1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/clk.h>
27 #include <linux/console.h>
28 #include <linux/ctype.h>
29 #include <linux/cpufreq.h>
30 #include <linux/delay.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/ioport.h>
38 #include <linux/major.h>
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/of.h>
42 #include <linux/platform_device.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/scatterlist.h>
45 #include <linux/serial.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "sh-sci.h"
60 
61 /* Offsets into the sci_port->irqs array */
62 enum {
63 	SCIx_ERI_IRQ,
64 	SCIx_RXI_IRQ,
65 	SCIx_TXI_IRQ,
66 	SCIx_BRI_IRQ,
67 	SCIx_NR_IRQS,
68 
69 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
70 };
71 
72 #define SCIx_IRQ_IS_MUXED(port)			\
73 	((port)->irqs[SCIx_ERI_IRQ] ==	\
74 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
75 	((port)->irqs[SCIx_ERI_IRQ] &&	\
76 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
77 
78 struct sci_port {
79 	struct uart_port	port;
80 
81 	/* Platform configuration */
82 	struct plat_sci_port	*cfg;
83 	unsigned int		overrun_reg;
84 	unsigned int		overrun_mask;
85 	unsigned int		error_mask;
86 	unsigned int		error_clear;
87 	unsigned int		sampling_rate;
88 	resource_size_t		reg_size;
89 
90 	/* Break timer */
91 	struct timer_list	break_timer;
92 	int			break_flag;
93 
94 	/* Interface clock */
95 	struct clk		*iclk;
96 	/* Function clock */
97 	struct clk		*fclk;
98 
99 	int			irqs[SCIx_NR_IRQS];
100 	char			*irqstr[SCIx_NR_IRQS];
101 
102 	struct dma_chan			*chan_tx;
103 	struct dma_chan			*chan_rx;
104 
105 #ifdef CONFIG_SERIAL_SH_SCI_DMA
106 	dma_cookie_t			cookie_tx;
107 	dma_cookie_t			cookie_rx[2];
108 	dma_cookie_t			active_rx;
109 	dma_addr_t			tx_dma_addr;
110 	unsigned int			tx_dma_len;
111 	struct scatterlist		sg_rx[2];
112 	void				*rx_buf[2];
113 	size_t				buf_len_rx;
114 	struct work_struct		work_tx;
115 	struct timer_list		rx_timer;
116 	unsigned int			rx_timeout;
117 #endif
118 };
119 
120 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
121 
122 static struct sci_port sci_ports[SCI_NPORTS];
123 static struct uart_driver sci_uart_driver;
124 
125 static inline struct sci_port *
to_sci_port(struct uart_port * uart)126 to_sci_port(struct uart_port *uart)
127 {
128 	return container_of(uart, struct sci_port, port);
129 }
130 
131 struct plat_sci_reg {
132 	u8 offset, size;
133 };
134 
135 /* Helper for invalidating specific entries of an inherited map. */
136 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
137 
138 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
139 	[SCIx_PROBE_REGTYPE] = {
140 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
141 	},
142 
143 	/*
144 	 * Common SCI definitions, dependent on the port's regshift
145 	 * value.
146 	 */
147 	[SCIx_SCI_REGTYPE] = {
148 		[SCSMR]		= { 0x00,  8 },
149 		[SCBRR]		= { 0x01,  8 },
150 		[SCSCR]		= { 0x02,  8 },
151 		[SCxTDR]	= { 0x03,  8 },
152 		[SCxSR]		= { 0x04,  8 },
153 		[SCxRDR]	= { 0x05,  8 },
154 		[SCFCR]		= sci_reg_invalid,
155 		[SCFDR]		= sci_reg_invalid,
156 		[SCTFDR]	= sci_reg_invalid,
157 		[SCRFDR]	= sci_reg_invalid,
158 		[SCSPTR]	= sci_reg_invalid,
159 		[SCLSR]		= sci_reg_invalid,
160 		[HSSRR]		= sci_reg_invalid,
161 		[SCPCR]		= sci_reg_invalid,
162 		[SCPDR]		= sci_reg_invalid,
163 	},
164 
165 	/*
166 	 * Common definitions for legacy IrDA ports, dependent on
167 	 * regshift value.
168 	 */
169 	[SCIx_IRDA_REGTYPE] = {
170 		[SCSMR]		= { 0x00,  8 },
171 		[SCBRR]		= { 0x01,  8 },
172 		[SCSCR]		= { 0x02,  8 },
173 		[SCxTDR]	= { 0x03,  8 },
174 		[SCxSR]		= { 0x04,  8 },
175 		[SCxRDR]	= { 0x05,  8 },
176 		[SCFCR]		= { 0x06,  8 },
177 		[SCFDR]		= { 0x07, 16 },
178 		[SCTFDR]	= sci_reg_invalid,
179 		[SCRFDR]	= sci_reg_invalid,
180 		[SCSPTR]	= sci_reg_invalid,
181 		[SCLSR]		= sci_reg_invalid,
182 		[HSSRR]		= sci_reg_invalid,
183 		[SCPCR]		= sci_reg_invalid,
184 		[SCPDR]		= sci_reg_invalid,
185 	},
186 
187 	/*
188 	 * Common SCIFA definitions.
189 	 */
190 	[SCIx_SCIFA_REGTYPE] = {
191 		[SCSMR]		= { 0x00, 16 },
192 		[SCBRR]		= { 0x04,  8 },
193 		[SCSCR]		= { 0x08, 16 },
194 		[SCxTDR]	= { 0x20,  8 },
195 		[SCxSR]		= { 0x14, 16 },
196 		[SCxRDR]	= { 0x24,  8 },
197 		[SCFCR]		= { 0x18, 16 },
198 		[SCFDR]		= { 0x1c, 16 },
199 		[SCTFDR]	= sci_reg_invalid,
200 		[SCRFDR]	= sci_reg_invalid,
201 		[SCSPTR]	= sci_reg_invalid,
202 		[SCLSR]		= sci_reg_invalid,
203 		[HSSRR]		= sci_reg_invalid,
204 		[SCPCR]		= { 0x30, 16 },
205 		[SCPDR]		= { 0x34, 16 },
206 	},
207 
208 	/*
209 	 * Common SCIFB definitions.
210 	 */
211 	[SCIx_SCIFB_REGTYPE] = {
212 		[SCSMR]		= { 0x00, 16 },
213 		[SCBRR]		= { 0x04,  8 },
214 		[SCSCR]		= { 0x08, 16 },
215 		[SCxTDR]	= { 0x40,  8 },
216 		[SCxSR]		= { 0x14, 16 },
217 		[SCxRDR]	= { 0x60,  8 },
218 		[SCFCR]		= { 0x18, 16 },
219 		[SCFDR]		= sci_reg_invalid,
220 		[SCTFDR]	= { 0x38, 16 },
221 		[SCRFDR]	= { 0x3c, 16 },
222 		[SCSPTR]	= sci_reg_invalid,
223 		[SCLSR]		= sci_reg_invalid,
224 		[HSSRR]		= sci_reg_invalid,
225 		[SCPCR]		= { 0x30, 16 },
226 		[SCPDR]		= { 0x34, 16 },
227 	},
228 
229 	/*
230 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
231 	 * count registers.
232 	 */
233 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
234 		[SCSMR]		= { 0x00, 16 },
235 		[SCBRR]		= { 0x04,  8 },
236 		[SCSCR]		= { 0x08, 16 },
237 		[SCxTDR]	= { 0x0c,  8 },
238 		[SCxSR]		= { 0x10, 16 },
239 		[SCxRDR]	= { 0x14,  8 },
240 		[SCFCR]		= { 0x18, 16 },
241 		[SCFDR]		= { 0x1c, 16 },
242 		[SCTFDR]	= sci_reg_invalid,
243 		[SCRFDR]	= sci_reg_invalid,
244 		[SCSPTR]	= { 0x20, 16 },
245 		[SCLSR]		= { 0x24, 16 },
246 		[HSSRR]		= sci_reg_invalid,
247 		[SCPCR]		= sci_reg_invalid,
248 		[SCPDR]		= sci_reg_invalid,
249 	},
250 
251 	/*
252 	 * Common SH-3 SCIF definitions.
253 	 */
254 	[SCIx_SH3_SCIF_REGTYPE] = {
255 		[SCSMR]		= { 0x00,  8 },
256 		[SCBRR]		= { 0x02,  8 },
257 		[SCSCR]		= { 0x04,  8 },
258 		[SCxTDR]	= { 0x06,  8 },
259 		[SCxSR]		= { 0x08, 16 },
260 		[SCxRDR]	= { 0x0a,  8 },
261 		[SCFCR]		= { 0x0c,  8 },
262 		[SCFDR]		= { 0x0e, 16 },
263 		[SCTFDR]	= sci_reg_invalid,
264 		[SCRFDR]	= sci_reg_invalid,
265 		[SCSPTR]	= sci_reg_invalid,
266 		[SCLSR]		= sci_reg_invalid,
267 		[HSSRR]		= sci_reg_invalid,
268 		[SCPCR]		= sci_reg_invalid,
269 		[SCPDR]		= sci_reg_invalid,
270 	},
271 
272 	/*
273 	 * Common SH-4(A) SCIF(B) definitions.
274 	 */
275 	[SCIx_SH4_SCIF_REGTYPE] = {
276 		[SCSMR]		= { 0x00, 16 },
277 		[SCBRR]		= { 0x04,  8 },
278 		[SCSCR]		= { 0x08, 16 },
279 		[SCxTDR]	= { 0x0c,  8 },
280 		[SCxSR]		= { 0x10, 16 },
281 		[SCxRDR]	= { 0x14,  8 },
282 		[SCFCR]		= { 0x18, 16 },
283 		[SCFDR]		= { 0x1c, 16 },
284 		[SCTFDR]	= sci_reg_invalid,
285 		[SCRFDR]	= sci_reg_invalid,
286 		[SCSPTR]	= { 0x20, 16 },
287 		[SCLSR]		= { 0x24, 16 },
288 		[HSSRR]		= sci_reg_invalid,
289 		[SCPCR]		= sci_reg_invalid,
290 		[SCPDR]		= sci_reg_invalid,
291 	},
292 
293 	/*
294 	 * Common HSCIF definitions.
295 	 */
296 	[SCIx_HSCIF_REGTYPE] = {
297 		[SCSMR]		= { 0x00, 16 },
298 		[SCBRR]		= { 0x04,  8 },
299 		[SCSCR]		= { 0x08, 16 },
300 		[SCxTDR]	= { 0x0c,  8 },
301 		[SCxSR]		= { 0x10, 16 },
302 		[SCxRDR]	= { 0x14,  8 },
303 		[SCFCR]		= { 0x18, 16 },
304 		[SCFDR]		= { 0x1c, 16 },
305 		[SCTFDR]	= sci_reg_invalid,
306 		[SCRFDR]	= sci_reg_invalid,
307 		[SCSPTR]	= { 0x20, 16 },
308 		[SCLSR]		= { 0x24, 16 },
309 		[HSSRR]		= { 0x40, 16 },
310 		[SCPCR]		= sci_reg_invalid,
311 		[SCPDR]		= sci_reg_invalid,
312 	},
313 
314 	/*
315 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
316 	 * register.
