1 /*
2  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  *
15  * We arbitrarily define a Type1 IOMMU as one matching the below code.
16  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17  * VT-d, but that makes it harder to re-use as theoretically anyone
18  * implementing a similar IOMMU could make use of this.  We expect the
19  * IOMMU to support the IOMMU API and have few to no restrictions around
20  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
21  * optimized for relatively static mappings of a userspace process with
22  * userpsace pages pinned into memory.  We also assume devices and IOMMU
23  * domains are PCI based as the IOMMU API is still centered around a
24  * device/bus interface rather than a group interface.
25  */
26 
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 
40 #define DRIVER_VERSION  "0.2"
41 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
42 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
43 
44 static bool allow_unsafe_interrupts;
45 module_param_named(allow_unsafe_interrupts,
46 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
47 MODULE_PARM_DESC(allow_unsafe_interrupts,
48 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
49 
50 static bool disable_hugepages;
51 module_param_named(disable_hugepages,
52 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(disable_hugepages,
54 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
55 
56 struct vfio_iommu {
57 	struct list_head	domain_list;
58 	struct mutex		lock;
59 	struct rb_root		dma_list;
60 	bool			v2;
61 	bool			nesting;
62 };
63 
64 struct vfio_domain {
65 	struct iommu_domain	*domain;
66 	struct list_head	next;
67 	struct list_head	group_list;
68 	int			prot;		/* IOMMU_CACHE */
69 	bool			fgsp;		/* Fine-grained super pages */
70 };
71 
72 struct vfio_dma {
73 	struct rb_node		node;
74 	dma_addr_t		iova;		/* Device address */
75 	unsigned long		vaddr;		/* Process virtual addr */
76 	size_t			size;		/* Map size (bytes) */
77 	int			prot;		/* IOMMU_READ/WRITE */
78 };
79 
80 struct vfio_group {
81 	struct iommu_group	*iommu_group;
82 	struct list_head	next;
83 };
84 
85 /*
86  * This code handles mapping and unmapping of user data buffers
87  * into DMA'ble space using the IOMMU
88  */
89 
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)90 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
91 				      dma_addr_t start, size_t size)
92 {
93 	struct rb_node *node = iommu->dma_list.rb_node;
94 
95 	while (node) {
96 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
97 
98 		if (start + size <= dma->iova)
99 			node = node->rb_left;
100 		else if (start >= dma->iova + dma->size)
101 			node = node->rb_right;
102 		else
103 			return dma;
104 	}
105 
106 	return NULL;
107 }
108 
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)109 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
110 {
111 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
112 	struct vfio_dma *dma;
113 
114 	while (*link) {
115 		parent = *link;
116 		dma = rb_entry(parent, struct vfio_dma, node);
117 
118 		if (new->iova + new->size <= dma->iova)
119 			link = &(*link)->rb_left;
120 		else
121 			link = &(*link)->rb_right;
122 	}
123 
124 	rb_link_node(&new->node, parent, link);
125 	rb_insert_color(&new->node, &iommu->dma_list);
126 }
127 
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)128 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
129 {
130 	rb_erase(&old->node, &iommu->dma_list);
131 }
132 
133 struct vwork {
134 	struct mm_struct	*mm;
135 	long			npage;
136 	struct work_struct	work;
137 };
138 
139 /* delayed decrement/increment for locked_vm */
vfio_lock_acct_bg(struct work_struct * work)140 static void vfio_lock_acct_bg(struct work_struct *work)
141 {
142 	struct vwork *vwork = container_of(work, struct vwork, work);
143 	struct mm_struct *mm;
144 
145 	mm = vwork->mm;
146 	down_write(&mm->mmap_sem);
147 	mm->locked_vm += vwork->npage;
148 	up_write(&mm->mmap_sem);
149 	mmput(mm);
150 	kfree(vwork);
151 }
152 
vfio_lock_acct(long npage)153 static void vfio_lock_acct(long npage)
154 {
155 	struct vwork *vwork;
156 	struct mm_struct *mm;
157 
158 	if (!current->mm || !npage)
159 		return; /* process exited or nothing to do */
160 
161 	if (down_write_trylock(&current->mm->mmap_sem)) {
162 		current->mm->locked_vm += npage;
163 		up_write(&current->mm->mmap_sem);
164 		return;
165 	}
166 
167 	/*
168 	 * Couldn't get mmap_sem lock, so must setup to update
169 	 * mm->locked_vm later. If locked_vm were atomic, we
170 	 * wouldn't need this silliness
171 	 */
172 	vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
173 	if (!vwork)
174 		return;
175 	mm = get_task_mm(current);
176 	if (!mm) {
177 		kfree(vwork);
178 		return;
179 	}
180 	INIT_WORK(&vwork->work, vfio_lock_acct_bg);
181 	vwork->mm = mm;
182 	vwork->npage = npage;
183 	schedule_work(&vwork->work);
184 }
185 
186 /*
187  * Some mappings aren't backed by a struct page, for example an mmap'd
188  * MMIO range for our own or another device.  These use a different
189  * pfn conversion and shouldn't be tracked as locked pages.
