	 * The following two lines don't need to be under the lock for
979 	 * the lock's sake, but they do need SMP memory barriers to
980 	 * avoid getting things out of order.  We are already claiming
981 	 * the lock, anyway, so just do it under the lock to avoid the
982 	 * ordering problem.
983 	 */
984 	BUG_ON(smi_info->waiting_msg);
985 	smi_info->waiting_msg = msg;
986 	check_start_timer_thread(smi_info);
987 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
988 }
989 
set_run_to_completion(void * send_info,bool i_run_to_completion)990 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
991 {
992 	struct smi_info   *smi_info = send_info;
993 	enum si_sm_result result;
994 
995 	smi_info->run_to_completion = i_run_to_completion;
996 	if (i_run_to_completion) {
997 		result = smi_event_handler(smi_info, 0);
998 		while (result != SI_SM_IDLE) {
999 			udelay(SI_SHORT_TIMEOUT_USEC);
1000 			result = smi_event_handler(smi_info,
1001 						   SI_SHORT_TIMEOUT_USEC);
1002 		}
1003 	}
1004 }
1005 
1006 /*
1007  * Use -1 in the nsec value of the busy waiting timespec to tell that
1008  * we are spinning in kipmid looking for something and not delaying
1009  * between checks
1010  */
ipmi_si_set_not_busy(struct timespec64 * ts)1011 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1012 {
1013 	ts->tv_nsec = -1;
1014 }
ipmi_si_is_busy(struct timespec64 * ts)1015 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1016 {
1017 	return ts->tv_nsec != -1;
1018 }
1019 
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)1020 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1021 					const struct smi_info *smi_info,
1022 					struct timespec64 *busy_until)
1023 {
1024 	unsigned int max_busy_us = 0;
1025 
1026 	if (smi_info->intf_num < num_max_busy_us)
1027 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1028 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1029 		ipmi_si_set_not_busy(busy_until);
1030 	else if (!ipmi_si_is_busy(busy_until)) {
1031 		getnstimeofday64(busy_until);
1032 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1033 	} else {
1034 		struct timespec64 now;
1035 
1036 		getnstimeofday64(&now);
1037 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1038 			ipmi_si_set_not_busy(busy_until);
1039 			return 0;
1040 		}
1041 	}
1042 	return 1;
1043 }
1044 
1045 
1046 /*
1047  * A busy-waiting loop for speeding up IPMI operation.
1048  *
1049  * Lousy hardware makes this hard.  This is only enabled for systems
1050  * that are not BT and do not have interrupts.  It starts spinning
1051  * when an operation is complete or until max_busy tells it to stop
1052  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1053  * Documentation/IPMI.txt for details.
1054  */
ipmi_thread(void * data)1055 static int ipmi_thread(void *data)
1056 {
1057 	struct smi_info *smi_info = data;
1058 	unsigned long flags;
1059 	enum si_sm_result smi_result;
1060 	struct timespec64 busy_until;
1061 
1062 	ipmi_si_set_not_busy(&busy_until);
1063 	set_user_nice(current, MAX_NICE);
1064 	while (!kthread_should_stop()) {
1065 		int busy_wait;
1066 
1067 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 		smi_result = smi_event_handler(smi_info, 0);
1069 
1070 		/*
1071 		 * If the driver is doing something, there is a possible
1072 		 * race with the timer.  If the timer handler see idle,
1073 		 * and the thread here sees something else, the timer
1074 		 * handler won't restart the timer even though it is
1075 		 * required.  So start it here if necessary.
1076 		 */
1077 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1078 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1079 
1080 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1081 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1082 						  &busy_until);
1083 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1084 			; /* do nothing */
1085 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1086 			schedule();
1087 		else if (smi_result == SI_SM_IDLE) {
1088 			if (atomic_read(&smi_info->need_watch)) {
1089 				schedule_timeout_interruptible(100);
1090 			} else {
1091 				/* Wait to be woken up when we are needed. */
1092 				__set_current_state(TASK_INTERRUPTIBLE);
1093 				schedule();
1094 			}
1095 		} else
1096 			schedule_timeout_interruptible(1);
1097 	}
1098 	return 0;
1099 }
1100 
1101 
poll(void * send_info)1102 static void poll(void *send_info)
1103 {
1104 	struct smi_info *smi_info = send_info;
1105 	unsigned long flags = 0;
1106 	bool run_to_completion = smi_info->run_to_completion;
1107 
1108 	/*
1109 	 * Make sure there is some delay in the poll loop so we can
1110 	 * drive time forward and timeout things.
1111 	 */
1112 	udelay(10);
1113 	if (!run_to_completion)
1114 		spin_lock_irqsave(&smi_info->si_lock, flags);
1115 	smi_event_handler(smi_info, 10);
1116 	if (!run_to_completion)
1117 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1118 }
1119 
request_events(void * send_info)1120 static void request_events(void *send_info)
1121 {
1122 	struct smi_info *smi_info = send_info;
1123 
1124 	if (!smi_info->has_event_buffer)
1125 		return;
1126 
1127 	atomic_set(&smi_info->req_events, 1);
1128 }
1129 
set_need_watch(void * send_info,bool enable)1130 static void set_need_watch(void *send_info, bool enable)
1131 {
1132 	struct smi_info *smi_info = send_info;
1133 	unsigned long flags;
1134 
1135 	atomic_set(&smi_info->need_watch, enable);
1136 	spin_lock_irqsave(&smi_info->si_lock, flags);
1137 	check_start_timer_thread(smi_info);
1138 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1139 }
1140 
1141 static int initialized;
1142 
smi_timeout(unsigned long data)1143 static void smi_timeout(unsigned long data)
1144 {
1145 	struct smi_info   *smi_info = (struct smi_info *) data;
1146 	enum si_sm_result smi_result;
1147 	unsigned long     flags;
1148 	unsigned long     jiffies_now;
1149 	long              time_diff;
1150 	long		  timeout;
1151 
1152 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1153 	debug_timestamp("Timer");
1154 
1155 	jiffies_now = jiffies;
1156 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1157 		     * SI_USEC_PER_JIFFY);
1158 	smi_result = smi_event_handler(smi_info, time_diff);
1159 
1160 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1161 		/* Running with interrupts, only do long timeouts. */
1162 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1163 		smi_inc_stat(smi_info, long_timeouts);
1164 		goto do_mod_timer;
1165 	}
1166 
1167 	/*
1168 	 * If the state machine asks for a short delay, then shorten
1169 	 * the timer timeout.
1170 	 */
1171 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1172 		smi_inc_stat(smi_info, short_timeouts);
1173 		timeout = jiffies + 1;
1174 	} else {
1175 		smi_inc_stat(smi_info, long_timeouts);
1176 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 	}
1178 
1179  do_mod_timer:
1180 	if (smi_result != SI_SM_IDLE)
1181 		smi_mod_timer(smi_info, timeout);
1182 	else
1183 		smi_info->timer_running = false;
1184 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185 }
1186 
si_irq_handler(int irq,void * data)1187 static irqreturn_t si_irq_handler(int irq, void *data)
1188 {
1189 	struct smi_info *smi_info = data;
1190 	unsigned long   flags;
1191 
1192 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1193 
1194 	smi_inc_stat(smi_info, interrupts);
1195 
1196 	debug_timestamp("Interrupt");
1197 
1198 	smi_event_handler(smi_info, 0);
1199 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200 	return IRQ_HANDLED;
1201 }
1202 
si_bt_irq_handler(int irq,void * data)1203 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1204 {
1205 	struct smi_info *smi_info = data;
1206 	/* We need to clear the IRQ flag for the BT interface. */
1207 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1208 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1209 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1210 	return si_irq_handler(irq, data);
1211 }
1212 
smi_start_processing(void * send_info,ipmi_smi_t intf)1213 static int smi_start_processing(void       *send_info,
1214 				ipmi_smi_t intf)
1215 {
1216 	struct smi_info *new_smi = send_info;
1217 	int             enable = 0;
1218 
1219 	new_smi->intf = intf;
1220 
1221 	/* Set up the timer that drives the interface. */
1222 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1223 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1224 
1225 	/* Try to claim any interrupts. */
1226 	if (new_smi->irq_setup)
1227 		new_smi->irq_setup(new_smi);
1228 
1229 	/*
1230 	 * Check if the user forcefully enabled the daemon.
1231 	 */
1232 	if (new_smi->intf_num < num_force_kipmid)
1233 		enable = force_kipmid[new_smi->intf_num];
1234 	/*
1235 	 * The BT interface is efficient enough to not need a thread,
1236 	 * and there is no need for a thread if we have interrupts.