317 	 */
318 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
319 		[SCSMR]		= { 0x00, 16 },
320 		[SCBRR]		= { 0x04,  8 },
321 		[SCSCR]		= { 0x08, 16 },
322 		[SCxTDR]	= { 0x0c,  8 },
323 		[SCxSR]		= { 0x10, 16 },
324 		[SCxRDR]	= { 0x14,  8 },
325 		[SCFCR]		= { 0x18, 16 },
326 		[SCFDR]		= { 0x1c, 16 },
327 		[SCTFDR]	= sci_reg_invalid,
328 		[SCRFDR]	= sci_reg_invalid,
329 		[SCSPTR]	= sci_reg_invalid,
330 		[SCLSR]		= { 0x24, 16 },
331 		[HSSRR]		= sci_reg_invalid,
332 		[SCPCR]		= sci_reg_invalid,
333 		[SCPDR]		= sci_reg_invalid,
334 	},
335 
336 	/*
337 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
338 	 * count registers.
339 	 */
340 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
341 		[SCSMR]		= { 0x00, 16 },
342 		[SCBRR]		= { 0x04,  8 },
343 		[SCSCR]		= { 0x08, 16 },
344 		[SCxTDR]	= { 0x0c,  8 },
345 		[SCxSR]		= { 0x10, 16 },
346 		[SCxRDR]	= { 0x14,  8 },
347 		[SCFCR]		= { 0x18, 16 },
348 		[SCFDR]		= { 0x1c, 16 },
349 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
350 		[SCRFDR]	= { 0x20, 16 },
351 		[SCSPTR]	= { 0x24, 16 },
352 		[SCLSR]		= { 0x28, 16 },
353 		[HSSRR]		= sci_reg_invalid,
354 		[SCPCR]		= sci_reg_invalid,
355 		[SCPDR]		= sci_reg_invalid,
356 	},
357 
358 	/*
359 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
360 	 * registers.
361 	 */
362 	[SCIx_SH7705_SCIF_REGTYPE] = {
363 		[SCSMR]		= { 0x00, 16 },
364 		[SCBRR]		= { 0x04,  8 },
365 		[SCSCR]		= { 0x08, 16 },
366 		[SCxTDR]	= { 0x20,  8 },
367 		[SCxSR]		= { 0x14, 16 },
368 		[SCxRDR]	= { 0x24,  8 },
369 		[SCFCR]		= { 0x18, 16 },
370 		[SCFDR]		= { 0x1c, 16 },
371 		[SCTFDR]	= sci_reg_invalid,
372 		[SCRFDR]	= sci_reg_invalid,
373 		[SCSPTR]	= sci_reg_invalid,
374 		[SCLSR]		= sci_reg_invalid,
375 		[HSSRR]		= sci_reg_invalid,
376 		[SCPCR]		= sci_reg_invalid,
377 		[SCPDR]		= sci_reg_invalid,
378 	},
379 };
380 
381 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
382 
383 /*
384  * The "offset" here is rather misleading, in that it refers to an enum
385  * value relative to the port mapping rather than the fixed offset
386  * itself, which needs to be manually retrieved from the platform's
387  * register map for the given port.
388  */
sci_serial_in(struct uart_port * p,int offset)389 static unsigned int sci_serial_in(struct uart_port *p, int offset)
390 {
391 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
392 
393 	if (reg->size == 8)
394 		return ioread8(p->membase + (reg->offset << p->regshift));
395 	else if (reg->size == 16)
396 		return ioread16(p->membase + (reg->offset << p->regshift));
397 	else
398 		WARN(1, "Invalid register access\n");
399 
400 	return 0;
401 }
402 
sci_serial_out(struct uart_port * p,int offset,int value)403 static void sci_serial_out(struct uart_port *p, int offset, int value)
404 {
405 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
406 
407 	if (reg->size == 8)
408 		iowrite8(value, p->membase + (reg->offset << p->regshift));
409 	else if (reg->size == 16)
410 		iowrite16(value, p->membase + (reg->offset << p->regshift));
411 	else
412 		WARN(1, "Invalid register access\n");
413 }
414 
sci_probe_regmap(struct plat_sci_port * cfg)415 static int sci_probe_regmap(struct plat_sci_port *cfg)
416 {
417 	switch (cfg->type) {
418 	case PORT_SCI:
419 		cfg->regtype = SCIx_SCI_REGTYPE;
420 		break;
421 	case PORT_IRDA:
422 		cfg->regtype = SCIx_IRDA_REGTYPE;
423 		break;
424 	case PORT_SCIFA:
425 		cfg->regtype = SCIx_SCIFA_REGTYPE;
426 		break;
427 	case PORT_SCIFB:
428 		cfg->regtype = SCIx_SCIFB_REGTYPE;
429 		break;
430 	case PORT_SCIF:
431 		/*
432 		 * The SH-4 is a bit of a misnomer here, although that's
433 		 * where this particular port layout originated. This
434 		 * configuration (or some slight variation thereof)
435 		 * remains the dominant model for all SCIFs.
436 		 */
437 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
438 		break;
439 	case PORT_HSCIF:
440 		cfg->regtype = SCIx_HSCIF_REGTYPE;
441 		break;
442 	default:
443 		pr_err("Can't probe register map for given port\n");
444 		return -EINVAL;
445 	}
446 
447 	return 0;
448 }
449 
sci_port_enable(struct sci_port * sci_port)450 static void sci_port_enable(struct sci_port *sci_port)
451 {
452 	if (!sci_port->port.dev)
453 		return;
454 
455 	pm_runtime_get_sync(sci_port->port.dev);
456 
457 	clk_prepare_enable(sci_port->iclk);
458 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
459 	clk_prepare_enable(sci_port->fclk);
460 }
461 
sci_port_disable(struct sci_port * sci_port)462 static void sci_port_disable(struct sci_port *sci_port)
463 {
464 	if (!sci_port->port.dev)
465 		return;
466 
467 	/* Cancel the break timer to ensure that the timer handler will not try
468 	 * to access the hardware with clocks and power disabled. Reset the
469 	 * break flag to make the break debouncing state machine ready for the
470 	 * next break.
471 	 */
472 	del_timer_sync(&sci_port->break_timer);
473 	sci_port->break_flag = 0;
474 
475 	clk_disable_unprepare(sci_port->fclk);
476 	clk_disable_unprepare(sci_port->iclk);
477 
478 	pm_runtime_put_sync(sci_port->port.dev);
479 }
480 
port_rx_irq_mask(struct uart_port * port)481 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
482 {
483 	/*
484 	 * Not all ports (such as SCIFA) will support REIE. Rather than
485 	 * special-casing the port type, we check the port initialization
486 	 * IRQ enable mask to see whether the IRQ is desired at all. If
487 	 * it's unset, it's logically inferred that there's no point in
488 	 * testing for it.
489 	 */
490 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
491 }
492 
sci_start_tx(struct uart_port * port)493 static void sci_start_tx(struct uart_port *port)
494 {
495 	struct sci_port *s = to_sci_port(port);
496 	unsigned short ctrl;
497 
498 #ifdef CONFIG_SERIAL_SH_SCI_DMA
499 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
500 		u16 new, scr = serial_port_in(port, SCSCR);
501 		if (s->chan_tx)
502 			new = scr | SCSCR_TDRQE;
503 		else
504 			new = scr & ~SCSCR_TDRQE;
505 		if (new != scr)
506 			serial_port_out(port, SCSCR, new);
507 	}
508 
509 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
510 	    dma_submit_error(s->cookie_tx)) {
511 		s->cookie_tx = 0;
512 		schedule_work(&s->work_tx);
513 	}
514 #endif
515 
516 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
517 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
518 		ctrl = serial_port_in(port, SCSCR);
519 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
520 	}
521 }
522 
sci_stop_tx(struct uart_port * port)523 static void sci_stop_tx(struct uart_port *port)
524 {
525 	unsigned short ctrl;
526 
527 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
528 	ctrl = serial_port_in(port, SCSCR);
529 
530 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
531 		ctrl &= ~SCSCR_TDRQE;
532 
533 	ctrl &= ~SCSCR_TIE;
534 
535 	serial_port_out(port, SCSCR, ctrl);
536 }
537 
sci_start_rx(struct uart_port * port)538 static void sci_start_rx(struct uart_port *port)
539 {
540 	unsigned short ctrl;
541 
542 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
543 
544 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
545 		ctrl &= ~SCSCR_RDRQE;
546 
547 	serial_port_out(port, SCSCR, ctrl);
548 }
549 
sci_stop_rx(struct uart_port * port)550 static void sci_stop_rx(struct uart_port *port)
551 {
552 	unsigned short ctrl;
553 
554 	ctrl = serial_port_in(port, SCSCR);
555 
556 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
557 		ctrl &= ~SCSCR_RDRQE;
558 
559 	ctrl &= ~port_rx_irq_mask(port);
560 
561 	serial_port_out(port, SCSCR, ctrl);
562 }
563 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)564 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
565 {
566 	if (port->type == PORT_SCI) {
567 		/* Just store the mask */
568 		serial_port_out(port, SCxSR, mask);
569 	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
570 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
571 		/* Only clear the status bits we want to clear */
572 		serial_port_out(port, SCxSR,
573 				serial_port_in(port, SCxSR) & mask);
574 	} else {
575 		/* Store the mask, clear parity/framing errors */
576 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
577 	}
578 }
579 
580 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
581 
582 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)583 static int sci_poll_get_char(struct uart_port *port)
584 {
585 	unsigned short status;
586 	int c;
587 
588 	do {
589 		status = serial_port_in(port, SCxSR);
590 		if (status & SCxSR_ERRORS(port)) {
591 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
592 			continue;
593 		}
594 		break;
595 	} while (1);
596 
597 	if (!(status & SCxSR_RDxF(port)))
598 		return NO_POLL_CHAR;
599 
600 	c = serial_port_in(port, SCxRDR);
601 
602 	/* Dummy read */
603 	serial_port_in(port, SCxSR);
604 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
605 
606 	return c;
607 }
608 #endif
609 
sci_poll_put_char(struct uart_port * port,unsigned char c)610 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
611 {
612 	unsigned short status;
613 
614 	do {
615 		status = serial_port_in(port, SCxSR);
616 	} while (!(status & SCxSR_TDxE(port)));
617 
618 	serial_port_out(port, SCxTDR, c);
619 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
620 }
621 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
622 
sci_init_pins(struct uart_port * port,unsigned int cflag)623 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
624 {
625 	struct sci_port *s = to_sci_port(port);
626 	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
627 
628 	/*
629 	 * Use port-specific handler if provided.
630 	 */
631 	if (s->cfg->ops && s->cfg->ops->init_pins) {
632 		s->cfg->ops->init_pins(port, cflag);
633 		return;
634 	}
635 
636 	/*
637 	 * For the generic path SCSPTR is necessary. Bail out if that's
638 	 * unavailable, too.
