1 /*
2  * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
3  *
4  * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5  * Author: Thomas Dahlmann
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 /*
14  * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15  * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16  * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
17  *
18  * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19  * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20  * by BIOS init).
21  *
22  * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23  * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24  * can be used with gadget ether.
25  */
26 
27 /* debug control */
28 /* #define UDC_VERBOSE */
29 
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION		"AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING	"01.00.0206"
33 
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/list.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioctl.h>
47 #include <linux/fs.h>
48 #include <linux/dmapool.h>
49 #include <linux/moduleparam.h>
50 #include <linux/device.h>
51 #include <linux/io.h>
52 #include <linux/irq.h>
53 #include <linux/prefetch.h>
54 
55 #include <asm/byteorder.h>
56 #include <asm/unaligned.h>
57 
58 /* gadget stack */
59 #include <linux/usb/ch9.h>
60 #include <linux/usb/gadget.h>
61 
62 /* udc specific */
63 #include "amd5536udc.h"
64 
65 
66 static void udc_tasklet_disconnect(unsigned long);
67 static void empty_req_queue(struct udc_ep *);
68 static void udc_setup_endpoints(struct udc *dev);
69 static void udc_soft_reset(struct udc *dev);
70 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
71 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
72 
73 /* description */
74 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
75 static const char name[] = "amd5536udc";
76 
77 /* structure to hold endpoint function pointers */
78 static const struct usb_ep_ops udc_ep_ops;
79 
80 /* received setup data */
81 static union udc_setup_data setup_data;
82 
83 /* pointer to device object */
84 static struct udc *udc;
85 
86 /* irq spin lock for soft reset */
87 static DEFINE_SPINLOCK(udc_irq_spinlock);
88 /* stall spin lock */
89 static DEFINE_SPINLOCK(udc_stall_spinlock);
90 
91 /*
92 * slave mode: pending bytes in rx fifo after nyet,
93 * used if EPIN irq came but no req was available
94 */
95 static unsigned int udc_rxfifo_pending;
96 
97 /* count soft resets after suspend to avoid loop */
98 static int soft_reset_occured;
99 static int soft_reset_after_usbreset_occured;
100 
101 /* timer */
102 static struct timer_list udc_timer;
103 static int stop_timer;
104 
105 /* set_rde -- Is used to control enabling of RX DMA. Problem is
106  * that UDC has only one bit (RDE) to enable/disable RX DMA for
107  * all OUT endpoints. So we have to handle race conditions like
108  * when OUT data reaches the fifo but no request was queued yet.
109  * This cannot be solved by letting the RX DMA disabled until a
110  * request gets queued because there may be other OUT packets
111  * in the FIFO (important for not blocking control traffic).
112  * The value of set_rde controls the correspondig timer.
113  *
114  * set_rde -1 == not used, means it is alloed to be set to 0 or 1
115  * set_rde  0 == do not touch RDE, do no start the RDE timer
116  * set_rde  1 == timer function will look whether FIFO has data
117  * set_rde  2 == set by timer function to enable RX DMA on next call
118  */
119 static int set_rde = -1;
120 
121 static DECLARE_COMPLETION(on_exit);
122 static struct timer_list udc_pollstall_timer;
123 static int stop_pollstall_timer;
124 static DECLARE_COMPLETION(on_pollstall_exit);
125 
126 /* tasklet for usb disconnect */
127 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
128 		(unsigned long) &udc);
129 
130 
131 /* endpoint names used for print */
132 static const char ep0_string[] = "ep0in";
133 static const struct {
134 	const char *name;
135 	const struct usb_ep_caps caps;
136 } ep_info[] = {
137 #define EP_INFO(_name, _caps) \
138 	{ \
139 		.name = _name, \
140 		.caps = _caps, \
141 	}
142 
143 	EP_INFO(ep0_string,
144 		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
145 	EP_INFO("ep1in-int",