1237 	 */
1238 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1239 		enable = 1;
1240 
1241 	if (enable) {
1242 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1243 					      "kipmi%d", new_smi->intf_num);
1244 		if (IS_ERR(new_smi->thread)) {
1245 			dev_notice(new_smi->dev, "Could not start"
1246 				   " kernel thread due to error %ld, only using"
1247 				   " timers to drive the interface\n",
1248 				   PTR_ERR(new_smi->thread));
1249 			new_smi->thread = NULL;
1250 		}
1251 	}
1252 
1253 	return 0;
1254 }
1255 
get_smi_info(void * send_info,struct ipmi_smi_info * data)1256 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1257 {
1258 	struct smi_info *smi = send_info;
1259 
1260 	data->addr_src = smi->addr_source;
1261 	data->dev = smi->dev;
1262 	data->addr_info = smi->addr_info;
1263 	get_device(smi->dev);
1264 
1265 	return 0;
1266 }
1267 
set_maintenance_mode(void * send_info,bool enable)1268 static void set_maintenance_mode(void *send_info, bool enable)
1269 {
1270 	struct smi_info   *smi_info = send_info;
1271 
1272 	if (!enable)
1273 		atomic_set(&smi_info->req_events, 0);
1274 }
1275 
1276 static struct ipmi_smi_handlers handlers = {
1277 	.owner                  = THIS_MODULE,
1278 	.start_processing       = smi_start_processing,
1279 	.get_smi_info		= get_smi_info,
1280 	.sender			= sender,
1281 	.request_events		= request_events,
1282 	.set_need_watch		= set_need_watch,
1283 	.set_maintenance_mode   = set_maintenance_mode,
1284 	.set_run_to_completion  = set_run_to_completion,
1285 	.poll			= poll,
1286 };
1287 
1288 /*
1289  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1290  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1291  */
1292 
1293 static LIST_HEAD(smi_infos);
1294 static DEFINE_MUTEX(smi_infos_lock);
1295 static int smi_num; /* Used to sequence the SMIs */
1296 
1297 #define DEFAULT_REGSPACING	1
1298 #define DEFAULT_REGSIZE		1
1299 
1300 #ifdef CONFIG_ACPI
1301 static bool          si_tryacpi = 1;
1302 #endif
1303 #ifdef CONFIG_DMI
1304 static bool          si_trydmi = 1;
1305 #endif
1306 static bool          si_tryplatform = 1;
1307 #ifdef CONFIG_PCI
1308 static bool          si_trypci = 1;
1309 #endif
1310 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1311 static char          *si_type[SI_MAX_PARMS];
1312 #define MAX_SI_TYPE_STR 30
1313 static char          si_type_str[MAX_SI_TYPE_STR];
1314 static unsigned long addrs[SI_MAX_PARMS];
1315 static unsigned int num_addrs;
1316 static unsigned int  ports[SI_MAX_PARMS];
1317 static unsigned int num_ports;
1318 static int           irqs[SI_MAX_PARMS];
1319 static unsigned int num_irqs;
1320 static int           regspacings[SI_MAX_PARMS];
1321 static unsigned int num_regspacings;
1322 static int           regsizes[SI_MAX_PARMS];
1323 static unsigned int num_regsizes;
1324 static int           regshifts[SI_MAX_PARMS];
1325 static unsigned int num_regshifts;
1326 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1327 static unsigned int num_slave_addrs;
1328 
1329 #define IPMI_IO_ADDR_SPACE  0
1330 #define IPMI_MEM_ADDR_SPACE 1
1331 static char *addr_space_to_str[] = { "i/o", "mem" };
1332 
1333 static int hotmod_handler(const char *val, struct kernel_param *kp);
1334 
1335 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1336 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1337 		 " Documentation/IPMI.txt in the kernel sources for the"
1338 		 " gory details.");
1339 
1340 #ifdef CONFIG_ACPI
1341 module_param_named(tryacpi, si_tryacpi, bool, 0);
1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343 		 " default scan of the interfaces identified via ACPI");
1344 #endif
1345 #ifdef CONFIG_DMI
1346 module_param_named(trydmi, si_trydmi, bool, 0);
1347 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1348 		 " default scan of the interfaces identified via DMI");
1349 #endif
1350 module_param_named(tryplatform, si_tryplatform, bool, 0);
1351 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1352 		 " default scan of the interfaces identified via platform"
1353 		 " interfaces like openfirmware");
1354 #ifdef CONFIG_PCI
1355 module_param_named(trypci, si_trypci, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 		 " default scan of the interfaces identified via pci");
1358 #endif
1359 module_param_named(trydefaults, si_trydefaults, bool, 0);
1360 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1361 		 " default scan of the KCS and SMIC interface at the standard"
1362 		 " address");
1363 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1364 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1365 		 " interface separated by commas.  The types are 'kcs',"
1366 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1367 		 " the first interface to kcs and the second to bt");
1368 module_param_array(addrs, ulong, &num_addrs, 0);
1369 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1370 		 " addresses separated by commas.  Only use if an interface"
1371 		 " is in memory.  Otherwise, set it to zero or leave"
1372 		 " it blank.");
1373 module_param_array(ports, uint, &num_ports, 0);
1374 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1375 		 " addresses separated by commas.  Only use if an interface"
1376 		 " is a port.  Otherwise, set it to zero or leave"
1377 		 " it blank.");
1378 module_param_array(irqs, int, &num_irqs, 0);
1379 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1380 		 " addresses separated by commas.  Only use if an interface"
1381 		 " has an interrupt.  Otherwise, set it to zero or leave"
1382 		 " it blank.");
1383 module_param_array(regspacings, int, &num_regspacings, 0);
1384 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1385 		 " and each successive register used by the interface.  For"
1386 		 " instance, if the start address is 0xca2 and the spacing"
1387 		 " is 2, then the second address is at 0xca4.  Defaults"
1388 		 " to 1.");
1389 module_param_array(regsizes, int, &num_regsizes, 0);
1390 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1391 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1392 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1393 		 " the 8-bit IPMI register has to be read from a larger"
1394 		 " register.");
1395 module_param_array(regshifts, int, &num_regshifts, 0);
1396 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1397 		 " IPMI register, in bits.  For instance, if the data"
1398 		 " is read from a 32-bit word and the IPMI data is in"
1399 		 " bit 8-15, then the shift would be 8");
1400 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1401 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1402 		 " the controller.  Normally this is 0x20, but can be"
1403 		 " overridden by this parm.  This is an array indexed"
1404 		 " by interface number.");
1405 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1406 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1407 		 " disabled(0).  Normally the IPMI driver auto-detects"
1408 		 " this, but the value may be overridden by this parm.");
1409 module_param(unload_when_empty, bool, 0);
1410 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1411 		 " specified or found, default is 1.  Setting to 0"
1412 		 " is useful for hot add of devices using hotmod.");
1413 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1414 MODULE_PARM_DESC(kipmid_max_busy_us,
1415 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1416 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1417 		 " if kipmid is using up a lot of CPU time.");
1418 
1419 
std_irq_cleanup(struct smi_info * info)1420 static void std_irq_cleanup(struct smi_info *info)
1421 {
1422 	if (info->si_type == SI_BT)
1423 		/* Disable the interrupt in the BT interface. */
1424 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1425 	free_irq(info->irq, info);
1426 }
1427 
std_irq_setup(struct smi_info * info)1428 static int std_irq_setup(struct smi_info *info)
1429 {
1430 	int rv;
1431 
1432 	if (!info->irq)
1433 		return 0;
1434 
1435 	if (info->si_type == SI_BT) {
1436 		rv = request_irq(info->irq,
1437 				 si_bt_irq_handler,
1438 				 IRQF_SHARED,
1439 				 DEVICE_NAME,
1440 				 info);
1441 		if (!rv)
1442 			/* Enable the interrupt in the BT interface. */
1443 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1444 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1445 	} else
1446 		rv = request_irq(info->irq,
1447 				 si_irq_handler,
1448 				 IRQF_SHARED,
1449 				 DEVICE_NAME,
1450 				 info);
1451 	if (rv) {
1452 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1453 			 " running polled\n",
1454 			 DEVICE_NAME, info->irq);
1455 		info->irq = 0;
1456 	} else {
1457 		info->irq_cleanup = std_irq_cleanup;
1458 		dev_info(info->dev, "Using irq %d\n", info->irq);
1459 	}
1460 
1461 	return rv;
1462 }
1463 
port_inb(struct si_sm_io * io,unsigned int offset)1464 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1465 {
1466 	unsigned int addr = io->addr_data;
1467 
1468 	return inb(addr + (offset * io->regspacing));
1469 }
1470 
port_outb(struct si_sm_io * io,unsigned int offset,unsigned char b)1471 static void port_outb(struct si_sm_io *io, unsigned int offset,
1472 		      unsigned char b)
1473 {
1474 	unsigned int addr = io->addr_data;
1475 
1476 	outb(b, addr + (offset * io->regspacing));
1477 }
1478 
port_inw(struct si_sm_io * io,unsigned int offset)1479 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1480 {
1481 	unsigned int addr = io->addr_data;
1482 
1483 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1484 }
1485 
port_outw(struct si_sm_io * io,unsigned int offset,unsigned char b)1486 static void port_outw(struct si_sm_io *io, unsigned int offset,
1487 		      unsigned char b)
1488 {
1489 	unsigned int addr = io->addr_data;
1490 
1491 	outw(b << io->regshift, addr + (offset * io->regspacing));
1492 }
1493 
port_inl(struct si_sm_io * io,unsigned int offset)1494 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1495 {
1496 	unsigned int addr = io->addr_data;
1497 
1498 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500 
port_outl(struct si_sm_io * io,unsigned int offset,unsigned char b)1501 static void port_outl(struct si_sm_io *io, unsigned int offset,
1502 		      unsigned char b)
1503 {
1504 	unsigned int addr = io->addr_data;
1505 
1506 	outl(b << io->regshift, addr+(offset * io->regspacing));
1507 }
1508 
port_cleanup(struct smi_info * info)1509 static void port_cleanup(struct smi_info *info)
1510 {
1511 	unsigned int addr = info->io.addr_data;
1512 	int          idx;
1513 
1514 	if (addr) {
1515 		for (idx = 0; idx < info->io_size; idx++)
1516 			release_region(addr + idx * info->io.regspacing,
1517 				       info->io.regsize);
1518 	}
1519 }
1520 
port_setup(struct smi_info * info)1521 static int port_setup(struct smi_info *info)
1522 {
1523 	unsigned int addr = info->io.addr_data;
1524 	int          idx;
1525 
1526 	if (!addr)
1527 		return -ENODEV;
1528 
1529 	info->io_cleanup = port_cleanup;
1530 
1531 	/*
1532 	 * Figure out the actual inb/inw/inl/etc routine to use based
1533 	 * upon the register size.
1534 	 */
1535 	switch (info->io.regsize) {
1536 	case 1:
1537 		info->io.inputb = port_inb;
1538 		info->io.outputb = port_outb;
1539 		break;
1540 	case 2:
1541 		info->io.inputb = port_inw;
1542 		info->io.outputb = port_outw;
1543 		break;
1544 	case 4:
1545 		info->io.inputb = port_inl;
1546 		info->io.outputb = port_outl;
1547 		break;
1548 	default:
1549 		dev_warn(info->dev, "Invalid register size: %d\n",
1550 			 info->io.regsize);
1551 		return -EINVAL;
1552 	}
1553 
1554 	/*
1555 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1556 	 * tables.  This causes problems when trying to register the
1557 	 * entire I/O region.  Therefore we must register each I/O
1558 	 * port separately.
1559 	 */
1560 	for (idx = 0; idx < info->io_size; idx++) {
1561 		if (request_region(addr + idx * info->io.regspacing,
1562 				   info->io.regsize, DEVICE_NAME) == NULL) {
1563 			/* Undo allocations */
1564 			while (idx--) {
1565 				release_region(addr + idx * info->io.regspacing,
1566 					       info->io.regsize);
1567 			}
1568 			return -EIO;
1569 		}
1570 	}
1571 	return 0;
1572 }
1573 
intf_mem_inb(struct si_sm_io * io,unsigned int offset)1574 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1575 {
1576 	return readb((io->addr)+(offset * io->regspacing));
1577 }
1578 
intf_mem_outb(struct si_sm_io * io,unsigned int offset,unsigned char b)1579 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1580 		     unsigned char b)
1581 {
1582 	writeb(b, (io->addr)+(offset * io->regspacing));
1583 }
1584 
intf_mem_inw(struct si_sm_io * io,unsigned int offset)1585 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1586 {
1587 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1588 		& 0xff;
1589 }
1590 
intf_mem_outw(struct si_sm_io * io,unsigned int offset,unsigned char b)1591 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1592 		     unsigned char b)
1593 {
1594 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1595 }
1596 
intf_mem_inl(struct si_sm_io * io,unsigned int offset)1597 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1598 {
1599 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600 		& 0xff;
1601 }
1602 
intf_mem_outl(struct si_sm_io * io,unsigned int offset,unsigned char b)1603 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1604 		     unsigned char b)
1605 {
1606 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607 }
1608 
1609 #ifdef readq
mem_inq(struct si_sm_io * io,unsigned int offset)1610 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1611 {
1612 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613 		& 0xff;
1614 }
1615 
mem_outq(struct si_sm_io * io,unsigned int offset,unsigned char b)1616 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1617 		     unsigned char b)
1618 {
1619 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621 #endif
1622 
mem_cleanup(struct smi_info * info)1623 static void mem_cleanup(struct smi_info *info)
1624 {
1625 	unsigned long addr = info->io.addr_data;
1626 	int           mapsize;
1627 
1628 	if (info->io.addr) {
1629 		iounmap(info->io.addr);
1630 
1631 		mapsize = ((info->io_size * info->io.regspacing)
1632 			   - (info->io.regspacing - info->io.regsize));
1633 
1634 		release_mem_region(addr, mapsize);
1635 	}
1636 }
1637 
mem_setup(struct smi_info * info)1638 static int mem_setup(struct smi_info *info)
1639 {
1640 	unsigned long addr = info->io.addr_data;
1641 	int           mapsize;
1642 
1643 	if (!addr)
1644 		return -ENODEV;
1645 
1646 	info->io_cleanup = mem_cleanup;
1647 
1648 	/*
1649 	 * Figure out the actual readb/readw/readl/etc routine to use based
1650 	 * upon the register size.