190  */
is_invalid_reserved_pfn(unsigned long pfn)191 static bool is_invalid_reserved_pfn(unsigned long pfn)
192 {
193 	if (pfn_valid(pfn)) {
194 		bool reserved;
195 		struct page *tail = pfn_to_page(pfn);
196 		struct page *head = compound_head(tail);
197 		reserved = !!(PageReserved(head));
198 		if (head != tail) {
199 			/*
200 			 * "head" is not a dangling pointer
201 			 * (compound_head takes care of that)
202 			 * but the hugepage may have been split
203 			 * from under us (and we may not hold a
204 			 * reference count on the head page so it can
205 			 * be reused before we run PageReferenced), so
206 			 * we've to check PageTail before returning
207 			 * what we just read.
208 			 */
209 			smp_rmb();
210 			if (PageTail(tail))
211 				return reserved;
212 		}
213 		return PageReserved(tail);
214 	}
215 
216 	return true;
217 }
218 
put_pfn(unsigned long pfn,int prot)219 static int put_pfn(unsigned long pfn, int prot)
220 {
221 	if (!is_invalid_reserved_pfn(pfn)) {
222 		struct page *page = pfn_to_page(pfn);
223 		if (prot & IOMMU_WRITE)
224 			SetPageDirty(page);
225 		put_page(page);
226 		return 1;
227 	}
228 	return 0;
229 }
230 
vaddr_get_pfn(unsigned long vaddr,int prot,unsigned long * pfn)231 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
232 {
233 	struct page *page[1];
234 	struct vm_area_struct *vma;
235 	int ret = -EFAULT;
236 
237 	if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
238 		*pfn = page_to_pfn(page[0]);
239 		return 0;
240 	}
241 
242 	down_read(&current->mm->mmap_sem);
243 
244 	vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
245 
246 	if (vma && vma->vm_flags & VM_PFNMAP) {
247 		*pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
248 		if (is_invalid_reserved_pfn(*pfn))
249 			ret = 0;
250 	}
251 
252 	up_read(&current->mm->mmap_sem);
253 
254 	return ret;
255 }
256 
257 /*
258  * Attempt to pin pages.  We really don't want to track all the pfns and
259  * the iommu can only map chunks of consecutive pfns anyway, so get the
260  * first page and all consecutive pages with the same locking.