146 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
147 	EP_INFO("ep2in-bulk",
148 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
149 	EP_INFO("ep3in-bulk",
150 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
151 	EP_INFO("ep4in-bulk",
152 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
153 	EP_INFO("ep5in-bulk",
154 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
155 	EP_INFO("ep6in-bulk",
156 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
157 	EP_INFO("ep7in-bulk",
158 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
159 	EP_INFO("ep8in-bulk",
160 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
161 	EP_INFO("ep9in-bulk",
162 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
163 	EP_INFO("ep10in-bulk",
164 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
165 	EP_INFO("ep11in-bulk",
166 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
167 	EP_INFO("ep12in-bulk",
168 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
169 	EP_INFO("ep13in-bulk",
170 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
171 	EP_INFO("ep14in-bulk",
172 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
173 	EP_INFO("ep15in-bulk",
174 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
175 	EP_INFO("ep0out",
176 		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
177 	EP_INFO("ep1out-bulk",
178 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
179 	EP_INFO("ep2out-bulk",
180 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
181 	EP_INFO("ep3out-bulk",
182 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
183 	EP_INFO("ep4out-bulk",
184 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
185 	EP_INFO("ep5out-bulk",
186 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
187 	EP_INFO("ep6out-bulk",
188 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
189 	EP_INFO("ep7out-bulk",
190 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
191 	EP_INFO("ep8out-bulk",
192 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
193 	EP_INFO("ep9out-bulk",
194 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
195 	EP_INFO("ep10out-bulk",
196 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
197 	EP_INFO("ep11out-bulk",
198 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
199 	EP_INFO("ep12out-bulk",
200 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
201 	EP_INFO("ep13out-bulk",
202 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
203 	EP_INFO("ep14out-bulk",
204 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
205 	EP_INFO("ep15out-bulk",
206 		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
207 
208 #undef EP_INFO
209 };
210 
211 /* DMA usage flag */
212 static bool use_dma = 1;
213 /* packet per buffer dma */
214 static bool use_dma_ppb = 1;
215 /* with per descr. update */
216 static bool use_dma_ppb_du;
217 /* buffer fill mode */
218 static int use_dma_bufferfill_mode;
219 /* full speed only mode */
220 static bool use_fullspeed;
221 /* tx buffer size for high speed */
222 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
223 
224 /* module parameters */
225 module_param(use_dma, bool, S_IRUGO);
226 MODULE_PARM_DESC(use_dma, "true for DMA");
227 module_param(use_dma_ppb, bool, S_IRUGO);
228 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
229 module_param(use_dma_ppb_du, bool, S_IRUGO);
230 MODULE_PARM_DESC(use_dma_ppb_du,
231 	"true for DMA in packet per buffer mode with descriptor update");
232 module_param(use_fullspeed, bool, S_IRUGO);
233 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
234 
235 /*---------------------------------------------------------------------------*/
236 /* Prints UDC device registers and endpoint irq registers */
print_regs(struct udc * dev)237 static void print_regs(struct udc *dev)
238 {
239 	DBG(dev, "------- Device registers -------\n");
240 	DBG(dev, "dev config     = %08x\n", readl(&dev->regs->cfg));
241 	DBG(dev, "dev control    = %08x\n", readl(&dev->regs->ctl));
242 	DBG(dev, "dev status     = %08x\n", readl(&dev->regs->sts));
243 	DBG(dev, "\n");
244 	DBG(dev, "dev int's      = %08x\n", readl(&dev->regs->irqsts));
245 	DBG(dev, "dev intmask    = %08x\n", readl(&dev->regs->irqmsk));
246 	DBG(dev, "\n");
