1 /*
2  * Copyright (c) 2003-2013 Broadcom Corporation
3  *
4  * Copyright (c) 2009-2010 Micron Technology, Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/spi/spi.h>
23 
24 #include "mt29f_spinand.h"
25 
26 #define BUFSIZE (10 * 64 * 2048)
27 #define CACHE_BUF 2112
28 /*
29  * OOB area specification layout:  Total 32 available free bytes.
30  */
31 
mtd_to_state(struct mtd_info * mtd)32 static inline struct spinand_state *mtd_to_state(struct mtd_info *mtd)
33 {
34 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
35 	struct spinand_info *info = (struct spinand_info *)chip->priv;
36 	struct spinand_state *state = (struct spinand_state *)info->priv;
37 
38 	return state;
39 }
40 
41 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
42 static int enable_hw_ecc;
43 static int enable_read_hw_ecc;
44 
45 static struct nand_ecclayout spinand_oob_64 = {
46 	.eccbytes = 24,
47 	.eccpos = {
48 		1, 2, 3, 4, 5, 6,
49 		17, 18, 19, 20, 21, 22,
50 		33, 34, 35, 36, 37, 38,
51 		49, 50, 51, 52, 53, 54, },
52 	.oobavail = 32,
53 	.oobfree = {
54 		{.offset = 8,
55 			.length = 8},
56 		{.offset = 24,
57 			.length = 8},
58 		{.offset = 40,
59 			.length = 8},
60 		{.offset = 56,
61 			.length = 8},
62 	}
63 };
64 #endif
65 
66 /*
67  * spinand_cmd - to process a command to send to the SPI Nand
68  * Description:
69  *    Set up the command buffer to send to the SPI controller.
70  *    The command buffer has to initialized to 0.
71  */
72 
spinand_cmd(struct spi_device * spi,struct spinand_cmd * cmd)73 static int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
74 {
75 	struct spi_message message;
76 	struct spi_transfer x[4];
77 	u8 dummy = 0xff;
78 
79 	spi_message_init(&message);
80 	memset(x, 0, sizeof(x));
81 
82 	x[0].len = 1;
83 	x[0].tx_buf = &cmd->cmd;
84 	spi_message_add_tail(&x[0], &message);
85 
86 	if (cmd->n_addr) {
87 		x[1].len = cmd->n_addr;
88 		x[1].tx_buf = cmd->addr;
89 		spi_message_add_tail(&x[1], &message);
90 	}
91 
92 	if (cmd->n_dummy) {
93 		x[2].len = cmd->n_dummy;
94 		x[2].tx_buf = &dummy;
95 		spi_message_add_tail(&x[2], &message);
96 	}
97 
98 	if (cmd->n_tx) {
99 		x[3].len = cmd->n_tx;
100 		x[3].tx_buf = cmd->tx_buf;
101 		spi_message_add_tail(&x[3], &message);
102 	}
103 
104 	if (cmd->n_rx) {
105 		x[3].len = cmd->n_rx;
106 		x[3].rx_buf = cmd->rx_buf;
107 		spi_message_add_tail(&x[3], &message);
108 	}
109 
110 	return spi_sync(spi, &message);
111 }
112 
113 /*
114  * spinand_read_id- Read SPI Nand ID
115  * Description:
116  *    Read ID: read two ID bytes from the SPI Nand device
117  */
spinand_read_id(struct spi_device * spi_nand,u8 * id)118 static int spinand_read_id(struct spi_device *spi_nand, u8 *id)
119 {
120 	int retval;
121 	u8 nand_id[3];
122 	struct spinand_cmd cmd = {0};
123 
124 	cmd.cmd = CMD_READ_ID;
125 	cmd.n_rx = 3;
126 	cmd.rx_buf = &nand_id[0];
127 
128 	retval = spinand_cmd(spi_nand, &cmd);
129 	if (retval < 0) {
130 		dev_err(&spi_nand->dev, "error %d reading id\n", retval);
131 		return retval;
132 	}
133 	id[0] = nand_id[1];
134 	id[1] = nand_id[2];
135 	return retval;
136 }
137 
138 /*
139  * spinand_read_status- send command 0xf to the SPI Nand status register
140  * Description:
141  *    After read, write, or erase, the Nand device is expected to set the
142  *    busy status.
143  *    This function is to allow reading the status of the command: read,
144  *    write, and erase.