639 	 */
640 	if (!reg->size)
641 		return;
642 
643 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
644 	    ((!(cflag & CRTSCTS)))) {
645 		unsigned short status;
646 
647 		status = serial_port_in(port, SCSPTR);
648 		status &= ~SCSPTR_CTSIO;
649 		status |= SCSPTR_RTSIO;
650 		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
651 	}
652 }
653 
sci_txfill(struct uart_port * port)654 static int sci_txfill(struct uart_port *port)
655 {
656 	const struct plat_sci_reg *reg;
657 
658 	reg = sci_getreg(port, SCTFDR);
659 	if (reg->size)
660 		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
661 
662 	reg = sci_getreg(port, SCFDR);
663 	if (reg->size)
664 		return serial_port_in(port, SCFDR) >> 8;
665 
666 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
667 }
668 
sci_txroom(struct uart_port * port)669 static int sci_txroom(struct uart_port *port)
670 {
671 	return port->fifosize - sci_txfill(port);
672 }
673 
sci_rxfill(struct uart_port * port)674 static int sci_rxfill(struct uart_port *port)
675 {
676 	const struct plat_sci_reg *reg;
677 
678 	reg = sci_getreg(port, SCRFDR);
679 	if (reg->size)
680 		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
681 
682 	reg = sci_getreg(port, SCFDR);
683 	if (reg->size)
684 		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
685 
686 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
687 }
688 
689 /*
690  * SCI helper for checking the state of the muxed port/RXD pins.
691  */
sci_rxd_in(struct uart_port * port)692 static inline int sci_rxd_in(struct uart_port *port)
693 {
694 	struct sci_port *s = to_sci_port(port);
695 
696 	if (s->cfg->port_reg <= 0)
697 		return 1;
698 
699 	/* Cast for ARM damage */
700 	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
701 }
702 
703 /* ********************************************************************** *
704  *                   the interrupt related routines                       *
705  * ********************************************************************** */
706 
sci_transmit_chars(struct uart_port * port)707 static void sci_transmit_chars(struct uart_port *port)
708 {
709 	struct circ_buf *xmit = &port->state->xmit;
710 	unsigned int stopped = uart_tx_stopped(port);
711 	unsigned short status;
712 	unsigned short ctrl;
713 	int count;
714 
715 	status = serial_port_in(port, SCxSR);
716 	if (!(status & SCxSR_TDxE(port))) {
717 		ctrl = serial_port_in(port, SCSCR);
718 		if (uart_circ_empty(xmit))
719 			ctrl &= ~SCSCR_TIE;
720 		else
721 			ctrl |= SCSCR_TIE;
722 		serial_port_out(port, SCSCR, ctrl);
723 		return;
724 	}
725 
726 	count = sci_txroom(port);
727 
728 	do {
729 		unsigned char c;
730 
731 		if (port->x_char) {
732 			c = port->x_char;
733 			port->x_char = 0;
734 		} else if (!uart_circ_empty(xmit) && !stopped) {
735 			c = xmit->buf[xmit->tail];
736 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
737 		} else {
738 			break;
739 		}
740 
741 		serial_port_out(port, SCxTDR, c);
742 
743 		port->icount.tx++;
744 	} while (--count > 0);
745 
746 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
747 
748 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
749 		uart_write_wakeup(port);
750 	if (uart_circ_empty(xmit)) {
751 		sci_stop_tx(port);
752 	} else {
753 		ctrl = serial_port_in(port, SCSCR);
754 
755 		if (port->type != PORT_SCI) {
756 			serial_port_in(port, SCxSR); /* Dummy read */
757 			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
758 		}
759 
760 		ctrl |= SCSCR_TIE;
761 		serial_port_out(port, SCSCR, ctrl);
762 	}
763 }
764 
765 /* On SH3, SCIF may read end-of-break as a space->mark char */
766 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
767 
sci_receive_chars(struct uart_port * port)768 static void sci_receive_chars(struct uart_port *port)
769 {
770 	struct sci_port *sci_port = to_sci_port(port);
771 	struct tty_port *tport = &port->state->port;
772 	int i, count, copied = 0;
773 	unsigned short status;
774 	unsigned char flag;
775 
776 	status = serial_port_in(port, SCxSR);
777 	if (!(status & SCxSR_RDxF(port)))
778 		return;
779 
780 	while (1) {
781 		/* Don't copy more bytes than there is room for in the buffer */
782 		count = tty_buffer_request_room(tport, sci_rxfill(port));
783 
784 		/* If for any reason we can't copy more data, we're done! */
785 		if (count == 0)
786 			break;
787 
788 		if (port->type == PORT_SCI) {
789 			char c = serial_port_in(port, SCxRDR);
790 			if (uart_handle_sysrq_char(port, c) ||
791 			    sci_port->break_flag)
792 				count = 0;
793 			else
794 				tty_insert_flip_char(tport, c, TTY_NORMAL);
795 		} else {
796 			for (i = 0; i < count; i++) {
797 				char c = serial_port_in(port, SCxRDR);
798 
799 				status = serial_port_in(port, SCxSR);
800 #if defined(CONFIG_CPU_SH3)
801 				/* Skip "chars" during break */
802 				if (sci_port->break_flag) {
803 					if ((c == 0) &&
804 					    (status & SCxSR_FER(port))) {
805 						count--; i--;
806 						continue;
807 					}
808 
809 					/* Nonzero => end-of-break */
810 					dev_dbg(port->dev, "debounce<%02x>\n", c);
811 					sci_port->break_flag = 0;
812 
813 					if (STEPFN(c)) {
814 						count--; i--;
815 						continue;
816 					}
817 				}
818 #endif /* CONFIG_CPU_SH3 */
819 				if (uart_handle_sysrq_char(port, c)) {
820 					count--; i--;
821 					continue;
822 				}
823 
824 				/* Store data and status */
825 				if (status & SCxSR_FER(port)) {
826 					flag = TTY_FRAME;
827 					port->icount.frame++;
828 					dev_notice(port->dev, "frame error\n");
829 				} else if (status & SCxSR_PER(port)) {
830 					flag = TTY_PARITY;
831 					port->icount.parity++;
832 					dev_notice(port->dev, "parity error\n");
833 				} else
834 					flag = TTY_NORMAL;
835 
836 				tty_insert_flip_char(tport, c, flag);
837 			}
838 		}
839 
840 		serial_port_in(port, SCxSR); /* dummy read */
841 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
842 
843 		copied += count;
844 		port->icount.rx += count;
845 	}
846 
847 	if (copied) {
848 		/* Tell the rest of the system the news. New characters! */
849 		tty_flip_buffer_push(tport);
850 	} else {
851 		serial_port_in(port, SCxSR); /* dummy read */
852 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
853 	}
854 }
855 
856 #define SCI_BREAK_JIFFIES (HZ/20)
857 
858 /*
859  * The sci generates interrupts during the break,
860  * 1 per millisecond or so during the break period, for 9600 baud.
861  * So dont bother disabling interrupts.
862  * But dont want more than 1 break event.
863  * Use a kernel timer to periodically poll the rx line until
864  * the break is finished.
865  */
sci_schedule_break_timer(struct sci_port * port)866 static inline void sci_schedule_break_timer(struct sci_port *port)
867 {
868 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
869 }
870 
871 /* Ensure that two consecutive samples find the break over. */
sci_break_timer(unsigned long data)872 static void sci_break_timer(unsigned long data)
873 {
874 	struct sci_port *port = (struct sci_port *)data;
875 
876 	if (sci_rxd_in(&port->port) == 0) {
877 		port->break_flag = 1;
878 		sci_schedule_break_timer(port);
879 	} else if (port->break_flag == 1) {
880 		/* break is over. */
881 		port->break_flag = 2;
882 		sci_schedule_break_timer(port);
883 	} else
884 		port->break_flag = 0;
885 }
886 
sci_handle_errors(struct uart_port * port)887 static int sci_handle_errors(struct uart_port *port)
888 {
889 	int copied = 0;
890 	unsigned short status = serial_port_in(port, SCxSR);
891 	struct tty_port *tport = &port->state->port;
892 	struct sci_port *s = to_sci_port(port);
893 
894 	/* Handle overruns */
895 	if (status & s->overrun_mask) {
896 		port->icount.overrun++;
897 
898 		/* overrun error */
899 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
900 			copied++;
901 
902 		dev_notice(port->dev, "overrun error\n");
903 	}
904 
905 	if (status & SCxSR_FER(port)) {
906 		if (sci_rxd_in(port) == 0) {
907 			/* Notify of BREAK */
908 			struct sci_port *sci_port = to_sci_port(port);
909 
910 			if (!sci_port->break_flag) {
911 				port->icount.brk++;
912 
913 				sci_port->break_flag = 1;
914 				sci_schedule_break_timer(sci_port);
915 
916 				/* Do sysrq handling. */
917 				if (uart_handle_break(port))
918 					return 0;
919 
920 				dev_dbg(port->dev, "BREAK detected\n");
921 
922 				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
923 					copied++;
924 			}
925 
926 		} else {
927 			/* frame error */
928 			port->icount.frame++;
929 
930 			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
931 				copied++;
932 
933 			dev_notice(port->dev, "frame error\n");
934 		}
935 	}
936 
937 	if (status & SCxSR_PER(port)) {
938 		/* parity error */
939 		port->icount.parity++;
940 
941 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
942 			copied++;
943 
944 		dev_notice(port->dev, "parity error\n");
945 	}
946 
947 	if (copied)
948 		tty_flip_buffer_push(tport);
949 
950 	return copied;
951 }
952 
sci_handle_fifo_overrun(struct uart_port * port)953 static int sci_handle_fifo_overrun(struct uart_port *port)
954 {
955 	struct tty_port *tport = &port->state->port;
956 	struct sci_port *s = to_sci_port(port);
957 	const struct plat_sci_reg *reg;
958 	int copied = 0;
959 	u16 status;
960 
961 	reg = sci_getreg(port, s->overrun_reg);
962 	if (!reg->size)
963 		return 0;
964 
965 	status = serial_port_in(port, s->overrun_reg);
966 	if (status & s->overrun_mask) {
967 		status &= ~s->overrun_mask;
968 		serial_port_out(port, s->overrun_reg, status);
969 
970 		port->icount.overrun++;
971 
972 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
973 		tty_flip_buffer_push(tport);
974 
975 		dev_dbg(port->dev, "overrun error\n");
976 		copied++;
977 	}
978 
979 	return copied;
980 }
981 
sci_handle_breaks(struct uart_port * port)982 static int sci_handle_breaks(struct uart_port *port)
983 {
984 	int copied = 0;
985 	unsigned short status = serial_port_in(port, SCxSR);
986 	struct tty_port *tport = &port->state->port;
987 	struct sci_port *s = to_sci_port(port);
988 
989 	if (uart_handle_break(port))
990 		return 0;
991 
992 	if (!s->break_flag && status & SCxSR_BRK(port)) {
993 #if defined(CONFIG_CPU_SH3)
994 		/* Debounce break */
995 		s->break_flag = 1;
996 #endif
997 
998 		port->icount.brk++;
999 
1000 		/* Notify of BREAK */
1001 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1002 			copied++;
1003 
1004 		dev_dbg(port->dev, "BREAK detected\n");
1005 	}
1006 
1007 	if (copied)
1008 		tty_flip_buffer_push(tport);
1009 
1010 	copied += sci_handle_fifo_overrun(port);
1011 
1012 	return copied;
1013 }
1014 
1015 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1016 static void sci_dma_tx_complete(void *arg)
1017 {
1018 	struct sci_port *s = arg;
1019 	struct uart_port *port = &s->port;
1020 	struct circ_buf *xmit = &port->state->xmit;
1021 	unsigned long flags;
1022 
1023 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1024 