261  */
vfio_pin_pages(unsigned long vaddr,long npage,int prot,unsigned long * pfn_base)262 static long vfio_pin_pages(unsigned long vaddr, long npage,
263 			   int prot, unsigned long *pfn_base)
264 {
265 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
266 	bool lock_cap = capable(CAP_IPC_LOCK);
267 	long ret, i;
268 	bool rsvd;
269 
270 	if (!current->mm)
271 		return -ENODEV;
272 
273 	ret = vaddr_get_pfn(vaddr, prot, pfn_base);
274 	if (ret)
275 		return ret;
276 
277 	rsvd = is_invalid_reserved_pfn(*pfn_base);
278 
279 	if (!rsvd && !lock_cap && current->mm->locked_vm + 1 > limit) {
280 		put_pfn(*pfn_base, prot);
281 		pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
282 			limit << PAGE_SHIFT);
283 		return -ENOMEM;
284 	}
285 
286 	if (unlikely(disable_hugepages)) {
287 		if (!rsvd)
288 			vfio_lock_acct(1);
289 		return 1;
290 	}
291 
292 	/* Lock all the consecutive pages from pfn_base */
293 	for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
294 		unsigned long pfn = 0;
295 
296 		ret = vaddr_get_pfn(vaddr, prot, &pfn);
297 		if (ret)
298 			break;
299 
300 		if (pfn != *pfn_base + i ||
301 		    rsvd != is_invalid_reserved_pfn(pfn)) {
302 			put_pfn(pfn, prot);
303 			break;
304 		}
305 
306 		if (!rsvd && !lock_cap &&
307 		    current->mm->locked_vm + i + 1 > limit) {
308 			put_pfn(pfn, prot);
309 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
310 				__func__, limit << PAGE_SHIFT);
311 			break;
312 		}
313 	}
314 
315 	if (!rsvd)
316 		vfio_lock_acct(i);
317 
318 	return i;
319 }
320 
vfio_unpin_pages(unsigned long pfn,long npage,int prot,bool do_accounting)321 static long vfio_unpin_pages(unsigned long pfn, long npage,
322 			     int prot, bool do_accounting)
323 {
324 	unsigned long unlocked = 0;
325 	long i;
326 
327 	for (i = 0; i < npage; i++)
328 		unlocked += put_pfn(pfn++, prot);
329 
330 	if (do_accounting)
331 		vfio_lock_acct(-unlocked);
332 
333 	return unlocked;
334 }
335 
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma)336 static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma)
337 {
338 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
339 	struct vfio_domain *domain, *d;
340 	long unlocked = 0;
341 
342 	if (!dma->size)
343 		return;
344 	/*
345 	 * We use the IOMMU to track the physical addresses, otherwise we'd
346 	 * need a much more complicated tracking system.  Unfortunately that
347 	 * means we need to use one of the iommu domains to figure out the
348 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
349 	 * no iommu translations remaining when the pages are unpinned.
350 	 */
351 	domain = d = list_first_entry(&iommu->domain_list,
352 				      struct vfio_domain, next);
353 
354 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
355 		iommu_unmap(d->domain, dma->iova, dma->size);
356 		cond_resched();
357 	}
358 
359 	while (iova < end) {
360 		size_t unmapped, len;
361 		phys_addr_t phys, next;
362 
363 		phys = iommu_iova_to_phys(domain->domain, iova);
364 		if (WARN_ON(!phys)) {
365 			iova += PAGE_SIZE;
366 			continue;
367 		}
368 
369 		/*
370 		 * To optimize for fewer iommu_unmap() calls, each of which
371 		 * may require hardware cache flushing, try to find the
372 		 * largest contiguous physical memory chunk to unmap.
373 		 */
374 		for (len = PAGE_SIZE;
375 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
376 			next = iommu_iova_to_phys(domain->domain, iova + len);
377 			if (next != phys + len)
378 				break;
379 		}
380 
381 		unmapped = iommu_unmap(domain->domain, iova, len);
382 		if (WARN_ON(!unmapped))
383 			break;
384 
385 		unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
386 					     unmapped >> PAGE_SHIFT,
387 					     dma->prot, false);
388 		iova += unmapped;
389 
390 		cond_resched();
391 	}
392 
393 	vfio_lock_acct(-unlocked);
394 }
395 
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)396 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
397 {
398 	vfio_unmap_unpin(iommu, dma);
399 	vfio_unlink_dma(iommu, dma);
400 	kfree(dma);
401 }
402 
vfio_pgsize_bitmap(struct vfio_iommu * iommu)403 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
404 {
405 	struct vfio_domain *domain;
406 	unsigned long bitmap = ULONG_MAX;
407 
408 	mutex_lock(&iommu->lock);
409 	list_for_each_entry(domain, &iommu->domain_list, next)
410 		bitmap &= domain->domain->ops->pgsize_bitmap;
411 	mutex_unlock(&iommu->lock);
412 
413 	/*
414 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
415 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
416 	 * That way the user will be able to map/unmap buffers whose size/
417 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
418 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
419 	 * to map the buffer.