247 	DBG(dev, "dev ep int's   = %08x\n", readl(&dev->regs->ep_irqsts));
248 	DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
249 	DBG(dev, "\n");
250 	DBG(dev, "USE DMA        = %d\n", use_dma);
251 	if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
252 		DBG(dev, "DMA mode       = PPBNDU (packet per buffer "
253 			"WITHOUT desc. update)\n");
254 		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
255 	} else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
256 		DBG(dev, "DMA mode       = PPBDU (packet per buffer "
257 			"WITH desc. update)\n");
258 		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
259 	}
260 	if (use_dma && use_dma_bufferfill_mode) {
261 		DBG(dev, "DMA mode       = BF (buffer fill mode)\n");
262 		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
263 	}
264 	if (!use_dma)
265 		dev_info(&dev->pdev->dev, "FIFO mode\n");
266 	DBG(dev, "-------------------------------------------------------\n");
267 }
268 
269 /* Masks unused interrupts */
udc_mask_unused_interrupts(struct udc * dev)270 static int udc_mask_unused_interrupts(struct udc *dev)
271 {
272 	u32 tmp;
273 
274 	/* mask all dev interrupts */
275 	tmp =	AMD_BIT(UDC_DEVINT_SVC) |
276 		AMD_BIT(UDC_DEVINT_ENUM) |
277 		AMD_BIT(UDC_DEVINT_US) |
278 		AMD_BIT(UDC_DEVINT_UR) |
279 		AMD_BIT(UDC_DEVINT_ES) |
280 		AMD_BIT(UDC_DEVINT_SI) |
281 		AMD_BIT(UDC_DEVINT_SOF)|
282 		AMD_BIT(UDC_DEVINT_SC);
283 	writel(tmp, &dev->regs->irqmsk);
284 
285 	/* mask all ep interrupts */
286 	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
287 
288 	return 0;
289 }
290 
291 /* Enables endpoint 0 interrupts */
udc_enable_ep0_interrupts(struct udc * dev)292 static int udc_enable_ep0_interrupts(struct udc *dev)
293 {
294 	u32 tmp;
295 
296 	DBG(dev, "udc_enable_ep0_interrupts()\n");
297 
298 	/* read irq mask */
299 	tmp = readl(&dev->regs->ep_irqmsk);
300 	/* enable ep0 irq's */
301 	tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
302 		& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
303 	writel(tmp, &dev->regs->ep_irqmsk);
304 
305 	return 0;
306 }
307 
308 /* Enables device interrupts for SET_INTF and SET_CONFIG */
udc_enable_dev_setup_interrupts(struct udc * dev)309 static int udc_enable_dev_setup_interrupts(struct udc *dev)
310 {
311 	u32 tmp;
312 
313 	DBG(dev, "enable device interrupts for setup data\n");
314 
315 	/* read irq mask */
316 	tmp = readl(&dev->regs->irqmsk);
317 
318 	/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
319 	tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
320 		& AMD_UNMASK_BIT(UDC_DEVINT_SC)
321 		& AMD_UNMASK_BIT(UDC_DEVINT_UR)
322 		& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
323 		& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
324 	writel(tmp, &dev->regs->irqmsk);
325 
326 	return 0;
327 }
328 
329 /* Calculates fifo start of endpoint based on preceding endpoints */
udc_set_txfifo_addr(struct udc_ep * ep)330 static int udc_set_txfifo_addr(struct udc_ep *ep)
331 {
332 	struct udc	*dev;
333 	u32 tmp;
334 	int i;
335 
336 	if (!ep || !(ep->in))
337 		return -EINVAL;
338 
339 	dev = ep->dev;
340 	ep->txfifo = dev->txfifo;
341 
342 	/* traverse ep's */
343 	for (i = 0; i < ep->num; i++) {
344 		if (dev->ep[i].regs) {
345 			/* read fifo size */
346 			tmp = readl(&dev->ep[i].regs->bufin_framenum);
347 			tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
348 			ep->txfifo += tmp;
349 		}
350 	}
351 	return 0;
352 }
353 
354 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
355 static u32 cnak_pending;
356 
UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)357 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
358 {
359 	if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
360 		DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
361 		cnak_pending |= 1 << (num);
362 		ep->naking = 1;
363 	} else
364 		cnak_pending = cnak_pending & (~(1 << (num)));
365 }
366 
367 
368 /* Enables endpoint, is called by gadget driver */
369 static int
udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)370 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
371 {
372 	struct udc_ep		*ep;
373 	struct udc		*dev;
374 	u32			tmp;
375 	unsigned long		iflags;
376 	u8 udc_csr_epix;
377 	unsigned		maxpacket;
378 
379 	if (!usbep