1651 	 */
1652 	switch (info->io.regsize) {
1653 	case 1:
1654 		info->io.inputb = intf_mem_inb;
1655 		info->io.outputb = intf_mem_outb;
1656 		break;
1657 	case 2:
1658 		info->io.inputb = intf_mem_inw;
1659 		info->io.outputb = intf_mem_outw;
1660 		break;
1661 	case 4:
1662 		info->io.inputb = intf_mem_inl;
1663 		info->io.outputb = intf_mem_outl;
1664 		break;
1665 #ifdef readq
1666 	case 8:
1667 		info->io.inputb = mem_inq;
1668 		info->io.outputb = mem_outq;
1669 		break;
1670 #endif
1671 	default:
1672 		dev_warn(info->dev, "Invalid register size: %d\n",
1673 			 info->io.regsize);
1674 		return -EINVAL;
1675 	}
1676 
1677 	/*
1678 	 * Calculate the total amount of memory to claim.  This is an
1679 	 * unusual looking calculation, but it avoids claiming any
1680 	 * more memory than it has to.  It will claim everything
1681 	 * between the first address to the end of the last full
1682 	 * register.
1683 	 */
1684 	mapsize = ((info->io_size * info->io.regspacing)
1685 		   - (info->io.regspacing - info->io.regsize));
1686 
1687 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1688 		return -EIO;
1689 
1690 	info->io.addr = ioremap(addr, mapsize);
1691 	if (info->io.addr == NULL) {
1692 		release_mem_region(addr, mapsize);
1693 		return -EIO;
1694 	}
1695 	return 0;
1696 }
1697 
1698 /*
1699  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1700  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1701  * Options are:
1702  *   rsp=<regspacing>
1703  *   rsi=<regsize>
1704  *   rsh=<regshift>
1705  *   irq=<irq>
1706  *   ipmb=<ipmb addr>
1707  */
1708 enum hotmod_op { HM_ADD, HM_REMOVE };
1709 struct hotmod_vals {
1710 	char *name;
1711 	int  val;
1712 };
1713 static struct hotmod_vals hotmod_ops[] = {
1714 	{ "add",	HM_ADD },
1715 	{ "remove",	HM_REMOVE },
1716 	{ NULL }
1717 };
1718 static struct hotmod_vals hotmod_si[] = {
1719 	{ "kcs",	SI_KCS },
1720 	{ "smic",	SI_SMIC },
1721 	{ "bt",		SI_BT },
1722 	{ NULL }
1723 };
1724 static struct hotmod_vals hotmod_as[] = {
1725 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1726 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1727 	{ NULL }
1728 };
1729 
parse_str(struct hotmod_vals * v,int * val,char * name,char ** curr)1730 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1731 {
1732 	char *s;
1733 	int  i;
1734 
1735 	s = strchr(*curr, ',');
1736 	if (!s) {
1737 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1738 		return -EINVAL;
1739 	}
1740 	*s = '\0';
1741 	s++;
1742 	for (i = 0; v[i].name; i++) {
1743 		if (strcmp(*curr, v[i].name) == 0) {
1744 			*val = v[i].val;
1745 			*curr = s;
1746 			return 0;
1747 		}
1748 	}
1749 
1750 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1751 	return -EINVAL;
1752 }
1753 
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1754 static int check_hotmod_int_op(const char *curr, const char *option,
1755 			       const char *name, int *val)
1756 {
1757 	char *n;
1758 
1759 	if (strcmp(curr, name) == 0) {
1760 		if (!option) {
1761 			printk(KERN_WARNING PFX
1762 			       "No option given for '%s'\n",
1763 			       curr);
1764 			return -EINVAL;
1765 		}
1766 		*val = simple_strtoul(option, &n, 0);
1767 		if ((*n != '\0') || (*option == '\0')) {
1768 			printk(KERN_WARNING PFX
1769 			       "Bad option given for '%s'\n",
1770 			       curr);
1771 			return -EINVAL;
1772 		}
1773 		return 1;
1774 	}
1775 	return 0;
1776 }
1777 
smi_info_alloc(void)1778 static struct smi_info *smi_info_alloc(void)
1779 {
1780 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1781 
1782 	if (info)
1783 		spin_lock_init(&info->si_lock);
1784 	return info;
1785 }
1786 
hotmod_handler(const char * val,struct kernel_param * kp)1787 static int hotmod_handler(const char *val, struct kernel_param *kp)
1788 {
1789 	char *str = kstrdup(val, GFP_KERNEL);
1790 	int  rv;
1791 	char *next, *curr, *s, *n, *o;
1792 	enum hotmod_op op;
1793 	enum si_type si_type;
1794 	int  addr_space;
1795 	unsigned long addr;
1796 	int regspacing;
1797 	int regsize;
1798 	int regshift;
1799 	int irq;
1800 	int ipmb;
1801 	int ival;
1802 	int len;
1803 	struct smi_info *info;
1804 
1805 	if (!str)
1806 		return -ENOMEM;
1807 
1808 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1809 	len = strlen(str);
1810 	ival = len - 1;
1811 	while ((ival >= 0) && isspace(str[ival])) {
1812 		str[ival] = '\0';
1813 		ival--;
1814 	}
1815 
1816 	for (curr = str; curr; curr = next) {
1817 		regspacing = 1;
1818 		regsize = 1;
1819 		regshift = 0;
1820 		irq = 0;
1821 		ipmb = 0; /* Choose the default if not specified */
1822 
1823 		next = strchr(curr, ':');
1824 		if (next) {
1825 			*next = '\0';
1826 			next++;
1827 		}
1828 
1829 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1830 		if (rv)
1831 			break;
1832 		op = ival;
1833 
1834 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1835 		if (rv)
1836 			break;
1837 		si_type = ival;
1838 
1839 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1840 		if (rv)
1841 			break;
1842 
1843 		s = strchr(curr, ',');
1844 		if (s) {
1845 			*s = '\0';
1846 			s++;
1847 		}
1848 		addr = simple_strtoul(curr, &n, 0);
1849 		if ((*n != '\0') || (*curr == '\0')) {
1850 			printk(KERN_WARNING PFX "Invalid hotmod address"
1851 			       " '%s'\n", curr);
1852 			break;
1853 		}
1854 
1855 		while (s) {
1856 			curr = s;
1857 			s = strchr(curr, ',');
1858 			if (s) {
1859 				*s = '\0';
1860 				s++;
1861 			}
1862 			o = strchr(curr, '=');
1863 			if (o) {
1864 				*o = '\0';
1865 				o++;
1866 			}
1867 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1868 			if (rv < 0)
1869 				goto out;
1870 			else if (rv)
1871 				continue;
1872 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1873 			if (rv < 0)
1874 				goto out;
1875 			else if (rv)
1876 				continue;
1877 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1878 			if (rv < 0)
1879 				goto out;
1880 			else if (rv)
1881 				continue;
1882 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1883 			if (rv < 0)
1884 				goto out;
1885 			else if (rv)
1886 				continue;
1887 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1888 			if (rv < 0)
1889 				goto out;
1890 			else if (rv)
1891 				continue;
1892 
1893 			rv = -EINVAL;
1894 			printk(KERN_WARNING PFX
1895 			       "Invalid hotmod option '%s'\n",
1896 			       curr);
1897 			goto out;
1898 		}
1899 
1900 		if (op == HM_ADD) {
1901 			info = smi_info_alloc();
1902 			if (!info) {
1903 				rv = -ENOMEM;
1904 				goto out;
1905 			}
1906 
1907 			info->addr_source = SI_HOTMOD;
1908 			info->si_type = si_type;
1909 			info->io.addr_data = addr;
1910 			info->io.addr_type = addr_space;
1911 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1912 				info->io_setup = mem_setup;
1913 			else
1914 				info->io_setup = port_setup;
1915 
1916 			info->io.addr = NULL;
1917 			info->io.regspacing = regspacing;
1918 			if (!info->io.regspacing)
1919 				info->io.regspacing = DEFAULT_REGSPACING;
1920 			info->io.regsize = regsize;
1921 			if (!info->io.regsize)
1922 				info->io.regsize = DEFAULT_REGSPACING;
1923 			info->io.regshift = regshift;
1924 			info->irq = irq;
1925 			if (info->irq)
1926 				info->irq_setup = std_irq_setup;
1927 			info->slave_addr = ipmb;
1928 
1929 			rv = add_smi(info);
1930 			if (rv) {
1931 				kfree(info);
1932 				goto out;
1933 			}
1934 			rv = try_smi_init(info);
1935 			if (rv) {
1936 				cleanup_one_si(info);
1937 				goto out;
1938 			}
1939 		} else {
1940 			/* remove */
1941 			struct smi_info *e, *tmp_e;
1942 
1943 			mutex_lock(&smi_infos_lock);
1944 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1945 				if (e->io.addr_type != addr_space)
1946 					continue;
1947 				if (e->si_type != si_type)
1948 					continue;
1949 				if (e->io.addr_data == addr)
1950 					cleanup_one_si(e);
1951 			}
1952 			mutex_unlock(&smi_infos_lock);
1953 		}
1954 	}
1955 	rv = len;
1956  out:
1957 	kfree(str);
1958 	return rv;
1959 }
1960 
hardcode_find_bmc(void)1961 static int hardcode_find_bmc(void)
1962 {
1963 	int ret = -ENODEV;
1964 	int             i;
1965 	struct smi_info *info;
1966 
1967 	for (i = 0; i < SI_MAX_PARMS; i++) {
1968 		if (!ports[i] && !addrs[i])
1969 			continue;
1970 
1971 		info = smi_info_alloc();
1972 		if (!info)
1973 			return -ENOMEM;
1974 
1975 		info->addr_source = SI_HARDCODED;
1976 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1977 
1978 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1979 			info->si_type = SI_KCS;
1980 		} else if (strcmp(si_type[i], "smic") == 0) {
1981 			info->si_type = SI_SMIC;
1982 		} else if (strcmp(si_type[i], "bt") == 0) {
1983 			info->si_type = SI_BT;
1984 		} else {
1985 			printk(KERN_WARNING PFX "Interface type specified "
1986 			       "for interface %d, was invalid: %s\n",
1987 			       i, si_type[i]);
1988 			kfree(info);
1989 			continue;
1990 		}
1991 
1992 		if (ports[i]) {
1993 			/* An I/O port */
1994 			info->io_setup = port_setup;
1995 			info->io.addr_data = ports[i];
1996 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1997 		} else if (addrs[i]) {
1998 			/* A memory port */
1999 			info->io_setup = mem_setup;
2000 			info->io.addr_data = addrs[i];
2001 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2002 		} else {
2003 			printk(KERN_WARNING PFX "Interface type specified "
2004 			       "for interface %d, but port and address were "
2005 			       "not set or set to zero.\n", i);
2006 			kfree(info);
2007 			continue;
2008 		}
2009 
2010 		info->io.addr = NULL;
2011 		info->io.regspacing = regspacings[i];
2012 		if (!info->io.regspacing)
2013 			info->io.regspacing = DEFAULT_REGSPACING;
2014 		info->io.regsize = regsizes[i];
2015 		if (!info->io.regsize)
2016 			info->io.regsize = DEFAULT_REGSPACING;
2017 		info->io.regshift = regshifts[i];
2018 		info->irq = irqs[i];
2019 		if (info->irq)
2020 			info->irq_setup = std_irq_setup;
2021 		info->slave_addr = slave_addrs[i];
2022 
2023 		if (!add_smi(info)) {
2024 			if (try_smi_init(info))
2025 				cleanup_one_si(info);
2026 			ret = 0;
2027 		} else {
2028 			kfree(info);
2029 		}
2030 	}
2031 	return ret;
2032 }
2033 
2034 #ifdef CONFIG_ACPI
2035 
2036 #include <linux/acpi.h>
2037 
2038 /*
2039  * Once we get an ACPI failure, we don't try any more, because we go
2040  * through the tables sequentially.  Once we don't find a table, there
2041  * are no more.