145  *    Once the status turns to be ready, the other status bits also are
146  *    valid status bits.
147  */
spinand_read_status(struct spi_device * spi_nand,u8 * status)148 static int spinand_read_status(struct spi_device *spi_nand, u8 *status)
149 {
150 	struct spinand_cmd cmd = {0};
151 	int ret;
152 
153 	cmd.cmd = CMD_READ_REG;
154 	cmd.n_addr = 1;
155 	cmd.addr[0] = REG_STATUS;
156 	cmd.n_rx = 1;
157 	cmd.rx_buf = status;
158 
159 	ret = spinand_cmd(spi_nand, &cmd);
160 	if (ret < 0)
161 		dev_err(&spi_nand->dev, "err: %d read status register\n", ret);
162 
163 	return ret;
164 }
165 
166 #define MAX_WAIT_JIFFIES  (40 * HZ)
wait_till_ready(struct spi_device * spi_nand)167 static int wait_till_ready(struct spi_device *spi_nand)
168 {
169 	unsigned long deadline;
170 	int retval;
171 	u8 stat = 0;
172 
173 	deadline = jiffies + MAX_WAIT_JIFFIES;
174 	do {
175 		retval = spinand_read_status(spi_nand, &stat);
176 		if (retval < 0)
177 			return -1;
178 		else if (!(stat & 0x1))
179 			break;
180 
181 		cond_resched();
182 	} while (!time_after_eq(jiffies, deadline));
183 
184 	if ((stat & 0x1) == 0)
185 		return 0;
186 
187 	return -1;
188 }
189 
190 /**
191  * spinand_get_otp- send command 0xf to read the SPI Nand OTP register
192  * Description:
193  *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
194  *   Enable chip internal ECC, set the bit to 1
195  *   Disable chip internal ECC, clear the bit to 0
196  */
spinand_get_otp(struct spi_device * spi_nand,u8 * otp)197 static int spinand_get_otp(struct spi_device *spi_nand, u8 *otp)
198 {
199 	struct spinand_cmd cmd = {0};
200 	int retval;
201 
202 	cmd.cmd = CMD_READ_REG;
203 	cmd.n_addr = 1;
204 	cmd.addr[0] = REG_OTP;
205 	cmd.n_rx = 1;
206 	cmd.rx_buf = otp;
207 
208 	retval = spinand_cmd(spi_nand, &cmd);
209 	if (retval < 0)
210 		dev_err(&spi_nand->dev, "error %d get otp\n", retval);
211 	return retval;
212 }
213 
214 /**
215  * spinand_set_otp- send command 0x1f to write the SPI Nand OTP register
216  * Description:
217  *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
218  *   Enable chip internal ECC, set the bit to 1
219  *   Disable chip internal ECC, clear the bit to 0
220  */
spinand_set_otp(struct spi_device * spi_nand,u8 * otp)221 static int spinand_set_otp(struct spi_device *spi_nand, u8 *otp)
222 {
223 	int retval;
224 	struct spinand_cmd cmd = {0};
225 
226 	cmd.cmd = CMD_WRITE_REG,
227 	cmd.n_addr = 1,
228 	cmd.addr[0] = REG_OTP,
229 	cmd.n_tx = 1,
230 	cmd.tx_buf = otp,
231 
232 	retval = spinand_cmd(spi_nand, &cmd);
233 	if (retval < 0)
234 		dev_err(&spi_nand->dev, "error %d set otp\n", retval);
235 
236 	return retval;
237 }
238 
239 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
240 /**
241  * spinand_enable_ecc- send command 0x1f to write the SPI Nand OTP register
242  * Description:
243  *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
244  *   Enable chip internal ECC, set the bit to 1
245  *   Disable chip internal ECC, clear the bit to 0
246  */
spinand_enable_ecc(struct spi_device * spi_nand)247 static int spinand_enable_ecc(struct spi_device *spi_nand)
248 {
249 	int retval;
250 	u8 otp = 0;
251 
252 	retval = spinand_get_otp(spi_nand, &otp);
253 	if (retval < 0)
254 		return retval;
255 
256 	if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK)
257 		return 0;
258 	otp |= OTP_ECC_MASK;
259 	retval = spinand_set_otp(spi_nand, &otp);
260 	if (retval < 0)
261 		return retval;
262 	return spinand_get_otp(spi_nand, &otp);
263 }
264 #endif
265 
spinand_disable_ecc(struct spi_device * spi_nand)266 static int spinand_disable_ecc(struct spi_device *spi_nand)
267 {
268 	int retval;
269 	u8 otp = 0;
270 
271 	retval = spinand_get_otp(spi_nand, &otp);
272 	if (retval < 0)
273 		return retval;
274 
275 	if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
276 		otp &= ~OTP_ECC_MASK;
277 		retval = spinand_set_otp(spi_nand, &otp);
278 		if (retval < 0)
279 			return retval;
280 		return spinand_get_otp(spi_nand, &otp);
281 	}
282 	return 0;
283 }
284 
285 /**
286  * spinand_write_enable- send command 0x06 to enable write or erase the
287  * Nand cells
288  * Description:
289  *   Before write and erase the Nand cells, the write enable has to be set.