380 			|| usbep->name == ep0_string
381 			|| !desc
382 			|| desc->bDescriptorType != USB_DT_ENDPOINT)
383 		return -EINVAL;
384 
385 	ep = container_of(usbep, struct udc_ep, ep);
386 	dev = ep->dev;
387 
388 	DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
389 
390 	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
391 		return -ESHUTDOWN;
392 
393 	spin_lock_irqsave(&dev->lock, iflags);
394 	ep->ep.desc = desc;
395 
396 	ep->halted = 0;
397 
398 	/* set traffic type */
399 	tmp = readl(&dev->ep[ep->num].regs->ctl);
400 	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
401 	writel(tmp, &dev->ep[ep->num].regs->ctl);
402 
403 	/* set max packet size */
404 	maxpacket = usb_endpoint_maxp(desc);
405 	tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
406 	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
407 	ep->ep.maxpacket = maxpacket;
408 	writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
409 
410 	/* IN ep */
411 	if (ep->in) {
412 
413 		/* ep ix in UDC CSR register space */
414 		udc_csr_epix = ep->num;
415 
416 		/* set buffer size (tx fifo entries) */
417 		tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
418 		/* double buffering: fifo size = 2 x max packet size */
419 		tmp = AMD_ADDBITS(
420 				tmp,
421 				maxpacket * UDC_EPIN_BUFF_SIZE_MULT
422 					  / UDC_DWORD_BYTES,
423 				UDC_EPIN_BUFF_SIZE);
424 		writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
425 
426 		/* calc. tx fifo base addr */
427 		udc_set_txfifo_addr(ep);
428 
429 		/* flush fifo */
430 		tmp = readl(&ep->regs->ctl);
431 		tmp |= AMD_BIT(UDC_EPCTL_F);
432 		writel(tmp, &ep->regs->ctl);
433 
434 	/* OUT ep */
435 	} else {
436 		/* ep ix in UDC CSR register space */
437 		udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
438 
439 		/* set max packet size UDC CSR	*/
440 		tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
441 		tmp = AMD_ADDBITS(tmp, maxpacket,
442 					UDC_CSR_NE_MAX_PKT);
443 		writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
444 
445 		if (use_dma && !ep->in) {
446 			/* alloc and init BNA dummy request */
447 			ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
448 			ep->bna_occurred = 0;
449 		}
450 
451 		if (ep->num != UDC_EP0OUT_IX)
452 			dev->data_ep_enabled = 1;
453 	}
454 
455 	/* set ep values */
456 	tmp = readl(&dev->csr->ne[udc_csr_epix]);
457 	/* max packet */
458 	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
459 	/* ep number */
460 	tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
461 	/* ep direction */
462 	tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
463 	/* ep type */
464 	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
465 	/* ep config */
466 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
467 	/* ep interface */
468 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
469 	/* ep alt */
470 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
471 	/* write reg */
472 	writel(tmp, &dev->csr->ne[udc_csr_epix]);
473 
474 	/* enable ep irq */
475 	tmp = readl(&dev->regs->ep_irqmsk);
476 	tmp &= AMD_UNMASK_BIT(ep->num);
477 	writel(tmp, &dev->regs->ep_irqmsk);
478 
479 	/*
480 	 * clear NAK by writing CNAK
481 	 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
482 	 */
483 	if (!use_dma || ep->in) {
484 		tmp = readl(&ep->regs->ctl);
485 		tmp |= AMD_BIT(UDC_EPCTL_CNAK);
486 		writel(tmp, &ep->regs->ctl);
487 		ep->naking = 0;
488 		UDC_QUEUE_CNAK(ep, ep->num);
489 	}
490 	tmp = desc->bEndpointAddress;
491 	DBG(dev, "%s enabled\n", usbep->name);
492 
493 	spin_unlock_irqrestore(&dev->lock, iflags);
494 	return 0;
495 }
496 
497 /* Resets endpoint */
ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)498 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
499 {
500 	u32		tmp;
501 
502 	VDBG(ep->dev, "ep-%d reset\n", ep->num);
503 	ep->ep.desc = NULL;
504 	ep->ep.ops = &udc_ep_ops;
505 	INIT_LIST_HEAD(&ep->queue);
506 
507 	usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
508 	/* set NAK */
509 	tmp = readl(&ep->regs->ctl);
510 	tmp |= AMD_BIT(UDC_EPCTL_SNAK);
511 	writel(tmp, &ep->regs->ctl);
512 	ep->naking = 1;
513 
514 	/* disable interrupt */
515 	tmp = readl(&regs->ep_irqmsk);
516 	tmp |= AMD_BIT(ep->num);
517 	writel(tmp, &regs->ep_irqmsk);