2042  */
2043 static int acpi_failure;
2044 
2045 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)2046 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2047 	u32 gpe_number, void *context)
2048 {
2049 	struct smi_info *smi_info = context;
2050 	unsigned long   flags;
2051 
2052 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2053 
2054 	smi_inc_stat(smi_info, interrupts);
2055 
2056 	debug_timestamp("ACPI_GPE");
2057 
2058 	smi_event_handler(smi_info, 0);
2059 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2060 
2061 	return ACPI_INTERRUPT_HANDLED;
2062 }
2063 
acpi_gpe_irq_cleanup(struct smi_info * info)2064 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2065 {
2066 	if (!info->irq)
2067 		return;
2068 
2069 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2070 }
2071 
acpi_gpe_irq_setup(struct smi_info * info)2072 static int acpi_gpe_irq_setup(struct smi_info *info)
2073 {
2074 	acpi_status status;
2075 
2076 	if (!info->irq)
2077 		return 0;
2078 
2079 	status = acpi_install_gpe_handler(NULL,
2080 					  info->irq,
2081 					  ACPI_GPE_LEVEL_TRIGGERED,
2082 					  &ipmi_acpi_gpe,
2083 					  info);
2084 	if (status != AE_OK) {
2085 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2086 			 " running polled\n", DEVICE_NAME, info->irq);
2087 		info->irq = 0;
2088 		return -EINVAL;
2089 	} else {
2090 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2091 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2092 		return 0;
2093 	}
2094 }
2095 
2096 /*
2097  * Defined at
2098  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2099  */
2100 struct SPMITable {
2101 	s8	Signature[4];
2102 	u32	Length;
2103 	u8	Revision;
2104 	u8	Checksum;
2105 	s8	OEMID[6];
2106 	s8	OEMTableID[8];
2107 	s8	OEMRevision[4];
2108 	s8	CreatorID[4];
2109 	s8	CreatorRevision[4];
2110 	u8	InterfaceType;
2111 	u8	IPMIlegacy;
2112 	s16	SpecificationRevision;
2113 
2114 	/*
2115 	 * Bit 0 - SCI interrupt supported
2116 	 * Bit 1 - I/O APIC/SAPIC
2117 	 */
2118 	u8	InterruptType;
2119 
2120 	/*
2121 	 * If bit 0 of InterruptType is set, then this is the SCI
2122 	 * interrupt in the GPEx_STS register.
2123 	 */
2124 	u8	GPE;
2125 
2126 	s16	Reserved;
2127 
2128 	/*
2129 	 * If bit 1 of InterruptType is set, then this is the I/O
2130 	 * APIC/SAPIC interrupt.
2131 	 */
2132 	u32	GlobalSystemInterrupt;
2133 
2134 	/* The actual register address. */
2135 	struct acpi_generic_address addr;
2136 
2137 	u8	UID[4];
2138 
2139 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2140 };
2141 
try_init_spmi(struct SPMITable * spmi)2142 static int try_init_spmi(struct SPMITable *spmi)
2143 {
2144 	struct smi_info  *info;
2145 	int rv;
2146 
2147 	if (spmi->IPMIlegacy != 1) {
2148 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2149 		return -ENODEV;
2150 	}
2151 
2152 	info = smi_info_alloc();
2153 	if (!info) {
2154 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2155 		return -ENOMEM;
2156 	}
2157 
2158 	info->addr_source = SI_SPMI;
2159 	printk(KERN_INFO PFX "probing via SPMI\n");
2160 
2161 	/* Figure out the interface type. */
2162 	switch (spmi->InterfaceType) {
2163 	case 1:	/* KCS */
2164 		info->si_type = SI_KCS;
2165 		break;
2166 	case 2:	/* SMIC */
2167 		info->si_type = SI_SMIC;
2168 		break;
2169 	case 3:	/* BT */
2170 		info->si_type = SI_BT;
2171 		break;
2172 	case 4: /* SSIF, just ignore */
2173 		kfree(info);
2174 		return -EIO;
2175 	default:
2176 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2177 		       spmi->InterfaceType);
2178 		kfree(info);
2179 		return -EIO;
2180 	}
2181 
2182 	if (spmi->InterruptType & 1) {
2183 		/* We've got a GPE interrupt. */
2184 		info->irq = spmi->GPE;
2185 		info->irq_setup = acpi_gpe_irq_setup;
2186 	} else if (spmi->InterruptType & 2) {
2187 		/* We've got an APIC/SAPIC interrupt. */
2188 		info->irq = spmi->GlobalSystemInterrupt;
2189 		info->irq_setup = std_irq_setup;
2190 	} else {
2191 		/* Use the default interrupt setting. */
2192 		info->irq = 0;
2193 		info->irq_setup = NULL;
2194 	}
2195 
2196 	if (spmi->addr.bit_width) {
2197 		/* A (hopefully) properly formed register bit width. */
2198 		info->io.regspacing = spmi->addr.bit_width / 8;
2199 	} else {
2200 		info->io.regspacing = DEFAULT_REGSPACING;
2201 	}
2202 	info->io.regsize = info->io.regspacing;
2203 	info->io.regshift = spmi->addr.bit_offset;
2204 
2205 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2206 		info->io_setup = mem_setup;
2207 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2208 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2209 		info->io_setup = port_setup;
2210 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2211 	} else {
2212 		kfree(info);
2213 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2214 		return -EIO;
2215 	}
2216 	info->io.addr_data = spmi->addr.address;
2217 
2218 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2219 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2220 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2221 		 info->irq);
2222 
2223 	rv = add_smi(info);
2224 	if (rv)
2225 		kfree(info);
2226 
2227 	return rv;
2228 }
2229 
spmi_find_bmc(void)2230 static void spmi_find_bmc(void)
2231 {
2232 	acpi_status      status;
2233 	struct SPMITable *spmi;
2234 	int              i;
2235 
2236 	if (acpi_disabled)
2237 		return;
2238 
2239 	if (acpi_failure)
2240 		return;
2241 
2242 	for (i = 0; ; i++) {
2243 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2244 					(struct acpi_table_header **)&spmi);
2245 		if (status != AE_OK)
2246 			return;
2247 
2248 		try_init_spmi(spmi);
2249 	}
2250 }
2251 
ipmi_pnp_probe(struct pnp_dev * dev,const struct pnp_device_id * dev_id)2252 static int ipmi_pnp_probe(struct pnp_dev *dev,
2253 				    const struct pnp_device_id *dev_id)
2254 {
2255 	struct acpi_device *acpi_dev;
2256 	struct smi_info *info;
2257 	struct resource *res, *res_second;
2258 	acpi_handle handle;
2259 	acpi_status status;
2260 	unsigned long long tmp;
2261 	int rv = -EINVAL;
2262 
2263 	acpi_dev = pnp_acpi_device(dev);
2264 	if (!acpi_dev)
2265 		return -ENODEV;
2266 
2267 	info = smi_info_alloc();
2268 	if (!info)
2269 		return -ENOMEM;
2270 
2271 	info->addr_source = SI_ACPI;
2272 	printk(KERN_INFO PFX "probing via ACPI\n");
2273 
2274 	handle = acpi_dev->handle;
2275 	info->addr_info.acpi_info.acpi_handle = handle;
2276 
2277 	/* _IFT tells us the interface type: KCS, BT, etc */
2278 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2279 	if (ACPI_FAILURE(status)) {
2280 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2281 		goto err_free;
2282 	}
2283 
2284 	switch (tmp) {
2285 	case 1:
2286 		info->si_type = SI_KCS;
2287 		break;
2288 	case 2:
2289 		info->si_type = SI_SMIC;
2290 		break;
2291 	case 3:
2292 		info->si_type = SI_BT;
2293 		break;
2294 	case 4: /* SSIF, just ignore */
2295 		rv = -ENODEV;
2296 		goto err_free;
2297 	default:
2298 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2299 		goto err_free;
2300 	}
2301 
2302 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2303 	if (res) {
2304 		info->io_setup = port_setup;
2305 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2306 	} else {
2307 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2308 		if (res) {
2309 			info->io_setup = mem_setup;
2310 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2311 		}
2312 	}
2313 	if (!res) {
2314 		dev_err(&dev->dev, "no I/O or memory address\n");
2315 		goto err_free;
2316 	}
2317 	info->io.addr_data = res->start;
2318 
2319 	info->io.regspacing = DEFAULT_REGSPACING;
2320 	res_second = pnp_get_resource(dev,
2321 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2322 					IORESOURCE_IO : IORESOURCE_MEM,
2323 			       1);
2324 	if (res_second) {
2325 		if (res_second->start > info->io.addr_data)
2326 			info->io.regspacing = res_second->start - info->io.addr_data;
2327 	}
2328 	info->io.regsize = DEFAULT_REGSPACING;
2329 	info->io.regshift = 0;
2330 
2331 	/* If _GPE exists, use it; otherwise use standard interrupts */
2332 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2333 	if (ACPI_SUCCESS(status)) {
2334 		info->irq = tmp;
2335 		info->irq_setup = acpi_gpe_irq_setup;
2336 	} else if (pnp_irq_valid(dev, 0)) {
2337 		info->irq = pnp_irq(dev, 0);
2338 		info->irq_setup = std_irq_setup;
2339 	}
2340 
2341 	info->dev = &dev->dev;
2342 	pnp_set_drvdata(dev, info);
2343 
2344 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2345 		 res, info->io.regsize, info->io.regspacing,
2346 		 info->irq);
2347 
2348 	rv = add_smi(info);
2349 	if (rv)
2350 		kfree(info);
2351 
2352 	return rv;
2353 
2354 err_free:
2355 	kfree(info);
2356 	return rv;
2357 }
2358 
ipmi_pnp_remove(struct pnp_dev * dev)2359 static void ipmi_pnp_remove(struct pnp_dev *dev)
2360 {
2361 	struct smi_info *info = pnp_get_drvdata(dev);
2362 
2363 	cleanup_one_si(info);
2364 }
2365 
2366 static const struct pnp_device_id pnp_dev_table[] = {
2367 	{"IPI0001", 0},
2368 	{"", 0},
2369 };
2370 
2371 static struct pnp_driver ipmi_pnp_driver = {
2372 	.name		= DEVICE_NAME,
2373 	.probe		= ipmi_pnp_probe,
2374 	.remove		= ipmi_pnp_remove,
2375 	.id_table	= pnp_dev_table,
2376 };
2377 
2378 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2379 #endif
2380 
2381 #ifdef CONFIG_DMI
2382 struct dmi_ipmi_data {
2383 	u8   		type;
2384 	u8   		addr_space;
2385 	unsigned long	base_addr;
2386 	u8   		irq;
2387 	u8              offset;
2388 	u8              slave_addr;
2389 };
2390 
decode_dmi(const struct dmi_header * dm,struct dmi_ipmi_data * dmi)2391 static int decode_dmi(const struct dmi_header *dm,
2392 				struct dmi_ipmi_data *dmi)
2393 {
2394 	const u8	*data = (const u8 *)dm;
2395 	unsigned long  	base_addr;
2396 	u8		reg_spacing;
2397 	u8              len = dm->length;
2398 
2399 	dmi->type = data[4];
2400 
2401 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2402 	if (len >= 0x11) {
2403 		if (base_addr & 1) {
2404 			/* I/O */
2405 			base_addr &= 0xFFFE;
2406 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2407 		} else
2408 			/* Memory */
2409 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2410 
2411 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2412 		   is odd. */
2413 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2414 
2415 		dmi->irq = data[0x11];
2416 
2417 		/* The top two bits of byte 0x10 hold the register spacing. */
2418 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2419 		switch (reg_spacing) {
2420 		case 0x00: /* Byte boundaries */
2421 		    dmi->offset = 1;
2422 		    break;
2423 		case 0x01: /* 32-bit boundaries */
2424 		    dmi->offset = 4;
2425 		    break;
2426 		case 0x02: /* 16-byte boundaries */
2427 		    dmi->offset = 16;
2428 		    break;
2429 		default:
2430 		    /* Some other interface, just ignore it. */
2431 		    return -EIO;
2432 		}
2433 	} else {
2434 		/* Old DMI spec. */
2435 		/*
2436 		 * Note that technically, the lower bit of the base
2437 		 * address should be 1 if the address is I/O and 0 if
2438 		 * the address is in memory.  So many systems get that
2439 		 * wrong (and all that I have seen are I/O) so we just
2440 		 * ignore that bit and assume I/O.  Systems that use
2441 		 * memory should use the newer spec, anyway.