290  *   After the write or erase, the write enable bit is automatically
291  *   cleared (status register bit 2)
292  *   Set the bit 2 of the status register has the same effect
293  */
spinand_write_enable(struct spi_device * spi_nand)294 static int spinand_write_enable(struct spi_device *spi_nand)
295 {
296 	struct spinand_cmd cmd = {0};
297 
298 	cmd.cmd = CMD_WR_ENABLE;
299 	return spinand_cmd(spi_nand, &cmd);
300 }
301 
spinand_read_page_to_cache(struct spi_device * spi_nand,u16 page_id)302 static int spinand_read_page_to_cache(struct spi_device *spi_nand, u16 page_id)
303 {
304 	struct spinand_cmd cmd = {0};
305 	u16 row;
306 
307 	row = page_id;
308 	cmd.cmd = CMD_READ;
309 	cmd.n_addr = 3;
310 	cmd.addr[1] = (u8)((row & 0xff00) >> 8);
311 	cmd.addr[2] = (u8)(row & 0x00ff);
312 
313 	return spinand_cmd(spi_nand, &cmd);
314 }
315 
316 /*
317  * spinand_read_from_cache- send command 0x03 to read out the data from the
318  * cache register(2112 bytes max)
319  * Description:
320  *   The read can specify 1 to 2112 bytes of data read at the corresponding
321  *   locations.
322  *   No tRd delay.
323  */
spinand_read_from_cache(struct spi_device * spi_nand,u16 page_id,u16 byte_id,u16 len,u8 * rbuf)324 static int spinand_read_from_cache(struct spi_device *spi_nand, u16 page_id,
325 				   u16 byte_id, u16 len, u8 *rbuf)
326 {
327 	struct spinand_cmd cmd = {0};
328 	u16 column;
329 
330 	column = byte_id;
331 	cmd.cmd = CMD_READ_RDM;
332 	cmd.n_addr = 3;
333 	cmd.addr[0] = (u8)((column & 0xff00) >> 8);
334 	cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
335 	cmd.addr[1] = (u8)(column & 0x00ff);
336 	cmd.addr[2] = (u8)(0xff);
337 	cmd.n_dummy = 0;
338 	cmd.n_rx = len;
339 	cmd.rx_buf = rbuf;
340 
341 	return spinand_cmd(spi_nand, &cmd);
342 }
343 
344 /*
345  * spinand_read_page-to read a page with:
346  * @page_id: the physical page number
347  * @offset:  the location from 0 to 2111
348  * @len:     number of bytes to read
349  * @rbuf:    read buffer to hold @len bytes
350  *
351  * Description:
352  *   The read includes two commands to the Nand: 0x13 and 0x03 commands
353  *   Poll to read status to wait for tRD time.