518 
519 	if (ep->in) {
520 		/* unset P and IN bit of potential former DMA */
521 		tmp = readl(&ep->regs->ctl);
522 		tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
523 		writel(tmp, &ep->regs->ctl);
524 
525 		tmp = readl(&ep->regs->sts);
526 		tmp |= AMD_BIT(UDC_EPSTS_IN);
527 		writel(tmp, &ep->regs->sts);
528 
529 		/* flush the fifo */
530 		tmp = readl(&ep->regs->ctl);
531 		tmp |= AMD_BIT(UDC_EPCTL_F);
532 		writel(tmp, &ep->regs->ctl);
533 
534 	}
535 	/* reset desc pointer */
536 	writel(0, &ep->regs->desptr);
537 }
538 
539 /* Disables endpoint, is called by gadget driver */
udc_ep_disable(struct usb_ep * usbep)540 static int udc_ep_disable(struct usb_ep *usbep)
541 {
542 	struct udc_ep	*ep = NULL;
543 	unsigned long	iflags;
544 
545 	if (!usbep)
546 		return -EINVAL;
547 
548 	ep = container_of(usbep, struct udc_ep, ep);
549 	if (usbep->name == ep0_string || !ep->ep.desc)
550 		return -EINVAL;
551 
552 	DBG(ep->dev, "Disable ep-%d\n", ep->num);
553 
554 	spin_lock_irqsave(&ep->dev->lock, iflags);
555 	udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
556 	empty_req_queue(ep);
557 	ep_init(ep->dev->regs, ep);
558 	spin_unlock_irqrestore(&ep->dev->lock, iflags);
559 
560 	return 0;
561 }
562 
563 /* Allocates request packet, called by gadget driver */
564 static struct usb_request *
udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)565 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
566 {
567 	struct udc_request	*req;
568 	struct udc_data_dma	*dma_desc;
569 	struct udc_ep	*ep;
570 
571 	if (!usbep)
572 		return NULL;
573 
574 	ep = container_of(usbep, struct udc_ep, ep);
575 
576 	VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
577 	req = kzalloc(sizeof(struct udc_request), gfp);
578 	if (!req)
579 		return NULL;
580 
581 	req->req.dma = DMA_DONT_USE;
582 	INIT_LIST_HEAD(&req->queue);
583 
584 	if (ep->dma) {
585 		/* ep0 in requests are allocated from data pool here */
586 		dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
587 						&req->td_phys);
588 		if (!dma_desc) {
589 			kfree(req);
590 			return NULL;
591 		}
592 
593 		VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
594 				"td_phys = %lx\n",
595 				req, dma_desc,
596 				(unsigned long)req->td_phys);
597 		/* prevent from using desc. - set HOST BUSY */
598 		dma_desc->status = AMD_ADDBITS(dma_desc->status,
599 						UDC_DMA_STP_STS_BS_HOST_BUSY,
600 						UDC_DMA_STP_STS_BS);
601 		dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
602 		req->td_data = dma_desc;
603 		req->td_data_last = NULL;
604 		req->chain_len = 1;
605 	}
606 
607 	return &req->req;
608 }
609 
610 /* frees pci pool descriptors of a DMA chain */
udc_free_dma_chain(struct udc * dev,struct udc_request * req)611 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
612 {
613 	int ret_val = 0;
614 	struct udc_data_dma	*td;
615 	struct udc_data_dma	*td_last = NULL;
616 	unsigned int i;
617 
618 	DBG(dev, "free chain req = %p\n", req);
619 
620 	/* do not free first desc., will be done by free for request */
621 	td_last = req->td_data;
622 	td = phys_to_virt(td_last->next);
623 
624 	for (i = 1; i < req->chain_len; i++) {
625 		pci_pool_free(dev->data_requests, td,
626 			      (dma_addr_t)td_last->next);
627 		td_last = td;
628 		td = phys_to_virt(td_last->next);
629 	}
630 
631 	return ret_val;
632 }
633 
634 /* Frees request packet, called by gadget driver */
635 static void
udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)636 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
637 {
638 	struct udc_ep	*ep;
639 	struct udc_request	*req;
640 
641 	if (!usbep || !usbreq)
642 		return;
643 
644 	ep = container_of(usbep, struct udc_ep, ep);
645 	req = container_of(usbreq, struct udc_request, req);
646 	VDBG(ep->dev, "free_req req=%p\n", req);
647 	BUG_ON(!list_empty(&req->queue));
648 	if (req->td_data) {
649 		VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
650 
651 		/* free dma chain if created */
652 		if (req->chain_len > 1)
653 			udc_free_dma_chain(ep->dev, req);
654 
655 		pci_pool_free(ep->dev->data_requests, req->td_data,
656 							req->td_phys);
657 	}
658 	kfree(req);
659 }
660 
661 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
