1 /*
2  * Cadence MACB/GEM Ethernet Controller driver
3  *
4  * Copyright (C) 2004-2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/circ_buf.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_data/macb.h>
27 #include <linux/platform_device.h>
28 #include <linux/phy.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 
34 #include "macb.h"
35 
36 #define MACB_RX_BUFFER_SIZE	128
37 #define RX_BUFFER_MULTIPLE	64  /* bytes */
38 #define RX_RING_SIZE		512 /* must be power of 2 */
39 #define RX_RING_BYTES		(sizeof(struct macb_dma_desc) * RX_RING_SIZE)
40 
41 #define TX_RING_SIZE		128 /* must be power of 2 */
42 #define TX_RING_BYTES		(sizeof(struct macb_dma_desc) * TX_RING_SIZE)
43 
44 /* level of occupied TX descriptors under which we wake up TX process */
45 #define MACB_TX_WAKEUP_THRESH	(3 * TX_RING_SIZE / 4)
46 
47 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(RXUBR)	\
48 				 | MACB_BIT(ISR_ROVR))
49 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
50 					| MACB_BIT(ISR_RLE)		\
51 					| MACB_BIT(TXERR))
52 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP))
53 
54 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1))
55 #define GEM_MAX_TX_LEN		((unsigned int)((1 << GEM_TX_FRMLEN_SIZE) - 1))
56 
57 #define GEM_MTU_MIN_SIZE	68
58 
59 /*
60  * Graceful stop timeouts in us. We should allow up to
61  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
62  */
63 #define MACB_HALT_TIMEOUT	1230
64 
65 /* Ring buffer accessors */
macb_tx_ring_wrap(unsigned int index)66 static unsigned int macb_tx_ring_wrap(unsigned int index)
67 {
68 	return index & (TX_RING_SIZE - 1);
69 }
70 
macb_tx_desc(struct macb_queue * queue,unsigned int index)71 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
72 					  unsigned int index)
73 {
74 	return &queue->tx_ring[macb_tx_ring_wrap(index)];
75 }
76 
macb_tx_skb(struct macb_queue * queue,unsigned int index)77 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
78 				       unsigned int index)
79 {
80 	return &queue->tx_skb[macb_tx_ring_wrap(index)];
81 }
82 
macb_tx_dma(struct macb_queue * queue,unsigned int index)83 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
84 {
85 	dma_addr_t offset;
86 
87 	offset = macb_tx_ring_wrap(index) * sizeof(struct macb_dma_desc);
88 
89 	return queue->tx_ring_dma + offset;
90 }
91 
macb_rx_ring_wrap(unsigned int index)92 static unsigned int macb_rx_ring_wrap(unsigned int index)
93 {
94 	return index & (RX_RING_SIZE - 1);
95 }
96 
macb_rx_desc(struct macb * bp,unsigned int index)97 static struct macb_dma_desc *macb_rx_desc(struct macb *bp, unsigned int index)
98 {
99 	return &bp->rx_ring[macb_rx_ring_wrap(index)];
100 }
101 
macb_rx_buffer(struct macb * bp,unsigned int index)102 static void *macb_rx_buffer(struct macb *bp, unsigned int index)
103 {
104 	return bp->rx_buffers + bp->rx_buffer_size * macb_rx_ring_wrap(index);
105 }
106 
107 /* I/O accessors */
hw_readl_native(struct macb * bp,int offset)108 static u32 hw_readl_native(struct macb *bp, int offset)
109 {
110 	return __raw_readl(bp->regs + offset);
111 }
112 
hw_writel_native(struct macb * bp,int offset,u32 value)113 static void hw_writel_native(struct macb *bp, int offset, u32 value)
114 {
115 	__raw_writel(value, bp->regs + offset);
116 }
117 
hw_readl(struct macb * bp,int offset)118 static u32 hw_readl(struct macb *bp, int offset)
119 {
120 	return readl_relaxed(bp->regs + offset);
121 }
122 
hw_writel(struct macb * bp,int offset,u32 value)123 static void hw_writel(struct macb *bp, int offset, u32 value)
124 {
125 	writel_relaxed(value, bp->regs + offset);
126 }
127 
128 /*
129  * Find the CPU endianness by using the loopback bit of NCR register. When the
130  * CPU is in big endian we need to program swaped mode for management
131  * descriptor access.
132  */
hw_is_native_io(void __iomem * addr)133 static bool hw_is_native_io(void __iomem *addr)
134 {
135 	u32 value = MACB_BIT(LLB);
136 
137 	__raw_writel(value, addr + MACB_NCR);
138 	value = __raw_readl(addr + MACB_NCR);
139 
140 	/* Write 0 back to disable everything */
141 	__raw_writel(0, addr + MACB_NCR);
142 
143 	return value == MACB_BIT(LLB);
144 }
145 
hw_is_gem(void __iomem * addr,bool native_io)146 static bool hw_is_gem(void __iomem *addr, bool native_io)
147 {
148 	u32 id;
149 
150 	if (native_io)
151 		id = __raw_readl(addr + MACB_MID);
152 	else
153 		id = readl_relaxed(addr + MACB_MID);
154 
155 	return MACB_BFEXT(IDNUM, id) >= 0x2;
156 }
157 
macb_set_hwaddr(struct macb * bp)158 static void macb_set_hwaddr(struct macb *bp)
159 {
160 	u32 bottom;
161 	u16 top;
162 
163 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
164 	macb_or_gem_writel(bp, SA1B, bottom);
165 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
166 	macb_or_gem_writel(bp, SA1T, top);
167 
168 	/* Clear unused address register sets */
169 	macb_or_gem_writel(bp, SA2B, 0);
170 	macb_or_gem_writel(bp, SA2T, 0);
171 	macb_or_gem_writel(bp, SA3B, 0);
172 	macb_or_gem_writel(bp, SA3T, 0);
173 	macb_or_gem_writel(bp, SA4B, 0);
174 	macb_or_gem_writel(bp, SA4T, 0);
175 }
176 
macb_get_hwaddr(struct macb * bp)177 static void macb_get_hwaddr(struct macb *bp)
178 {
179 	struct macb_platform_data *pdata;
180 	u32 bottom;
181 	u16 top;
182 	u8 addr[6];
183 	int i;
184 
185 	pdata = dev_get_platdata(&bp->pdev->dev);
186 
187 	/* Check all 4 address register for vaild address */
188 	for (i = 0; i < 4; i++) {
189 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
190 		top = macb_or_gem_readl(bp, SA1T + i * 8);
191 
192 		if (pdata && pdata->rev_eth_addr) {
193 			addr[5] = bottom & 0xff;
194 			addr[4] = (bottom >> 8) & 0xff;
195 			addr[3] = (bottom >> 16) & 0xff;
196 			addr[2] = (bottom >> 24) & 0xff;
197 			addr[1] = top & 0xff;
198 			addr[0] = (top & 0xff00) >> 8;
199 		} else {
200 			addr[0] = bottom & 0xff;
201 			addr[1] = (bottom >> 8) & 0xff;
202 			addr[2] = (bottom >> 16) & 0xff;
203 			addr[3] = (bottom >> 24) & 0xff;
204 			addr[4] = top & 0xff;
205 			addr[5] = (top >> 8) & 0xff;
206 		}
207 
208 		if (is_valid_ether_addr(addr)) {
209 			memcpy(bp->dev->dev_addr, addr, sizeof(addr));
210 			return;
211 		}
212 	}
213 
214 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
215 	eth_hw_addr_random(bp->dev);
216 }
217 
macb_mdio_read(struct mii_bus * bus,int mii_id,int regnum)218 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
219 {
220 	struct macb *bp = bus->priv;
221 	int value;
222 
223 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
224 			      | MACB_BF(RW, MACB_MAN_READ)
225 			      | MACB_BF(PHYA, mii_id)
226 			      | MACB_BF(REGA, regnum)
227 			      | MACB_BF(CODE, MACB_MAN_CODE)));
228 
229 	/* wait for end of transfer */
230 	while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
231 		cpu_relax();
232 
233 	value = MACB_BFEXT(DATA, macb_readl(bp, MAN));
234 
235 	return value;
236 }
237 
macb_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)238 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
239 			   u16 value)
240 {
241 	struct macb *bp = bus->priv;
242 
243 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
244 			      | MACB_BF(RW, MACB_MAN_WRITE)
245 			      | MACB_BF(PHYA, mii_id)
246 			      | MACB_BF(REGA, regnum)
247 			      | MACB_BF(CODE, MACB_MAN_CODE)
248 			      | MACB_BF(DATA, value)));
249 
250 	/* wait for end of transfer */
251 	while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
252 		cpu_relax();
253 
254 	return 0;
255 }
256 
257 /**
258  * macb_set_tx_clk() - Set a clock to a new frequency
259  * @clk		Pointer to the clock to change
260  * @rate	New frequency in Hz
261  * @dev		Pointer to the struct net_device
262  */
macb_set_tx_clk(struct clk * clk,int speed,struct net_device * dev)263 static void macb_set_tx_clk(struct clk *clk, int speed, struct net_device *dev)
264 {
265 	long ferr, rate, rate_rounded;
266 
267 	if (!clk)
268 		return;
269 
270 	switch (speed) {
271 	case SPEED_10:
272 		rate = 2500000;
273 		break;
274 	case SPEED_100:
275 		rate = 25000000;
276 		break;
277 	case SPEED_1000:
278 		rate = 125000000;
279 		break;
280 	default:
281 		return;
282 	}
283 
284 	rate_rounded = clk_round_rate(clk, rate);
285 	if (rate_rounded < 0)
286 		return;
287 
288 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
289 	 * is not satisfied.
290 	 */
291 	ferr = abs(rate_rounded - rate);
292 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
293 	if (ferr > 5)
294 		netdev_warn(dev, "unable to generate target frequency: %ld Hz\n",
295 				rate);
296 
297 	if (clk_set_rate(clk, rate_rounded))
298 		netdev_err(dev, "adjusting tx_clk failed.\n");
299 }
300 
macb_handle_link_change(struct net_device * dev)301 static void macb_handle_link_change(struct net_device *dev)
302 {
303 	struct macb *bp = netdev_priv(dev);
304 	struct phy_device *phydev = bp->phy_dev;
305 	unsigned long flags;
306 	int status_change = 0;
307 
308 	spin_lock_irqsave(&bp->lock, flags);
309 
310 	if (phydev->link) {
311 		if ((bp->speed != phydev->speed) ||
312 		    (bp->duplex != phydev->duplex)) {
313 			u32 reg;
314 
315 			reg = macb_readl(bp, NCFGR);
316 			reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
317 			if (macb_is_gem(bp))
318 				reg &= ~GEM_BIT(GBE);
319 
320 			if (phydev->duplex)
321 				reg |= MACB_BIT(FD);
322 			if (phydev->speed == SPEED_100)
323 				reg |= MACB_BIT(SPD);
324 			if (phydev->speed == SPEED_1000 &&
325 			    bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
326 				reg |= GEM_BIT(GBE);
327 
328 			macb_or_gem_writel(bp, NCFGR, reg);
329 
330 			bp->speed = phydev->speed;
331 			bp->duplex = phydev->duplex;
332 			status_change = 1;
333 		}
334 	}
335 
336 	if (phydev->link != bp->link) {
337 		if (!phydev->link) {
338 			bp->speed = 0;
339 			bp->duplex = -1;
340 		}
341 		bp->link = phydev->link;
342 
343 		status_change = 1;
344 	}
345 
346 	spin_unlock_irqrestore(&bp->lock, flags);
347 
348 	if (status_change) {
349 		if (phydev->link) {
350 			/* Update the TX clock rate if and only if the link is
351 			 * up and there has been a link change.
352 			 */
353 			macb_set_tx_clk(bp->tx_clk, phydev->speed, dev);
354 
355 			netif_carrier_on(dev);
356 			netdev_info(dev, "link up (%d/%s)\n",
357 				    phydev->speed,
358 				    phydev->duplex == DUPLEX_FULL ?