420 	 */
421 	if (bitmap & ~PAGE_MASK) {
422 		bitmap &= PAGE_MASK;
423 		bitmap |= PAGE_SIZE;
424 	}
425 
426 	return bitmap;
427 }
428 
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap)429 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
430 			     struct vfio_iommu_type1_dma_unmap *unmap)
431 {
432 	uint64_t mask;
433 	struct vfio_dma *dma;
434 	size_t unmapped = 0;
435 	int ret = 0;
436 
437 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
438 
439 	if (unmap->iova & mask)
440 		return -EINVAL;
441 	if (!unmap->size || unmap->size & mask)
442 		return -EINVAL;
443 
444 	WARN_ON(mask & PAGE_MASK);
445 
446 	mutex_lock(&iommu->lock);
447 
448 	/*
449 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
450 	 * avoid tracking individual mappings.  This means that the granularity
451 	 * of the original mapping was lost and the user was allowed to attempt
452 	 * to unmap any range.  Depending on the contiguousness of physical
453 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
454 	 * or may not have worked.  We only guaranteed unmap granularity
455 	 * matching the original mapping; even though it was untracked here,
456 	 * the original mappings are reflected in IOMMU mappings.  This
457 	 * resulted in a couple unusual behaviors.  First, if a range is not
458 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
459 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
460 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
461 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
462 	 * This also returns success and the returned unmap size reflects the
463 	 * actual size unmapped.
464 	 *
465 	 * We attempt to maintain compatibility with this "v1" interface, but
466 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
467 	 * request offset from the beginning of the original mapping will
468 	 * return success with zero sized unmap.  And an unmap request covering
469 	 * the first iova of mapping will unmap the entire range.
470 	 *
471 	 * The v2 version of this interface intends to be more deterministic.
472 	 * Unmap requests must fully cover previous mappings.  Multiple
473 	 * mappings may still be unmaped by specifying large ranges, but there
474 	 * must not be any previous mappings bisected by the range.  An error
475 	 * will be returned if these conditions are not met.  The v2 interface
476 	 * will only return success and a size of zero if there were no
477 	 * mappings within the range.
478 	 */
479 	if (iommu->v2) {
480 		dma = vfio_find_dma(iommu, unmap->iova, 0);
481 		if (dma && dma->iova != unmap->iova) {
482 			ret = -EINVAL;
483 			goto unlock;
484 		}
485 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
486 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
487 			ret = -EINVAL;
488 			goto unlock;
489 		}
490 	}
491 
492 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
493 		if (!iommu->v2 && unmap->iova > dma->iova)
494 			break;
495 		unmapped += dma->size;
496 		vfio_remove_dma(iommu, dma);
497 	}
498 
499 unlock:
500 	mutex_unlock(&iommu->lock);
501 
502 	/* Report how much was unmapped */
503 	unmap->size = unmapped;
504 
505 	return ret;
506 }
507 
508 /*
509  * Turns out AMD IOMMU has a page table bug where it won't map large pages
510  * to a region that previously mapped smaller pages.  This should be fixed
511  * soon, so this is just a temporary workaround to break mappings down into
512  * PAGE_SIZE.  Better to map smaller pages than nothing.