354  */
spinand_read_page(struct spi_device * spi_nand,u16 page_id,u16 offset,u16 len,u8 * rbuf)355 static int spinand_read_page(struct spi_device *spi_nand, u16 page_id,
356 			     u16 offset, u16 len, u8 *rbuf)
357 {
358 	int ret;
359 	u8 status = 0;
360 
361 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
362 	if (enable_read_hw_ecc) {
363 		if (spinand_enable_ecc(spi_nand) < 0)
364 			dev_err(&spi_nand->dev, "enable HW ECC failed!");
365 	}
366 #endif
367 	ret = spinand_read_page_to_cache(spi_nand, page_id);
368 	if (ret < 0)
369 		return ret;
370 
371 	if (wait_till_ready(spi_nand))
372 		dev_err(&spi_nand->dev, "WAIT timedout!!!\n");
373 
374 	while (1) {
375 		ret = spinand_read_status(spi_nand, &status);
376 		if (ret < 0) {
377 			dev_err(&spi_nand->dev,
378 				"err %d read status register\n", ret);
379 			return ret;
380 		}
381 
382 		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
383 			if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
384 				dev_err(&spi_nand->dev, "ecc error, page=%d\n",
385 					page_id);
386 				return 0;
387 			}
388 			break;
389 		}
390 	}
391 
392 	ret = spinand_read_from_cache(spi_nand, page_id, offset, len, rbuf);
393 	if (ret < 0) {
394 		dev_err(&spi_nand->dev, "read from cache failed!!\n");
395 		return ret;
396 	}
397 
398 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
399 	if (enable_read_hw_ecc) {
400 		ret = spinand_disable_ecc(spi_nand);
401 		if (ret < 0) {
402 			dev_err(&spi_nand->dev, "disable ecc failed!!\n");
403 			return ret;
404 		}
405 		enable_read_hw_ecc = 0;
406 	}
407 #endif
408 	return ret;
409 }
410 
411 /*
412  * spinand_program_data_to_cache--to write a page to cache with:
413  * @byte_id: the location to write to the cache
414  * @len:     number of bytes to write
415  * @rbuf:    read buffer to hold @len bytes
416  *
417  * Description:
418  *   The write command used here is 0x84--indicating that the cache is
419  *   not cleared first.
420  *   Since it is writing the data to cache, there is no tPROG time.
421  */
spinand_program_data_to_cache(struct spi_device * spi_nand,u16 page_id,u16 byte_id,u16 len,u8 * wbuf)422 static int spinand_program_data_to_cache(struct spi_device *spi_nand,
423 					 u16 page_id, u16 byte_id,
424 					 u16 len, u8 *wbuf)
425 {
426 	struct spinand_cmd cmd = {0};
427 	u16 column;
428 
429 	column = byte_id;
430 	cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
431 	cmd.n_addr = 2;
432 	cmd.addr[0] = (u8)((column & 0xff00) >> 8);
433 	cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
434 	cmd.addr[1] = (u8)(column & 0x00ff);
435 	cmd.n_tx = len;
436 	cmd.tx_buf = wbuf;
437 
438 	return spinand_cmd(spi_nand, &cmd);
439 }
440 
441 /**
442  * spinand_program_execute--to write a page from cache to the Nand array with
443  * @page_id: the physical page location to write the page.
444  *
445  * Description:
446  *   The write command used here is 0x10--indicating the cache is writing to
447  *   the Nand array.
448  *   Need to wait for tPROG time to finish the transaction.
449  */
spinand_program_execute(struct spi_device * spi_nand,u16 page_id)450 static int spinand_program_execute(struct spi_device *spi_nand, u16 page_id)
451 {
452 	struct spinand_cmd cmd = {0};
453 	u16 row;
454 
455 	row = page_id;
456 	cmd.cmd = CMD_PROG_PAGE_EXC;
457 	cmd.n_addr = 3;
458 	cmd.addr[1] = (u8)((row & 0xff00) >> 8);
459 	cmd.addr[2] = (u8)(row & 0x00ff);
460 
461 	return spinand_cmd(spi_nand, &cmd);
462 }
463 
464 /**
465  * spinand_program_page--to write a page with:
466  * @page_id: the physical page location to write the page.
467  * @offset:  the location from the cache starting from 0 to 2111
468  * @len:     the number of bytes to write
469  * @wbuf:    the buffer to hold the number of bytes
470  *
471  * Description:
472  *   The commands used here are 0x06, 0x84, and 0x10--indicating that
473  *   the write enable is first sent, the write cache command, and the
474  *   write execute command.
475  *   Poll to wait for the tPROG time to finish the transaction.