359 				    "Full" : "Half");
360 		} else {
361 			netif_carrier_off(dev);
362 			netdev_info(dev, "link down\n");
363 		}
364 	}
365 }
366 
367 /* based on au1000_eth. c*/
macb_mii_probe(struct net_device * dev)368 static int macb_mii_probe(struct net_device *dev)
369 {
370 	struct macb *bp = netdev_priv(dev);
371 	struct macb_platform_data *pdata;
372 	struct phy_device *phydev;
373 	int phy_irq;
374 	int ret;
375 
376 	phydev = phy_find_first(bp->mii_bus);
377 	if (!phydev) {
378 		netdev_err(dev, "no PHY found\n");
379 		return -ENXIO;
380 	}
381 
382 	pdata = dev_get_platdata(&bp->pdev->dev);
383 	if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
384 		ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin, "phy int");
385 		if (!ret) {
386 			phy_irq = gpio_to_irq(pdata->phy_irq_pin);
387 			phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
388 		}
389 	}
390 
391 	/* attach the mac to the phy */
392 	ret = phy_connect_direct(dev, phydev, &macb_handle_link_change,
393 				 bp->phy_interface);
394 	if (ret) {
395 		netdev_err(dev, "Could not attach to PHY\n");
396 		return ret;
397 	}
398 
399 	/* mask with MAC supported features */
400 	if (macb_is_gem(bp) && bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
401 		phydev->supported &= PHY_GBIT_FEATURES;
402 	else
403 		phydev->supported &= PHY_BASIC_FEATURES;
404 
405 	if (bp->caps & MACB_CAPS_NO_GIGABIT_HALF)
406 		phydev->supported &= ~SUPPORTED_1000baseT_Half;
407 
408 	phydev->advertising = phydev->supported;
409 
410 	bp->link = 0;
411 	bp->speed = 0;
412 	bp->duplex = -1;
413 	bp->phy_dev = phydev;
414 
415 	return 0;
416 }
417 
macb_mii_init(struct macb * bp)418 static int macb_mii_init(struct macb *bp)
419 {
420 	struct macb_platform_data *pdata;
421 	struct device_node *np;
422 	int err = -ENXIO, i;
423 
424 	/* Enable management port */
425 	macb_writel(bp, NCR, MACB_BIT(MPE));
426 
427 	bp->mii_bus = mdiobus_alloc();
428 	if (bp->mii_bus == NULL) {
429 		err = -ENOMEM;
430 		goto err_out;
431 	}
432 
433 	bp->mii_bus->name = "MACB_mii_bus";
434 	bp->mii_bus->read = &macb_mdio_read;
435 	bp->mii_bus->write = &macb_mdio_write;
436 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
437 		bp->pdev->name, bp->pdev->id);
438 	bp->mii_bus->priv = bp;
439 	bp->mii_bus->parent = &bp->dev->dev;
440 	pdata = dev_get_platdata(&bp->pdev->dev);
441 
442 	bp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
443 	if (!bp->mii_bus->irq) {
444 		err = -ENOMEM;
445 		goto err_out_free_mdiobus;
446 	}
447 
448 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
449 
450 	np = bp->pdev->dev.of_node;
451 	if (np) {
452 		/* try dt phy registration */
453 		err = of_mdiobus_register(bp->mii_bus, np);
454 
455 		/* fallback to standard phy registration if no phy were
456 		   found during dt phy registration */
457 		if (!err && !phy_find_first(bp->mii_bus)) {
458 			for (i = 0; i < PHY_MAX_ADDR; i++) {
459 				struct phy_device *phydev;
460 
461 				phydev = mdiobus_scan(bp->mii_bus, i);
462 				if (IS_ERR(phydev)) {
463 					err = PTR_ERR(phydev);
464 					break;
465 				}
466 			}
467 
468 			if (err)
469 				goto err_out_unregister_bus;
470 		}
471 	} else {
472 		for (i = 0; i < PHY_MAX_ADDR; i++)
473 			bp->mii_bus->irq[i] = PHY_POLL;
474 
475 		if (pdata)
476 			bp->mii_bus->phy_mask = pdata->phy_mask;
477 
478 		err = mdiobus_register(bp->mii_bus);
479 	}
480 
481 	if (err)
482 		goto err_out_free_mdio_irq;
483 
484 	err = macb_mii_probe(bp->dev);
485 	if (err)
486 		goto err_out_unregister_bus;
487 
488 	return 0;
489 
490 err_out_unregister_bus:
491 	mdiobus_unregister(bp->mii_bus);
492 err_out_free_mdio_irq:
493 	kfree(bp->mii_bus->irq);
494 err_out_free_mdiobus:
495 	mdiobus_free(bp->mii_bus);
496 err_out:
497 	return err;
498 }
499 
macb_update_stats(struct macb * bp)500 static void macb_update_stats(struct macb *bp)
501 {
502 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
503 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
504 	int offset = MACB_PFR;
505 
506 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
507 
508 	for(; p < end; p++, offset += 4)
509 		*p += bp->macb_reg_readl(bp, offset);
510 }
511 
macb_halt_tx(struct macb * bp)512 static int macb_halt_tx(struct macb *bp)
513 {
514 	unsigned long	halt_time, timeout;
515 	u32		status;
516 
517 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
518 
519 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
520 	do {
521 		halt_time = jiffies;
522 		status = macb_readl(bp, TSR);
523 		if (!(status & MACB_BIT(TGO)))
524 			return 0;
525 
526 		usleep_range(10, 250);
527 	} while (time_before(halt_time, timeout));
528 
529 	return -ETIMEDOUT;
530 }
531 
macb_tx_unmap(struct macb * bp,struct macb_tx_skb * tx_skb)532 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb)
533 {
534 	if (tx_skb->mapping) {
535 		if (tx_skb->mapped_as_page)
536 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
537 				       tx_skb->size, DMA_TO_DEVICE);
538 		else
539 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
540 					 tx_skb->size, DMA_TO_DEVICE);
541 		tx_skb->mapping = 0;
542 	}
543 
544 	if (tx_skb->skb) {
545 		dev_kfree_skb_any(tx_skb->skb);
546 		tx_skb->skb = NULL;
547 	}
548 }
549 
macb_tx_error_task(struct work_struct * work)550 static void macb_tx_error_task(struct work_struct *work)
551 {
552 	struct macb_queue	*queue = container_of(work, struct macb_queue,
553 						      tx_error_task);
554 	struct macb		*bp = queue->bp;
555 	struct macb_tx_skb	*tx_skb;
556 	struct macb_dma_desc	*desc;
557 	struct sk_buff		*skb;
558 	unsigned int		tail;
559 	unsigned long		flags;
560 
561 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
562 		    (unsigned int)(queue - bp->queues),
563 		    queue->tx_tail, queue->tx_head);
564 
565 	/* Prevent the queue IRQ handlers from running: each of them may call
566 	 * macb_tx_interrupt(), which in turn may call netif_wake_subqueue().
567 	 * As explained below, we have to halt the transmission before updating
568 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
569 	 * network engine about the macb/gem being halted.
570 	 */
571 	spin_lock_irqsave(&bp->lock, flags);
572 
573 	/* Make sure nobody is trying to queue up new packets */
574 	netif_tx_stop_all_queues(bp->dev);
575 
576 	/*
577 	 * Stop transmission now
578 	 * (in case we have just queued new packets)
579 	 * macb/gem must be halted to write TBQP register
580 	 */
581 	if (macb_halt_tx(bp))
582 		/* Just complain for now, reinitializing TX path can be good */
583 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
584 
585 	/*
586 	 * Treat frames in TX queue including the ones that caused the error.
587 	 * Free transmit buffers in upper layer.
588 	 */
589 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
590 		u32	ctrl;
591 
592 		desc = macb_tx_desc(queue, tail);
593 		ctrl = desc->ctrl;
594 		tx_skb = macb_tx_skb(queue, tail);
595 		skb = tx_skb->skb;
596 
597 		if (ctrl & MACB_BIT(TX_USED)) {
598 			/* skb is set for the last buffer of the frame */
599 			while (!skb) {
600 				macb_tx_unmap(bp, tx_skb);
601 				tail++;
602 				tx_skb = macb_tx_skb(queue, tail);
603 				skb = tx_skb->skb;
604 			}
605 
606 			/* ctrl still refers to the first buffer descriptor
607 			 * since it's the only one written back by the hardware
608 			 */
609 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
610 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
611 					    macb_tx_ring_wrap(tail), skb->data);
612 				bp->stats.tx_packets++;
613 				bp->stats.tx_bytes += skb->len;
614 			}
615 		} else {
616 			/*
617 			 * "Buffers exhausted mid-frame" errors may only happen
618 			 * if the driver is buggy, so complain loudly about those.
619 			 * Statistics are updated by hardware.
620 			 */
621 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
622 				netdev_err(bp->dev,
623 					   "BUG: TX buffers exhausted mid-frame\n");
624 
625 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
626 		}
627 
628 		macb_tx_unmap(bp, tx_skb);
629 	}
630 
631 	/* Set end of TX queue */
632 	desc = macb_tx_desc(queue, 0);
633 	desc->addr = 0;
634 	desc->ctrl = MACB_BIT(TX_USED);
635 
636 	/* Make descriptor updates visible to hardware */
637 	wmb();
638 
639 	/* Reinitialize the TX desc queue */
640 	queue_writel(queue, TBQP, queue->tx_ring_dma);
641 	/* Make TX ring reflect state of hardware */
642 	queue->tx_head = 0;
643 	queue->tx_tail = 0;
644 
645 	/* Housework before enabling TX IRQ */
646 	macb_writel(bp, TSR, macb_readl(bp, TSR));
647 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
648 
649 	/* Now we are ready to start transmission again */
650 	netif_tx_start_all_queues(bp->dev);
651 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
652 
653 	spin_unlock_irqrestore(&bp->lock, flags);
654 }
655 
macb_tx_interrupt(struct macb_queue * queue)656 static void macb_tx_interrupt(struct macb_queue *queue)
657 {
658 	unsigned int tail;
659 	unsigned int head;
660 	u32 status;
661 	struct macb *bp = queue->bp;
662 	u16 queue_index = queue - bp->queues;
663 
664 	status = macb_readl(bp, TSR);
665 	macb_writel(bp, TSR, status);
666 
667 	if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
668 		queue_writel(queue, ISR, MACB_BIT(TCOMP));
669 
670 	netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n",
671 		(unsigned long)status);
672 
673 	head = queue->tx_head;
674 	for (tail = queue->tx_tail; tail != head; tail++) {
675 		struct macb_tx_skb	*tx_skb;
676 		struct sk_buff		*skb;
677 		struct macb_dma_desc	*desc;
678 		u32			ctrl;
679 
680 		desc = macb_tx_desc(queue, tail);
681 
682 		/* Make hw descriptor updates visible to CPU */
683 		rmb();
684 
685 		ctrl = desc->ctrl;
686 
687 		/* TX_USED bit is only set by hardware on the very first buffer
688 		 * descriptor of the transmitted frame.
689 		 */
690 		if (!(ctrl & MACB_BIT(TX_USED)))
691 			break;
692 
693 		/* Process all buffers of the current transmitted frame */
694 		for (;; tail++) {
695 			tx_skb = macb_tx_skb(queue, tail);
696 			skb = tx_skb->skb;
697 
698 			/* First, update TX stats if needed */
699 			if (skb) {
700 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
701 					    macb_tx_ring_wrap(tail), skb->data);
702 				bp->stats.tx_packets++;
703 				bp->stats.tx_bytes += skb->len;
704 			}
705 
706 			/* Now we can safely release resources */
707 			macb_tx_unmap(bp, tx_skb);
708 
709 			/* skb is set only for the last buffer of the frame.
710 			 * WARNING: at this point skb has been freed by
711 			 * macb_tx_unmap().
712 			 */
713 			if (skb)
714 				break;
715 		}
716 	}
717 
718 	queue->tx_tail = tail;
719 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
720 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
721 		     TX_RING_SIZE) <= MACB_TX_WAKEUP_THRESH)
722 		netif_wake_subqueue(bp->dev, queue_index);
723 }
724 
gem_rx_refill(struct macb * bp)725 static void gem_rx_refill(struct macb *bp)
726 {
727 	unsigned int		entry;
728 	struct sk_buff		*skb;
729 	dma_addr_t		paddr;
730 
731 	while (CIRC_SPACE(bp->rx_prepared_head, bp->rx_tail, RX_RING_SIZE) > 0) {
732 		entry = macb_rx_ring_wrap(bp->rx_prepared_head);
733 
734 		/* Make hw descriptor updates visible to CPU */
735 		rmb();
736 
737 		bp->rx_prepared_head++;
738 
739 		if (bp->rx_skbuff[entry] == NULL) {
740 			/* allocate sk_buff for this free entry in ring */
741 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
742 			if (unlikely(skb == NULL)) {
743 				netdev_err(bp->dev,
744 					   "Unable to allocate sk_buff\n");
745 				break;
746 			}
747 
748 			/* now fill corresponding descriptor entry */
749 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
750 					       bp->rx_buffer_size, DMA_FROM_DEVICE);
751 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
752 				dev_kfree_skb(skb);
753 				break;
754 			}
755 
756 			bp->rx_skbuff[entry] = skb;
757 
758 			if (entry == RX_RING_SIZE - 1)
759 				paddr |= MACB_BIT(RX_WRAP);
760 			bp->rx_ring[entry].addr = paddr;
761 			bp->rx_ring[entry].ctrl = 0;
762 
763 			/* properly align Ethernet header */
764 			skb_reserve(skb, NET_IP_ALIGN);
765 		} else {
766 			bp->rx_ring[entry].addr &= ~MACB_BIT(RX_USED);
767 			bp->rx_ring[entry].ctrl = 0;
768 		}
769 	}
770 
771 	/* Make descriptor updates visible to hardware */
772 	wmb();
773 
774 	netdev_vdbg(bp->dev, "rx ring: prepared head %d, tail %d\n",
775 		   bp->rx_prepared_head, bp->rx_tail);
776 }
777 
778 /* Mark DMA descriptors from begin up to and not including end as unused */
discard_partial_frame(struct macb * bp,unsigned int begin,unsigned int end)779 static void discard_partial_frame(struct macb *bp, unsigned int begin,
780 				  unsigned int end)
781 {
782 	unsigned int frag;
783 
784 	for (frag = begin; frag != end; frag++) {
785 		struct macb_dma_desc *desc = macb_rx_desc(bp, frag);
786 		desc->addr &= ~MACB_BIT(RX_USED);
787 	}
788 
789 	/* Make descriptor updates visible to hardware */
790 	wmb();
791 
792 	/*
793 	 * When this happens, the hardware stats registers for
794 	 * whatever caused this is updated, so we don't have to record
795 	 * anything.