513  */
map_try_harder(struct vfio_domain * domain,dma_addr_t iova,unsigned long pfn,long npage,int prot)514 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
515 			  unsigned long pfn, long npage, int prot)
516 {
517 	long i;
518 	int ret;
519 
520 	for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
521 		ret = iommu_map(domain->domain, iova,
522 				(phys_addr_t)pfn << PAGE_SHIFT,
523 				PAGE_SIZE, prot | domain->prot);
524 		if (ret)
525 			break;
526 	}
527 
528 	for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
529 		iommu_unmap(domain->domain, iova, PAGE_SIZE);
530 
531 	return ret;
532 }
533 
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)534 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
535 			  unsigned long pfn, long npage, int prot)
536 {
537 	struct vfio_domain *d;
538 	int ret;
539 
540 	list_for_each_entry(d, &iommu->domain_list, next) {
541 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
542 				npage << PAGE_SHIFT, prot | d->prot);
543 		if (ret) {
544 			if (ret != -EBUSY ||
545 			    map_try_harder(d, iova, pfn, npage, prot))
546 				goto unwind;
547 		}
548 
549 		cond_resched();
550 	}
551 
552 	return 0;
553 
554 unwind:
555 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
556 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
557 
558 	return ret;
559 }
560 
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)561 static int vfio_dma_do_map(struct vfio_iommu *iommu,
562 			   struct vfio_iommu_type1_dma_map *map)
563 {
564 	dma_addr_t iova = map->iova;
565 	unsigned long vaddr = map->vaddr;
566 	size_t size = map->size;
567 	long npage;
568 	int ret = 0, prot = 0;
569 	uint64_t mask;
570 	struct vfio_dma *dma;
571 	unsigned long pfn;
572 
573 	/* Verify that none of our __u64 fields overflow */
574 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
575 		return -EINVAL;
576 
577 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
578 
579 	WARN_ON(mask & PAGE_MASK);
580 
581 	/* READ/WRITE from device perspective */
582 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
583 		prot |= IOMMU_WRITE;
584 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
585 		prot |= IOMMU_READ;
586 
587 	if (!prot || !size || (size | iova | vaddr) & mask)
588 		return -EINVAL;
589 
590 	/* Don't allow IOVA or virtual address wrap */
591 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
592 		return -EINVAL;
593 
594 	mutex_lock(&iommu->lock);
595 
596 	if (vfio_find_dma(iommu, iova, size)) {
597 		mutex_unlock(&iommu->lock);
598 		return -EEXIST;
599 	}
600 
601 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
602 	if (!dma) {
603 		mutex_unlock(&iommu->lock);
604 		return -ENOMEM;
605 	}
606 
607 	dma->iova = iova;
608 	dma->vaddr = vaddr;
609 	dma->prot = prot;
610 
611 	/* Insert zero-sized and grow as we map chunks of it */
612 	vfio_link_dma(iommu, dma);
613 
614 	while (size) {
615 		/* Pin a contiguous chunk of memory */
616 		npage = vfio_pin_pages(vaddr + dma->size,
617 				       size >> PAGE_SHIFT, prot, &pfn);
618 		if (npage <= 0) {
619 			WARN_ON(!npage);
620 			ret = (int)npage;
621 			break;
622 		}
623 
624 		/* Map it! */
625 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, prot);
626 		if (ret) {
627 			vfio_unpin_pages(pfn, npage, prot, true);
628 			break;
629 		}
630 
631 		size -= npage << PAGE_SHIFT;
632 		dma->size += npage << PAGE_SHIFT;
633 	}
634 
635 	if (ret)
636 		vfio_remove_dma(iommu, dma);
637 
638 	mutex_unlock(&iommu->lock);
639 	return ret;
640 }
641 
vfio_bus_type(struct device * dev,void * data)642 static int vfio_bus_type(struct device *dev, void *data)
643 {
644 	struct bus_type **bus = data;
645 
646 	if (*bus && *bus != dev->bus)
647 		return -EINVAL;
648 
649 	*bus = dev->bus;
650 
651 	return 0;
652 }
653 
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)654 static int vfio_iommu_replay(struct vfio_iommu *iommu,
655 			     struct vfio_domain *domain)
656 {
657 	struct vfio_domain *d;
658 	struct rb_node *n;
659 	int ret;
660 
661 	/* Arbitrarily pick the first domain in the list for lookups */
662 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
663 	n = rb_first(&iommu->dma_list);
664 
665 	/* If there's not a domain, there better not be any mappings */
666 	if (WARN_ON(n && !d))
667 		return -EINVAL;
668 
669 	for (; n; n = rb_next(n)) {
670 		struct vfio_dma *dma;
671 		dma_addr_t iova;
672 
673 		dma = rb_entry(n, struct vfio_dma, node);
674 		iova = dma->iova;
675 
676 		while (iova < dma->iova + dma->size) {
677 			phys_addr_t phys = iommu_iova_to_phys(d->domain, iova);
678 			size_t size;
679 
680 			if (WARN_ON(!phys)) {
681 				iova += PAGE_SIZE;
682 				continue;
683 			}
684 
685 			size = PAGE_SIZE;
686 
687 			while (iova + size < dma->iova + dma->size &&
688 			       phys + size == iommu_iova_to_phys(d->domain,
689 								 iova + size))
690 				size += PAGE_SIZE;
691 
692 			ret = iommu_map(domain->domain, iova, phys,
693 					size, dma->prot | domain->prot);
694 			if (ret)
695 				return ret;
696 
697 			iova += size;
698 		}
699 	}
700 
701 	return 0;
702 }
703 
704 /*
705  * We change our unmap behavior slightly depending on whether the IOMMU
706  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
707  * for practically any contiguous power-of-two mapping we give it.  This means
708  * we don't need to look for contiguous chunks ourselves to make unmapping
709  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
710  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
711  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
712  * hugetlbfs is in use.