476  */
spinand_program_page(struct spi_device * spi_nand,u16 page_id,u16 offset,u16 len,u8 * buf)477 static int spinand_program_page(struct spi_device *spi_nand,
478 				u16 page_id, u16 offset, u16 len, u8 *buf)
479 {
480 	int retval;
481 	u8 status = 0;
482 	u8 *wbuf;
483 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
484 	unsigned int i, j;
485 
486 	enable_read_hw_ecc = 0;
487 	wbuf = devm_kzalloc(&spi_nand->dev, CACHE_BUF, GFP_KERNEL);
488 	spinand_read_page(spi_nand, page_id, 0, CACHE_BUF, wbuf);
489 
490 	for (i = offset, j = 0; i < len; i++, j++)
491 		wbuf[i] &= buf[j];
492 
493 	if (enable_hw_ecc) {
494 		retval = spinand_enable_ecc(spi_nand);
495 		if (retval < 0) {
496 			dev_err(&spi_nand->dev, "enable ecc failed!!\n");
497 			return retval;
498 		}
499 	}
500 #else
501 	wbuf = buf;
502 #endif
503 	retval = spinand_write_enable(spi_nand);
504 	if (retval < 0) {
505 		dev_err(&spi_nand->dev, "write enable failed!!\n");
506 		return retval;
507 	}
508 	if (wait_till_ready(spi_nand))
509 		dev_err(&spi_nand->dev, "wait timedout!!!\n");
510 
511 	retval = spinand_program_data_to_cache(spi_nand, page_id,
512 					       offset, len, wbuf);
513 	if (retval < 0)
514 		return retval;
515 	retval = spinand_program_execute(spi_nand, page_id);
516 	if (retval < 0)
517 		return retval;
518 	while (1) {
519 		retval = spinand_read_status(spi_nand, &status);
520 		if (retval < 0) {
521 			dev_err(&spi_nand->dev,
522 				"error %d reading status register\n", retval);
523 			return retval;
524 		}
525 
526 		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
527 			if ((status & STATUS_P_FAIL_MASK) == STATUS_P_FAIL) {
528 				dev_err(&spi_nand->dev,
529 					"program error, page %d\n", page_id);
530 				return -1;
531 			}
532 			break;
533 		}
534 	}
535 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
536 	if (enable_hw_ecc) {
537 		retval = spinand_disable_ecc(spi_nand);
538 		if (retval < 0) {
539 			dev_err(&spi_nand->dev, "disable ecc failed!!\n");
540 			return retval;
541 		}
542 		enable_hw_ecc = 0;
543 	}
544 #endif
545 
546 	return 0;
547 }
548 
549 /**
550  * spinand_erase_block_erase--to erase a page with:
551  * @block_id: the physical block location to erase.
552  *
553  * Description:
554  *   The command used here is 0xd8--indicating an erase command to erase
555  *   one block--64 pages
556  *   Need to wait for tERS.
557  */
spinand_erase_block_erase(struct spi_device * spi_nand,u16 block_id)558 static int spinand_erase_block_erase(struct spi_device *spi_nand, u16 block_id)
559 {
560 	struct spinand_cmd cmd = {0};
561 	u16 row;
562 
563 	row = block_id;
564 	cmd.cmd = CMD_ERASE_BLK;
565 	cmd.n_addr = 3;
566 	cmd.addr[1] = (u8)((row & 0xff00) >> 8);
567 	cmd.addr[2] = (u8)(row & 0x00ff);
568 
569 	return spinand_cmd(spi_nand, &cmd);
570 }
571 
572 /**
573  * spinand_erase_block--to erase a page with:
574  * @block_id: the physical block location to erase.
575  *
576  * Description:
577  *   The commands used here are 0x06 and 0xd8--indicating an erase
578  *   command to erase one block--64 pages
579  *   It will first to enable the write enable bit (0x06 command),
580  *   and then send the 0xd8 erase command
581  *   Poll to wait for the tERS time to complete the tranaction.