796 	 */
797 }
798 
gem_rx(struct macb * bp,int budget)799 static int gem_rx(struct macb *bp, int budget)
800 {
801 	unsigned int		len;
802 	unsigned int		entry;
803 	struct sk_buff		*skb;
804 	struct macb_dma_desc	*desc;
805 	int			count = 0;
806 
807 	while (count < budget) {
808 		u32 addr, ctrl;
809 
810 		entry = macb_rx_ring_wrap(bp->rx_tail);
811 		desc = &bp->rx_ring[entry];
812 
813 		/* Make hw descriptor updates visible to CPU */
814 		rmb();
815 
816 		addr = desc->addr;
817 		ctrl = desc->ctrl;
818 
819 		if (!(addr & MACB_BIT(RX_USED)))
820 			break;
821 
822 		bp->rx_tail++;
823 		count++;
824 
825 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
826 			netdev_err(bp->dev,
827 				   "not whole frame pointed by descriptor\n");
828 			bp->stats.rx_dropped++;
829 			break;
830 		}
831 		skb = bp->rx_skbuff[entry];
832 		if (unlikely(!skb)) {
833 			netdev_err(bp->dev,
834 				   "inconsistent Rx descriptor chain\n");
835 			bp->stats.rx_dropped++;
836 			break;
837 		}
838 		/* now everything is ready for receiving packet */
839 		bp->rx_skbuff[entry] = NULL;
840 		len = ctrl & bp->rx_frm_len_mask;
841 
842 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
843 
844 		skb_put(skb, len);
845 		addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, addr));
846 		dma_unmap_single(&bp->pdev->dev, addr,
847 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
848 
849 		skb->protocol = eth_type_trans(skb, bp->dev);
850 		skb_checksum_none_assert(skb);
851 		if (bp->dev->features & NETIF_F_RXCSUM &&
852 		    !(bp->dev->flags & IFF_PROMISC) &&
853 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
854 			skb->ip_summed = CHECKSUM_UNNECESSARY;
855 
856 		bp->stats.rx_packets++;
857 		bp->stats.rx_bytes += skb->len;
858 
859 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
860 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
861 			    skb->len, skb->csum);
862 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
863 			       skb_mac_header(skb), 16, true);
864 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
865 			       skb->data, 32, true);
866 #endif
867 
868 		netif_receive_skb(skb);
869 	}
870 
871 	gem_rx_refill(bp);
872 
873 	return count;
874 }
875 
macb_rx_frame(struct macb * bp,unsigned int first_frag,unsigned int last_frag)876 static int macb_rx_frame(struct macb *bp, unsigned int first_frag,
877 			 unsigned int last_frag)
878 {
879 	unsigned int len;
880 	unsigned int frag;
881 	unsigned int offset;
882 	struct sk_buff *skb;
883 	struct macb_dma_desc *desc;
884 
885 	desc = macb_rx_desc(bp, last_frag);
886 	len = desc->ctrl & bp->rx_frm_len_mask;
887 
888 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
889 		macb_rx_ring_wrap(first_frag),
890 		macb_rx_ring_wrap(last_frag), len);
891 
892 	/*
893 	 * The ethernet header starts NET_IP_ALIGN bytes into the
894 	 * first buffer. Since the header is 14 bytes, this makes the
895 	 * payload word-aligned.
896 	 *
897 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
898 	 * the two padding bytes into the skb so that we avoid hitting
899 	 * the slowpath in memcpy(), and pull them off afterwards.
900 	 */
901 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
902 	if (!skb) {
903 		bp->stats.rx_dropped++;
904 		for (frag = first_frag; ; frag++) {
905 			desc = macb_rx_desc(bp, frag);
906 			desc->addr &= ~MACB_BIT(RX_USED);
907 			if (frag == last_frag)
908 				break;
909 		}
910 
911 		/* Make descriptor updates visible to hardware */
912 		wmb();
913 
914 		return 1;
915 	}
916 
917 	offset = 0;
918 	len += NET_IP_ALIGN;
919 	skb_checksum_none_assert(skb);
920 	skb_put(skb, len);
921 
922 	for (frag = first_frag; ; frag++) {
923 		unsigned int frag_len = bp->rx_buffer_size;
924 
925 		if (offset + frag_len > len) {
926 			BUG_ON(frag != last_frag);
927 			frag_len = len - offset;
928 		}
929 		skb_copy_to_linear_data_offset(skb, offset,
930 				macb_rx_buffer(bp, frag), frag_len);
931 		offset += bp->rx_buffer_size;
932 		desc = macb_rx_desc(bp, frag);
933 		desc->addr &= ~MACB_BIT(RX_USED);
934 
935 		if (frag == last_frag)
936 			break;
937 	}
938 
939 	/* Make descriptor updates visible to hardware */
940 	wmb();
941 
942 	__skb_pull(skb, NET_IP_ALIGN);
943 	skb->protocol = eth_type_trans(skb, bp->dev);
944 
945 	bp->stats.rx_packets++;
946 	bp->stats.rx_bytes += skb->len;
947 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
948 		   skb->len, skb->csum);
949 	netif_receive_skb(skb);
950 
951 	return 0;
952 }
953 
macb_rx(struct macb * bp,int budget)954 static int macb_rx(struct macb *bp, int budget)
955 {
956 	int received = 0;
957 	unsigned int tail;
958 	int first_frag = -1;
959 
960 	for (tail = bp->rx_tail; budget > 0; tail++) {
961 		struct macb_dma_desc *desc = macb_rx_desc(bp, tail);
962 		u32 addr, ctrl;
963 
964 		/* Make hw descriptor updates visible to CPU */
965 		rmb();
966 
967 		addr = desc->addr;
968 		ctrl = desc->ctrl;
969 
970 		if (!(addr & MACB_BIT(RX_USED)))
971 			break;
972 
973 		if (ctrl & MACB_BIT(RX_SOF)) {
974 			if (first_frag != -1)
975 				discard_partial_frame(bp, first_frag, tail);
976 			first_frag = tail;
977 		}
978 
979 		if (ctrl & MACB_BIT(RX_EOF)) {
980 			int dropped;
981 			BUG_ON(first_frag == -1);
982 
983 			dropped = macb_rx_frame(bp, first_frag, tail);
984 			first_frag = -1;
985 			if (!dropped) {
986 				received++;
987 				budget--;
988 			}
989 		}
990 	}
991 
992 	if (first_frag != -1)
993 		bp->rx_tail = first_frag;
994 	else
995 		bp->rx_tail = tail;
996 
997 	return received;
998 }
999 
macb_poll(struct napi_struct * napi,int budget)1000 static int macb_poll(struct napi_struct *napi, int budget)
1001 {
1002 	struct macb *bp = container_of(napi, struct macb, napi);
1003 	int work_done;
1004 	u32 status;
1005 
1006 	status = macb_readl(bp, RSR);
1007 	macb_writel(bp, RSR, status);
1008 
1009 	work_done = 0;
1010 
1011 	netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n",
1012 		   (unsigned long)status, budget);
1013 
1014 	work_done = bp->macbgem_ops.mog_rx(bp, budget);
1015 	if (work_done < budget) {
1016 		napi_complete(napi);
1017 
1018 		/* Packets received while interrupts were disabled */
1019 		status = macb_readl(bp, RSR);
1020 		if (status) {
1021 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1022 				macb_writel(bp, ISR, MACB_BIT(RCOMP));
1023 			napi_reschedule(napi);
1024 		} else {
1025 			macb_writel(bp, IER, MACB_RX_INT_FLAGS);
1026 		}
1027 	}
1028 
1029 	/* TODO: Handle errors */
1030 
1031 	return work_done;
1032 }
1033 
macb_interrupt(int irq,void * dev_id)1034 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1035 {
1036 	struct macb_queue *queue = dev_id;
1037 	struct macb *bp = queue->bp;
1038 	struct net_device *dev = bp->dev;
1039 	u32 status, ctrl;
1040 
1041 	status = queue_readl(queue, ISR);
1042 
1043 	if (unlikely(!status))
1044 		return IRQ_NONE;
1045 
1046 	spin_lock(&bp->lock);
1047 
1048 	while (status) {
1049 		/* close possible race with dev_close */
1050 		if (unlikely(!netif_running(dev))) {
1051 			queue_writel(queue, IDR, -1);
1052 			break;
1053 		}
1054 
1055 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1056 			    (unsigned int)(queue - bp->queues),
1057 			    (unsigned long)status);
1058 
1059 		if (status & MACB_RX_INT_FLAGS) {
1060 			/*
1061 			 * There's no point taking any more interrupts
1062 			 * until we have processed the buffers. The
1063 			 * scheduling call may fail if the poll routine
1064 			 * is already scheduled, so disable interrupts
1065 			 * now.
1066 			 */
1067 			queue_writel(queue, IDR, MACB_RX_INT_FLAGS);
1068 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1069 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1070 
1071 			if (napi_schedule_prep(&bp->napi)) {
1072 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1073 				__napi_schedule(&bp->napi);
1074 			}
1075 		}
1076 
1077 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1078 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1079 			schedule_work(&queue->tx_error_task);
1080 
1081 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1082 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1083 
1084 			break;
1085 		}
1086 
1087 		if (status & MACB_BIT(TCOMP))
1088 			macb_tx_interrupt(queue);
1089 
1090 		/*
1091 		 * Link change detection isn't possible with RMII, so we'll
1092 		 * add that if/when we get our hands on a full-blown MII PHY.
1093 		 */
1094 
1095 		/* There is a hardware issue under heavy load where DMA can
1096 		 * stop, this causes endless "used buffer descriptor read"
1097 		 * interrupts but it can be cleared by re-enabling RX. See
1098 		 * the at91 manual, section 41.3.1 or the Zynq manual
1099 		 * section 16.7.4 for details.
1100 		 */
1101 		if (status & MACB_BIT(RXUBR)) {
1102 			ctrl = macb_readl(bp, NCR);
1103 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1104 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1105 
1106 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1107 				macb_writel(bp, ISR, MACB_BIT(RXUBR));
1108 		}
1109 
1110 		if (status & MACB_BIT(ISR_ROVR)) {
1111 			/* We missed at least one packet */
1112 			if (macb_is_gem(bp))
1113 				bp->hw_stats.gem.rx_overruns++;
1114 			else
1115 				bp->hw_stats.macb.rx_overruns++;
1116 
1117 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1118 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1119 		}
1120 
1121 		if (status & MACB_BIT(HRESP)) {
1122 			/*
1123 			 * TODO: Reset the hardware, and maybe move the
1124 			 * netdev_err to a lower-priority context as well
1125 			 * (work queue?)
1126 			 */
1127 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1128 
1129 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1130 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1131 		}
1132 
1133 		status = queue_readl(queue, ISR);
1134 	}
1135 
1136 	spin_unlock(&bp->lock);
1137 
1138 	return IRQ_HANDLED;
1139 }
1140 
1141 #ifdef CONFIG_NET_POLL_CONTROLLER
1142 /*
1143  * Polling receive - used by netconsole and other diagnostic tools
1144  * to allow network i/o with interrupts disabled.
1145  */
macb_poll_controller(struct net_device * dev)1146 static void macb_poll_controller(struct net_device *dev)
1147 {
1148 	struct macb *bp = netdev_priv(dev);
1149 	struct macb_queue *queue;
1150 	unsigned long flags;
1151 	unsigned int q;
1152 
1153 	local_irq_save(flags);
1154 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1155 		macb_interrupt(dev->irq, queue);
1156 	local_irq_restore(flags);
1157 }
1158 #endif
1159 
macb_tx_map(struct macb * bp,struct macb_queue * queue,struct sk_buff * skb)1160 static unsigned int macb_tx_map(struct macb *bp,
1161 				struct macb_queue *queue,
1162 				struct sk_buff *skb)
1163 {
1164 	dma_addr_t mapping;
1165 	unsigned int len, entry, i, tx_head = queue->tx_head;
1166 	struct macb_tx_skb *tx_skb = NULL;
1167 	struct macb_dma_desc *desc;
1168 	unsigned int offset, size, count = 0;
1169 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1170 	unsigned int eof = 1;
1171 	u32 ctrl;
1172 
1173 	/* First, map non-paged data */
1174 	len = skb_headlen(skb);
1175 	offset = 0;
1176 	while (len) {
1177 		size = min(len, bp->max_tx_length);
1178 		entry = macb_tx_ring_wrap(tx_head);
1179 		tx_skb = &queue->tx_skb[entry];
1180 
1181 		mapping = dma_map_single(&bp->pdev->dev,
1182 					 skb->data + offset,
1183 					 size, DMA_TO_DEVICE);
1184 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1185 			goto dma_error;
1186 
1187 		/* Save info to properly release resources */
1188 		tx_skb->skb = NULL;
1189 		tx_skb->mapping = mapping;
1190 		tx_skb->size = size;
1191 		tx_skb->mapped_as_page = false;
1192 
1193 		len -= size;
1194 		offset += size;
1195 		count++;
1196 		tx_head++;
1197 	}
1198 
1199 	/* Then, map paged data from fragments */
1200 	for (f = 0; f < nr_frags; f++) {
1201 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1202 
1203 		len = skb_frag_size(frag);
1204 		offset = 0;
1205 		while (len) {
1206 			size = min(len, bp->max_tx_length);
1207 			entry = macb_tx_ring_wrap(tx_head);
1208 			tx_skb = &queue->tx_skb[entry];
1209 
1210 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
1211 						   offset, size, DMA_TO_DEVICE);
1212 			if (dma_mapping_error(&bp->pdev->dev, mapping))
1213 				goto dma_error;
1214 
1215 			/* Save info to properly release resources */
1216 			tx_skb->skb = NULL;
1217 			tx_skb->mapping = mapping;
1218 			tx_skb->size = size;
1219 			tx_skb->mapped_as_page = true;
1220 
1221 			len -= size;
1222 			offset += size;
1223 			count++;
1224 			tx_head++;
1225 		}
1226 	}
1227 
1228 	/* Should never happen */
1229 	if (unlikely(tx_skb == NULL)) {
1230 		netdev_err(bp->dev, "BUG! empty skb!\n");
1231 		return 0;
1232 	}
1233 
1234 	/* This is the last buffer of the frame: save socket buffer */
1235 	tx_skb->skb = skb;
1236 
1237 	/* Update TX ring: update buffer descriptors in reverse order
1238 	 * to avoid race condition
1239 	 */
1240 
1241 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
1242 	 * to set the end of TX queue
1243 	 */
1244 	i = tx_head;
1245 	entry = macb_tx_ring_wrap(i);
1246 	ctrl = MACB_BIT(TX_USED);
1247 	desc = &queue->tx_ring[entry];
1248 	desc->ctrl = ctrl;
1249 
1250 	do {
1251 		i--;
1252 		entry = macb_tx_ring_wrap(i);
1253 		tx_skb = &queue->tx_skb[entry];
1254 		desc = &queue->tx_ring[entry];
1255 
1256 		ctrl = (u32)tx_skb->size;
1257 		if (eof) {
1258 			ctrl |= MACB_BIT(TX_LAST);
1259 			eof = 0;
1260 		}
1261 		if (unlikely(entry == (TX_RING_SIZE - 1)))
1262 			ctrl |= MACB_BIT(TX_WRAP);
1263 
1264 		/* Set TX buffer descriptor */
1265 		desc->addr = tx_skb->mapping;
1266 		/* desc->addr must be visible to hardware before clearing
1267 		 * 'TX_USED' bit in desc->ctrl.