713  */
vfio_test_domain_fgsp(struct vfio_domain * domain)714 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
715 {
716 	struct page *pages;
717 	int ret, order = get_order(PAGE_SIZE * 2);
718 
719 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
720 	if (!pages)
721 		return;
722 
723 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
724 			IOMMU_READ | IOMMU_WRITE | domain->prot);
725 	if (!ret) {
726 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
727 
728 		if (unmapped == PAGE_SIZE)
729 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
730 		else
731 			domain->fgsp = true;
732 	}
733 
734 	__free_pages(pages, order);
735 }
736 
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group)737 static int vfio_iommu_type1_attach_group(void *iommu_data,
738 					 struct iommu_group *iommu_group)
739 {
740 	struct vfio_iommu *iommu = iommu_data;
741 	struct vfio_group *group, *g;
742 	struct vfio_domain *domain, *d;
743 	struct bus_type *bus = NULL;
744 	int ret;
745 
746 	mutex_lock(&iommu->lock);
747 
748 	list_for_each_entry(d, &iommu->domain_list, next) {
749 		list_for_each_entry(g, &d->group_list, next) {
750 			if (g->iommu_group != iommu_group)
751 				continue;
752 
753 			mutex_unlock(&iommu->lock);
754 			return -EINVAL;
755 		}
756 	}
757 
758 	group = kzalloc(sizeof(*group), GFP_KERNEL);
759 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
760 	if (!group || !domain) {
761 		ret = -ENOMEM;
762 		goto out_free;
763 	}
764 
765 	group->iommu_group = iommu_group;
766 
767 	/* Determine bus_type in order to allocate a domain */
768 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
769 	if (ret)
770 		goto out_free;
771 
772 	domain->domain = iommu_domain_alloc(bus);
773 	if (!domain->domain) {
774 		ret = -EIO;
775 		goto out_free;
776 	}
777 
778 	if (iommu->nesting) {
779 		int attr = 1;
780 
781 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
782 					    &attr);
783 		if (ret)
784 			goto out_domain;
785 	}
786 
787 	ret = iommu_attach_group(domain->domain, iommu_group);
788 	if (ret)
789 		goto out_domain;
790 
791 	INIT_LIST_HEAD(&domain->group_list);
792 	list_add(&group->next, &domain->group_list);
793 
794 	if (!allow_unsafe_interrupts &&
795 	    !iommu_capable(bus, IOMMU_CAP_INTR_REMAP)) {
796 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
797 		       __func__);
798 		ret = -EPERM;
799 		goto out_detach;
800 	}
801 
802 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
803 		domain->prot |= IOMMU_CACHE;
804 
805 	/*
806 	 * Try to match an existing compatible domain.  We don't want to
807 	 * preclude an IOMMU driver supporting multiple bus_types and being
808 	 * able to include different bus_types in the same IOMMU domain, so
809 	 * we test whether the domains use the same iommu_ops rather than
810 	 * testing if they're on the same bus_type.