2442 		 */
2443 		dmi->base_addr = base_addr & 0xfffe;
2444 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2445 		dmi->offset = 1;
2446 	}
2447 
2448 	dmi->slave_addr = data[6];
2449 
2450 	return 0;
2451 }
2452 
try_init_dmi(struct dmi_ipmi_data * ipmi_data)2453 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2454 {
2455 	struct smi_info *info;
2456 
2457 	info = smi_info_alloc();
2458 	if (!info) {
2459 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2460 		return;
2461 	}
2462 
2463 	info->addr_source = SI_SMBIOS;
2464 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2465 
2466 	switch (ipmi_data->type) {
2467 	case 0x01: /* KCS */
2468 		info->si_type = SI_KCS;
2469 		break;
2470 	case 0x02: /* SMIC */
2471 		info->si_type = SI_SMIC;
2472 		break;
2473 	case 0x03: /* BT */
2474 		info->si_type = SI_BT;
2475 		break;
2476 	default:
2477 		kfree(info);
2478 		return;
2479 	}
2480 
2481 	switch (ipmi_data->addr_space) {
2482 	case IPMI_MEM_ADDR_SPACE:
2483 		info->io_setup = mem_setup;
2484 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2485 		break;
2486 
2487 	case IPMI_IO_ADDR_SPACE:
2488 		info->io_setup = port_setup;
2489 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2490 		break;
2491 
2492 	default:
2493 		kfree(info);
2494 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2495 		       ipmi_data->addr_space);
2496 		return;
2497 	}
2498 	info->io.addr_data = ipmi_data->base_addr;
2499 
2500 	info->io.regspacing = ipmi_data->offset;
2501 	if (!info->io.regspacing)
2502 		info->io.regspacing = DEFAULT_REGSPACING;
2503 	info->io.regsize = DEFAULT_REGSPACING;
2504 	info->io.regshift = 0;
2505 
2506 	info->slave_addr = ipmi_data->slave_addr;
2507 
2508 	info->irq = ipmi_data->irq;
2509 	if (info->irq)
2510 		info->irq_setup = std_irq_setup;
2511 
2512 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2513 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2514 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2515 		 info->irq);
2516 
2517 	if (add_smi(info))
2518 		kfree(info);
2519 }
2520 
dmi_find_bmc(void)2521 static void dmi_find_bmc(void)
2522 {
2523 	const struct dmi_device *dev = NULL;
2524 	struct dmi_ipmi_data data;
2525 	int                  rv;
2526 
2527 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2528 		memset(&data, 0, sizeof(data));
2529 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2530 				&data);
2531 		if (!rv)
2532 			try_init_dmi(&data);
2533 	}
2534 }
2535 #endif /* CONFIG_DMI */
2536 
2537 #ifdef CONFIG_PCI
2538 
2539 #define PCI_ERMC_CLASSCODE		0x0C0700
2540 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2541 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2542 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2543 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2544 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2545 
2546 #define PCI_HP_VENDOR_ID    0x103C
2547 #define PCI_MMC_DEVICE_ID   0x121A
2548 #define PCI_MMC_ADDR_CW     0x10
2549 
ipmi_pci_cleanup(struct smi_info * info)2550 static void ipmi_pci_cleanup(struct smi_info *info)
2551 {
2552 	struct pci_dev *pdev = info->addr_source_data;
2553 
2554 	pci_disable_device(pdev);
2555 }
2556 
ipmi_pci_probe_regspacing(struct smi_info * info)2557 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2558 {
2559 	if (info->si_type == SI_KCS) {
2560 		unsigned char	status;
2561 		int		regspacing;
2562 
2563 		info->io.regsize = DEFAULT_REGSIZE;
2564 		info->io.regshift = 0;
2565 		info->io_size = 2;
2566 		info->handlers = &kcs_smi_handlers;
2567 
2568 		/* detect 1, 4, 16byte spacing */
2569 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2570 			info->io.regspacing = regspacing;
2571 			if (info->io_setup(info)) {
2572 				dev_err(info->dev,
2573 					"Could not setup I/O space\n");
2574 				return DEFAULT_REGSPACING;
2575 			}
2576 			/* write invalid cmd */
2577 			info->io.outputb(&info->io, 1, 0x10);
2578 			/* read status back */
2579 			status = info->io.inputb(&info->io, 1);
2580 			info->io_cleanup(info);
2581 			if (status)
2582 				return regspacing;
2583 			regspacing *= 4;
2584 		}
2585 	}
2586 	return DEFAULT_REGSPACING;
2587 }
2588 
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2589 static int ipmi_pci_probe(struct pci_dev *pdev,
2590 				    const struct pci_device_id *ent)
2591 {
2592 	int rv;
2593 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2594 	struct smi_info *info;
2595 
2596 	info = smi_info_alloc();
2597 	if (!info)
2598 		return -ENOMEM;
2599 
2600 	info->addr_source = SI_PCI;
2601 	dev_info(&pdev->dev, "probing via PCI");
2602 
2603 	switch (class_type) {
2604 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2605 		info->si_type = SI_SMIC;
2606 		break;
2607 
2608 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2609 		info->si_type = SI_KCS;
2610 		break;
2611 
2612 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2613 		info->si_type = SI_BT;
2614 		break;
2615 
2616 	default:
2617 		kfree(info);
2618 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2619 		return -ENOMEM;
2620 	}
2621 
2622 	rv = pci_enable_device(pdev);
2623 	if (rv) {
2624 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2625 		kfree(info);
2626 		return rv;
2627 	}
2628 
2629 	info->addr_source_cleanup = ipmi_pci_cleanup;
2630 	info->addr_source_data = pdev;
2631 
2632 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2633 		info->io_setup = port_setup;
2634 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2635 	} else {
2636 		info->io_setup = mem_setup;
2637 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2638 	}
2639 	info->io.addr_data = pci_resource_start(pdev, 0);
2640 
2641 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2642 	info->io.regsize = DEFAULT_REGSIZE;
2643 	info->io.regshift = 0;
2644 
2645 	info->irq = pdev->irq;
2646 	if (info->irq)
2647 		info->irq_setup = std_irq_setup;
2648 
2649 	info->dev = &pdev->dev;
2650 	pci_set_drvdata(pdev, info);
2651 
2652 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2653 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2654 		info->irq);
2655 
2656 	rv = add_smi(info);
2657 	if (rv) {
2658 		kfree(info);
2659 		pci_disable_device(pdev);
2660 	}
2661 
2662 	return rv;
2663 }
2664 
ipmi_pci_remove(struct pci_dev * pdev)2665 static void ipmi_pci_remove(struct pci_dev *pdev)
2666 {
2667 	struct smi_info *info = pci_get_drvdata(pdev);
2668 	cleanup_one_si(info);
2669 	pci_disable_device(pdev);
2670 }
2671 
2672 static struct pci_device_id ipmi_pci_devices[] = {
2673 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2674 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2675 	{ 0, }
2676 };
2677 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2678 
2679 static struct pci_driver ipmi_pci_driver = {
2680 	.name =         DEVICE_NAME,
2681 	.id_table =     ipmi_pci_devices,
2682 	.probe =        ipmi_pci_probe,
2683 	.remove =       ipmi_pci_remove,
2684 };
2685 #endif /* CONFIG_PCI */
2686 
2687 static const struct of_device_id ipmi_match[];
ipmi_probe(struct platform_device * dev)2688 static int ipmi_probe(struct platform_device *dev)
2689 {
2690 #ifdef CONFIG_OF
2691 	const struct of_device_id *match;
2692 	struct smi_info *info;
2693 	struct resource resource;
2694 	const __be32 *regsize, *regspacing, *regshift;
2695 	struct device_node *np = dev->dev.of_node;
2696 	int ret;
2697 	int proplen;
2698 
2699 	dev_info(&dev->dev, "probing via device tree\n");
2700 
2701 	match = of_match_device(ipmi_match, &dev->dev);
2702 	if (!match)
2703 		return -EINVAL;
2704 
2705 	if (!of_device_is_available(np))
2706 		return -EINVAL;
2707 
2708 	ret = of_address_to_resource(np, 0, &resource);
2709 	if (ret) {
2710 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2711 		return ret;
2712 	}
2713 
2714 	regsize = of_get_property(np, "reg-size", &proplen);
2715 	if (regsize && proplen != 4) {
2716 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2717 		return -EINVAL;
2718 	}
2719 
2720 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2721 	if (regspacing && proplen != 4) {
2722 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2723 		return -EINVAL;
2724 	}
2725 
2726 	regshift = of_get_property(np, "reg-shift", &proplen);
2727 	if (regshift && proplen != 4) {
2728 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2729 		return -EINVAL;
2730 	}
2731 
2732 	info = smi_info_alloc();
2733 
2734 	if (!info) {
2735 		dev_err(&dev->dev,
2736 			"could not allocate memory for OF probe\n");
2737 		return -ENOMEM;
2738 	}
2739 
2740 	info->si_type		= (enum si_type) match->data;
2741 	info->addr_source	= SI_DEVICETREE;
2742 	info->irq_setup		= std_irq_setup;
2743 
2744 	if (resource.flags & IORESOURCE_IO) {
2745 		info->io_setup		= port_setup;
2746 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2747 	} else {
2748 		info->io_setup		= mem_setup;
2749 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2750 	}
2751 
2752 	info->io.addr_data	= resource.start;
2753 
2754 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2755 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2756 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2757 
2758 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2759 	info->dev		= &dev->dev;
2760 
2761 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2762 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2763 		info->irq);
2764 
2765 	dev_set_drvdata(&dev->dev, info);
2766 
2767 	ret = add_smi(info);
2768 	if (ret) {
2769 		kfree(info);
2770 		return ret;
2771 	}
2772 #endif
2773 	return 0;
2774 }
2775 
ipmi_remove(struct platform_device * dev)2776 static int ipmi_remove(struct platform_device *dev)
2777 {
2778 #ifdef CONFIG_OF
2779 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2780 #endif
2781 	return 0;
2782 }
2783 
2784 static const struct of_device_id ipmi_match[] =
2785 {
2786 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2787 	  .data = (void *)(unsigned long) SI_KCS },
2788 	{ .type = "ipmi", .compatible = "ipmi-smic",
2789 	  .data = (void *)(unsigned long) SI_SMIC },
2790 	{ .type = "ipmi", .compatible = "ipmi-bt",
2791 	  .data = (void *)(unsigned long) SI_BT },
2792 	{},
2793 };
2794 
2795 static struct platform_driver ipmi_driver = {
2796 	.driver = {
2797 		.name = DEVICE_NAME,
2798 		.of_match_table = ipmi_match,
2799 	},
2800 	.probe		= ipmi_probe,
2801 	.remove		= ipmi_remove,
2802 };
2803 
2804 #ifdef CONFIG_PARISC
ipmi_parisc_probe(struct parisc_device * dev)2805 static int ipmi_parisc_probe(struct parisc_device *dev)
2806 {
2807 	struct smi_info *info;
2808 	int rv;
2809 
2810 	info = smi_info_alloc();
2811 
2812 	if (!info) {
2813 		dev_err(&dev->dev,
2814 			"could not allocate memory for PARISC probe\n");
2815 		return -ENOMEM;
2816 	}
2817 
2818 	info->si_type		= SI_KCS;
2819 	info->addr_source	= SI_DEVICETREE;
2820 	info->io_setup		= mem_setup;
2821 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2822 	info->io.addr_data	= dev->hpa.start;
2823 	info->io.regsize	= 1;
2824 	info->io.regspacing	= 1;
2825 	info->io.regshift	= 0;
2826 	info->irq		= 0; /* no interrupt */
2827 	info->irq_setup		= NULL;
2828 	info->dev		= &dev->dev;
2829 
2830 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2831 
2832 	dev_set_drvdata(&dev->dev, info);
2833 
2834 	rv = add_smi(info);
2835 	if (rv) {
2836 		kfree(info);
2837 		return rv;
2838 	}
2839 
2840 	return 0;
2841 }
2842 
ipmi_parisc_remove(struct parisc_device * dev)2843 static int ipmi_parisc_remove(struct parisc_device *dev)
2844 {
2845 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2846 	return 0;
2847 }
2848 
2849 static struct parisc_device_id ipmi_parisc_tbl[] = {
2850 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2851 	{ 0, }
2852 };
2853 
2854 static struct parisc_driver ipmi_parisc_driver = {
2855 	.name =		"ipmi",
2856 	.id_table =	ipmi_parisc_tbl,
2857 	.probe =	ipmi_parisc_probe,
2858 	.remove =	ipmi_parisc_remove,
2859 };
2860 #endif /* CONFIG_PARISC */
2861 
wait_for_msg_done(struct smi_info * smi_info)2862 static int wait_for_msg_done(struct smi_info *smi_info)
2863 {
2864 	enum si_sm_result     smi_result;
2865 
2866 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2867 	for (;;) {
2868 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2869 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2870 			schedule_timeout_uninterruptible(1);
2871 			smi_result = smi_info->handlers->event(
2872 				smi_info->si_sm, jiffies_to_usecs(1));
2873 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2874 			smi_result = smi_info->handlers->event(
2875 				smi_info->si_sm, 0);
2876 		} else
2877 			break;
2878 	}
2879 	if (smi_result == SI_SM_HOSED)
2880 		/*
2881 		 * We couldn't get the state machine to run, so whatever's at
2882 		 * the port is probably not an IPMI SMI interface.