1268 		 */
1269 		wmb();
1270 		desc->ctrl = ctrl;
1271 	} while (i != queue->tx_head);
1272 
1273 	queue->tx_head = tx_head;
1274 
1275 	return count;
1276 
1277 dma_error:
1278 	netdev_err(bp->dev, "TX DMA map failed\n");
1279 
1280 	for (i = queue->tx_head; i != tx_head; i++) {
1281 		tx_skb = macb_tx_skb(queue, i);
1282 
1283 		macb_tx_unmap(bp, tx_skb);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
macb_start_xmit(struct sk_buff * skb,struct net_device * dev)1289 static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
1290 {
1291 	u16 queue_index = skb_get_queue_mapping(skb);
1292 	struct macb *bp = netdev_priv(dev);
1293 	struct macb_queue *queue = &bp->queues[queue_index];
1294 	unsigned long flags;
1295 	unsigned int count, nr_frags, frag_size, f;
1296 
1297 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1298 	netdev_vdbg(bp->dev,
1299 		   "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
1300 		   queue_index, skb->len, skb->head, skb->data,
1301 		   skb_tail_pointer(skb), skb_end_pointer(skb));
1302 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
1303 		       skb->data, 16, true);
1304 #endif
1305 
1306 	/* Count how many TX buffer descriptors are needed to send this
1307 	 * socket buffer: skb fragments of jumbo frames may need to be
1308 	 * splitted into many buffer descriptors.
1309 	 */
1310 	count = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
1311 	nr_frags = skb_shinfo(skb)->nr_frags;
1312 	for (f = 0; f < nr_frags; f++) {
1313 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
1314 		count += DIV_ROUND_UP(frag_size, bp->max_tx_length);
1315 	}
1316 
1317 	spin_lock_irqsave(&bp->lock, flags);
1318 
1319 	/* This is a hard error, log it. */
1320 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < count) {
1321 		netif_stop_subqueue(dev, queue_index);
1322 		spin_unlock_irqrestore(&bp->lock, flags);
1323 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
1324 			   queue->tx_head, queue->tx_tail);
1325 		return NETDEV_TX_BUSY;
1326 	}
1327 
1328 	/* Map socket buffer for DMA transfer */
1329 	if (!macb_tx_map(bp, queue, skb)) {
1330 		dev_kfree_skb_any(skb);
1331 		goto unlock;
1332 	}
1333 
1334 	/* Make newly initialized descriptor visible to hardware */
1335 	wmb();
1336 
1337 	skb_tx_timestamp(skb);
1338 
1339 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1340 
1341 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < 1)
1342 		netif_stop_subqueue(dev, queue_index);
1343 
1344 unlock:
1345 	spin_unlock_irqrestore(&bp->lock, flags);
1346 
1347 	return NETDEV_TX_OK;
1348 }
1349 
macb_init_rx_buffer_size(struct macb * bp,size_t size)1350 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
1351 {
1352 	if (!macb_is_gem(bp)) {
1353 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
1354 	} else {
1355 		bp->rx_buffer_size = size;
1356 
1357 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
1358 			netdev_dbg(bp->dev,
1359 				    "RX buffer must be multiple of %d bytes, expanding\n",
1360 				    RX_BUFFER_MULTIPLE);
1361 			bp->rx_buffer_size =
1362 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
1363 		}
1364 	}
1365 
1366 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%Zu]\n",
1367 		   bp->dev->mtu, bp->rx_buffer_size);
1368 }
1369 
gem_free_rx_buffers(struct macb * bp)1370 static void gem_free_rx_buffers(struct macb *bp)
1371 {
1372 	struct sk_buff		*skb;
1373 	struct macb_dma_desc	*desc;
1374 	dma_addr_t		addr;
1375 	int i;
1376 
1377 	if (!bp->rx_skbuff)
1378 		return;
1379 
1380 	for (i = 0; i < RX_RING_SIZE; i++) {
1381 		skb = bp->rx_skbuff[i];
1382 
1383 		if (skb == NULL)
1384 			continue;
1385 
1386 		desc = &bp->rx_ring[i];
1387 		addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1388 		dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
1389 				 DMA_FROM_DEVICE);
1390 		dev_kfree_skb_any(skb);
1391 		skb = NULL;
1392 	}
1393 
1394 	kfree(bp->rx_skbuff);
1395 	bp->rx_skbuff = NULL;
1396 }
1397 
macb_free_rx_buffers(struct macb * bp)1398 static void macb_free_rx_buffers(struct macb *bp)
1399 {
1400 	if (bp->rx_buffers) {
1401 		dma_free_coherent(&bp->pdev->dev,
1402 				  RX_RING_SIZE * bp->rx_buffer_size,
1403 				  bp->rx_buffers, bp->rx_buffers_dma);
1404 		bp->rx_buffers = NULL;
1405 	}
1406 }
1407 
macb_free_consistent(struct macb * bp)1408 static void macb_free_consistent(struct macb *bp)
1409 {
1410 	struct macb_queue *queue;
1411 	unsigned int q;
1412 
1413 	bp->macbgem_ops.mog_free_rx_buffers(bp);
1414 	if (bp->rx_ring) {
1415 		dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES,
1416 				  bp->rx_ring, bp->rx_ring_dma);
1417 		bp->rx_ring = NULL;
1418 	}
1419 
1420 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1421 		kfree(queue->tx_skb);
1422 		queue->tx_skb = NULL;
1423 		if (queue->tx_ring) {
1424 			dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES,
1425 					  queue->tx_ring, queue->tx_ring_dma);
1426 			queue->tx_ring = NULL;
1427 		}
1428 	}
1429 }
1430 
gem_alloc_rx_buffers(struct macb * bp)1431 static int gem_alloc_rx_buffers(struct macb *bp)
1432 {
1433 	int size;
1434 
1435 	size = RX_RING_SIZE * sizeof(struct sk_buff *);
1436 	bp->rx_skbuff = kzalloc(size, GFP_KERNEL);
1437 	if (!bp->rx_skbuff)
1438 		return -ENOMEM;
1439 	else
1440 		netdev_dbg(bp->dev,
1441 			   "Allocated %d RX struct sk_buff entries at %p\n",
1442 			   RX_RING_SIZE, bp->rx_skbuff);
1443 	return 0;
1444 }
1445 
macb_alloc_rx_buffers(struct macb * bp)1446 static int macb_alloc_rx_buffers(struct macb *bp)
1447 {
1448 	int size;
1449 
1450 	size = RX_RING_SIZE * bp->rx_buffer_size;
1451 	bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
1452 					    &bp->rx_buffers_dma, GFP_KERNEL);
1453 	if (!bp->rx_buffers)
1454 		return -ENOMEM;
1455 	else
1456 		netdev_dbg(bp->dev,
1457 			   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
1458 			   size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers);
1459 	return 0;
1460 }
1461 
macb_alloc_consistent(struct macb * bp)1462 static int macb_alloc_consistent(struct macb *bp)
1463 {
1464 	struct macb_queue *queue;
1465 	unsigned int q;
1466 	int size;
1467 
1468 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1469 		size = TX_RING_BYTES;
1470 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1471 						    &queue->tx_ring_dma,
1472 						    GFP_KERNEL);
1473 		if (!queue->tx_ring)
1474 			goto out_err;
1475 		netdev_dbg(bp->dev,
1476 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
1477 			   q, size, (unsigned long)queue->tx_ring_dma,
1478 			   queue->tx_ring);
1479 
1480 		size = TX_RING_SIZE * sizeof(struct macb_tx_skb);
1481 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
1482 		if (!queue->tx_skb)
1483 			goto out_err;
1484 	}
1485 
1486 	size = RX_RING_BYTES;
1487 	bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1488 					 &bp->rx_ring_dma, GFP_KERNEL);
1489 	if (!bp->rx_ring)
1490 		goto out_err;
1491 	netdev_dbg(bp->dev,
1492 		   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
1493 		   size, (unsigned long)bp->rx_ring_dma, bp->rx_ring);
1494 
1495 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
1496 		goto out_err;
1497 
1498 	return 0;
1499 
1500 out_err:
1501 	macb_free_consistent(bp);
1502 	return -ENOMEM;
1503 }
1504 
gem_init_rings(struct macb * bp)1505 static void gem_init_rings(struct macb *bp)
1506 {
1507 	struct macb_queue *queue;
1508 	unsigned int q;
1509 	int i;
1510 
1511 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1512 		for (i = 0; i < TX_RING_SIZE; i++) {
1513 			queue->tx_ring[i].addr = 0;
1514 			queue->tx_ring[i].ctrl = MACB_BIT(TX_USED);
1515 		}
1516 		queue->tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1517 		queue->tx_head = 0;
1518 		queue->tx_tail = 0;
1519 	}
1520 
1521 	bp->rx_tail = 0;
1522 	bp->rx_prepared_head = 0;
1523 
1524 	gem_rx_refill(bp);
1525 }
1526 
macb_init_rings(struct macb * bp)1527 static void macb_init_rings(struct macb *bp)
1528 {
1529 	int i;
1530 	dma_addr_t addr;
1531 
1532 	addr = bp->rx_buffers_dma;
1533 	for (i = 0; i < RX_RING_SIZE; i++) {
1534 		bp->rx_ring[i].addr = addr;
1535 		bp->rx_ring[i].ctrl = 0;
1536 		addr += bp->rx_buffer_size;
1537 	}
1538 	bp->rx_ring[RX_RING_SIZE - 1].addr |= MACB_BIT(RX_WRAP);
1539 
1540 	for (i = 0; i < TX_RING_SIZE; i++) {
1541 		bp->queues[0].tx_ring[i].addr = 0;
1542 		bp->queues[0].tx_ring[i].ctrl = MACB_BIT(TX_USED);
1543 	}
1544 	bp->queues[0].tx_head = 0;
1545 	bp->queues[0].tx_tail = 0;
1546 	bp->queues[0].tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1547 
1548 	bp->rx_tail = 0;
1549 }
1550 
macb_reset_hw(struct macb * bp)1551 static void macb_reset_hw(struct macb *bp)
1552 {
1553 	struct macb_queue *queue;
1554 	unsigned int q;
1555 
1556 	/*
1557 	 * Disable RX and TX (XXX: Should we halt the transmission
1558 	 * more gracefully?)