1025 	spin_lock_irqsave(&port->lock, flags);
1026 
1027 	xmit->tail += s->tx_dma_len;
1028 	xmit->tail &= UART_XMIT_SIZE - 1;
1029 
1030 	port->icount.tx += s->tx_dma_len;
1031 
1032 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1033 		uart_write_wakeup(port);
1034 
1035 	if (!uart_circ_empty(xmit)) {
1036 		s->cookie_tx = 0;
1037 		schedule_work(&s->work_tx);
1038 	} else {
1039 		s->cookie_tx = -EINVAL;
1040 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1041 			u16 ctrl = serial_port_in(port, SCSCR);
1042 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1043 		}
1044 	}
1045 
1046 	spin_unlock_irqrestore(&port->lock, flags);
1047 }
1048 
1049 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1050 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1051 {
1052 	struct uart_port *port = &s->port;
1053 	struct tty_port *tport = &port->state->port;
1054 	int copied;
1055 
1056 	copied = tty_insert_flip_string(tport, buf, count);
1057 	if (copied < count) {
1058 		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1059 			 count - copied);
1060 		port->icount.buf_overrun++;
1061 	}
1062 
1063 	port->icount.rx += copied;
1064 
1065 	return copied;
1066 }
1067 
sci_dma_rx_find_active(struct sci_port * s)1068 static int sci_dma_rx_find_active(struct sci_port *s)
1069 {
1070 	unsigned int i;
1071 
1072 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1073 		if (s->active_rx == s->cookie_rx[i])
1074 			return i;
1075 
1076 	dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1077 		s->active_rx);
1078 	return -1;
1079 }
1080 
sci_rx_dma_release(struct sci_port * s,bool enable_pio)1081 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1082 {
1083 	struct dma_chan *chan = s->chan_rx;
1084 	struct uart_port *port = &s->port;
1085 	unsigned long flags;
1086 
1087 	spin_lock_irqsave(&port->lock, flags);
1088 	s->chan_rx = NULL;
1089 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1090 	spin_unlock_irqrestore(&port->lock, flags);
1091 	dmaengine_terminate_all(chan);
1092 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1093 			  sg_dma_address(&s->sg_rx[0]));
1094 	dma_release_channel(chan);
1095 	if (enable_pio)
1096 		sci_start_rx(port);
1097 }
1098 
sci_dma_rx_complete(void * arg)1099 static void sci_dma_rx_complete(void *arg)
1100 {
1101 	struct sci_port *s = arg;
1102 	struct dma_chan *chan = s->chan_rx;
1103 	struct uart_port *port = &s->port;
1104 	struct dma_async_tx_descriptor *desc;
1105 	unsigned long flags;
1106 	int active, count = 0;
1107 
1108 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1109 		s->active_rx);
1110 
1111 	spin_lock_irqsave(&port->lock, flags);
1112 
1113 	active = sci_dma_rx_find_active(s);
1114 	if (active >= 0)
1115 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1116 
1117 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1118 
1119 	if (count)
1120 		tty_flip_buffer_push(&port->state->port);
1121 
1122 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1123 				       DMA_DEV_TO_MEM,
1124 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1125 	if (!desc)
1126 		goto fail;
1127 
1128 	desc->callback = sci_dma_rx_complete;
1129 	desc->callback_param = s;
1130 	s->cookie_rx[active] = dmaengine_submit(desc);
1131 	if (dma_submit_error(s->cookie_rx[active]))
1132 		goto fail;
1133 
1134 	s->active_rx = s->cookie_rx[!active];
1135 
1136 	dma_async_issue_pending(chan);
1137 
1138 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1139 		__func__, s->cookie_rx[active], active, s->active_rx);
1140 	spin_unlock_irqrestore(&port->lock, flags);
1141 	return;
1142 
1143 fail:
1144 	spin_unlock_irqrestore(&port->lock, flags);
1145 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1146 	sci_rx_dma_release(s, true);
1147 }
1148 
sci_tx_dma_release(struct sci_port * s,bool enable_pio)1149 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1150 {
1151 	struct dma_chan *chan = s->chan_tx;
1152 	struct uart_port *port = &s->port;
1153 	unsigned long flags;
1154 
1155 	spin_lock_irqsave(&port->lock, flags);
1156 	s->chan_tx = NULL;
1157 	s->cookie_tx = -EINVAL;
1158 	spin_unlock_irqrestore(&port->lock, flags);
1159 	dmaengine_terminate_all(chan);
1160 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1161 			 DMA_TO_DEVICE);
1162 	dma_release_channel(chan);
1163 	if (enable_pio)
1164 		sci_start_tx(port);
1165 }
1166 
sci_submit_rx(struct sci_port * s)1167 static void sci_submit_rx(struct sci_port *s)
1168 {
1169 	struct dma_chan *chan = s->chan_rx;
1170 	int i;
1171 
1172 	for (i = 0; i < 2; i++) {
1173 		struct scatterlist *sg = &s->sg_rx[i];
1174 		struct dma_async_tx_descriptor *desc;
1175 
1176 		desc = dmaengine_prep_slave_sg(chan,
1177 			sg, 1, DMA_DEV_TO_MEM,
1178 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1179 		if (!desc)
1180 			goto fail;
1181 
1182 		desc->callback = sci_dma_rx_complete;
1183 		desc->callback_param = s;
1184 		s->cookie_rx[i] = dmaengine_submit(desc);
1185 		if (dma_submit_error(s->cookie_rx[i]))
1186 			goto fail;
1187 
1188 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1189 			s->cookie_rx[i], i);
1190 	}
1191 
1192 	s->active_rx = s->cookie_rx[0];
1193 
1194 	dma_async_issue_pending(chan);
1195 	return;
1196 
1197 fail:
1198 	if (i)
1199 		dmaengine_terminate_all(chan);
1200 	for (i = 0; i < 2; i++)
1201 		s->cookie_rx[i] = -EINVAL;
1202 	s->active_rx = -EINVAL;
1203 	dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1204 	sci_rx_dma_release(s, true);
1205 }
1206 
work_fn_tx(struct work_struct * work)1207 static void work_fn_tx(struct work_struct *work)
1208 {
1209 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1210 	struct dma_async_tx_descriptor *desc;
1211 	struct dma_chan *chan = s->chan_tx;
1212 	struct uart_port *port = &s->port;
1213 	struct circ_buf *xmit = &port->state->xmit;
1214 	dma_addr_t buf;
1215 
1216 	/*
1217 	 * DMA is idle now.
1218 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1219 	 * offsets and lengths. Since it is a circular buffer, we have to
1220 	 * transmit till the end, and then the rest. Take the port lock to get a
1221 	 * consistent xmit buffer state.
1222 	 */
1223 	spin_lock_irq(&port->lock);
1224 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1225 	s->tx_dma_len = min_t(unsigned int,
1226 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1227 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1228 	spin_unlock_irq(&port->lock);
1229 
1230 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1231 					   DMA_MEM_TO_DEV,
1232 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1233 	if (!desc) {
1234 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1235 		/* switch to PIO */
1236 		sci_tx_dma_release(s, true);
1237 		return;
1238 	}
1239 
1240 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1241 				   DMA_TO_DEVICE);
1242 
1243 	spin_lock_irq(&port->lock);
1244 	desc->callback = sci_dma_tx_complete;
1245 	desc->callback_param = s;
1246 	spin_unlock_irq(&port->lock);
1247 	s->cookie_tx = dmaengine_submit(desc);
1248 	if (dma_submit_error(s->cookie_tx)) {
1249 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1250 		/* switch to PIO */
1251 		sci_tx_dma_release(s, true);
1252 		return;
1253 	}
1254 
1255 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1256 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1257 
1258 	dma_async_issue_pending(chan);
1259 }
1260 
rx_timer_fn(unsigned long arg)1261 static void rx_timer_fn(unsigned long arg)
1262 {
1263 	struct sci_port *s = (struct sci_port *)arg;
1264 	struct dma_chan *chan = s->chan_rx;
1265 	struct uart_port *port = &s->port;
1266 	struct dma_tx_state state;
1267 	enum dma_status status;
1268 	unsigned long flags;
1269 	unsigned int read;
1270 	int active, count;
1271 	u16 scr;
1272 
1273 	spin_lock_irqsave(&port->lock, flags);
1274 
1275 	dev_dbg(port->dev, "DMA Rx timed out\n");
1276 
1277 	active = sci_dma_rx_find_active(s);
1278 	if (active < 0) {
1279 		spin_unlock_irqrestore(&port->lock, flags);
1280 		return;
1281 	}
1282 
1283 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1284 	if (status == DMA_COMPLETE) {
1285 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1286 			s->active_rx, active);
1287 		spin_unlock_irqrestore(&port->lock, flags);
1288 
1289 		/* Let packet complete handler take care of the packet */
1290 		return;
1291 	}
1292 
1293 	dmaengine_pause(chan);
1294 
1295 	/*
1296 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1297 	 * data keeps on coming until transaction is complete so check
1298 	 * for DMA_COMPLETE again
1299 	 * Let packet complete handler take care of the packet
1300 	 */
1301 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1302 	if (status == DMA_COMPLETE) {
1303 		spin_unlock_irqrestore(&port->lock, flags);
1304 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1305 		return;
1306 	}
1307 
1308 	/* Handle incomplete DMA receive */
1309 	dmaengine_terminate_all(s->chan_rx);
1310 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1311 	dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1312 		s->active_rx);
1313 
1314 	if (read) {
1315 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1316 		if (count)
1317 			tty_flip_buffer_push(&port->state->port);
1318 	}
1319 
1320 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1321 		sci_submit_rx(s);
1322 
1323 	/* Direct new serial port interrupts back to CPU */
1324 	scr = serial_port_in(port, SCSCR);
1325 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1326 		scr &= ~SCSCR_RDRQE;
1327 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1328 	}
1329 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1330 
1331 	spin_unlock_irqrestore(&port->lock, flags);
1332 }
1333 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir,unsigned int id)1334 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1335 					     enum dma_transfer_direction dir,
1336 					     unsigned int id)
1337 {
1338 	dma_cap_mask_t mask;
1339 	struct dma_chan *chan;
1340 	struct dma_slave_config cfg;
1341 	int ret;
1342 
1343 	dma_cap_zero(mask);
1344 	dma_cap_set(DMA_SLAVE, mask);
1345 
1346 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1347 					(void *)(unsigned long)id, port->dev,
1348 					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1349 	if (!chan) {
1350 		dev_warn(port->dev,
1351 			 "dma_request_slave_channel_compat failed\n");
1352 		return NULL;
1353 	}
1354 
1355 	memset(&cfg, 0, sizeof(cfg));
1356 	cfg.direction = dir;
1357 	if (dir == DMA_MEM_TO_DEV) {
1358 		cfg.dst_addr = port->mapbase +
1359 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1360 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1361 	} else {
1362 		cfg.src_addr = port->mapbase +
1363 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1364 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1365 	}
1366 
1367 	ret = dmaengine_slave_config(chan, &cfg);
1368 	if (ret) {