811 	 */
812 	list_for_each_entry(d, &iommu->domain_list, next) {
813 		if (d->domain->ops == domain->domain->ops &&
814 		    d->prot == domain->prot) {
815 			iommu_detach_group(domain->domain, iommu_group);
816 			if (!iommu_attach_group(d->domain, iommu_group)) {
817 				list_add(&group->next, &d->group_list);
818 				iommu_domain_free(domain->domain);
819 				kfree(domain);
820 				mutex_unlock(&iommu->lock);
821 				return 0;
822 			}
823 
824 			ret = iommu_attach_group(domain->domain, iommu_group);
825 			if (ret)
826 				goto out_domain;
827 		}
828 	}
829 
830 	vfio_test_domain_fgsp(domain);
831 
832 	/* replay mappings on new domains */
833 	ret = vfio_iommu_replay(iommu, domain);
834 	if (ret)
835 		goto out_detach;
836 
837 	list_add(&domain->next, &iommu->domain_list);
838 
839 	mutex_unlock(&iommu->lock);
840 
841 	return 0;
842 
843 out_detach:
844 	iommu_detach_group(domain->domain, iommu_group);
845 out_domain:
846 	iommu_domain_free(domain->domain);
847 out_free:
848 	kfree(domain);
849 	kfree(group);
850 	mutex_unlock(&iommu->lock);
851 	return ret;
852 }
853 
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)854 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
855 {
856 	struct rb_node *node;
857 
858 	while ((node = rb_first(&iommu->dma_list)))
859 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
860 }
861 
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)862 static void vfio_iommu_type1_detach_group(void *iommu_data,
863 					  struct iommu_group *iommu_group)
864 {
865 	struct vfio_iommu *iommu = iommu_data;
866 	struct vfio_domain *domain;
867 	struct vfio_group *group;
868 
869 	mutex_lock(&iommu->lock);
870 
871 	list_for_each_entry(domain, &iommu->domain_list, next) {
872 		list_for_each_entry(group, &domain->group_list, next) {
873 			if (group->iommu_group != iommu_group)
874 				continue;
875 
876 			iommu_detach_group(domain->domain, iommu_group);
877 			list_del(&group->next);
878 			kfree(group);
879 			/*
880 			 * Group ownership provides privilege, if the group
881 			 * list is empty, the domain goes away.  If it's the
882 			 * last domain, then all the mappings go away too.
883 			 */
884 			if (list_empty(&domain->group_list)) {
885 				if (list_is_singular(&iommu->domain_list))
886 					vfio_iommu_unmap_unpin_all(iommu);
887 				iommu_domain_free(domain->domain);
888 				list_del(&domain->next);
889 				kfree(domain);
890 			}
891 			goto done;
892 		}
893 	}
894 
895 done:
896 	mutex_unlock(&iommu->lock);
897 }
898 
vfio_iommu_type1_open(unsigned long arg)899 static void *vfio_iommu_type1_open(unsigned long arg)
900 {
901 	struct vfio_iommu *iommu;
902 
903 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
904 	if (!iommu)
905 		return ERR_PTR(-ENOMEM);
906 
907 	switch (arg) {
908 	case VFIO_TYPE1_IOMMU:
909 		break;
910 	case VFIO_TYPE1_NESTING_IOMMU:
911 		iommu->nesting = true;
912 	case VFIO_TYPE1v2_IOMMU:
913 		iommu->v2 = true;
914 		break;
915 	default:
916 		kfree(iommu);
917 		return ERR_PTR(-EINVAL);
918 	}
919 
920 	INIT_LIST_HEAD(&iommu->domain_list);
921 	iommu->dma_list = RB_ROOT;
922 	mutex_init(&iommu->lock);
923 
924 	return iommu;
925 }
926 
vfio_iommu_type1_release(void * iommu_data)927 static void vfio_iommu_type1_release(void *iommu_data)
928 {
929 	struct vfio_iommu *iommu = iommu_data;
930 	struct vfio_domain *domain, *domain_tmp;
931 	struct vfio_group *group, *group_tmp;
932 
933 	vfio_iommu_unmap_unpin_all(iommu);
934 
935 	list_for_each_entry_safe(domain, domain_tmp,
936 				 &iommu->domain_list, next) {
937 		list_for_each_entry_safe(group, group_tmp,
938 					 &domain->group_list, next) {
939 			iommu_detach_group(domain->domain, group->iommu_group);