1559 	 */
1560 	macb_writel(bp, NCR, 0);
1561 
1562 	/* Clear the stats registers (XXX: Update stats first?) */
1563 	macb_writel(bp, NCR, MACB_BIT(CLRSTAT));
1564 
1565 	/* Clear all status flags */
1566 	macb_writel(bp, TSR, -1);
1567 	macb_writel(bp, RSR, -1);
1568 
1569 	/* Disable all interrupts */
1570 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1571 		queue_writel(queue, IDR, -1);
1572 		queue_readl(queue, ISR);
1573 	}
1574 }
1575 
gem_mdc_clk_div(struct macb * bp)1576 static u32 gem_mdc_clk_div(struct macb *bp)
1577 {
1578 	u32 config;
1579 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
1580 
1581 	if (pclk_hz <= 20000000)
1582 		config = GEM_BF(CLK, GEM_CLK_DIV8);
1583 	else if (pclk_hz <= 40000000)
1584 		config = GEM_BF(CLK, GEM_CLK_DIV16);
1585 	else if (pclk_hz <= 80000000)
1586 		config = GEM_BF(CLK, GEM_CLK_DIV32);
1587 	else if (pclk_hz <= 120000000)
1588 		config = GEM_BF(CLK, GEM_CLK_DIV48);
1589 	else if (pclk_hz <= 160000000)
1590 		config = GEM_BF(CLK, GEM_CLK_DIV64);
1591 	else
1592 		config = GEM_BF(CLK, GEM_CLK_DIV96);
1593 
1594 	return config;
1595 }
1596 
macb_mdc_clk_div(struct macb * bp)1597 static u32 macb_mdc_clk_div(struct macb *bp)
1598 {
1599 	u32 config;
1600 	unsigned long pclk_hz;
1601 
1602 	if (macb_is_gem(bp))
1603 		return gem_mdc_clk_div(bp);
1604 
1605 	pclk_hz = clk_get_rate(bp->pclk);
1606 	if (pclk_hz <= 20000000)
1607 		config = MACB_BF(CLK, MACB_CLK_DIV8);
1608 	else if (pclk_hz <= 40000000)
1609 		config = MACB_BF(CLK, MACB_CLK_DIV16);
1610 	else if (pclk_hz <= 80000000)
1611 		config = MACB_BF(CLK, MACB_CLK_DIV32);
1612 	else
1613 		config = MACB_BF(CLK, MACB_CLK_DIV64);
1614 
1615 	return config;
1616 }
1617 
1618 /*
1619  * Get the DMA bus width field of the network configuration register that we
1620  * should program.  We find the width from decoding the design configuration
1621  * register to find the maximum supported data bus width.
1622  */
macb_dbw(struct macb * bp)1623 static u32 macb_dbw(struct macb *bp)
1624 {
1625 	if (!macb_is_gem(bp))
1626 		return 0;
1627 
1628 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
1629 	case 4:
1630 		return GEM_BF(DBW, GEM_DBW128);
1631 	case 2:
1632 		return GEM_BF(DBW, GEM_DBW64);
1633 	case 1:
1634 	default:
1635 		return GEM_BF(DBW, GEM_DBW32);
1636 	}
1637 }
1638 
1639 /*
1640  * Configure the receive DMA engine
1641  * - use the correct receive buffer size
1642  * - set best burst length for DMA operations
1643  *   (if not supported by FIFO, it will fallback to default)
1644  * - set both rx/tx packet buffers to full memory size
1645  * These are configurable parameters for GEM.
1646  */
macb_configure_dma(struct macb * bp)1647 static void macb_configure_dma(struct macb *bp)
1648 {
1649 	u32 dmacfg;
1650 
1651 	if (macb_is_gem(bp)) {
1652 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
1653 		dmacfg |= GEM_BF(RXBS, bp->rx_buffer_size / RX_BUFFER_MULTIPLE);
1654 		if (bp->dma_burst_length)
1655 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
1656 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
1657 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
1658 
1659 		if (bp->native_io)
1660 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
1661 		else
1662 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
1663 
1664 		if (bp->dev->features & NETIF_F_HW_CSUM)
1665 			dmacfg |= GEM_BIT(TXCOEN);
1666 		else
1667 			dmacfg &= ~GEM_BIT(TXCOEN);
1668 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
1669 			   dmacfg);
1670 		gem_writel(bp, DMACFG, dmacfg);
1671 	}
1672 }
1673 
macb_init_hw(struct macb * bp)1674 static void macb_init_hw(struct macb *bp)
1675 {
1676 	struct macb_queue *queue;
1677 	unsigned int q;
1678 
1679 	u32 config;
1680 
1681 	macb_reset_hw(bp);
1682 	macb_set_hwaddr(bp);
1683 
1684 	config = macb_mdc_clk_div(bp);
1685 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
1686 		config |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
1687 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
1688 	config |= MACB_BIT(PAE);		/* PAuse Enable */
1689 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
1690 	if (bp->caps & MACB_CAPS_JUMBO)
1691 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
1692 	else
1693 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
1694 	if (bp->dev->flags & IFF_PROMISC)
1695 		config |= MACB_BIT(CAF);	/* Copy All Frames */
1696 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
1697 		config |= GEM_BIT(RXCOEN);
1698 	if (!(bp->dev->flags & IFF_BROADCAST))
1699 		config |= MACB_BIT(NBC);	/* No BroadCast */
1700 	config |= macb_dbw(bp);
1701 	macb_writel(bp, NCFGR, config);
1702 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
1703 		gem_writel(bp, JML, bp->jumbo_max_len);
1704 	bp->speed = SPEED_10;
1705 	bp->duplex = DUPLEX_HALF;
1706 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
1707 	if (bp->caps & MACB_CAPS_JUMBO)
1708 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
1709 
1710 	macb_configure_dma(bp);
1711 
1712 	/* Initialize TX and RX buffers */
1713 	macb_writel(bp, RBQP, bp->rx_ring_dma);
1714 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1715 		queue_writel(queue, TBQP, queue->tx_ring_dma);
1716 
1717 		/* Enable interrupts */
1718 		queue_writel(queue, IER,
1719 			     MACB_RX_INT_FLAGS |
1720 			     MACB_TX_INT_FLAGS |
1721 			     MACB_BIT(HRESP));
1722 	}
1723 
1724 	/* Enable TX and RX */
1725 	macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE));
1726 }
1727 
1728 /*
1729  * The hash address register is 64 bits long and takes up two
1730  * locations in the memory map.  The least significant bits are stored
1731  * in EMAC_HSL and the most significant bits in EMAC_HSH.
1732  *
1733  * The unicast hash enable and the multicast hash enable bits in the
1734  * network configuration register enable the reception of hash matched
1735  * frames. The destination address is reduced to a 6 bit index into
1736  * the 64 bit hash register using the following hash function.  The
1737  * hash function is an exclusive or of every sixth bit of the
1738  * destination address.
1739  *
1740  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
1741  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
1742  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
1743  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
1744  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
1745  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
1746  *
1747  * da[0] represents the least significant bit of the first byte
1748  * received, that is, the multicast/unicast indicator, and da[47]
1749  * represents the most significant bit of the last byte received.  If
1750  * the hash index, hi[n], points to a bit that is set in the hash
1751  * register then the frame will be matched according to whether the
1752  * frame is multicast or unicast.  A multicast match will be signalled
1753  * if the multicast hash enable bit is set, da[0] is 1 and the hash
1754  * index points to a bit set in the hash register.  A unicast match
1755  * will be signalled if the unicast hash enable bit is set, da[0] is 0
1756  * and the hash index points to a bit set in the hash register.  To
1757  * receive all multicast frames, the hash register should be set with
1758  * all ones and the multicast hash enable bit should be set in the
1759  * network configuration register.
1760  */
1761 
hash_bit_value(int bitnr,__u8 * addr)1762 static inline int hash_bit_value(int bitnr, __u8 *addr)
1763 {
1764 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
1765 		return 1;
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Return the hash index value for the specified address.
1771  */
hash_get_index(__u8 * addr)1772 static int hash_get_index(__u8 *addr)
1773 {
1774 	int i, j, bitval;
1775 	int hash_index = 0;
1776 
1777 	for (j = 0; j < 6; j++) {
1778 		for (i = 0, bitval = 0; i < 8; i++)
1779 			bitval ^= hash_bit_value(i * 6 + j, addr);
1780 
1781 		hash_index |= (bitval << j);
1782 	}
1783 
1784 	return hash_index;
1785 }
1786 
1787 /*
1788  * Add multicast addresses to the internal multicast-hash table.
1789  */
macb_sethashtable(struct net_device * dev)1790 static void macb_sethashtable(struct net_device *dev)
1791 {
1792 	struct netdev_hw_addr *ha;
1793 	unsigned long mc_filter[2];
1794 	unsigned int bitnr;
1795 	struct macb *bp = netdev_priv(dev);
1796 
1797 	mc_filter[0] = mc_filter[1] = 0;
1798 
1799 	netdev_for_each_mc_addr(ha, dev) {
1800 		bitnr = hash_get_index(ha->addr);
1801 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1802 	}
1803 
1804 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
1805 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
1806 }
1807 
1808 /*
1809  * Enable/Disable promiscuous and multicast modes.
1810  */
macb_set_rx_mode(struct net_device * dev)1811 static void macb_set_rx_mode(struct net_device *dev)
1812 {
1813 	unsigned long cfg;
1814 	struct macb *bp = netdev_priv(dev);
1815 
1816 	cfg = macb_readl(bp, NCFGR);
1817 
1818 	if (dev->flags & IFF_PROMISC) {
1819 		/* Enable promiscuous mode */
1820 		cfg |= MACB_BIT(CAF);
1821 
1822 		/* Disable RX checksum offload */
1823 		if (macb_is_gem(bp))
1824 			cfg &= ~GEM_BIT(RXCOEN);
1825 	} else {
1826 		/* Disable promiscuous mode */
1827 		cfg &= ~MACB_BIT(CAF);
1828 
1829 		/* Enable RX checksum offload only if requested */
1830 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
1831 			cfg |= GEM_BIT(RXCOEN);
1832 	}
1833 
1834 	if (dev->flags & IFF_ALLMULTI) {
1835 		/* Enable all multicast mode */
1836 		macb_or_gem_writel(bp, HRB, -1);
1837 		macb_or_gem_writel(bp, HRT, -1);
1838 		cfg |= MACB_BIT(NCFGR_MTI);
1839 	} else if (!netdev_mc_empty(dev)) {
1840 		/* Enable specific multicasts */
1841 		macb_sethashtable(dev);
1842 		cfg |= MACB_BIT(NCFGR_MTI);
1843 	} else if (dev->flags & (~IFF_ALLMULTI)) {
1844 		/* Disable all multicast mode */
1845 		macb_or_gem_writel(bp, HRB, 0);
1846 		macb_or_gem_writel(bp, HRT, 0);
1847 		cfg &= ~MACB_BIT(NCFGR_MTI);
1848 	}
1849 
1850 	macb_writel(bp, NCFGR, cfg);
1851 }
1852 
macb_open(struct net_device * dev)1853 static int macb_open(struct net_device *dev)
1854 {
1855 	struct macb *bp = netdev_priv(dev);
1856 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
1857 	int err;
1858 
1859 	netdev_dbg(bp->dev, "open\n");
1860 
1861 	/* carrier starts down */
1862 	netif_carrier_off(dev);
1863 
1864 	/* if the phy is not yet register, retry later*/
1865 	if (!bp->phy_dev)
1866 		return -EAGAIN;
1867 
1868 	/* RX buffers initialization */
1869 	macb_init_rx_buffer_size(bp, bufsz);
1870 
1871 	err = macb_alloc_consistent(bp);
1872 	if (err) {
1873 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
1874 			   err);
1875 		return err;
1876 	}
1877 
1878 	napi_enable(&bp->napi);
1879 
1880 	bp->macbgem_ops.mog_init_rings(bp);
1881 	macb_init_hw(bp);
1882 
1883 	/* schedule a link state check */
1884 	phy_start(bp->phy_dev);
1885 
1886 	netif_tx_start_all_queues(dev);
1887 
1888 	return 0;
1889 }
1890 
macb_close(struct net_device * dev)1891 static int macb_close(struct net_device *dev)
1892 {
1893 	struct macb *bp = netdev_priv(dev);
1894 	unsigned long flags;
1895 
1896 	netif_tx_stop_all_queues(dev);
1897 	napi_disable(&bp->napi);
1898 
1899 	if (bp->phy_dev)
1900 		phy_stop(bp->phy_dev);
1901 
1902 	spin_lock_irqsave(&bp->lock, flags);
1903 	macb_reset_hw(bp);
1904 	netif_carrier_off(dev);
1905 	spin_unlock_irqrestore(&bp->lock, flags);
1906 
1907 	macb_free_consistent(bp);
1908 
1909 	return 0;
1910 }
1911 
macb_change_mtu(struct net_device * dev,int new_mtu)1912 static int macb_change_mtu(struct net_device *dev, int new_mtu)
1913 {
1914 	struct macb *bp = netdev_priv(dev);
1915 	u32 max_mtu;
1916 
1917 	if (netif_running(dev))
1918 		return -EBUSY;
1919 
1920 	max_mtu = ETH_DATA_LEN;
1921 	if (bp->caps & MACB_CAPS_JUMBO)
1922 		max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN;
1923 
1924 	if ((new_mtu > max_mtu) || (new_mtu < GEM_MTU_MIN_SIZE))
1925 		return -EINVAL;
1926 
1927 	dev->mtu = new_mtu;
1928 
1929 	return 0;
1930 }
1931 
gem_update_stats(struct macb * bp)1932 static void gem_update_stats(struct macb *bp)
1933 {
1934 	unsigned int i;
1935 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
1936 
1937 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
1938 		u32 offset = gem_statistics[i].offset;
1939 		u64 val = bp->macb_reg_readl(bp, offset);
1940 
1941 		bp->ethtool_stats[i] += val;
1942 		*p += val;
1943 
1944 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
1945 			/* Add GEM_OCTTXH, GEM_OCTRXH */
1946 			val = bp->macb_reg_readl(bp, offset + 4);
1947 			bp->ethtool_stats[i] += ((u64)val) << 32;
1948 			*(++p) += val;
1949 		}
1950 	}
1951 }
1952 
gem_get_stats(struct macb * bp)1953 static struct net_device_stats *gem_get_stats(struct macb *bp)