1369 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1370 		dma_release_channel(chan);
1371 		return NULL;
1372 	}
1373 
1374 	return chan;
1375 }
1376 
sci_request_dma(struct uart_port * port)1377 static void sci_request_dma(struct uart_port *port)
1378 {
1379 	struct sci_port *s = to_sci_port(port);
1380 	struct dma_chan *chan;
1381 
1382 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1383 
1384 	if (!port->dev->of_node &&
1385 	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1386 		return;
1387 
1388 	s->cookie_tx = -EINVAL;
1389 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1390 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1391 	if (chan) {
1392 		s->chan_tx = chan;
1393 		/* UART circular tx buffer is an aligned page. */
1394 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1395 						port->state->xmit.buf,
1396 						UART_XMIT_SIZE,
1397 						DMA_TO_DEVICE);
1398 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1399 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1400 			dma_release_channel(chan);
1401 			s->chan_tx = NULL;
1402 		} else {
1403 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1404 				__func__, UART_XMIT_SIZE,
1405 				port->state->xmit.buf, &s->tx_dma_addr);
1406 		}
1407 
1408 		INIT_WORK(&s->work_tx, work_fn_tx);
1409 	}
1410 
1411 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1412 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1413 	if (chan) {
1414 		unsigned int i;
1415 		dma_addr_t dma;
1416 		void *buf;
1417 
1418 		s->chan_rx = chan;
1419 
1420 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1421 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1422 					 &dma, GFP_KERNEL);
1423 		if (!buf) {
1424 			dev_warn(port->dev,
1425 				 "Failed to allocate Rx dma buffer, using PIO\n");
1426 			dma_release_channel(chan);
1427 			s->chan_rx = NULL;
1428 			return;
1429 		}
1430 
1431 		for (i = 0; i < 2; i++) {
1432 			struct scatterlist *sg = &s->sg_rx[i];
1433 
1434 			sg_init_table(sg, 1);
1435 			s->rx_buf[i] = buf;
1436 			sg_dma_address(sg) = dma;
1437 			sg_dma_len(sg) = s->buf_len_rx;
1438 
1439 			buf += s->buf_len_rx;
1440 			dma += s->buf_len_rx;
1441 		}
1442 
1443 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1444 
1445 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1446 			sci_submit_rx(s);
1447 	}
1448 }
1449 
sci_free_dma(struct uart_port * port)1450 static void sci_free_dma(struct uart_port *port)
1451 {
1452 	struct sci_port *s = to_sci_port(port);
1453 
1454 	if (s->chan_tx)
1455 		sci_tx_dma_release(s, false);
1456 	if (s->chan_rx)
1457 		sci_rx_dma_release(s, false);
1458 }
1459 #else
sci_request_dma(struct uart_port * port)1460 static inline void sci_request_dma(struct uart_port *port)
1461 {
1462 }
1463 
sci_free_dma(struct uart_port * port)1464 static inline void sci_free_dma(struct uart_port *port)
1465 {
1466 }
1467 #endif
1468 
sci_rx_interrupt(int irq,void * ptr)1469 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1470 {
1471 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1472 	struct uart_port *port = ptr;
1473 	struct sci_port *s = to_sci_port(port);
1474 
1475 	if (s->chan_rx) {
1476 		u16 scr = serial_port_in(port, SCSCR);
1477 		u16 ssr = serial_port_in(port, SCxSR);
1478 
1479 		/* Disable future Rx interrupts */
1480 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1481 			disable_irq_nosync(irq);
1482 			scr |= SCSCR_RDRQE;
1483 		} else {
1484 			scr &= ~SCSCR_RIE;
1485 			sci_submit_rx(s);
1486 		}
1487 		serial_port_out(port, SCSCR, scr);
1488 		/* Clear current interrupt */
1489 		serial_port_out(port, SCxSR,
1490 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1491 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1492 			jiffies, s->rx_timeout);
1493 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1494 
1495 		return IRQ_HANDLED;
1496 	}
1497 #endif
1498 
1499 	/* I think sci_receive_chars has to be called irrespective
1500 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1501 	 * to be disabled?
1502 	 */
1503 	sci_receive_chars(ptr);
1504 
1505 	return IRQ_HANDLED;
1506 }
1507 
sci_tx_interrupt(int irq,void * ptr)1508 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1509 {
1510 	struct uart_port *port = ptr;
1511 	unsigned long flags;
1512 
1513 	spin_lock_irqsave(&port->lock, flags);
1514 	sci_transmit_chars(port);
1515 	spin_unlock_irqrestore(&port->lock, flags);
1516 
1517 	return IRQ_HANDLED;
1518 }
1519 
sci_er_interrupt(int irq,void * ptr)1520 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1521 {
1522 	struct uart_port *port = ptr;
1523 	struct sci_port *s = to_sci_port(port);
1524 
1525 	/* Handle errors */
1526 	if (port->type == PORT_SCI) {
1527 		if (sci_handle_errors(port)) {
1528 			/* discard character in rx buffer */
1529 			serial_port_in(port, SCxSR);
1530 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1531 		}
1532 	} else {
1533 		sci_handle_fifo_overrun(port);
1534 		if (!s->chan_rx)
1535 			sci_receive_chars(ptr);
1536 	}
1537 
1538 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1539 
1540 	/* Kick the transmission */
1541 	if (!s->chan_tx)
1542 		sci_tx_interrupt(irq, ptr);
1543 
1544 	return IRQ_HANDLED;
1545 }
1546 
sci_br_interrupt(int irq,void * ptr)1547 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1548 {
1549 	struct uart_port *port = ptr;
1550 
1551 	/* Handle BREAKs */
1552 	sci_handle_breaks(port);
1553 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1554 
1555 	return IRQ_HANDLED;
1556 }
1557 
sci_mpxed_interrupt(int irq,void * ptr)1558 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1559 {
1560 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1561 	struct uart_port *port = ptr;
1562 	struct sci_port *s = to_sci_port(port);
1563 	irqreturn_t ret = IRQ_NONE;
1564 
1565 	ssr_status = serial_port_in(port, SCxSR);
1566 	scr_status = serial_port_in(port, SCSCR);
1567 	if (s->overrun_reg == SCxSR)
1568 		orer_status = ssr_status;
1569 	else {
1570 		if (sci_getreg(port, s->overrun_reg)->size)
1571 			orer_status = serial_port_in(port, s->overrun_reg);
1572 	}
1573 
1574 	err_enabled = scr_status & port_rx_irq_mask(port);
1575 
1576 	/* Tx Interrupt */
1577 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1578 	    !s->chan_tx)
1579 		ret = sci_tx_interrupt(irq, ptr);
1580 
1581 	/*
1582 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1583 	 * DR flags
1584 	 */
1585 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1586 	    (scr_status & SCSCR_RIE))
1587 		ret = sci_rx_interrupt(irq, ptr);
1588 
1589 	/* Error Interrupt */
1590 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1591 		ret = sci_er_interrupt(irq, ptr);
1592 
1593 	/* Break Interrupt */
1594 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1595 		ret = sci_br_interrupt(irq, ptr);
1596 
1597 	/* Overrun Interrupt */
1598 	if (orer_status & s->overrun_mask) {
1599 		sci_handle_fifo_overrun(port);
1600 		ret = IRQ_HANDLED;
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 static const struct sci_irq_desc {
1607 	const char	*desc;
1608 	irq_handler_t	handler;
1609 } sci_irq_desc[] = {
1610 	/*
1611 	 * Split out handlers, the default case.
1612 	 */
1613 	[SCIx_ERI_IRQ] = {
1614 		.desc = "rx err",
1615 		.handler = sci_er_interrupt,
1616 	},
1617 
1618 	[SCIx_RXI_IRQ] = {
1619 		.desc = "rx full",
1620 		.handler = sci_rx_interrupt,
1621 	},
1622 
1623 	[SCIx_TXI_IRQ] = {
1624 		.desc = "tx empty",
1625 		.handler = sci_tx_interrupt,
1626 	},
1627 
1628 	[SCIx_BRI_IRQ] = {
1629 		.desc = "break",
1630 		.handler = sci_br_interrupt,
1631 	},
1632 
1633 	/*
1634 	 * Special muxed handler.
1635 	 */
1636 	[SCIx_MUX_IRQ] = {
1637 		.desc = "mux",
1638 		.handler = sci_mpxed_interrupt,
1639 	},
1640 };
1641 
sci_request_irq(struct sci_port * port)1642 static int sci_request_irq(struct sci_port *port)
1643 {
1644 	struct uart_port *up = &port->port;
1645 	int i, j, ret = 0;
1646 
1647 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1648 		const struct sci_irq_desc *desc;
1649 		int irq;
1650 
1651 		if (SCIx_IRQ_IS_MUXED(port)) {
1652 			i = SCIx_MUX_IRQ;
1653 			irq = up->irq;
1654 		} else {
1655 			irq = port->irqs[i];
1656 
1657 			/*
1658 			 * Certain port types won't support all of the
1659 			 * available interrupt sources.
1660 			 */
1661 			if (unlikely(irq < 0))
1662 				continue;
1663 		}
1664 
1665 		desc = sci_irq_desc + i;
1666 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1667 					    dev_name(up->dev), desc->desc);
1668 		if (!port->irqstr[j])
1669 			goto out_nomem;
1670 
1671 		ret = request_irq(irq, desc->handler, up->irqflags,
1672 				  port->irqstr[j], port);
1673 		if (unlikely(ret)) {
1674 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1675 			goto out_noirq;
1676 		}
1677 	}
1678 
1679 	return 0;
1680 
1681 out_noirq:
1682 	while (--i >= 0)
1683 		free_irq(port->irqs[i], port);
1684 
1685 out_nomem:
1686 	while (--j >= 0)
1687 		kfree(port->irqstr[j]);
1688 
1689 	return ret;
1690 }
1691 
sci_free_irq(struct sci_port * port)1692 static void sci_free_irq(struct sci_port *port)
1693 {
1694 	int i;
1695 
1696 	/*
1697 	 * Intentionally in reverse order so we iterate over the muxed
1698 	 * IRQ first.
1699 	 */
1700 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1701 		int irq = port->irqs[i];
1702 
1703 		/*
1704 		 * Certain port types won't support all of the available
1705 		 * interrupt sources.
1706 		 */
1707 		if (unlikely(irq < 0))
1708 			continue;
1709 
1710 		free_irq(port->irqs[i], port);
1711 		kfree(port->irqstr[i]);
1712 
1713 		if (SCIx_IRQ_IS_MUXED(port)) {
1714 			/* If there's only one IRQ, we're done. */
1715 			return;
1716 		}
1717 	}
1718 }
1719 
sci_tx_empty(struct uart_port * port)1720 static unsigned int sci_tx_empty(struct uart_port *port)
1721 {
1722 	unsigned short status = serial_port_in(port, SCxSR);
1723 	unsigned short in_tx_fifo = sci_txfill(port);
1724 
1725 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1726 }
1727 
1728 /*
1729  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1730  * CTS/RTS is supported in hardware by at least one port and controlled
1731  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1732  * handled via the ->init_pins() op, which is a bit of a one-way street,
1733  * lacking any ability to defer pin control -- this will later be
1734  * converted over to the GPIO framework).
1735  *
1736  * Other modes (such as loopback) are supported generically on certain
1737  * port types, but not others. For these it's sufficient to test for the
1738  * existence of the support register and simply ignore the port type.
1739  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)1740 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1741 {
1742 	if (mctrl & TIOCM_LOOP) {
1743 		const struct plat_sci_reg *reg;
1744 
1745 		/*
1746 		 * Standard loopback mode for SCFCR ports.