2883 		 */
2884 		return -ENODEV;
2885 
2886 	return 0;
2887 }
2888 
try_get_dev_id(struct smi_info * smi_info)2889 static int try_get_dev_id(struct smi_info *smi_info)
2890 {
2891 	unsigned char         msg[2];
2892 	unsigned char         *resp;
2893 	unsigned long         resp_len;
2894 	int                   rv = 0;
2895 
2896 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2897 	if (!resp)
2898 		return -ENOMEM;
2899 
2900 	/*
2901 	 * Do a Get Device ID command, since it comes back with some
2902 	 * useful info.
2903 	 */
2904 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2905 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2906 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2907 
2908 	rv = wait_for_msg_done(smi_info);
2909 	if (rv)
2910 		goto out;
2911 
2912 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2913 						  resp, IPMI_MAX_MSG_LENGTH);
2914 
2915 	/* Check and record info from the get device id, in case we need it. */
2916 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2917 
2918  out:
2919 	kfree(resp);
2920 	return rv;
2921 }
2922 
2923 /*
2924  * Some BMCs do not support clearing the receive irq bit in the global
2925  * enables (even if they don't support interrupts on the BMC).  Check
2926  * for this and handle it properly.
2927  */
check_clr_rcv_irq(struct smi_info * smi_info)2928 static void check_clr_rcv_irq(struct smi_info *smi_info)
2929 {
2930 	unsigned char         msg[3];
2931 	unsigned char         *resp;
2932 	unsigned long         resp_len;
2933 	int                   rv;
2934 
2935 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2936 	if (!resp) {
2937 		printk(KERN_WARNING PFX "Out of memory allocating response for"
2938 		       " global enables command, cannot check recv irq bit"
2939 		       " handling.\n");
2940 		return;
2941 	}
2942 
2943 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2944 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2945 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2946 
2947 	rv = wait_for_msg_done(smi_info);
2948 	if (rv) {
2949 		printk(KERN_WARNING PFX "Error getting response from get"
2950 		       " global enables command, cannot check recv irq bit"
2951 		       " handling.\n");
2952 		goto out;
2953 	}
2954 
2955 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2956 						  resp, IPMI_MAX_MSG_LENGTH);
2957 
2958 	if (resp_len < 4 ||
2959 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2960 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2961 			resp[2] != 0) {
2962 		printk(KERN_WARNING PFX "Invalid return from get global"
2963 		       " enables command, cannot check recv irq bit"
2964 		       " handling.\n");
2965 		rv = -EINVAL;
2966 		goto out;
2967 	}
2968 
2969 	if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2970 		/* Already clear, should work ok. */
2971 		goto out;
2972 
2973 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2974 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2975 	msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2976 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2977 
2978 	rv = wait_for_msg_done(smi_info);
2979 	if (rv) {
2980 		printk(KERN_WARNING PFX "Error getting response from set"
2981 		       " global enables command, cannot check recv irq bit"
2982 		       " handling.\n");
2983 		goto out;
2984 	}
2985 
2986 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2987 						  resp, IPMI_MAX_MSG_LENGTH);
2988 
2989 	if (resp_len < 3 ||
2990 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2991 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2992 		printk(KERN_WARNING PFX "Invalid return from get global"
2993 		       " enables command, cannot check recv irq bit"
2994 		       " handling.\n");
2995 		rv = -EINVAL;
2996 		goto out;
2997 	}
2998 
2999 	if (resp[2] != 0) {
3000 		/*
3001 		 * An error when setting the event buffer bit means
3002 		 * clearing the bit is not supported.
3003 		 */
3004 		printk(KERN_WARNING PFX "The BMC does not support clearing"
3005 		       " the recv irq bit, compensating, but the BMC needs to"
3006 		       " be fixed.\n");
3007 		smi_info->cannot_clear_recv_irq_bit = true;
3008 	}
3009  out:
3010 	kfree(resp);
3011 }
3012 
try_enable_event_buffer(struct smi_info * smi_info)3013 static int try_enable_event_buffer(struct smi_info *smi_info)
3014 {
3015 	unsigned char         msg[3];
3016 	unsigned char         *resp;
3017 	unsigned long         resp_len;
3018 	int                   rv = 0;
3019 
3020 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3021 	if (!resp)
3022 		return -ENOMEM;
3023 
3024 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3025 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3026 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3027 
3028 	rv = wait_for_msg_done(smi_info);
3029 	if (rv) {
3030 		printk(KERN_WARNING PFX "Error getting response from get"
3031 		       " global enables command, the event buffer is not"
3032 		       " enabled.\n");
3033 		goto out;
3034 	}
3035 
3036 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3037 						  resp, IPMI_MAX_MSG_LENGTH);
3038 
3039 	if (resp_len < 4 ||
3040 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3041 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3042 			resp[2] != 0) {
3043 		printk(KERN_WARNING PFX "Invalid return from get global"
3044 		       " enables command, cannot enable the event buffer.\n");
3045 		rv = -EINVAL;
3046 		goto out;
3047 	}
3048 
3049 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3050 		/* buffer is already enabled, nothing to do. */
3051 		smi_info->supports_event_msg_buff = true;
3052 		goto out;
3053 	}
3054 
3055 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3056 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3057 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3058 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3059 
3060 	rv = wait_for_msg_done(smi_info);
3061 	if (rv) {
3062 		printk(KERN_WARNING PFX "Error getting response from set"
3063 		       " global, enables command, the event buffer is not"
3064 		       " enabled.\n");
3065 		goto out;
3066 	}
3067 
3068 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3069 						  resp, IPMI_MAX_MSG_LENGTH);
3070 
3071 	if (resp_len < 3 ||
3072 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3073 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3074 		printk(KERN_WARNING PFX "Invalid return from get global,"
3075 		       "enables command, not enable the event buffer.\n");
3076 		rv = -EINVAL;
3077 		goto out;
3078 	}
3079 
3080 	if (resp[2] != 0)
3081 		/*
3082 		 * An error when setting the event buffer bit means
3083 		 * that the event buffer is not supported.
3084 		 */
3085 		rv = -ENOENT;
3086 	else
3087 		smi_info->supports_event_msg_buff = true;
3088 
3089  out:
3090 	kfree(resp);
3091 	return rv;
3092 }
3093 
smi_type_proc_show(struct seq_file * m,void * v)3094 static int smi_type_proc_show(struct seq_file *m, void *v)
3095 {
3096 	struct smi_info *smi = m->private;
3097 
3098 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3099 
3100 	return 0;
3101 }
3102 
smi_type_proc_open(struct inode * inode,struct file * file)3103 static int smi_type_proc_open(struct inode *inode, struct file *file)
3104 {
3105 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3106 }
3107 
3108 static const struct file_operations smi_type_proc_ops = {
3109 	.open		= smi_type_proc_open,
3110 	.read		= seq_read,
3111 	.llseek		= seq_lseek,
3112 	.release	= single_release,
3113 };
3114 
smi_si_stats_proc_show(struct seq_file * m,void * v)3115 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3116 {
3117 	struct smi_info *smi = m->private;
3118 
3119 	seq_printf(m, "interrupts_enabled:    %d\n",
3120 		       smi->irq && !smi->interrupt_disabled);
3121 	seq_printf(m, "short_timeouts:        %u\n",
3122 		       smi_get_stat(smi, short_timeouts));
3123 	seq_printf(m, "long_timeouts:         %u\n",
3124 		       smi_get_stat(smi, long_timeouts));
3125 	seq_printf(m, "idles:                 %u\n",
3126 		       smi_get_stat(smi, idles));
3127 	seq_printf(m, "interrupts:            %u\n",
3128 		       smi_get_stat(smi, interrupts));
3129 	seq_printf(m, "attentions:            %u\n",
3130 		       smi_get_stat(smi, attentions));
3131 	seq_printf(m, "flag_fetches:          %u\n",
3132 		       smi_get_stat(smi, flag_fetches));
3133 	seq_printf(m, "hosed_count:           %u\n",
3134 		       smi_get_stat(smi, hosed_count));
3135 	seq_printf(m, "complete_transactions: %u\n",
3136 		       smi_get_stat(smi, complete_transactions));
3137 	seq_printf(m, "events:                %u\n",
3138 		       smi_get_stat(smi, events));
3139 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3140 		       smi_get_stat(smi, watchdog_pretimeouts));
3141 	seq_printf(m, "incoming_messages:     %u\n",
3142 		       smi_get_stat(smi, incoming_messages));
3143 	return 0;
3144 }
3145 
smi_si_stats_proc_open(struct inode * inode,struct file * file)3146 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3147 {
3148 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3149 }
3150 
3151 static const struct file_operations smi_si_stats_proc_ops = {
3152 	.open		= smi_si_stats_proc_open,
3153 	.read		= seq_read,
3154 	.llseek		= seq_lseek,
3155 	.release	= single_release,
3156 };
3157 
smi_params_proc_show(struct seq_file * m,void * v)3158 static int smi_params_proc_show(struct seq_file *m, void *v)
3159 {
3160 	struct smi_info *smi = m->private;
3161 
3162 	seq_printf(m,
3163 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3164 		   si_to_str[smi->si_type],
3165 		   addr_space_to_str[smi->io.addr_type],
3166 		   smi->io.addr_data,
3167 		   smi->io.regspacing,
3168 		   smi->io.regsize,
3169 		   smi->io.regshift,
3170 		   smi->irq,
3171 		   smi->slave_addr);
3172 
3173 	return 0;
3174 }
3175 
smi_params_proc_open(struct inode * inode,struct file * file)3176 static int smi_params_proc_open(struct inode *inode, struct file *file)
3177 {
3178 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3179 }
3180 
3181 static const struct file_operations smi_params_proc_ops = {
3182 	.open		= smi_params_proc_open,
3183 	.read		= seq_read,
3184 	.llseek		= seq_lseek,
3185 	.release	= single_release,
3186 };
3187 
3188 /*
3189  * oem_data_avail_to_receive_msg_avail
3190  * @info - smi_info structure with msg_flags set
3191  *
3192  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3193  * Returns 1 indicating need to re-run handle_flags().