1954 {
1955 	struct gem_stats *hwstat = &bp->hw_stats.gem;
1956 	struct net_device_stats *nstat = &bp->stats;
1957 
1958 	gem_update_stats(bp);
1959 
1960 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
1961 			    hwstat->rx_alignment_errors +
1962 			    hwstat->rx_resource_errors +
1963 			    hwstat->rx_overruns +
1964 			    hwstat->rx_oversize_frames +
1965 			    hwstat->rx_jabbers +
1966 			    hwstat->rx_undersized_frames +
1967 			    hwstat->rx_length_field_frame_errors);
1968 	nstat->tx_errors = (hwstat->tx_late_collisions +
1969 			    hwstat->tx_excessive_collisions +
1970 			    hwstat->tx_underrun +
1971 			    hwstat->tx_carrier_sense_errors);
1972 	nstat->multicast = hwstat->rx_multicast_frames;
1973 	nstat->collisions = (hwstat->tx_single_collision_frames +
1974 			     hwstat->tx_multiple_collision_frames +
1975 			     hwstat->tx_excessive_collisions);
1976 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
1977 				   hwstat->rx_jabbers +
1978 				   hwstat->rx_undersized_frames +
1979 				   hwstat->rx_length_field_frame_errors);
1980 	nstat->rx_over_errors = hwstat->rx_resource_errors;
1981 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
1982 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
1983 	nstat->rx_fifo_errors = hwstat->rx_overruns;
1984 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
1985 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
1986 	nstat->tx_fifo_errors = hwstat->tx_underrun;
1987 
1988 	return nstat;
1989 }
1990 
gem_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1991 static void gem_get_ethtool_stats(struct net_device *dev,
1992 				  struct ethtool_stats *stats, u64 *data)
1993 {
1994 	struct macb *bp;
1995 
1996 	bp = netdev_priv(dev);
1997 	gem_update_stats(bp);
1998 	memcpy(data, &bp->ethtool_stats, sizeof(u64) * GEM_STATS_LEN);
1999 }
2000 
gem_get_sset_count(struct net_device * dev,int sset)2001 static int gem_get_sset_count(struct net_device *dev, int sset)
2002 {
2003 	switch (sset) {
2004 	case ETH_SS_STATS:
2005 		return GEM_STATS_LEN;
2006 	default:
2007 		return -EOPNOTSUPP;
2008 	}
2009 }
2010 
gem_get_ethtool_strings(struct net_device * dev,u32 sset,u8 * p)2011 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
2012 {
2013 	unsigned int i;
2014 
2015 	switch (sset) {
2016 	case ETH_SS_STATS:
2017 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
2018 			memcpy(p, gem_statistics[i].stat_string,
2019 			       ETH_GSTRING_LEN);
2020 		break;
2021 	}
2022 }
2023 
macb_get_stats(struct net_device * dev)2024 static struct net_device_stats *macb_get_stats(struct net_device *dev)
2025 {
2026 	struct macb *bp = netdev_priv(dev);
2027 	struct net_device_stats *nstat = &bp->stats;
2028 	struct macb_stats *hwstat = &bp->hw_stats.macb;
2029 
2030 	if (macb_is_gem(bp))
2031 		return gem_get_stats(bp);
2032 
2033 	/* read stats from hardware */
2034 	macb_update_stats(bp);
2035 
2036 	/* Convert HW stats into netdevice stats */
2037 	nstat->rx_errors = (hwstat->rx_fcs_errors +
2038 			    hwstat->rx_align_errors +
2039 			    hwstat->rx_resource_errors +
2040 			    hwstat->rx_overruns +
2041 			    hwstat->rx_oversize_pkts +
2042 			    hwstat->rx_jabbers +
2043 			    hwstat->rx_undersize_pkts +
2044 			    hwstat->rx_length_mismatch);
2045 	nstat->tx_errors = (hwstat->tx_late_cols +
2046 			    hwstat->tx_excessive_cols +
2047 			    hwstat->tx_underruns +
2048 			    hwstat->tx_carrier_errors +
2049 			    hwstat->sqe_test_errors);
2050 	nstat->collisions = (hwstat->tx_single_cols +
2051 			     hwstat->tx_multiple_cols +
2052 			     hwstat->tx_excessive_cols);
2053 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
2054 				   hwstat->rx_jabbers +
2055 				   hwstat->rx_undersize_pkts +
2056 				   hwstat->rx_length_mismatch);
2057 	nstat->rx_over_errors = hwstat->rx_resource_errors +
2058 				   hwstat->rx_overruns;
2059 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
2060 	nstat->rx_frame_errors = hwstat->rx_align_errors;
2061 	nstat->rx_fifo_errors = hwstat->rx_overruns;
2062 	/* XXX: What does "missed" mean? */
2063 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
2064 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
2065 	nstat->tx_fifo_errors = hwstat->tx_underruns;
2066 	/* Don't know about heartbeat or window errors... */
2067 
2068 	return nstat;
2069 }
2070 
macb_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2071 static int macb_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2072 {
2073 	struct macb *bp = netdev_priv(dev);
2074 	struct phy_device *phydev = bp->phy_dev;
2075 
2076 	if (!phydev)
2077 		return -ENODEV;
2078 
2079 	return phy_ethtool_gset(phydev, cmd);
2080 }
2081 
macb_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2082 static int macb_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2083 {
2084 	struct macb *bp = netdev_priv(dev);
2085 	struct phy_device *phydev = bp->phy_dev;
2086 
2087 	if (!phydev)
2088 		return -ENODEV;
2089 
2090 	return phy_ethtool_sset(phydev, cmd);
2091 }
2092 
macb_get_regs_len(struct net_device * netdev)2093 static int macb_get_regs_len(struct net_device *netdev)
2094 {
2095 	return MACB_GREGS_NBR * sizeof(u32);
2096 }
2097 
macb_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)2098 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
2099 			  void *p)
2100 {
2101 	struct macb *bp = netdev_priv(dev);
2102 	unsigned int tail, head;
2103 	u32 *regs_buff = p;
2104 
2105 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
2106 			| MACB_GREGS_VERSION;
2107 
2108 	tail = macb_tx_ring_wrap(bp->queues[0].tx_tail);
2109 	head = macb_tx_ring_wrap(bp->queues[0].tx_head);
2110 
2111 	regs_buff[0]  = macb_readl(bp, NCR);
2112 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
2113 	regs_buff[2]  = macb_readl(bp, NSR);
2114 	regs_buff[3]  = macb_readl(bp, TSR);
2115 	regs_buff[4]  = macb_readl(bp, RBQP);
2116 	regs_buff[5]  = macb_readl(bp, TBQP);
2117 	regs_buff[6]  = macb_readl(bp, RSR);
2118 	regs_buff[7]  = macb_readl(bp, IMR);
2119 
2120 	regs_buff[8]  = tail;
2121 	regs_buff[9]  = head;
2122 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
2123 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
2124 
2125 	regs_buff[12] = macb_or_gem_readl(bp, USRIO);
2126 	if (macb_is_gem(bp)) {
2127 		regs_buff[13] = gem_readl(bp, DMACFG);
2128 	}
2129 }
2130 
2131 static const struct ethtool_ops macb_ethtool_ops = {
2132 	.get_settings		= macb_get_settings,
2133 	.set_settings		= macb_set_settings,
2134 	.get_regs_len		= macb_get_regs_len,
2135 	.get_regs		= macb_get_regs,
2136 	.get_link		= ethtool_op_get_link,
2137 	.get_ts_info		= ethtool_op_get_ts_info,
2138 };
2139 
2140 static const struct ethtool_ops gem_ethtool_ops = {
2141 	.get_settings		= macb_get_settings,
2142 	.set_settings		= macb_set_settings,
2143 	.get_regs_len		= macb_get_regs_len,
2144 	.get_regs		= macb_get_regs,
2145 	.get_link		= ethtool_op_get_link,
2146 	.get_ts_info		= ethtool_op_get_ts_info,
2147 	.get_ethtool_stats	= gem_get_ethtool_stats,
2148 	.get_strings		= gem_get_ethtool_strings,
2149 	.get_sset_count		= gem_get_sset_count,
2150 };
2151 
macb_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2152 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2153 {
2154 	struct macb *bp = netdev_priv(dev);
2155 	struct phy_device *phydev = bp->phy_dev;
2156 
2157 	if (!netif_running(dev))
2158 		return -EINVAL;
2159 
2160 	if (!phydev)
2161 		return -ENODEV;
2162 
2163 	return phy_mii_ioctl(phydev, rq, cmd);
2164 }
2165 
macb_set_features(struct net_device * netdev,netdev_features_t features)2166 static int macb_set_features(struct net_device *netdev,
2167 			     netdev_features_t features)
2168 {
2169 	struct macb *bp = netdev_priv(netdev);
2170 	netdev_features_t changed = features ^ netdev->features;
2171 
2172 	/* TX checksum offload */
2173 	if ((changed & NETIF_F_HW_CSUM) && macb_is_gem(bp)) {
2174 		u32 dmacfg;
2175 
2176 		dmacfg = gem_readl(bp, DMACFG);
2177 		if (features & NETIF_F_HW_CSUM)
2178 			dmacfg |= GEM_BIT(TXCOEN);
2179 		else
2180 			dmacfg &= ~GEM_BIT(TXCOEN);
2181 		gem_writel(bp, DMACFG, dmacfg);
2182 	}
2183 
2184 	/* RX checksum offload */
2185 	if ((changed & NETIF_F_RXCSUM) && macb_is_gem(bp)) {
2186 		u32 netcfg;
2187 
2188 		netcfg = gem_readl(bp, NCFGR);
2189 		if (features & NETIF_F_RXCSUM &&
2190 		    !(netdev->flags & IFF_PROMISC))
2191 			netcfg |= GEM_BIT(RXCOEN);
2192 		else
2193 			netcfg &= ~GEM_BIT(RXCOEN);
2194 		gem_writel(bp, NCFGR, netcfg);
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static const struct net_device_ops macb_netdev_ops = {
2201 	.ndo_open		= macb_open,
2202 	.ndo_stop		= macb_close,
2203 	.ndo_start_xmit		= macb_start_xmit,
2204 	.ndo_set_rx_mode	= macb_set_rx_mode,
2205 	.ndo_get_stats		= macb_get_stats,
2206 	.ndo_do_ioctl		= macb_ioctl,
2207 	.ndo_validate_addr	= eth_validate_addr,
2208 	.ndo_change_mtu		= macb_change_mtu,
2209 	.ndo_set_mac_address	= eth_mac_addr,
2210 #ifdef CONFIG_NET_POLL_CONTROLLER
2211 	.ndo_poll_controller	= macb_poll_controller,
2212 #endif
2213 	.ndo_set_features	= macb_set_features,
2214 };
2215 
2216 /*
2217  * Configure peripheral capabilities according to device tree
2218  * and integration options used
2219  */
macb_configure_caps(struct macb * bp,const struct macb_config * dt_conf)2220 static void macb_configure_caps(struct macb *bp, const struct macb_config *dt_conf)
2221 {
2222 	u32 dcfg;
2223 
2224 	if (dt_conf)
2225 		bp->caps = dt_conf->caps;
2226 
2227 	if (hw_is_gem(bp->regs, bp->native_io)) {
2228 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
2229 
2230 		dcfg = gem_readl(bp, DCFG1);
2231 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
2232 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
2233 		dcfg = gem_readl(bp, DCFG2);
2234 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
2235 			bp->caps |= MACB_CAPS_FIFO_MODE;
2236 	}
2237 
2238 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
2239 }
2240 
macb_probe_queues(void __iomem * mem,bool native_io,unsigned int * queue_mask,unsigned int * num_queues)2241 static void macb_probe_queues(void __iomem *mem,
2242 			      bool native_io,
2243 			      unsigned int *queue_mask,
2244 			      unsigned int *num_queues)
2245 {
2246 	unsigned int hw_q;
2247 
2248 	*queue_mask = 0x1;
2249 	*num_queues = 1;
2250 
2251 	/* is it macb or gem ?
2252 	 *
2253 	 * We need to read directly from the hardware here because
2254 	 * we are early in the probe process and don't have the
2255 	 * MACB_CAPS_MACB_IS_GEM flag positioned
2256 	 */
2257 	if (!hw_is_gem(mem, native_io))
2258 		return;
2259 
2260 	/* bit 0 is never set but queue 0 always exists */
2261 	*queue_mask = readl_relaxed(mem + GEM_DCFG6) & 0xff;
2262 
2263 	*queue_mask |= 0x1;
2264 
2265 	for (hw_q = 1; hw_q < MACB_MAX_QUEUES; ++hw_q)
2266 		if (*queue_mask & (1 << hw_q))
2267 			(*num_queues)++;
2268 }
2269 
macb_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk)2270 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
2271 			 struct clk **hclk, struct clk **tx_clk)
2272 {
2273 	int err;
2274 
2275 	*pclk = devm_clk_get(&pdev->dev, "pclk");
2276 	if (IS_ERR(*pclk)) {
2277 		err = PTR_ERR(*pclk);
2278 		dev_err(&pdev->dev, "failed to get macb_clk (%u)\n", err);
2279 		return err;
2280 	}
2281 
2282 	*hclk = devm_clk_get(&pdev->dev, "hclk");
2283 	if (IS_ERR(*hclk)) {
2284 		err = PTR_ERR(*hclk);
2285 		dev_err(&pdev->dev, "failed to get hclk (%u)\n", err);
2286 		return err;
2287 	}
2288 
2289 	*tx_clk = devm_clk_get(&pdev->dev, "tx_clk");
2290 	if (IS_ERR(*tx_clk))
2291 		*tx_clk = NULL;
2292 
2293 	err = clk_prepare_enable(*pclk);
2294 	if (err) {
2295 		dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2296 		return err;
2297 	}
2298 
2299 	err = clk_prepare_enable(*hclk);
2300 	if (err) {
2301 		dev_err(&pdev->dev, "failed to enable hclk (%u)\n", err);
2302 		goto err_disable_pclk;
2303 	}
2304 
2305 	err = clk_prepare_enable(*tx_clk);
2306 	if (err) {
2307 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
2308 		goto err_disable_hclk;
2309 	}
2310 
2311 	return 0;
2312 
2313 err_disable_hclk:
2314 	clk_disable_unprepare(*hclk);
2315 
2316 err_disable_pclk:
2317 	clk_disable_unprepare(*pclk);
2318 
2319 	return err;
2320 }
2321 
macb_init(struct platform_device * pdev)2322 static int macb_init(struct platform_device *pdev)
2323 {
2324 	struct net_device *dev = platform_get_drvdata(pdev);
2325 	unsigned int hw_q, q;
2326 	struct macb *bp = netdev_priv(dev);
2327 	struct macb_queue *queue;
2328 	int err;
2329 	u32 val;
2330 
2331 	/* set the queue register mapping once for all: queue0 has a special
2332 	 * register mapping but we don't want to test the queue index then
2333 	 * compute the corresponding register offset at run time.