940 			list_del(&group->next);
941 			kfree(group);
942 		}
943 		iommu_domain_free(domain->domain);
944 		list_del(&domain->next);
945 		kfree(domain);
946 	}
947 
948 	kfree(iommu);
949 }
950 
vfio_domains_have_iommu_cache(struct vfio_iommu * iommu)951 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
952 {
953 	struct vfio_domain *domain;
954 	int ret = 1;
955 
956 	mutex_lock(&iommu->lock);
957 	list_for_each_entry(domain, &iommu->domain_list, next) {
958 		if (!(domain->prot & IOMMU_CACHE)) {
959 			ret = 0;
960 			break;
961 		}
962 	}
963 	mutex_unlock(&iommu->lock);
964 
965 	return ret;
966 }
967 
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)968 static long vfio_iommu_type1_ioctl(void *iommu_data,
969 				   unsigned int cmd, unsigned long arg)
970 {
971 	struct vfio_iommu *iommu = iommu_data;
972 	unsigned long minsz;
973 
974 	if (cmd == VFIO_CHECK_EXTENSION) {
975 		switch (arg) {
976 		case VFIO_TYPE1_IOMMU:
977 		case VFIO_TYPE1v2_IOMMU:
978 		case VFIO_TYPE1_NESTING_IOMMU:
979 			return 1;
980 		case VFIO_DMA_CC_IOMMU:
981 			if (!iommu)
982 				return 0;
983 			return vfio_domains_have_iommu_cache(iommu);
984 		default:
985 			return 0;
986 		}
987 	} else if (cmd == VFIO_IOMMU_GET_INFO) {
988 		struct vfio_iommu_type1_info info;
989 
990 		minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
991 
992 		if (copy_from_user(&info, (void __user *)arg, minsz))
993 			return -EFAULT;
994 
995 		if (info.argsz < minsz)
996 			return -EINVAL;
997 
998 		info.flags = 0;
999 
1000 		info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1001 
1002 		return copy_to_user((void __user *)arg, &info, minsz) ?
1003 			-EFAULT : 0;
1004 
1005 	} else if (cmd == VFIO_IOMMU_MAP_DMA) {
1006 		struct vfio_iommu_type1_dma_map map;
1007 		uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1008 				VFIO_DMA_MAP_FLAG_WRITE;
1009 
1010 		minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1011 
1012 		if (copy_from_user(&map, (void __user *)arg, minsz))
1013 			return -EFAULT;
1014 
1015 		if (map.argsz < minsz || map.flags & ~mask)
1016 			return -EINVAL;
1017 
1018 		return vfio_dma_do_map(iommu, &map);
1019 
1020 	} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1021 		struct vfio_iommu_type1_dma_unmap unmap;
1022 		long ret;
1023 
1024 		minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1025 
1026 		if (copy_from_user(&unmap, (void __user *)arg, minsz))
1027 			return -EFAULT;
1028 
1029 		if (unmap.argsz < minsz || unmap.flags)
1030 			return -EINVAL;
1031 
1032 		ret = vfio_dma_do_unmap(iommu, &unmap);
1033 		if (ret)
1034 			return ret;
1035 
1036 		return copy_to_user((void __user *)arg, &unmap, minsz) ?
1037 			-EFAULT : 0;
1038 	}
1039 
1040 	return -ENOTTY;
1041 }
1042 
1043 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1044 	.name		= "vfio-iommu-type1",
1045 	.owner		= THIS_MODULE,
1046 	.open		= vfio_iommu_type1_open,
1047 	.release	= vfio_iommu_type1_release,
1048 	.ioctl		= vfio_iommu_type1_ioctl,
1049 	.attach_group	= vfio_iommu_type1_attach_group,
1050 	.detach_group	= vfio_iommu_type1_detach_group,
1051 };
1052 
vfio_iommu_type1_init(void)1053 static int __init vfio_iommu_type1_init(void)
1054 {
1055 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1056 }
1057 
vfio_iommu_type1_cleanup(void)1058 static void __exit vfio_iommu_type1_cleanup(void)
1059 {
1060 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1061 }
1062 
1063 module_init(vfio_iommu_type1_init);
1064 module_exit(vfio_iommu_type1_cleanup);
1065 
1066 MODULE_VERSION(DRIVER_VERSION);
1067 MODULE_LICENSE("GPL v2");
1068 MODULE_AUTHOR(DRIVER_AUTHOR);
1069 MODULE_DESCRIPTION(DRIVER_DESC);
1070