3194  */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)3195 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3196 {
3197 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3198 			       RECEIVE_MSG_AVAIL);
3199 	return 1;
3200 }
3201 
3202 /*
3203  * setup_dell_poweredge_oem_data_handler
3204  * @info - smi_info.device_id must be populated
3205  *
3206  * Systems that match, but have firmware version < 1.40 may assert
3207  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3208  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3209  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3210  * as RECEIVE_MSG_AVAIL instead.
3211  *
3212  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3213  * assert the OEM[012] bits, and if it did, the driver would have to
3214  * change to handle that properly, we don't actually check for the
3215  * firmware version.
3216  * Device ID = 0x20                BMC on PowerEdge 8G servers
3217  * Device Revision = 0x80
3218  * Firmware Revision1 = 0x01       BMC version 1.40
3219  * Firmware Revision2 = 0x40       BCD encoded
3220  * IPMI Version = 0x51             IPMI 1.5
3221  * Manufacturer ID = A2 02 00      Dell IANA
3222  *
3223  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3224  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3225  *
3226  */
3227 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3228 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3229 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3230 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)3231 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3232 {
3233 	struct ipmi_device_id *id = &smi_info->device_id;
3234 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3235 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3236 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3237 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3238 			smi_info->oem_data_avail_handler =
3239 				oem_data_avail_to_receive_msg_avail;
3240 		} else if (ipmi_version_major(id) < 1 ||
3241 			   (ipmi_version_major(id) == 1 &&
3242 			    ipmi_version_minor(id) < 5)) {
3243 			smi_info->oem_data_avail_handler =
3244 				oem_data_avail_to_receive_msg_avail;
3245 		}
3246 	}
3247 }
3248 
3249 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)3250 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3251 {
3252 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3253 
3254 	/* Make it a response */
3255 	msg->rsp[0] = msg->data[0] | 4;
3256 	msg->rsp[1] = msg->data[1];
3257 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3258 	msg->rsp_size = 3;
3259 	smi_info->curr_msg = NULL;
3260 	deliver_recv_msg(smi_info, msg);
3261 }
3262 
3263 /*
3264  * dell_poweredge_bt_xaction_handler
3265  * @info - smi_info.device_id must be populated
3266  *
3267  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3268  * not respond to a Get SDR command if the length of the data
3269  * requested is exactly 0x3A, which leads to command timeouts and no
3270  * data returned.  This intercepts such commands, and causes userspace
3271  * callers to try again with a different-sized buffer, which succeeds.
3272  */
3273 
3274 #define STORAGE_NETFN 0x0A
3275 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)3276 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3277 					     unsigned long unused,
3278 					     void *in)
3279 {
3280 	struct smi_info *smi_info = in;
3281 	unsigned char *data = smi_info->curr_msg->data;
3282 	unsigned int size   = smi_info->curr_msg->data_size;
3283 	if (size >= 8 &&
3284 	    (data[0]>>2) == STORAGE_NETFN &&
3285 	    data[1] == STORAGE_CMD_GET_SDR &&
3286 	    data[7] == 0x3A) {
3287 		return_hosed_msg_badsize(smi_info);
3288 		return NOTIFY_STOP;
3289 	}
3290 	return NOTIFY_DONE;
3291 }
3292 
3293 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3294 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3295 };
3296 
3297 /*
3298  * setup_dell_poweredge_bt_xaction_handler
3299  * @info - smi_info.device_id must be filled in already
3300  *
3301  * Fills in smi_info.device_id.start_transaction_pre_hook
3302  * when we know what function to use there.
3303  */
3304 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3305 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3306 {
3307 	struct ipmi_device_id *id = &smi_info->device_id;
3308 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3309 	    smi_info->si_type == SI_BT)
3310 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3311 }
3312 
3313 /*
3314  * setup_oem_data_handler
3315  * @info - smi_info.device_id must be filled in already
3316  *
3317  * Fills in smi_info.device_id.oem_data_available_handler
3318  * when we know what function to use there.
3319  */
3320 
setup_oem_data_handler(struct smi_info * smi_info)3321 static void setup_oem_data_handler(struct smi_info *smi_info)
3322 {
3323 	setup_dell_poweredge_oem_data_handler(smi_info);
3324 }
3325 
setup_xaction_handlers(struct smi_info * smi_info)3326 static void setup_xaction_handlers(struct smi_info *smi_info)
3327 {
3328 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3329 }
3330 
wait_for_timer_and_thread(struct smi_info * smi_info)3331 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3332 {
3333 	if (smi_info->thread != NULL)
3334 		kthread_stop(smi_info->thread);
3335 	if (smi_info->timer_running)
3336 		del_timer_sync(&smi_info->si_timer);
3337 }
3338 
3339 static struct ipmi_default_vals
3340 {
3341 	int type;
3342 	int port;
3343 } ipmi_defaults[] =
3344 {
3345 	{ .type = SI_KCS, .port = 0xca2 },
3346 	{ .type = SI_SMIC, .port = 0xca9 },
3347 	{ .type = SI_BT, .port = 0xe4 },
3348 	{ .port = 0 }
3349 };
3350 
default_find_bmc(void)3351 static void default_find_bmc(void)
3352 {
3353 	struct smi_info *info;
3354 	int             i;
3355 
3356 	for (i = 0; ; i++) {
3357 		if (!ipmi_defaults[i].port)
3358 			break;
3359 #ifdef CONFIG_PPC
3360 		if (check_legacy_ioport(ipmi_defaults[i].port))
3361 			continue;
3362 #endif
3363 		info = smi_info_alloc();
3364 		if (!info)
3365 			return;
3366 
3367 		info->addr_source = SI_DEFAULT;
3368 
3369 		info->si_type = ipmi_defaults[i].type;
3370 		info->io_setup = port_setup;
3371 		info->io.addr_data = ipmi_defaults[i].port;
3372 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3373 
3374 		info->io.addr = NULL;
3375 		info->io.regspacing = DEFAULT_REGSPACING;
3376 		info->io.regsize = DEFAULT_REGSPACING;
3377 		info->io.regshift = 0;
3378 
3379 		if (add_smi(info) == 0) {
3380 			if ((try_smi_init(info)) == 0) {
3381 				/* Found one... */
3382 				printk(KERN_INFO PFX "Found default %s"
3383 				" state machine at %s address 0x%lx\n",
3384 				si_to_str[info->si_type],
3385 				addr_space_to_str[info->io.addr_type],
3386 				info->io.addr_data);
3387 			} else
3388 				cleanup_one_si(info);
3389 		} else {
3390 			kfree(info);
3391 		}
3392 	}
3393 }
3394 
is_new_interface(struct smi_info * info)3395 static int is_new_interface(struct smi_info *info)
3396 {
3397 	struct smi_info *e;
3398 
3399 	list_for_each_entry(e, &smi_infos, link) {
3400 		if (e->io.addr_type != info->io.addr_type)
3401 			continue;
3402 		if (e->io.addr_data == info->io.addr_data)
3403 			return 0;
3404 	}
3405 
3406 	return 1;
3407 }
3408 
add_smi(struct smi_info * new_smi)3409 static int add_smi(struct smi_info *new_smi)
3410 {
3411 	int rv = 0;
3412 
3413 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3414 	       ipmi_addr_src_to_str(new_smi->addr_source),
3415 	       si_to_str[new_smi->si_type]);
3416 	mutex_lock(&smi_infos_lock);
3417 	if (!is_new_interface(new_smi)) {
3418 		printk(KERN_CONT " duplicate interface\n");
3419 		rv = -EBUSY;
3420 		goto out_err;
3421 	}
3422 
3423 	printk(KERN_CONT "\n");
3424 
3425 	/* So we know not to free it unless we have allocated one. */
3426 	new_smi->intf = NULL;
3427 	new_smi->si_sm = NULL;
3428 	new_smi->handlers = NULL;
3429 
3430 	list_add_tail(&new_smi->link, &smi_infos);
3431 
3432 out_err:
3433 	mutex_unlock(&smi_infos_lock);
3434 	return rv;
3435 }
3436 
try_smi_init(struct smi_info * new_smi)3437 static int try_smi_init(struct smi_info *new_smi)
3438 {
3439 	int rv = 0;
3440 	int i;
3441 
3442 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3443 	       " machine at %s address 0x%lx, slave address 0x%x,"
3444 	       " irq %d\n",
3445 	       ipmi_addr_src_to_str(new_smi->addr_source),
3446 	       si_to_str[new_smi->si_type],
3447 	       addr_space_to_str[new_smi->io.addr_type],
3448 	       new_smi->io.addr_data,
3449 	       new_smi->slave_addr, new_smi->irq);
3450 
3451 	switch (new_smi->si_type) {
3452 	case SI_KCS:
3453 		new_smi->handlers = &kcs_smi_handlers;
3454 		break;
3455 
3456 	case SI_SMIC:
3457 		new_smi->handlers = &smic_smi_handlers;
3458 		break;
3459 
3460 	case SI_BT:
3461 		new_smi->handlers = &bt_smi_handlers;
3462 		break;
3463 
3464 	default:
3465 		/* No support for anything else yet. */
3466 		rv = -EIO;
3467 		goto out_err;
3468 	}
3469 
3470 	/* Allocate the state machine's data and initialize it. */
3471 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3472 	if (!new_smi->si_sm) {
3473 		printk(KERN_ERR PFX
3474 		       "Could not allocate state machine memory\n");
3475 		rv = -ENOMEM;
3476 		goto out_err;
3477 	}
3478 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3479 							&new_smi->io);
3480 
3481 	/* Now that we know the I/O size, we can set up the I/O. */
3482 	rv = new_smi->io_setup(new_smi);
3483 	if (rv) {
3484 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3485 		goto out_err;
3486 	}
3487 
3488 	/* Do low-level detection first. */
3489 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3490 		if (new_smi->addr_source)
3491 			printk(KERN_INFO PFX "Interface detection failed\n");
3492 		rv = -ENODEV;
3493 		goto out_err;
3494 	}
3495 
3496 	/*
3497 	 * Attempt a get device id command.  If it fails, we probably
3498 	 * don't have a BMC here.
3499 	 */
3500 	rv = try_get_dev_id(new_smi);
3501 	if (rv) {
3502 		if (new_smi->addr_source)
3503 			printk(KERN_INFO PFX "There appears to be no BMC"
3504 			       " at this location\n");
3505 		goto out_err;
3506 	}
3507 
3508 	check_clr_rcv_irq(new_smi);
3509 
3510 	setup_oem_data_handler(new_smi);
3511 	setup_xaction_handlers(new_smi);
3512 
3513 	new_smi->waiting_msg = NULL;
3514 	new_smi->curr_msg = NULL;
3515 	atomic_set(&new_smi->req_events, 0);
3516 	new_smi->run_to_completion = false;
3517 	for (i = 0; i < SI_NUM_STATS; i++)
3518 		atomic_set(&new_smi->stats[i], 0);
3519 
3520 	new_smi->interrupt_disabled = true;
3521 	atomic_set(&new_smi->need_watch, 0);
3522 	new_smi->intf_num = smi_num;
3523 	smi_num++;
3524 
3525 	rv = try_enable_event_buffer(new_smi);
3526 	if (rv == 0)
3527 		new_smi->has_event_buffer = true;
3528 
3529 	/*
3530 	 * Start clearing the flags before we enable interrupts or the
3531 	 * timer to avoid racing with the timer.