udc_init_bna_dummy(struct udc_request * req)662 static void udc_init_bna_dummy(struct udc_request *req)
663 {
664 	if (req) {
665 		/* set last bit */
666 		req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
667 		/* set next pointer to itself */
668 		req->td_data->next = req->td_phys;
669 		/* set HOST BUSY */
670 		req->td_data->status
671 			= AMD_ADDBITS(req->td_data->status,
672 					UDC_DMA_STP_STS_BS_DMA_DONE,
673 					UDC_DMA_STP_STS_BS);
674 #ifdef UDC_VERBOSE
675 		pr_debug("bna desc = %p, sts = %08x\n",
676 			req->td_data, req->td_data->status);
677 #endif
678 	}
679 }
680 
681 /* Allocate BNA dummy descriptor */
udc_alloc_bna_dummy(struct udc_ep * ep)682 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
683 {
684 	struct udc_request *req = NULL;
685 	struct usb_request *_req = NULL;
686 
687 	/* alloc the dummy request */
688 	_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
689 	if (_req) {
690 		req = container_of(_req, struct udc_request, req);
691 		ep->bna_dummy_req = req;
692 		udc_init_bna_dummy(req);
693 	}
694 	return req;
695 }
696 
697 /* Write data to TX fifo for IN packets */
698 static void
udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)699 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
700 {
701 	u8			*req_buf;
702 	u32			*buf;
703 	int			i, j;
704 	unsigned		bytes = 0;
705 	unsigned		remaining = 0;
706 
707 	if (!req || !ep)
708 		return;
709 
710 	req_buf = req->buf + req->actual;
711 	prefetch(req_buf);
712 	remaining = req->length - req->actual;
713 
714 	buf = (u32 *) req_buf;
715 
716 	bytes = ep->ep.maxpacket;
717 	if (bytes > remaining)
718 		bytes = remaining;
719 
720 	/* dwords first */
721 	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
722 		writel(*(buf + i), ep->txfifo);
723 
724 	/* remaining bytes must be written by byte access */
725 	for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
726 		writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
727 							ep->txfifo);
728 	}
729 
730 	/* dummy write confirm */
731 	writel(0, &ep->regs->confirm);
732 }
733 
734 /* Read dwords from RX fifo for OUT transfers */
udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)735 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
736 {
737 	int i;
738 
739 	VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
740 
741 	for (i = 0; i < dwords; i++)
742 		*(buf + i) = readl(dev->rxfifo);
743 	return 0;
744 }
745 
746 /* Read bytes from RX fifo for OUT transfers */
udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)747 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
748 {
749 	int i, j;
750 	u32 tmp;
751 
752 	VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
753 
754 	/* dwords first */
755 	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
756 		*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
757 
758 	/* remaining bytes must be read by byte access */
759 	if (bytes % UDC_DWORD_BYTES) {
760 		tmp = readl(dev->rxfifo);
761 		for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
762 			*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
763 			tmp = tmp >> UDC_BITS_PER_BYTE;
764 		}
765 	}
766 
767 	return 0;
768 }
769 
770 /* Read data from RX fifo for OUT transfers */
771 static int
udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)772 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
773 {
774 	u8 *buf;
775 	unsigned buf_space;
776 	unsigned bytes = 0;
777 	unsigned finished = 0;
778 
779 	/* received number bytes */
780 	bytes = readl(&ep->regs->sts);
781 	bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
782 
783 	buf_space = req->req.length - req->req.actual;
784 	buf = req->req.buf + req->req.actual;
785 	if (bytes > buf_space) {
786 		if ((buf_space % ep->ep.maxpacket) != 0) {
787 			DBG(ep->dev,
788 				"%s: rx %d bytes, rx-buf space = %d bytesn\n",
789 				ep->ep.name, bytes, buf_space);
790 			req->req.status = -EOVERFLOW;
791 		}
792 		bytes = buf_space;
793 	}
794 	req->req.actual += bytes;
795 
796 	/* last packet ? */
797 	if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
798 		|| ((req->req.actual == req->req.length) && !req->req.zero))
799 		finished = 1;
800 
801 	/* read rx fifo bytes */
802 	VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