2334 	 */
2335 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
2336 		if (!(bp->queue_mask & (1 << hw_q)))
2337 			continue;
2338 
2339 		queue = &bp->queues[q];
2340 		queue->bp = bp;
2341 		if (hw_q) {
2342 			queue->ISR  = GEM_ISR(hw_q - 1);
2343 			queue->IER  = GEM_IER(hw_q - 1);
2344 			queue->IDR  = GEM_IDR(hw_q - 1);
2345 			queue->IMR  = GEM_IMR(hw_q - 1);
2346 			queue->TBQP = GEM_TBQP(hw_q - 1);
2347 		} else {
2348 			/* queue0 uses legacy registers */
2349 			queue->ISR  = MACB_ISR;
2350 			queue->IER  = MACB_IER;
2351 			queue->IDR  = MACB_IDR;
2352 			queue->IMR  = MACB_IMR;
2353 			queue->TBQP = MACB_TBQP;
2354 		}
2355 
2356 		/* get irq: here we use the linux queue index, not the hardware
2357 		 * queue index. the queue irq definitions in the device tree
2358 		 * must remove the optional gaps that could exist in the
2359 		 * hardware queue mask.
2360 		 */
2361 		queue->irq = platform_get_irq(pdev, q);
2362 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
2363 				       IRQF_SHARED, dev->name, queue);
2364 		if (err) {
2365 			dev_err(&pdev->dev,
2366 				"Unable to request IRQ %d (error %d)\n",
2367 				queue->irq, err);
2368 			return err;
2369 		}
2370 
2371 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
2372 		q++;
2373 	}
2374 
2375 	dev->netdev_ops = &macb_netdev_ops;
2376 	netif_napi_add(dev, &bp->napi, macb_poll, 64);
2377 
2378 	/* setup appropriated routines according to adapter type */
2379 	if (macb_is_gem(bp)) {
2380 		bp->max_tx_length = GEM_MAX_TX_LEN;
2381 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
2382 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
2383 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
2384 		bp->macbgem_ops.mog_rx = gem_rx;
2385 		dev->ethtool_ops = &gem_ethtool_ops;
2386 	} else {
2387 		bp->max_tx_length = MACB_MAX_TX_LEN;
2388 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
2389 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
2390 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
2391 		bp->macbgem_ops.mog_rx = macb_rx;
2392 		dev->ethtool_ops = &macb_ethtool_ops;
2393 	}
2394 
2395 	/* Set features */
2396 	dev->hw_features = NETIF_F_SG;
2397 	/* Checksum offload is only available on gem with packet buffer */
2398 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
2399 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2400 	if (bp->caps & MACB_CAPS_SG_DISABLED)
2401 		dev->hw_features &= ~NETIF_F_SG;
2402 	dev->features = dev->hw_features;
2403 
2404 	val = 0;
2405 	if (bp->phy_interface == PHY_INTERFACE_MODE_RGMII)
2406 		val = GEM_BIT(RGMII);
2407 	else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
2408 		 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII))
2409 		val = MACB_BIT(RMII);
2410 	else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII))
2411 		val = MACB_BIT(MII);
2412 
2413 	if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
2414 		val |= MACB_BIT(CLKEN);
2415 
2416 	macb_or_gem_writel(bp, USRIO, val);
2417 
2418 	/* Set MII management clock divider */
2419 	val = macb_mdc_clk_div(bp);
2420 	val |= macb_dbw(bp);
2421 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
2422 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
2423 	macb_writel(bp, NCFGR, val);
2424 
2425 	return 0;
2426 }
2427 
2428 #if defined(CONFIG_OF)
2429 /* 1518 rounded up */
2430 #define AT91ETHER_MAX_RBUFF_SZ	0x600
2431 /* max number of receive buffers */
2432 #define AT91ETHER_MAX_RX_DESCR	9
2433 
2434 /* Initialize and start the Receiver and Transmit subsystems */
at91ether_start(struct net_device * dev)2435 static int at91ether_start(struct net_device *dev)
2436 {
2437 	struct macb *lp = netdev_priv(dev);
2438 	dma_addr_t addr;
2439 	u32 ctl;
2440 	int i;
2441 
2442 	lp->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
2443 					 (AT91ETHER_MAX_RX_DESCR *
2444 					  sizeof(struct macb_dma_desc)),
2445 					 &lp->rx_ring_dma, GFP_KERNEL);
2446 	if (!lp->rx_ring)
2447 		return -ENOMEM;
2448 
2449 	lp->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
2450 					    AT91ETHER_MAX_RX_DESCR *
2451 					    AT91ETHER_MAX_RBUFF_SZ,
2452 					    &lp->rx_buffers_dma, GFP_KERNEL);
2453 	if (!lp->rx_buffers) {
2454 		dma_free_coherent(&lp->pdev->dev,
2455 				  AT91ETHER_MAX_RX_DESCR *
2456 				  sizeof(struct macb_dma_desc),
2457 				  lp->rx_ring, lp->rx_ring_dma);
2458 		lp->rx_ring = NULL;
2459 		return -ENOMEM;
2460 	}
2461 
2462 	addr = lp->rx_buffers_dma;
2463 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
2464 		lp->rx_ring[i].addr = addr;
2465 		lp->rx_ring[i].ctrl = 0;
2466 		addr += AT91ETHER_MAX_RBUFF_SZ;
2467 	}
2468 
2469 	/* Set the Wrap bit on the last descriptor */
2470 	lp->rx_ring[AT91ETHER_MAX_RX_DESCR - 1].addr |= MACB_BIT(RX_WRAP);
2471 
2472 	/* Reset buffer index */
2473 	lp->rx_tail = 0;
2474 
2475 	/* Program address of descriptor list in Rx Buffer Queue register */
2476 	macb_writel(lp, RBQP, lp->rx_ring_dma);
2477 
2478 	/* Enable Receive and Transmit */
2479 	ctl = macb_readl(lp, NCR);
2480 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
2481 
2482 	return 0;
2483 }
2484 
2485 /* Open the ethernet interface */
at91ether_open(struct net_device * dev)2486 static int at91ether_open(struct net_device *dev)
2487 {
2488 	struct macb *lp = netdev_priv(dev);
2489 	u32 ctl;
2490 	int ret;
2491 
2492 	/* Clear internal statistics */
2493 	ctl = macb_readl(lp, NCR);
2494 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
2495 
2496 	macb_set_hwaddr(lp);
2497 
2498 	ret = at91ether_start(dev);
2499 	if (ret)
2500 		return ret;
2501 
2502 	/* Enable MAC interrupts */
2503 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
2504 			     MACB_BIT(RXUBR)	|
2505 			     MACB_BIT(ISR_TUND)	|
2506 			     MACB_BIT(ISR_RLE)	|
2507 			     MACB_BIT(TCOMP)	|
2508 			     MACB_BIT(ISR_ROVR)	|
2509 			     MACB_BIT(HRESP));
2510 
2511 	/* schedule a link state check */
2512 	phy_start(lp->phy_dev);
2513 
2514 	netif_start_queue(dev);
2515 
2516 	return 0;
2517 }
2518 
2519 /* Close the interface */
at91ether_close(struct net_device * dev)2520 static int at91ether_close(struct net_device *dev)
2521 {
2522 	struct macb *lp = netdev_priv(dev);
2523 	u32 ctl;
2524 
2525 	/* Disable Receiver and Transmitter */
2526 	ctl = macb_readl(lp, NCR);
2527 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
2528 
2529 	/* Disable MAC interrupts */
2530 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
2531 			     MACB_BIT(RXUBR)	|
2532 			     MACB_BIT(ISR_TUND)	|
2533 			     MACB_BIT(ISR_RLE)	|
2534 			     MACB_BIT(TCOMP)	|
2535 			     MACB_BIT(ISR_ROVR) |
2536 			     MACB_BIT(HRESP));
2537 
2538 	netif_stop_queue(dev);
2539 
2540 	dma_free_coherent(&lp->pdev->dev,
2541 			  AT91ETHER_MAX_RX_DESCR *
2542 			  sizeof(struct macb_dma_desc),
2543 			  lp->rx_ring, lp->rx_ring_dma);
2544 	lp->rx_ring = NULL;
2545 
2546 	dma_free_coherent(&lp->pdev->dev,
2547 			  AT91ETHER_MAX_RX_DESCR * AT91ETHER_MAX_RBUFF_SZ,
2548 			  lp->rx_buffers, lp->rx_buffers_dma);
2549 	lp->rx_buffers = NULL;
2550 
2551 	return 0;
2552 }
2553 
2554 /* Transmit packet */
at91ether_start_xmit(struct sk_buff * skb,struct net_device * dev)2555 static int at91ether_start_xmit(struct sk_buff *skb, struct net_device *dev)
2556 {
2557 	struct macb *lp = netdev_priv(dev);
2558 
2559 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
2560 		netif_stop_queue(dev);
2561 
2562 		/* Store packet information (to free when Tx completed) */
2563 		lp->skb = skb;
2564 		lp->skb_length = skb->len;
2565 		lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len,
2566 							DMA_TO_DEVICE);
2567 
2568 		/* Set address of the data in the Transmit Address register */
2569 		macb_writel(lp, TAR, lp->skb_physaddr);
2570 		/* Set length of the packet in the Transmit Control register */
2571 		macb_writel(lp, TCR, skb->len);
2572 
2573 	} else {
2574 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
2575 		return NETDEV_TX_BUSY;
2576 	}
2577 
2578 	return NETDEV_TX_OK;
2579 }
2580 
2581 /* Extract received frame from buffer descriptors and sent to upper layers.
2582  * (Called from interrupt context)
2583  */
at91ether_rx(struct net_device * dev)2584 static void at91ether_rx(struct net_device *dev)
2585 {
2586 	struct macb *lp = netdev_priv(dev);
2587 	unsigned char *p_recv;
2588 	struct sk_buff *skb;
2589 	unsigned int pktlen;
2590 
2591 	while (lp->rx_ring[lp->rx_tail].addr & MACB_BIT(RX_USED)) {
2592 		p_recv = lp->rx_buffers + lp->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
2593 		pktlen = MACB_BF(RX_FRMLEN, lp->rx_ring[lp->rx_tail].ctrl);
2594 		skb = netdev_alloc_skb(dev, pktlen + 2);
2595 		if (skb) {
2596 			skb_reserve(skb, 2);
2597 			memcpy(skb_put(skb, pktlen), p_recv, pktlen);
2598 
2599 			skb->protocol = eth_type_trans(skb, dev);
2600 			lp->stats.rx_packets++;
2601 			lp->stats.rx_bytes += pktlen;
2602 			netif_rx(skb);
2603 		} else {
2604 			lp->stats.rx_dropped++;
2605 		}
2606 
2607 		if (lp->rx_ring[lp->rx_tail].ctrl & MACB_BIT(RX_MHASH_MATCH))
2608 			lp->stats.multicast++;
2609 
2610 		/* reset ownership bit */
2611 		lp->rx_ring[lp->rx_tail].addr &= ~MACB_BIT(RX_USED);
2612 
2613 		/* wrap after last buffer */
2614 		if (lp->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
2615 			lp->rx_tail = 0;
2616 		else
2617 			lp->rx_tail++;
2618 	}
2619 }
2620 
2621 /* MAC interrupt handler */
at91ether_interrupt(int irq,void * dev_id)2622 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
2623 {
2624 	struct net_device *dev = dev_id;
2625 	struct macb *lp = netdev_priv(dev);
2626 	u32 intstatus, ctl;
2627 
2628 	/* MAC Interrupt Status register indicates what interrupts are pending.
2629 	 * It is automatically cleared once read.