1747 		 */
1748 		reg = sci_getreg(port, SCFCR);
1749 		if (reg->size)
1750 			serial_port_out(port, SCFCR,
1751 					serial_port_in(port, SCFCR) |
1752 					SCFCR_LOOP);
1753 	}
1754 }
1755 
sci_get_mctrl(struct uart_port * port)1756 static unsigned int sci_get_mctrl(struct uart_port *port)
1757 {
1758 	/*
1759 	 * CTS/RTS is handled in hardware when supported, while nothing
1760 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1761 	 */
1762 	return TIOCM_DSR | TIOCM_CAR;
1763 }
1764 
sci_break_ctl(struct uart_port * port,int break_state)1765 static void sci_break_ctl(struct uart_port *port, int break_state)
1766 {
1767 	struct sci_port *s = to_sci_port(port);
1768 	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1769 	unsigned short scscr, scsptr;
1770 
1771 	/* check wheter the port has SCSPTR */
1772 	if (!reg->size) {
1773 		/*
1774 		 * Not supported by hardware. Most parts couple break and rx
1775 		 * interrupts together, with break detection always enabled.
1776 		 */
1777 		return;
1778 	}
1779 
1780 	scsptr = serial_port_in(port, SCSPTR);
1781 	scscr = serial_port_in(port, SCSCR);
1782 
1783 	if (break_state == -1) {
1784 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1785 		scscr &= ~SCSCR_TE;
1786 	} else {
1787 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1788 		scscr |= SCSCR_TE;
1789 	}
1790 
1791 	serial_port_out(port, SCSPTR, scsptr);
1792 	serial_port_out(port, SCSCR, scscr);
1793 }
1794 
sci_startup(struct uart_port * port)1795 static int sci_startup(struct uart_port *port)
1796 {
1797 	struct sci_port *s = to_sci_port(port);
1798 	unsigned long flags;
1799 	int ret;
1800 
1801 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1802 
1803 	ret = sci_request_irq(s);
1804 	if (unlikely(ret < 0))
1805 		return ret;
1806 
1807 	sci_request_dma(port);
1808 
1809 	spin_lock_irqsave(&port->lock, flags);
1810 	sci_start_tx(port);
1811 	sci_start_rx(port);
1812 	spin_unlock_irqrestore(&port->lock, flags);
1813 
1814 	return 0;
1815 }
1816 
sci_shutdown(struct uart_port * port)1817 static void sci_shutdown(struct uart_port *port)
1818 {
1819 	struct sci_port *s = to_sci_port(port);
1820 	unsigned long flags;
1821 
1822 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1823 
1824 	spin_lock_irqsave(&port->lock, flags);
1825 	sci_stop_rx(port);
1826 	sci_stop_tx(port);
1827 	spin_unlock_irqrestore(&port->lock, flags);
1828 
1829 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1830 	if (s->chan_rx) {
1831 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1832 			port->line);
1833 		del_timer_sync(&s->rx_timer);
1834 	}
1835 #endif
1836 
1837 	sci_free_dma(port);
1838 	sci_free_irq(s);
1839 }
1840 
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned long freq)1841 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1842 				   unsigned long freq)
1843 {
1844 	if (s->sampling_rate)
1845 		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1846 
1847 	/* Warn, but use a safe default */
1848 	WARN_ON(1);
1849 
1850 	return ((freq + 16 * bps) / (32 * bps) - 1);
1851 }
1852 
1853 /* calculate frame length from SMR */
sci_baud_calc_frame_len(unsigned int smr_val)1854 static int sci_baud_calc_frame_len(unsigned int smr_val)
1855 {
1856 	int len = 10;
1857 
1858 	if (smr_val & SCSMR_CHR)
1859 		len--;
1860 	if (smr_val & SCSMR_PE)
1861 		len++;
1862 	if (smr_val & SCSMR_STOP)
1863 		len++;
1864 
1865 	return len;
1866 }
1867 
1868 
1869 /* calculate sample rate, BRR, and clock select for HSCIF */
sci_baud_calc_hscif(unsigned int bps,unsigned long freq,int * brr,unsigned int * srr,unsigned int * cks,int frame_len)1870 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1871 				int *brr, unsigned int *srr,
1872 				unsigned int *cks, int frame_len)
1873 {
1874 	int sr, c, br, err, recv_margin;
1875 	int min_err = 1000; /* 100% */
1876 	int recv_max_margin = 0;
1877 
1878 	/* Find the combination of sample rate and clock select with the
1879 	   smallest deviation from the desired baud rate. */
1880 	for (sr = 8; sr <= 32; sr++) {
1881 		for (c = 0; c <= 3; c++) {
1882 			/* integerized formulas from HSCIF documentation */
1883 			br = DIV_ROUND_CLOSEST(freq, (sr *
1884 					      (1 << (2 * c + 1)) * bps)) - 1;
1885 			br = clamp(br, 0, 255);
1886 			err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1887 					       (1 << (2 * c + 1)) / 1000)) -
1888 					       1000;
1889 			/* Calc recv margin
1890 			 * M: Receive margin (%)
1891 			 * N: Ratio of bit rate to clock (N = sampling rate)
1892 			 * D: Clock duty (D = 0 to 1.0)
1893 			 * L: Frame length (L = 9 to 12)
1894 			 * F: Absolute value of clock frequency deviation
1895 			 *
1896 			 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1897 			 *      (|D - 0.5| / N * (1 + F))|
1898 			 *  NOTE: Usually, treat D for 0.5, F is 0 by this
1899 			 *        calculation.
1900 			 */
1901 			recv_margin = abs((500 -
1902 					DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1903 			if (abs(min_err) > abs(err)) {
1904 				min_err = err;
1905 				recv_max_margin = recv_margin;
1906 			} else if ((min_err == err) &&
1907 				   (recv_margin > recv_max_margin))
1908 				recv_max_margin = recv_margin;
1909 			else
1910 				continue;
1911 
1912 			*brr = br;
1913 			*srr = sr - 1;
1914 			*cks = c;
1915 		}
1916 	}
1917 
1918 	if (min_err == 1000) {
1919 		WARN_ON(1);
1920 		/* use defaults */
1921 		*brr = 255;
1922 		*srr = 15;
1923 		*cks = 0;
1924 	}
1925 }
1926 
sci_reset(struct uart_port * port)1927 static void sci_reset(struct uart_port *port)
1928 {
1929 	const struct plat_sci_reg *reg;
1930 	unsigned int status;
1931 
1932 	do {
1933 		status = serial_port_in(port, SCxSR);
1934 	} while (!(status & SCxSR_TEND(port)));
1935 
1936 	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1937 
1938 	reg = sci_getreg(port, SCFCR);
1939 	if (reg->size)
1940 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1941 }
1942 
sci_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)1943 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1944 			    struct ktermios *old)
1945 {
1946 	struct sci_port *s = to_sci_port(port);
1947 	const struct plat_sci_reg *reg;
1948 	unsigned int baud, smr_val = 0, max_baud, cks = 0;
1949 	int t = -1;
1950 	unsigned int srr = 15;
1951 
1952 	if ((termios->c_cflag & CSIZE) == CS7)
1953 		smr_val |= SCSMR_CHR;
1954 	if (termios->c_cflag & PARENB)
1955 		smr_val |= SCSMR_PE;
1956 	if (termios->c_cflag & PARODD)
1957 		smr_val |= SCSMR_PE | SCSMR_ODD;
1958 	if (termios->c_cflag & CSTOPB)
1959 		smr_val |= SCSMR_STOP;
1960 
1961 	/*
1962 	 * earlyprintk comes here early on with port->uartclk set to zero.
1963 	 * the clock framework is not up and running at this point so here
1964 	 * we assume that 115200 is the maximum baud rate. please note that
1965 	 * the baud rate is not programmed during earlyprintk - it is assumed
1966 	 * that the previous boot loader has enabled required clocks and
1967 	 * setup the baud rate generator hardware for us already.
1968 	 */
1969 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1970 
1971 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1972 	if (likely(baud && port->uartclk)) {
1973 		if (s->cfg->type == PORT_HSCIF) {
1974 			int frame_len = sci_baud_calc_frame_len(smr_val);
1975 			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1976 					    &cks, frame_len);
1977 		} else {
1978 			t = sci_scbrr_calc(s, baud, port->uartclk);
1979 			for (cks = 0; t >= 256 && cks <= 3; cks++)
1980 				t >>= 2;
1981 		}
1982 	}
1983 
1984 	sci_port_enable(s);
1985 
1986 	sci_reset(port);
1987 
1988 	smr_val |= serial_port_in(port, SCSMR) & SCSMR_CKS;
1989 
1990 	uart_update_timeout(port, termios->c_cflag, baud);
1991 
1992 	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1993 		__func__, smr_val, cks, t, s->cfg->scscr);
1994 
1995 	if (t >= 0) {
1996 		serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1997 		serial_port_out(port, SCBRR, t);
1998 		reg = sci_getreg(port, HSSRR);
1999 		if (reg->size)
2000 			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2001 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
2002 	} else
2003 		serial_port_out(port, SCSMR, smr_val);
2004 
2005 	sci_init_pins(port, termios->c_cflag);
2006 
2007 	reg = sci_getreg(port, SCFCR);
2008 	if (reg->size) {
2009 		unsigned short ctrl = serial_port_in(port, SCFCR);
2010 
2011 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2012 			if (termios->c_cflag & CRTSCTS)
2013 				ctrl |= SCFCR_MCE;
2014 			else
2015 				ctrl &= ~SCFCR_MCE;
2016 		}
2017 
2018 		/*
2019 		 * As we've done a sci_reset() above, ensure we don't
2020 		 * interfere with the FIFOs while toggling MCE. As the
2021 		 * reset values could still be set, simply mask them out.
2022 		 */
2023 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2024 
2025 		serial_port_out(port, SCFCR, ctrl);
2026 	}
2027 
2028 	serial_port_out(port, SCSCR, s->cfg->scscr);
2029 
2030 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2031 	/*
2032 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2033 	 * See serial_core.c::uart_update_timeout().
2034 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2035 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2036 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2037 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2038 	 * value obtained by this formula is too small. Therefore, if the value
2039 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2040 	 */
2041 	if (s->chan_rx) {
2042 		unsigned int bits;
2043 
2044 		/* byte size and parity */
2045 		switch (termios->c_cflag & CSIZE) {
2046 		case CS5:
2047 			bits = 7;
2048 			break;
2049 		case CS6:
2050 			bits = 8;
2051 			break;
2052 		case CS7:
2053 			bits = 9;
2054 			break;
2055 		default:
2056 			bits = 10;
2057 			break;
2058 		}
2059 
2060 		if (termios->c_cflag & CSTOPB)
2061 			bits++;
2062 		if (termios->c_cflag & PARENB)
2063 			bits++;
2064 		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2065 					     (baud / 10), 10);
2066 		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2067 			s->rx_timeout * 1000 / HZ, port->timeout);
2068 		if (s->rx_timeout < msecs_to_jiffies(20))
2069 			s->rx_timeout = msecs_to_jiffies(20);
2070 	}
2071 #endif
2072 
2073 	if ((termios->c_cflag & CREAD) != 0)
2074 		sci_start_rx(port);
2075 
2076 	sci_port_disable(s);
2077 }
2078 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2079 static void sci_pm(struct uart_port *port, unsigned int state,
2080 		   unsigned int oldstate)
2081 {
2082 	struct sci_port *sci_port = to_sci_port(port);
2083 
2084 	switch (state) {
2085 	case UART_PM_STATE_OFF:
2086 		sci_port_disable(sci_port);
2087 		break;
2088 	default:
2089 		sci_port_enable(sci_port);
2090 		break;
2091 	}
2092 }
2093 
sci_type(struct uart_port * port)2094 static const char *sci_type(struct uart_port *port)
2095 {
2096 	switch (port->type) {
2097 	case PORT_IRDA:
2098 		return "irda";
2099 	case PORT_SCI:
2100 		return "sci";
2101 	case PORT_SCIF:
2102 		return "scif";
2103 	case PORT_SCIFA:
2104 		return "scifa";
2105 	case PORT_SCIFB:
2106 		return "scifb";
2107 	case PORT_HSCIF:
2108 		return "hscif";
2109 	}
2110 
2111 	return NULL;
2112 }
2113 
sci_remap_port(struct uart_port * port)2114 static int sci_remap_port(struct uart_port *port)
2115 {
2116 	struct sci_port *sport = to_sci_port(port);
2117 
2118 	/*
2119 	 * Nothing to do if there's already an established membase.