3532 	 */
3533 	start_clear_flags(new_smi, false);
3534 
3535 	/*
3536 	 * IRQ is defined to be set when non-zero.  req_events will
3537 	 * cause a global flags check that will enable interrupts.
3538 	 */
3539 	if (new_smi->irq) {
3540 		new_smi->interrupt_disabled = false;
3541 		atomic_set(&new_smi->req_events, 1);
3542 	}
3543 
3544 	if (!new_smi->dev) {
3545 		/*
3546 		 * If we don't already have a device from something
3547 		 * else (like PCI), then register a new one.
3548 		 */
3549 		new_smi->pdev = platform_device_alloc("ipmi_si",
3550 						      new_smi->intf_num);
3551 		if (!new_smi->pdev) {
3552 			printk(KERN_ERR PFX
3553 			       "Unable to allocate platform device\n");
3554 			goto out_err;
3555 		}
3556 		new_smi->dev = &new_smi->pdev->dev;
3557 		new_smi->dev->driver = &ipmi_driver.driver;
3558 
3559 		rv = platform_device_add(new_smi->pdev);
3560 		if (rv) {
3561 			printk(KERN_ERR PFX
3562 			       "Unable to register system interface device:"
3563 			       " %d\n",
3564 			       rv);
3565 			goto out_err;
3566 		}
3567 		new_smi->dev_registered = true;
3568 	}
3569 
3570 	rv = ipmi_register_smi(&handlers,
3571 			       new_smi,
3572 			       &new_smi->device_id,
3573 			       new_smi->dev,
3574 			       new_smi->slave_addr);
3575 	if (rv) {
3576 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3577 			rv);
3578 		goto out_err_stop_timer;
3579 	}
3580 
3581 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3582 				     &smi_type_proc_ops,
3583 				     new_smi);
3584 	if (rv) {
3585 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3586 		goto out_err_stop_timer;
3587 	}
3588 
3589 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3590 				     &smi_si_stats_proc_ops,
3591 				     new_smi);
3592 	if (rv) {
3593 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3594 		goto out_err_stop_timer;
3595 	}
3596 
3597 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3598 				     &smi_params_proc_ops,
3599 				     new_smi);
3600 	if (rv) {
3601 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3602 		goto out_err_stop_timer;
3603 	}
3604 
3605 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3606 		 si_to_str[new_smi->si_type]);
3607 
3608 	return 0;
3609 
3610  out_err_stop_timer:
3611 	wait_for_timer_and_thread(new_smi);
3612 
3613  out_err:
3614 	new_smi->interrupt_disabled = true;
3615 
3616 	if (new_smi->intf) {
3617 		ipmi_smi_t intf = new_smi->intf;
3618 		new_smi->intf = NULL;
3619 		ipmi_unregister_smi(intf);
3620 	}
3621 
3622 	if (new_smi->irq_cleanup) {
3623 		new_smi->irq_cleanup(new_smi);
3624 		new_smi->irq_cleanup = NULL;
3625 	}
3626 
3627 	/*
3628 	 * Wait until we know that we are out of any interrupt
3629 	 * handlers might have been running before we freed the
3630 	 * interrupt.
3631 	 */
3632 	synchronize_sched();
3633 
3634 	if (new_smi->si_sm) {
3635 		if (new_smi->handlers)
3636 			new_smi->handlers->cleanup(new_smi->si_sm);
3637 		kfree(new_smi->si_sm);
3638 		new_smi->si_sm = NULL;
3639 	}
3640 	if (new_smi->addr_source_cleanup) {
3641 		new_smi->addr_source_cleanup(new_smi);
3642 		new_smi->addr_source_cleanup = NULL;
3643 	}
3644 	if (new_smi->io_cleanup) {
3645 		new_smi->io_cleanup(new_smi);
3646 		new_smi->io_cleanup = NULL;
3647 	}
3648 
3649 	if (new_smi->dev_registered) {
3650 		platform_device_unregister(new_smi->pdev);
3651 		new_smi->dev_registered = false;
3652 	}
3653 
3654 	return rv;
3655 }
3656 
init_ipmi_si(void)3657 static int init_ipmi_si(void)
3658 {
3659 	int  i;
3660 	char *str;
3661 	int  rv;
3662 	struct smi_info *e;
3663 	enum ipmi_addr_src type = SI_INVALID;
3664 
3665 	if (initialized)
3666 		return 0;
3667 	initialized = 1;
3668 
3669 	if (si_tryplatform) {
3670 		rv = platform_driver_register(&ipmi_driver);
3671 		if (rv) {
3672 			printk(KERN_ERR PFX "Unable to register "
3673 			       "driver: %d\n", rv);
3674 			return rv;
3675 		}
3676 	}
3677 
3678 	/* Parse out the si_type string into its components. */
3679 	str = si_type_str;
3680 	if (*str != '\0') {
3681 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3682 			si_type[i] = str;
3683 			str = strchr(str, ',');
3684 			if (str) {
3685 				*str = '\0';
3686 				str++;
3687 			} else {
3688 				break;
3689 			}
3690 		}
3691 	}
3692 
3693 	printk(KERN_INFO "IPMI System Interface driver.\n");
3694 
3695 	/* If the user gave us a device, they presumably want us to use it */
3696 	if (!hardcode_find_bmc())
3697 		return 0;
3698 
3699 #ifdef CONFIG_PCI
3700 	if (si_trypci) {
3701 		rv = pci_register_driver(&ipmi_pci_driver);
3702 		if (rv)
3703 			printk(KERN_ERR PFX "Unable to register "
3704 			       "PCI driver: %d\n", rv);
3705 		else
3706 			pci_registered = true;
3707 	}
3708 #endif
3709 
3710 #ifdef CONFIG_ACPI
3711 	if (si_tryacpi) {
3712 		pnp_register_driver(&ipmi_pnp_driver);
3713 		pnp_registered = true;
3714 	}
3715 #endif
3716 
3717 #ifdef CONFIG_DMI
3718 	if (si_trydmi)
3719 		dmi_find_bmc();
3720 #endif
3721 
3722 #ifdef CONFIG_ACPI
3723 	if (si_tryacpi)
3724 		spmi_find_bmc();
3725 #endif
3726 
3727 #ifdef CONFIG_PARISC
3728 	register_parisc_driver(&ipmi_parisc_driver);
3729 	parisc_registered = true;
3730 	/* poking PC IO addresses will crash machine, don't do it */
3731 	si_trydefaults = 0;
3732 #endif
3733 
3734 	/* We prefer devices with interrupts, but in the case of a machine
3735 	   with multiple BMCs we assume that there will be several instances
3736 	   of a given type so if we succeed in registering a type then also
3737 	   try to register everything else of the same type */
3738 
3739 	mutex_lock(&smi_infos_lock);
3740 	list_for_each_entry(e, &smi_infos, link) {
3741 		/* Try to register a device if it has an IRQ and we either
3742 		   haven't successfully registered a device yet or this
3743 		   device has the same type as one we successfully registered */
3744 		if (e->irq && (!type || e->addr_source == type)) {
3745 			if (!try_smi_init(e)) {
3746 				type = e->addr_source;
3747 			}
3748 		}
3749 	}
3750 
3751 	/* type will only have been set if we successfully registered an si */
3752 	if (type) {
3753 		mutex_unlock(&smi_infos_lock);
3754 		return 0;
3755 	}
3756 
3757 	/* Fall back to the preferred device */
3758 
3759 	list_for_each_entry(e, &smi_infos, link) {
3760 		if (!e->irq && (!type || e->addr_source == type)) {
3761 			if (!try_smi_init(e)) {
3762 				type = e->addr_source;
3763 			}
3764 		}
3765 	}
3766 	mutex_unlock(&smi_infos_lock);
3767 
3768 	if (type)
3769 		return 0;
3770 
3771 	if (si_trydefaults) {
3772 		mutex_lock(&smi_infos_lock);
3773 		if (list_empty(&smi_infos)) {
3774 			/* No BMC was found, try defaults. */
3775 			mutex_unlock(&smi_infos_lock);
3776 			default_find_bmc();
3777 		} else
3778 			mutex_unlock(&smi_infos_lock);
3779 	}
3780 
3781 	mutex_lock(&smi_infos_lock);
3782 	if (unload_when_empty && list_empty(&smi_infos)) {
3783 		mutex_unlock(&smi_infos_lock);
3784 		cleanup_ipmi_si();
3785 		printk(KERN_WARNING PFX
3786 		       "Unable to find any System Interface(s)\n");
3787 		return -ENODEV;
3788 	} else {
3789 		mutex_unlock(&smi_infos_lock);
3790 		return 0;
3791 	}
3792 }
3793 module_init(init_ipmi_si);
3794 
cleanup_one_si(struct smi_info * to_clean)3795 static void cleanup_one_si(struct smi_info *to_clean)
3796 {
3797 	int           rv = 0;
3798 
3799 	if (!to_clean)
3800 		return;
3801 
3802 	if (to_clean->intf) {
3803 		ipmi_smi_t intf = to_clean->intf;
3804 
3805 		to_clean->intf = NULL;
3806 		rv = ipmi_unregister_smi(intf);
3807 		if (rv) {
3808 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3809 			       rv);
3810 		}
3811 	}
3812 
3813 	if (to_clean->dev)
3814 		dev_set_drvdata(to_clean->dev, NULL);
3815 
3816 	list_del(&to_clean->link);
3817 
3818 	/*
3819 	 * Make sure that interrupts, the timer and the thread are
3820 	 * stopped and will not run again.
3821 	 */
3822 	if (to_clean->irq_cleanup)
3823 		to_clean->irq_cleanup(to_clean);
3824 	wait_for_timer_and_thread(to_clean);
3825 
3826 	/*
3827 	 * Timeouts are stopped, now make sure the interrupts are off
3828 	 * in the BMC.  Note that timers and CPU interrupts are off,
3829 	 * so no need for locks.
3830 	 */
3831 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3832 		poll(to_clean);
3833 		schedule_timeout_uninterruptible(1);
3834 	}
3835 	disable_si_irq(to_clean, false);
3836 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3837 		poll(to_clean);
3838 		schedule_timeout_uninterruptible(1);
3839 	}
3840 
3841 	if (to_clean->handlers)
3842 		to_clean->handlers->cleanup(to_clean->si_sm);
3843 
3844 	kfree(to_clean->si_sm);
3845 
3846 	if (to_clean->addr_source_cleanup)
3847 		to_clean->addr_source_cleanup(to_clean);
3848 	if (to_clean->io_cleanup)
3849 		to_clean->io_cleanup(to_clean);
3850 
3851 	if (to_clean->dev_registered)
3852 		platform_device_unregister(to_clean->pdev);
3853 
3854 	kfree(to_clean);
3855 }
3856 
cleanup_ipmi_si(void)3857 static void cleanup_ipmi_si(void)
3858 {
3859 	struct smi_info *e, *tmp_e;
3860 
3861 	if (!initialized)
3862 		return;
3863 
3864 #ifdef CONFIG_PCI
3865 	if (pci_registered)
3866 		pci_unregister_driver(&ipmi_pci_driver);
3867 #endif
3868 #ifdef CONFIG_ACPI
3869 	if (pnp_registered)
3870 		pnp_unregister_driver(&ipmi_pnp_driver);
3871 #endif
3872 #ifdef CONFIG_PARISC
3873 	if (parisc_registered)
3874 		unregister_parisc_driver(&ipmi_parisc_driver);
3875 #endif
3876 
3877 	platform_driver_unregister(&ipmi_driver);
3878 
3879 	mutex_lock(&smi_infos_lock);
3880 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3881 		cleanup_one_si(e);
3882 	mutex_unlock(&smi_infos_lock);
3883 }
3884 module_exit(cleanup_ipmi_si);
3885 
3886 MODULE_LICENSE("GPL");
3887 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3888 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3889 		   " system interfaces.");
3890