2630 	 */
2631 	intstatus = macb_readl(lp, ISR);
2632 
2633 	/* Receive complete */
2634 	if (intstatus & MACB_BIT(RCOMP))
2635 		at91ether_rx(dev);
2636 
2637 	/* Transmit complete */
2638 	if (intstatus & MACB_BIT(TCOMP)) {
2639 		/* The TCOM bit is set even if the transmission failed */
2640 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
2641 			lp->stats.tx_errors++;
2642 
2643 		if (lp->skb) {
2644 			dev_kfree_skb_irq(lp->skb);
2645 			lp->skb = NULL;
2646 			dma_unmap_single(NULL, lp->skb_physaddr,
2647 					 lp->skb_length, DMA_TO_DEVICE);
2648 			lp->stats.tx_packets++;
2649 			lp->stats.tx_bytes += lp->skb_length;
2650 		}
2651 		netif_wake_queue(dev);
2652 	}
2653 
2654 	/* Work-around for EMAC Errata section 41.3.1 */
2655 	if (intstatus & MACB_BIT(RXUBR)) {
2656 		ctl = macb_readl(lp, NCR);
2657 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
2658 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
2659 	}
2660 
2661 	if (intstatus & MACB_BIT(ISR_ROVR))
2662 		netdev_err(dev, "ROVR error\n");
2663 
2664 	return IRQ_HANDLED;
2665 }
2666 
2667 #ifdef CONFIG_NET_POLL_CONTROLLER
at91ether_poll_controller(struct net_device * dev)2668 static void at91ether_poll_controller(struct net_device *dev)
2669 {
2670 	unsigned long flags;
2671 
2672 	local_irq_save(flags);
2673 	at91ether_interrupt(dev->irq, dev);
2674 	local_irq_restore(flags);
2675 }
2676 #endif
2677 
2678 static const struct net_device_ops at91ether_netdev_ops = {
2679 	.ndo_open		= at91ether_open,
2680 	.ndo_stop		= at91ether_close,
2681 	.ndo_start_xmit		= at91ether_start_xmit,
2682 	.ndo_get_stats		= macb_get_stats,
2683 	.ndo_set_rx_mode	= macb_set_rx_mode,
2684 	.ndo_set_mac_address	= eth_mac_addr,
2685 	.ndo_do_ioctl		= macb_ioctl,
2686 	.ndo_validate_addr	= eth_validate_addr,
2687 	.ndo_change_mtu		= eth_change_mtu,
2688 #ifdef CONFIG_NET_POLL_CONTROLLER
2689 	.ndo_poll_controller	= at91ether_poll_controller,
2690 #endif
2691 };
2692 
at91ether_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk)2693 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
2694 			      struct clk **hclk, struct clk **tx_clk)
2695 {
2696 	int err;
2697 
2698 	*hclk = NULL;
2699 	*tx_clk = NULL;
2700 
2701 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
2702 	if (IS_ERR(*pclk))
2703 		return PTR_ERR(*pclk);
2704 
2705 	err = clk_prepare_enable(*pclk);
2706 	if (err) {
2707 		dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2708 		return err;
2709 	}
2710 
2711 	return 0;
2712 }
2713 
at91ether_init(struct platform_device * pdev)2714 static int at91ether_init(struct platform_device *pdev)
2715 {
2716 	struct net_device *dev = platform_get_drvdata(pdev);
2717 	struct macb *bp = netdev_priv(dev);
2718 	int err;
2719 	u32 reg;
2720 
2721 	dev->netdev_ops = &at91ether_netdev_ops;
2722 	dev->ethtool_ops = &macb_ethtool_ops;
2723 
2724 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
2725 			       0, dev->name, dev);
2726 	if (err)
2727 		return err;
2728 
2729 	macb_writel(bp, NCR, 0);
2730 
2731 	reg = MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG);
2732 	if (bp->phy_interface == PHY_INTERFACE_MODE_RMII)
2733 		reg |= MACB_BIT(RM9200_RMII);
2734 
2735 	macb_writel(bp, NCFGR, reg);
2736 
2737 	return 0;
2738 }
2739 
2740 static const struct macb_config at91sam9260_config = {
2741 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII,
2742 	.clk_init = macb_clk_init,
2743 	.init = macb_init,
2744 };
2745 
2746 static const struct macb_config pc302gem_config = {
2747 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2748 	.dma_burst_length = 16,
2749 	.clk_init = macb_clk_init,
2750 	.init = macb_init,
2751 };
2752 
2753 static const struct macb_config sama5d2_config = {
2754 	.caps = 0,
2755 	.dma_burst_length = 16,
2756 	.clk_init = macb_clk_init,
2757 	.init = macb_init,
2758 };
2759 
2760 static const struct macb_config sama5d3_config = {
2761 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2762 	.dma_burst_length = 16,
2763 	.clk_init = macb_clk_init,
2764 	.init = macb_init,
2765 };
2766 
2767 static const struct macb_config sama5d4_config = {
2768 	.caps = 0,
2769 	.dma_burst_length = 4,
2770 	.clk_init = macb_clk_init,
2771 	.init = macb_init,
2772 };
2773 
2774 static const struct macb_config emac_config = {
2775 	.clk_init = at91ether_clk_init,
2776 	.init = at91ether_init,
2777 };
2778 
2779 
2780 static const struct macb_config zynqmp_config = {
2781 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO,
2782 	.dma_burst_length = 16,
2783 	.clk_init = macb_clk_init,
2784 	.init = macb_init,
2785 	.jumbo_max_len = 10240,
2786 };
2787 
2788 static const struct macb_config zynq_config = {
2789 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF,
2790 	.dma_burst_length = 16,
2791 	.clk_init = macb_clk_init,
2792 	.init = macb_init,
2793 };
2794 
2795 static const struct of_device_id macb_dt_ids[] = {
2796 	{ .compatible = "cdns,at32ap7000-macb" },
2797 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
2798 	{ .compatible = "cdns,macb" },
2799 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
2800 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
2801 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
2802 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
2803 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
2804 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
2805 	{ .compatible = "cdns,emac", .data = &emac_config },
2806 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
2807 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config },
2808 	{ /* sentinel */ }
2809 };
2810 MODULE_DEVICE_TABLE(of, macb_dt_ids);
2811 #endif /* CONFIG_OF */
2812 
macb_probe(struct platform_device * pdev)2813 static int macb_probe(struct platform_device *pdev)
2814 {
2815 	int (*clk_init)(struct platform_device *, struct clk **,
2816 			struct clk **, struct clk **)
2817 					      = macb_clk_init;
2818 	int (*init)(struct platform_device *) = macb_init;
2819 	struct device_node *np = pdev->dev.of_node;
2820 	const struct macb_config *macb_config = NULL;
2821 	struct clk *pclk, *hclk, *tx_clk;
2822 	unsigned int queue_mask, num_queues;
2823 	struct macb_platform_data *pdata;
2824 	bool native_io;
2825 	struct phy_device *phydev;
2826 	struct net_device *dev;
2827 	struct resource *regs;
2828 	void __iomem *mem;
2829 	const char *mac;
2830 	struct macb *bp;
2831 	int err;
2832 
2833 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2834 	mem = devm_ioremap_resource(&pdev->dev, regs);
2835 	if (IS_ERR(mem))
2836 		return PTR_ERR(mem);
2837 
2838 	if (np) {
2839 		const struct of_device_id *match;
2840 
2841 		match = of_match_node(macb_dt_ids, np);
2842 		if (match && match->data) {
2843 			macb_config = match->data;
2844 			clk_init = macb_config->clk_init;
2845 			init = macb_config->init;
2846 		}
2847 	}
2848 
2849 	err = clk_init(pdev, &pclk, &hclk, &tx_clk);
2850 	if (err)
2851 		return err;
2852 
2853 	native_io = hw_is_native_io(mem);
2854 
2855 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
2856 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
2857 	if (!dev) {
2858 		err = -ENOMEM;
2859 		goto err_disable_clocks;
2860 	}
2861 
2862 	dev->base_addr = regs->start;
2863 
2864 	SET_NETDEV_DEV(dev, &pdev->dev);
2865 
2866 	bp = netdev_priv(dev);
2867 	bp->pdev = pdev;
2868 	bp->dev = dev;
2869 	bp->regs = mem;
2870 	bp->native_io = native_io;
2871 	if (native_io) {
2872 		bp->macb_reg_readl = hw_readl_native;
2873 		bp->macb_reg_writel = hw_writel_native;
2874 	} else {
2875 		bp->macb_reg_readl = hw_readl;
2876 		bp->macb_reg_writel = hw_writel;
2877 	}
2878 	bp->num_queues = num_queues;
2879 	bp->queue_mask = queue_mask;
2880 	if (macb_config)
2881 		bp->dma_burst_length = macb_config->dma_burst_length;
2882 	bp->pclk = pclk;
2883 	bp->hclk = hclk;
2884 	bp->tx_clk = tx_clk;
2885 	if (macb_config)
2886 		bp->jumbo_max_len = macb_config->jumbo_max_len;
2887 
2888 	spin_lock_init(&bp->lock);
2889 
2890 	/* setup capabilities */
2891 	macb_configure_caps(bp, macb_config);
2892 
2893 	platform_set_drvdata(pdev, dev);
2894 
2895 	dev->irq = platform_get_irq(pdev, 0);
2896 	if (dev->irq < 0) {
2897 		err = dev->irq;
2898 		goto err_disable_clocks;
2899 	}
2900 
2901 	mac = of_get_mac_address(np);
2902 	if (mac)
2903 		memcpy(bp->dev->dev_addr, mac, ETH_ALEN);
2904 	else
2905 		macb_get_hwaddr(bp);
2906 
2907 	err = of_get_phy_mode(np);
2908 	if (err < 0) {
2909 		pdata = dev_get_platdata(&pdev->dev);
2910 		if (pdata && pdata->is_rmii)
2911 			bp->phy_interface = PHY_INTERFACE_MODE_RMII;
2912 		else
2913 			bp->phy_interface = PHY_INTERFACE_MODE_MII;
2914 	} else {
2915 		bp->phy_interface = err;
2916 	}
2917 
2918 	/* IP specific init */
2919 	err = init(pdev);
2920 	if (err)
2921 		goto err_out_free_netdev;
2922 
2923 	err = register_netdev(dev);
2924 	if (err) {
2925 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
2926 		goto err_out_unregister_netdev;
2927 	}
2928 
2929 	err = macb_mii_init(bp);
2930 	if (err)
2931 		goto err_out_unregister_netdev;
2932 
2933 	netif_carrier_off(dev);
2934 
2935 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
2936 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
2937 		    dev->base_addr, dev->irq, dev->dev_addr);
2938 
2939 	phydev = bp->phy_dev;
2940 	netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2941 		    phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
2942 
2943 	return 0;
2944 
2945 err_out_unregister_netdev:
2946 	unregister_netdev(dev);
2947 
2948 err_out_free_netdev:
2949 	free_netdev(dev);
2950 
2951 err_disable_clocks:
2952 	clk_disable_unprepare(tx_clk);
2953 	clk_disable_unprepare(hclk);
2954 	clk_disable_unprepare(pclk);
2955 
2956 	return err;
2957 }
2958 
macb_remove(struct platform_device * pdev)2959 static int macb_remove(struct platform_device *pdev)
2960 {
2961 	struct net_device *dev;
2962 	struct macb *bp;
2963 
2964 	dev = platform_get_drvdata(pdev);
2965 
2966 	if (dev) {
2967 		bp = netdev_priv(dev);
2968 		if (bp->phy_dev)
2969 			phy_disconnect(bp->phy_dev);
2970 		mdiobus_unregister(bp->mii_bus);
2971 		kfree(bp->mii_bus->irq);
2972 		mdiobus_free(bp->mii_bus);
2973 		unregister_netdev(dev);
2974 		clk_disable_unprepare(bp->tx_clk);
2975 		clk_disable_unprepare(bp->hclk);
2976 		clk_disable_unprepare(bp->pclk);
2977 		free_netdev(dev);
2978 	}
2979 
2980 	return 0;
2981 }
2982 
macb_suspend(struct device * dev)2983 static int __maybe_unused macb_suspend(struct device *dev)
2984 {
2985 	struct platform_device *pdev = to_platform_device(dev);
2986 	struct net_device *netdev = platform_get_drvdata(pdev);
2987 	struct macb *bp = netdev_priv(netdev);
2988 
2989 	netif_carrier_off(netdev);
2990 	netif_device_detach(netdev);
2991 
2992 	clk_disable_unprepare(bp->tx_clk);
2993 	clk_disable_unprepare(bp->hclk);
2994 	clk_disable_unprepare(bp->pclk);
2995 
2996 	return 0;
2997 }
2998 
macb_resume(struct device * dev)2999 static int __maybe_unused macb_resume(struct device *dev)
3000 {
3001 	struct platform_device *pdev = to_platform_device(dev);
3002 	struct net_device *netdev = platform_get_drvdata(pdev);
3003 	struct macb *bp = netdev_priv(netdev);
3004 
3005 	clk_prepare_enable(bp->pclk);
3006 	clk_prepare_enable(bp->hclk);
3007 	clk_prepare_enable(bp->tx_clk);
3008 
3009 	netif_device_attach(netdev);
3010 
3011 	return 0;
3012 }
3013 
3014 static SIMPLE_DEV_PM_OPS(macb_pm_ops, macb_suspend, macb_resume);
3015 
3016 static struct platform_driver macb_driver = {
3017 	.probe		= macb_probe,
3018 	.remove		= macb_remove,
3019 	.driver		= {
3020 		.name		= "macb",
3021 		.of_match_table	= of_match_ptr(macb_dt_ids),
3022 		.pm	= &macb_pm_ops,
3023 	},
3024 };
3025 
3026 module_platform_driver(macb_driver);
3027 
3028 MODULE_LICENSE("GPL");
3029 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
3030 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
3031 MODULE_ALIAS("platform:macb");
3032