582  */
spinand_erase_block(struct spi_device * spi_nand,u16 block_id)583 static int spinand_erase_block(struct spi_device *spi_nand, u16 block_id)
584 {
585 	int retval;
586 	u8 status = 0;
587 
588 	retval = spinand_write_enable(spi_nand);
589 	if (wait_till_ready(spi_nand))
590 		dev_err(&spi_nand->dev, "wait timedout!!!\n");
591 
592 	retval = spinand_erase_block_erase(spi_nand, block_id);
593 	while (1) {
594 		retval = spinand_read_status(spi_nand, &status);
595 		if (retval < 0) {
596 			dev_err(&spi_nand->dev,
597 				"error %d reading status register\n", retval);
598 			return retval;
599 		}
600 
601 		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
602 			if ((status & STATUS_E_FAIL_MASK) == STATUS_E_FAIL) {
603 				dev_err(&spi_nand->dev,
604 					"erase error, block %d\n", block_id);
605 				return -1;
606 			}
607 			break;
608 		}
609 	}
610 	return 0;
611 }
612 
613 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
spinand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_required,int page)614 static int spinand_write_page_hwecc(struct mtd_info *mtd,
615 				    struct nand_chip *chip,
616 				    const u8 *buf, int oob_required,
617 				    int page)
618 {
619 	const u8 *p = buf;
620 	int eccsize = chip->ecc.size;
621 	int eccsteps = chip->ecc.steps;
622 
623 	enable_hw_ecc = 1;
624 	chip->write_buf(mtd, p, eccsize * eccsteps);
625 	return 0;
626 }
627 
spinand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)628 static int spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
629 				   u8 *buf, int oob_required, int page)
630 {
631 	int retval;
632 	u8 status;
633 	u8 *p = buf;
634 	int eccsize = chip->ecc.size;
635 	int eccsteps = chip->ecc.steps;
636 	struct spinand_info *info = (struct spinand_info *)chip->priv;
637 
638 	enable_read_hw_ecc = 1;
639 
640 	chip->read_buf(mtd, p, eccsize * eccsteps);
641 	if (oob_required)
642 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
643 
644 	while (1) {
645 		retval = spinand_read_status(info->spi, &status);
646 		if (retval < 0) {
647 			dev_err(&mtd->dev,
648 				"error %d reading status register\n", retval);
649 			return retval;
650 		}
651 
652 		if ((status & STATUS_OIP_MASK) == STATUS_READY) {
653 			if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
654 				pr_info("spinand: ECC error\n");
655 				mtd->ecc_stats.failed++;
656 			} else if ((status & STATUS_ECC_MASK) ==
657 					STATUS_ECC_1BIT_CORRECTED)
658 				mtd->ecc_stats.corrected++;
659 			break;
660 		}
661 	}
662 	return 0;
663 }
664 #endif
665 
spinand_select_chip(struct mtd_info * mtd,int dev)666 static void spinand_select_chip(struct mtd_info *mtd, int dev)
667 {
668 }
669 
spinand_read_byte(struct mtd_info * mtd)670 static u8 spinand_read_byte(struct mtd_info *mtd)
671 {
672 	struct spinand_state *state = mtd_to_state(mtd);
673 	u8 data;
674 
675 	data = state->buf[state->buf_ptr];
676 	state->buf_ptr++;
677 	return data;
678 }
679 
spinand_wait(struct mtd_info * mtd,struct nand_chip * chip)680 static int spinand_wait(struct mtd_info *mtd, struct nand_chip *chip)
681 {
682 	struct spinand_info *info = (struct spinand_info *)chip->priv;
683 
684 	unsigned long timeo = jiffies;
685 	int retval, state = chip->state;
686 	u8 status;
687 
688 	if (state == FL_ERASING)
689 		timeo += (HZ * 400) / 1000;
690 	else
691 		timeo += (HZ * 20) / 1000;
692 
693 	while (time_before(jiffies, timeo)) {
694 		retval = spinand_read_status(info->spi, &status);
695 		if (retval < 0) {
696 			dev_err(&mtd->dev,
697 				"error %d reading status register\n", retval);
698 			return retval;
699 		}
700 
701 		if ((status & STATUS_OIP_MASK) == STATUS_READY)
702 			return 0;
703 
704 		cond_resched();
705 	}
706 	return 0;
707 }
708 
spinand_write_buf(struct mtd_info * mtd,const u8 * buf,int len)709 static void spinand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
710 {
711 	struct spinand_state *state = mtd_to_state(mtd);
712 
713 	memcpy(state->buf + state->buf_ptr, buf, len);
714 	state->buf_ptr += len;
715 }
716 
spinand_read_buf(struct mtd_info * mtd,u8 * buf,int len)717 static void spinand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
718 {
719 	struct spinand_state *state = mtd_to_state(mtd);
720 
721 	memcpy(buf, state->buf + state->buf_ptr, len);
722 	state->buf_ptr += len;
723 }
724 
725 /*
726  * spinand_reset- send RESET command "0xff" to the Nand device.