2120 	 */
2121 	if (port->membase)
2122 		return 0;
2123 
2124 	if (port->flags & UPF_IOREMAP) {
2125 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2126 		if (unlikely(!port->membase)) {
2127 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2128 			return -ENXIO;
2129 		}
2130 	} else {
2131 		/*
2132 		 * For the simple (and majority of) cases where we don't
2133 		 * need to do any remapping, just cast the cookie
2134 		 * directly.
2135 		 */
2136 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2137 	}
2138 
2139 	return 0;
2140 }
2141 
sci_release_port(struct uart_port * port)2142 static void sci_release_port(struct uart_port *port)
2143 {
2144 	struct sci_port *sport = to_sci_port(port);
2145 
2146 	if (port->flags & UPF_IOREMAP) {
2147 		iounmap(port->membase);
2148 		port->membase = NULL;
2149 	}
2150 
2151 	release_mem_region(port->mapbase, sport->reg_size);
2152 }
2153 
sci_request_port(struct uart_port * port)2154 static int sci_request_port(struct uart_port *port)
2155 {
2156 	struct resource *res;
2157 	struct sci_port *sport = to_sci_port(port);
2158 	int ret;
2159 
2160 	res = request_mem_region(port->mapbase, sport->reg_size,
2161 				 dev_name(port->dev));
2162 	if (unlikely(res == NULL)) {
2163 		dev_err(port->dev, "request_mem_region failed.");
2164 		return -EBUSY;
2165 	}
2166 
2167 	ret = sci_remap_port(port);
2168 	if (unlikely(ret != 0)) {
2169 		release_resource(res);
2170 		return ret;
2171 	}
2172 
2173 	return 0;
2174 }
2175 
sci_config_port(struct uart_port * port,int flags)2176 static void sci_config_port(struct uart_port *port, int flags)
2177 {
2178 	if (flags & UART_CONFIG_TYPE) {
2179 		struct sci_port *sport = to_sci_port(port);
2180 
2181 		port->type = sport->cfg->type;
2182 		sci_request_port(port);
2183 	}
2184 }
2185 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2186 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2187 {
2188 	if (ser->baud_base < 2400)
2189 		/* No paper tape reader for Mitch.. */
2190 		return -EINVAL;
2191 
2192 	return 0;
2193 }
2194 
2195 static struct uart_ops sci_uart_ops = {
2196 	.tx_empty	= sci_tx_empty,
2197 	.set_mctrl	= sci_set_mctrl,
2198 	.get_mctrl	= sci_get_mctrl,
2199 	.start_tx	= sci_start_tx,
2200 	.stop_tx	= sci_stop_tx,
2201 	.stop_rx	= sci_stop_rx,
2202 	.break_ctl	= sci_break_ctl,
2203 	.startup	= sci_startup,
2204 	.shutdown	= sci_shutdown,
2205 	.set_termios	= sci_set_termios,
2206 	.pm		= sci_pm,
2207 	.type		= sci_type,
2208 	.release_port	= sci_release_port,
2209 	.request_port	= sci_request_port,
2210 	.config_port	= sci_config_port,
2211 	.verify_port	= sci_verify_port,
2212 #ifdef CONFIG_CONSOLE_POLL
2213 	.poll_get_char	= sci_poll_get_char,
2214 	.poll_put_char	= sci_poll_put_char,
2215 #endif
2216 };
2217 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,struct plat_sci_port * p,bool early)2218 static int sci_init_single(struct platform_device *dev,
2219 			   struct sci_port *sci_port, unsigned int index,
2220 			   struct plat_sci_port *p, bool early)
2221 {
2222 	struct uart_port *port = &sci_port->port;
2223 	const struct resource *res;
2224 	unsigned int i;
2225 	int ret;
2226 
2227 	sci_port->cfg	= p;
2228 
2229 	port->ops	= &sci_uart_ops;
2230 	port->iotype	= UPIO_MEM;
2231 	port->line	= index;
2232 
2233 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2234 	if (res == NULL)
2235 		return -ENOMEM;
2236 
2237 	port->mapbase = res->start;
2238 	sci_port->reg_size = resource_size(res);
2239 
2240 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2241 		sci_port->irqs[i] = platform_get_irq(dev, i);
2242 
2243 	/* The SCI generates several interrupts. They can be muxed together or
2244 	 * connected to different interrupt lines. In the muxed case only one
2245 	 * interrupt resource is specified. In the non-muxed case three or four
2246 	 * interrupt resources are specified, as the BRI interrupt is optional.
2247 	 */
2248 	if (sci_port->irqs[0] < 0)
2249 		return -ENXIO;
2250 
2251 	if (sci_port->irqs[1] < 0) {
2252 		sci_port->irqs[1] = sci_port->irqs[0];
2253 		sci_port->irqs[2] = sci_port->irqs[0];
2254 		sci_port->irqs[3] = sci_port->irqs[0];
2255 	}
2256 
2257 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2258 		ret = sci_probe_regmap(p);
2259 		if (unlikely(ret))
2260 			return ret;
2261 	}
2262 
2263 	switch (p->type) {
2264 	case PORT_SCIFB:
2265 		port->fifosize = 256;
2266 		sci_port->overrun_reg = SCxSR;
2267 		sci_port->overrun_mask = SCIFA_ORER;
2268 		sci_port->sampling_rate = 16;
2269 		break;
2270 	case PORT_HSCIF:
2271 		port->fifosize = 128;
2272 		sci_port->overrun_reg = SCLSR;
2273 		sci_port->overrun_mask = SCLSR_ORER;
2274 		sci_port->sampling_rate = 0;
2275 		break;
2276 	case PORT_SCIFA:
2277 		port->fifosize = 64;
2278 		sci_port->overrun_reg = SCxSR;
2279 		sci_port->overrun_mask = SCIFA_ORER;
2280 		sci_port->sampling_rate = 16;
2281 		break;
2282 	case PORT_SCIF:
2283 		port->fifosize = 16;
2284 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2285 			sci_port->overrun_reg = SCxSR;
2286 			sci_port->overrun_mask = SCIFA_ORER;
2287 			sci_port->sampling_rate = 16;
2288 		} else {
2289 			sci_port->overrun_reg = SCLSR;
2290 			sci_port->overrun_mask = SCLSR_ORER;
2291 			sci_port->sampling_rate = 32;
2292 		}
2293 		break;
2294 	default:
2295 		port->fifosize = 1;
2296 		sci_port->overrun_reg = SCxSR;
2297 		sci_port->overrun_mask = SCI_ORER;
2298 		sci_port->sampling_rate = 32;
2299 		break;
2300 	}
2301 
2302 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2303 	 * match the SoC datasheet, this should be investigated. Let platform
2304 	 * data override the sampling rate for now.
2305 	 */
2306 	if (p->sampling_rate)
2307 		sci_port->sampling_rate = p->sampling_rate;
2308 
2309 	if (!early) {
2310 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2311 		if (IS_ERR(sci_port->iclk)) {
2312 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2313 			if (IS_ERR(sci_port->iclk)) {
2314 				dev_err(&dev->dev, "can't get iclk\n");
2315 				return PTR_ERR(sci_port->iclk);
2316 			}
2317 		}
2318 
2319 		/*
2320 		 * The function clock is optional, ignore it if we can't
2321 		 * find it.
2322 		 */
2323 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2324 		if (IS_ERR(sci_port->fclk))
2325 			sci_port->fclk = NULL;
2326 
2327 		port->dev = &dev->dev;
2328 
2329 		pm_runtime_enable(&dev->dev);
2330 	}
2331 
2332 	sci_port->break_timer.data = (unsigned long)sci_port;
2333 	sci_port->break_timer.function = sci_break_timer;
2334 	init_timer(&sci_port->break_timer);
2335 
2336 	/*
2337 	 * Establish some sensible defaults for the error detection.
2338 	 */
2339 	if (p->type == PORT_SCI) {
2340 		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2341 		sci_port->error_clear = SCI_ERROR_CLEAR;
2342 	} else {
2343 		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2344 		sci_port->error_clear = SCIF_ERROR_CLEAR;
2345 	}
2346 
2347 	/*
2348 	 * Make the error mask inclusive of overrun detection, if
2349 	 * supported.
2350 	 */
2351 	if (sci_port->overrun_reg == SCxSR) {
2352 		sci_port->error_mask |= sci_port->overrun_mask;
2353 		sci_port->error_clear &= ~sci_port->overrun_mask;
2354 	}
2355 
2356 	port->type		= p->type;
2357 	port->flags		= UPF_FIXED_PORT | p->flags;
2358 	port->regshift		= p->regshift;
2359 
2360 	/*
2361 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2362 	 * for the multi-IRQ ports, which is where we are primarily
2363 	 * concerned with the shutdown path synchronization.
2364 	 *
2365 	 * For the muxed case there's nothing more to do.
2366 	 */
2367 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2368 	port->irqflags		= 0;
2369 
2370 	port->serial_in		= sci_serial_in;
2371 	port->serial_out	= sci_serial_out;
2372 
2373 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2374 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2375 			p->dma_slave_tx, p->dma_slave_rx);
2376 
2377 	return 0;
2378 }
2379 
sci_cleanup_single(struct sci_port * port)2380 static void sci_cleanup_single(struct sci_port *port)
2381 {
2382 	clk_put(port->iclk);
2383 	clk_put(port->fclk);
2384 
2385 	pm_runtime_disable(port->port.dev);
2386 }
2387 
2388 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
serial_console_putchar(struct uart_port * port,int ch)2389 static void serial_console_putchar(struct uart_port *port, int ch)
2390 {
2391 	sci_poll_put_char(port, ch);
2392 }
2393 
2394 /*
2395  *	Print a string to the serial port trying not to disturb
2396  *	any possible real use of the port...