727  */
spinand_reset(struct spi_device * spi_nand)728 static void spinand_reset(struct spi_device *spi_nand)
729 {
730 	struct spinand_cmd cmd = {0};
731 
732 	cmd.cmd = CMD_RESET;
733 
734 	if (spinand_cmd(spi_nand, &cmd) < 0)
735 		pr_info("spinand reset failed!\n");
736 
737 	/* elapse 1ms before issuing any other command */
738 	usleep_range(1000, 2000);
739 
740 	if (wait_till_ready(spi_nand))
741 		dev_err(&spi_nand->dev, "wait timedout!\n");
742 }
743 
spinand_cmdfunc(struct mtd_info * mtd,unsigned int command,int column,int page)744 static void spinand_cmdfunc(struct mtd_info *mtd, unsigned int command,
745 			    int column, int page)
746 {
747 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
748 	struct spinand_info *info = (struct spinand_info *)chip->priv;
749 	struct spinand_state *state = (struct spinand_state *)info->priv;
750 
751 	switch (command) {
752 	/*
753 	 * READ0 - read in first  0x800 bytes
754 	 */
755 	case NAND_CMD_READ1:
756 	case NAND_CMD_READ0:
757 		state->buf_ptr = 0;
758 		spinand_read_page(info->spi, page, 0x0, 0x840, state->buf);
759 		break;
760 	/* READOOB reads only the OOB because no ECC is performed. */
761 	case NAND_CMD_READOOB:
762 		state->buf_ptr = 0;
763 		spinand_read_page(info->spi, page, 0x800, 0x40, state->buf);
764 		break;
765 	case NAND_CMD_RNDOUT:
766 		state->buf_ptr = column;
767 		break;
768 	case NAND_CMD_READID:
769 		state->buf_ptr = 0;
770 		spinand_read_id(info->spi, state->buf);
771 		break;
772 	case NAND_CMD_PARAM:
773 		state->buf_ptr = 0;
774 		break;
775 	/* ERASE1 stores the block and page address */
776 	case NAND_CMD_ERASE1:
777 		spinand_erase_block(info->spi, page);
778 		break;
779 	/* ERASE2 uses the block and page address from ERASE1 */
780 	case NAND_CMD_ERASE2:
781 		break;
782 	/* SEQIN sets up the addr buffer and all registers except the length */
783 	case NAND_CMD_SEQIN:
784 		state->col = column;
785 		state->row = page;
786 		state->buf_ptr = 0;
787 		break;
788 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
789 	case NAND_CMD_PAGEPROG:
790 		spinand_program_page(info->spi, state->row, state->col,
791 				     state->buf_ptr, state->buf);
792 		break;
793 	case NAND_CMD_STATUS:
794 		spinand_get_otp(info->spi, state->buf);
795 		if (!(state->buf[0] & 0x80))
796 			state->buf[0] = 0x80;
797 		state->buf_ptr = 0;
798 		break;
799 	/* RESET command */
800 	case NAND_CMD_RESET:
801 		if (wait_till_ready(info->spi))
802 			dev_err(&info->spi->dev, "WAIT timedout!!!\n");
803 		/* a minimum of 250us must elapse before issuing RESET cmd*/
804 		usleep_range(250, 1000);
805 		spinand_reset(info->spi);
806 		break;
807 	default:
808 		dev_err(&mtd->dev, "Unknown CMD: 0x%x\n", command);
809 	}
810 }
811 
812 /**
813  * spinand_lock_block- send write register 0x1f command to the Nand device
814  *
815  * Description:
816  *    After power up, all the Nand blocks are locked.  This function allows
817  *    one to unlock the blocks, and so it can be written or erased.
818  */
spinand_lock_block(struct spi_device * spi_nand,u8 lock)819 static int spinand_lock_block(struct spi_device *spi_nand, u8 lock)
820 {
821 	struct spinand_cmd cmd = {0};
822 	int ret;
823 	u8 otp = 0;
824 
825 	ret = spinand_get_otp(spi_nand, &otp);
826 
827 	cmd.cmd = CMD_WRITE_REG;
828 	cmd.n_addr = 1;
829 	cmd.addr[0] = REG_BLOCK_LOCK;
830 	cmd.n_tx = 1;
831 	cmd.tx_buf = &lock;
832 
833 	ret = spinand_cmd(spi_nand, &cmd);
834 	if (ret < 0)
835 		dev_err(&spi_nand->dev, "error %d lock block\n", ret);
836 
837 	return ret;
838 }
839 
840 /*
841  * spinand_probe - [spinand Interface]
842  * @spi_nand: registered device driver.
843  *
844  * Description:
845  *   To set up the device driver parameters to make the device available.
846  */
spinand_probe(struct spi_device * spi_nand)847 static int spinand_probe(struct spi_device *spi_nand)
848 {
849 	struct mtd_info *mtd;
850 	struct nand_chip *chip;
851 	struct spinand_info *info;
852 	struct spinand_state *state;
853 	struct mtd_part_parser_data ppdata;
854 
855 	info  = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_info),
856 			     GFP_KERNEL);
857 	if (!info)
858 		return -ENOMEM;
859 
860 	info->spi = spi_nand;
861 
862 	spinand_lock_block(spi_nand, BL_ALL_UNLOCKED);
863 
864 	state = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_state),
865 			     GFP_KERNEL);
866 	if (!state)
867 		return -ENOMEM;
868 
869 	info->priv	= state;
870 	state->buf_ptr	= 0;
871 	state->buf	= devm_kzalloc(&spi_nand->dev, BUFSIZE, GFP_KERNEL);
872 	if (!state->buf)
873 		return -ENOMEM;
874 
875 	chip = devm_kzalloc(&spi_nand->dev, sizeof(struct nand_chip),
876 			    GFP_KERNEL);
877 	if (!chip)
878 		return -ENOMEM;
879 
880 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
881 	chip->ecc.mode	= NAND_ECC_HW;
882 	chip->ecc.size	= 0x200;
883 	chip->ecc.bytes	= 0x6;
884 	chip->ecc.steps	= 0x4;
885 
886 	chip->ecc.strength = 1;
887 	chip->ecc.total	= chip->ecc.steps * chip->ecc.bytes;
888 	chip->ecc.layout = &spinand_oob_64;
889 	chip->ecc.read_page = spinand_read_page_hwecc;
890 	chip->ecc.write_page = spinand_write_page_hwecc;
891 #else
892 	chip->ecc.mode	= NAND_ECC_SOFT;
893 	if (spinand_disable_ecc(spi_nand) < 0)
894 		pr_info("%s: disable ecc failed!\n", __func__);
895 #endif
896 
897 	chip->priv	= info;
898 	chip->read_buf	= spinand_read_buf;
899 	chip->write_buf	= spinand_write_buf;
900 	chip->read_byte	= spinand_read_byte;
901 	chip->cmdfunc	= spinand_cmdfunc;
902 	chip->waitfunc	= spinand_wait;
903 	chip->options	|= NAND_CACHEPRG;
904 	chip->select_chip = spinand_select_chip;
905 
906 	mtd = devm_kzalloc(&spi_nand->dev, sizeof(struct mtd_info), GFP_KERNEL);
907 	if (!mtd)
908 		return -ENOMEM;
909 
910 	dev_set_drvdata(&spi_nand->dev, mtd);
911 
912 	mtd->priv = chip;
913 	mtd->dev.parent = &spi_nand->dev;
914 	mtd->oobsize = 64;
915 
916 	if (nand_scan(mtd, 1))
917 		return -ENXIO;
918 
919 	ppdata.of_node = spi_nand->dev.of_node;
920 	return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
921 }
922 
923 /*
924  * spinand_remove: Remove the device driver
925  * @spi: the spi device.
926  *
927  * Description:
928  *   To remove the device driver parameters and free up allocated memories.
929  */
spinand_remove(struct spi_device * spi)930 static int spinand_remove(struct spi_device *spi)
931 {
932 	mtd_device_unregister(dev_get_drvdata(&spi->dev));
933 
934 	return 0;
935 }
936 
937 static const struct of_device_id spinand_dt[] = {
938 	{ .compatible = "spinand,mt29f", },
939 	{}
940 };
941 MODULE_DEVICE_TABLE(of, spinand_dt);
942 
943 /*
944  * Device name structure description
945  */
946 static struct spi_driver spinand_driver = {
947 	.driver = {
948 		.name		= "mt29f",
949 		.of_match_table	= spinand_dt,
950 	},
951 	.probe		= spinand_probe,
952 	.remove		= spinand_remove,
953 };
954 
955 module_spi_driver(spinand_driver);
956 
957 MODULE_DESCRIPTION("SPI NAND driver for Micron");
958 MODULE_AUTHOR("Henry Pan <hspan@micron.com>, Kamlakant Patel <kamlakant.patel@broadcom.com>");
959 MODULE_LICENSE("GPL v2");
960