2397  */
serial_console_write(struct console * co,const char * s,unsigned count)2398 static void serial_console_write(struct console *co, const char *s,
2399 				 unsigned count)
2400 {
2401 	struct sci_port *sci_port = &sci_ports[co->index];
2402 	struct uart_port *port = &sci_port->port;
2403 	unsigned short bits, ctrl;
2404 	unsigned long flags;
2405 	int locked = 1;
2406 
2407 	local_irq_save(flags);
2408 	if (port->sysrq)
2409 		locked = 0;
2410 	else if (oops_in_progress)
2411 		locked = spin_trylock(&port->lock);
2412 	else
2413 		spin_lock(&port->lock);
2414 
2415 	/* first save the SCSCR then disable the interrupts */
2416 	ctrl = serial_port_in(port, SCSCR);
2417 	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2418 
2419 	uart_console_write(port, s, count, serial_console_putchar);
2420 
2421 	/* wait until fifo is empty and last bit has been transmitted */
2422 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2423 	while ((serial_port_in(port, SCxSR) & bits) != bits)
2424 		cpu_relax();
2425 
2426 	/* restore the SCSCR */
2427 	serial_port_out(port, SCSCR, ctrl);
2428 
2429 	if (locked)
2430 		spin_unlock(&port->lock);
2431 	local_irq_restore(flags);
2432 }
2433 
serial_console_setup(struct console * co,char * options)2434 static int serial_console_setup(struct console *co, char *options)
2435 {
2436 	struct sci_port *sci_port;
2437 	struct uart_port *port;
2438 	int baud = 115200;
2439 	int bits = 8;
2440 	int parity = 'n';
2441 	int flow = 'n';
2442 	int ret;
2443 
2444 	/*
2445 	 * Refuse to handle any bogus ports.
2446 	 */
2447 	if (co->index < 0 || co->index >= SCI_NPORTS)
2448 		return -ENODEV;
2449 
2450 	sci_port = &sci_ports[co->index];
2451 	port = &sci_port->port;
2452 
2453 	/*
2454 	 * Refuse to handle uninitialized ports.
2455 	 */
2456 	if (!port->ops)
2457 		return -ENODEV;
2458 
2459 	ret = sci_remap_port(port);
2460 	if (unlikely(ret != 0))
2461 		return ret;
2462 
2463 	if (options)
2464 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2465 
2466 	return uart_set_options(port, co, baud, parity, bits, flow);
2467 }
2468 
2469 static struct console serial_console = {
2470 	.name		= "ttySC",
2471 	.device		= uart_console_device,
2472 	.write		= serial_console_write,
2473 	.setup		= serial_console_setup,
2474 	.flags		= CON_PRINTBUFFER,
2475 	.index		= -1,
2476 	.data		= &sci_uart_driver,
2477 };
2478 
2479 static struct console early_serial_console = {
2480 	.name           = "early_ttySC",
2481 	.write          = serial_console_write,
2482 	.flags          = CON_PRINTBUFFER,
2483 	.index		= -1,
2484 };
2485 
2486 static char early_serial_buf[32];
2487 
sci_probe_earlyprintk(struct platform_device * pdev)2488 static int sci_probe_earlyprintk(struct platform_device *pdev)
2489 {
2490 	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2491 
2492 	if (early_serial_console.data)
2493 		return -EEXIST;
2494 
2495 	early_serial_console.index = pdev->id;
2496 
2497 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2498 
2499 	serial_console_setup(&early_serial_console, early_serial_buf);
2500 
2501 	if (!strstr(early_serial_buf, "keep"))
2502 		early_serial_console.flags |= CON_BOOT;
2503 
2504 	register_console(&early_serial_console);
2505 	return 0;
2506 }
2507 
2508 #define SCI_CONSOLE	(&serial_console)
2509 
2510 #else
sci_probe_earlyprintk(struct platform_device * pdev)2511 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2512 {
2513 	return -EINVAL;
2514 }
2515 
2516 #define SCI_CONSOLE	NULL
2517 
2518 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2519 
2520 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2521 
2522 static struct uart_driver sci_uart_driver = {
2523 	.owner		= THIS_MODULE,
2524 	.driver_name	= "sci",
2525 	.dev_name	= "ttySC",
2526 	.major		= SCI_MAJOR,
2527 	.minor		= SCI_MINOR_START,
2528 	.nr		= SCI_NPORTS,
2529 	.cons		= SCI_CONSOLE,
2530 };
2531 
sci_remove(struct platform_device * dev)2532 static int sci_remove(struct platform_device *dev)
2533 {
2534 	struct sci_port *port = platform_get_drvdata(dev);
2535 
2536 	uart_remove_one_port(&sci_uart_driver, &port->port);
2537 
2538 	sci_cleanup_single(port);
2539 
2540 	return 0;
2541 }
2542 
2543 struct sci_port_info {
2544 	unsigned int type;
2545 	unsigned int regtype;
2546 };
2547 
2548 static const struct of_device_id of_sci_match[] = {
2549 	{
2550 		.compatible = "renesas,scif",
2551 		.data = &(const struct sci_port_info) {
2552 			.type = PORT_SCIF,
2553 			.regtype = SCIx_SH4_SCIF_REGTYPE,
2554 		},
2555 	}, {
2556 		.compatible = "renesas,scifa",
2557 		.data = &(const struct sci_port_info) {
2558 			.type = PORT_SCIFA,
2559 			.regtype = SCIx_SCIFA_REGTYPE,
2560 		},
2561 	}, {
2562 		.compatible = "renesas,scifb",
2563 		.data = &(const struct sci_port_info) {
2564 			.type = PORT_SCIFB,
2565 			.regtype = SCIx_SCIFB_REGTYPE,
2566 		},
2567 	}, {
2568 		.compatible = "renesas,hscif",
2569 		.data = &(const struct sci_port_info) {
2570 			.type = PORT_HSCIF,
2571 			.regtype = SCIx_HSCIF_REGTYPE,
2572 		},
2573 	}, {
2574 		.compatible = "renesas,sci",
2575 		.data = &(const struct sci_port_info) {
2576 			.type = PORT_SCI,
2577 			.regtype = SCIx_SCI_REGTYPE,
2578 		},
2579 	}, {
2580 		/* Terminator */
2581 	},
2582 };
2583 MODULE_DEVICE_TABLE(of, of_sci_match);
2584 
2585 static struct plat_sci_port *
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)2586 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2587 {
2588 	struct device_node *np = pdev->dev.of_node;
2589 	const struct of_device_id *match;
2590 	const struct sci_port_info *info;
2591 	struct plat_sci_port *p;
2592 	int id;
2593 
2594 	if (!IS_ENABLED(CONFIG_OF) || !np)
2595 		return NULL;
2596 
2597 	match = of_match_node(of_sci_match, pdev->dev.of_node);
2598 	if (!match)
2599 		return NULL;
2600 
2601 	info = match->data;
2602 
2603 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2604 	if (!p)
2605 		return NULL;
2606 
2607 	/* Get the line number for the aliases node. */
2608 	id = of_alias_get_id(np, "serial");
2609 	if (id < 0) {
2610 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2611 		return NULL;
2612 	}
2613 
2614 	*dev_id = id;
2615 
2616 	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2617 	p->type = info->type;
2618 	p->regtype = info->regtype;
2619 	p->scscr = SCSCR_RE | SCSCR_TE;
2620 
2621 	return p;
2622 }
2623 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport)2624 static int sci_probe_single(struct platform_device *dev,
2625 				      unsigned int index,
2626 				      struct plat_sci_port *p,
2627 				      struct sci_port *sciport)
2628 {
2629 	int ret;
2630 
2631 	/* Sanity check */
2632 	if (unlikely(index >= SCI_NPORTS)) {
2633 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2634 			   index+1, SCI_NPORTS);
2635 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2636 		return -EINVAL;
2637 	}
2638 
2639 	ret = sci_init_single(dev, sciport, index, p, false);
2640 	if (ret)
2641 		return ret;
2642 
2643 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2644 	if (ret) {
2645 		sci_cleanup_single(sciport);
2646 		return ret;
2647 	}
2648 
2649 	return 0;
2650 }
2651 
sci_probe(struct platform_device * dev)2652 static int sci_probe(struct platform_device *dev)
2653 {
2654 	struct plat_sci_port *p;
2655 	struct sci_port *sp;
2656 	unsigned int dev_id;
2657 	int ret;
2658 
2659 	/*
2660 	 * If we've come here via earlyprintk initialization, head off to
2661 	 * the special early probe. We don't have sufficient device state
2662 	 * to make it beyond this yet.
2663 	 */
2664 	if (is_early_platform_device(dev))
2665 		return sci_probe_earlyprintk(dev);
2666 
2667 	if (dev->dev.of_node) {
2668 		p = sci_parse_dt(dev, &dev_id);
2669 		if (p == NULL)
2670 			return -EINVAL;
2671 	} else {
2672 		p = dev->dev.platform_data;
2673 		if (p == NULL) {
2674 			dev_err(&dev->dev, "no platform data supplied\n");
2675 			return -EINVAL;
2676 		}
2677 
2678 		dev_id = dev->id;
2679 	}
2680 
2681 	sp = &sci_ports[dev_id];
2682 	platform_set_drvdata(dev, sp);
2683 
2684 	ret = sci_probe_single(dev, dev_id, p, sp);
2685 	if (ret)
2686 		return ret;
2687 
2688 #ifdef CONFIG_SH_STANDARD_BIOS
2689 	sh_bios_gdb_detach();
2690 #endif
2691 
2692 	return 0;
2693 }
2694 
sci_suspend(struct device * dev)2695 static __maybe_unused int sci_suspend(struct device *dev)
2696 {
2697 	struct sci_port *sport = dev_get_drvdata(dev);
2698 
2699 	if (sport)
2700 		uart_suspend_port(&sci_uart_driver, &sport->port);
2701 
2702 	return 0;
2703 }
2704 
sci_resume(struct device * dev)2705 static __maybe_unused int sci_resume(struct device *dev)
2706 {
2707 	struct sci_port *sport = dev_get_drvdata(dev);
2708 
2709 	if (sport)
2710 		uart_resume_port(&sci_uart_driver, &sport->port);
2711 
2712 	return 0;
2713 }
2714 
2715 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2716 
2717 static struct platform_driver sci_driver = {
2718 	.probe		= sci_probe,
2719 	.remove		= sci_remove,
2720 	.driver		= {
2721 		.name	= "sh-sci",
2722 		.pm	= &sci_dev_pm_ops,
2723 		.of_match_table = of_match_ptr(of_sci_match),
2724 	},
2725 };
2726 
sci_init(void)2727 static int __init sci_init(void)
2728 {
2729 	int ret;
2730 
2731 	pr_info("%s\n", banner);
2732 
2733 	ret = uart_register_driver(&sci_uart_driver);
2734 	if (likely(ret == 0)) {
2735 		ret = platform_driver_register(&sci_driver);
2736 		if (unlikely(ret))
2737 			uart_unregister_driver(&sci_uart_driver);
2738 	}
2739 
2740 	return ret;
2741 }
2742 
sci_exit(void)2743 static void __exit sci_exit(void)
2744 {
2745 	platform_driver_unregister(&sci_driver);
2746 	uart_unregister_driver(&sci_uart_driver);
2747 }
2748 
2749 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2750 early_platform_init_buffer("earlyprintk", &sci_driver,
2751 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2752 #endif
2753 module_init(sci_init);
2754 module_exit(sci_exit);
2755 
2756 MODULE_LICENSE("GPL");
2757 MODULE_ALIAS("platform:sh-sci");
2758 MODULE_AUTHOR("Paul Mundt");
2759 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2760