803 	udc_rxfifo_read_bytes(ep->dev, buf, bytes);
804 
805 	return finished;
806 }
807 
808 /* Creates or re-inits a DMA chain */
udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)809 static int udc_create_dma_chain(
810 	struct udc_ep *ep,
811 	struct udc_request *req,
812 	unsigned long buf_len, gfp_t gfp_flags
813 )
814 {
815 	unsigned long bytes = req->req.length;
816 	unsigned int i;
817 	dma_addr_t dma_addr;
818 	struct udc_data_dma	*td = NULL;
819 	struct udc_data_dma	*last = NULL;
820 	unsigned long txbytes;
821 	unsigned create_new_chain = 0;
822 	unsigned len;
823 
824 	VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
825 	     bytes, buf_len);
826 	dma_addr = DMA_DONT_USE;
827 
828 	/* unset L bit in first desc for OUT */
829 	if (!ep->in)
830 		req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
831 
832 	/* alloc only new desc's if not already available */
833 	len = req->req.length / ep->ep.maxpacket;
834 	if (req->req.length % ep->ep.maxpacket)
835 		len++;
836 
837 	if (len > req->chain_len) {
838 		/* shorter chain already allocated before */
839 		if (req->chain_len > 1)
840 			udc_free_dma_chain(ep->dev, req);
841 		req->chain_len = len;
842 		create_new_chain = 1;
843 	}
844 
845 	td = req->td_data;
846 	/* gen. required number of descriptors and buffers */
847 	for (i = buf_len; i < bytes; i += buf_len) {
848 		/* create or determine next desc. */
849 		if (create_new_chain) {
850 			td = pci_pool_alloc(ep->dev->data_requests,
851 					    gfp_flags, &dma_addr);
852 			if (!td)
853 				return -ENOMEM;
854 
855 			td->status = 0;
856 		} else if (i == buf_len) {
857 			/* first td */
858 			td = (struct udc_data_dma *)phys_to_virt(
859 						req->td_data->next);
860 			td->status = 0;
861 		} else {
862 			td = (struct udc_data_dma *)phys_to_virt(last->next);
863 			td->status = 0;
864 		}
865 
866 		if (td)
867 			td->bufptr = req->req.dma + i; /* assign buffer */
868 		else
869 			break;
870 
871 		/* short packet ? */
872 		if ((bytes - i) >= buf_len) {
873 			txbytes = buf_len;
874 		} else {
875 			/* short packet */
876 			txbytes = bytes - i;
877 		}
878 
879 		/* link td and assign tx bytes */
880 		if (i == buf_len) {
881 			if (create_new_chain)
882 				req->td_data->next = dma_addr;
883 			/*
884 			 * else
885 			 *	req->td_data->next = virt_to_phys(td);
886 			 */
887 			/* write tx bytes */
888 			if (ep->in) {
889 				/* first desc */
890 				req->td_data->status =
891 					AMD_ADDBITS(req->td_data->status,
892 						    ep->ep.maxpacket,
893 						    UDC_DMA_IN_STS_TXBYTES);
894 				/* second desc */
895 				td->status = AMD_ADDBITS(td->status,
896 							txbytes,
897 							UDC_DMA_IN_STS_TXBYTES);
898 			}
899 		} else {
900 			if (create_new_chain)
901 				last->next = dma_addr;
902 			/*
903 			 * else
904 			 *	last->next = virt_to_phys(td);
905 			 */
906 			if (ep->in) {
907 				/* write tx bytes */
908 				td->status = AMD_ADDBITS(td->status,
909 							txbytes,
910 							UDC_DMA_IN_STS_TXBYTES);
911 			}
912 		}
913 		last = td;
914 	}
915 	/* set last bit */
916 	if (td) {
917 		td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
918 		/* last desc. points to itself */
919 		req->td_data_last = td;
920 	}
921 
922 	return 0;
923 }
924 
925 /* create/re-init a DMA descriptor or a DMA descriptor chain */
prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)926 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
927 {
928 	int	retval = 0;
929 	u32	tmp;
930 
931 	VDBG(ep->dev, "prep_dma\n");
932 	VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
933 			ep->num, req->td_data);
934 
935 	/* set buffer pointer */
936 	req->td_data->bufptr = req->req.dma;
937 
938 	/* set last bit */
939 	req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
940 
941 	/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
942 	if (use_dma_ppb) {
943 
944 		retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
945 		if (retval != 0) {
946 			if (retval == -ENOMEM)
947 				DBG(ep->dev, "Out of DMA memory\n");
948 			return retval;
949 		}
950 		if (ep->in) {
951 			if (req->req.length == ep->ep.maxpacket) {
952 				/* write tx bytes */
953 				req->td_data->status =
954 					AMD_ADDBITS(req->td_data->status,
955 						ep->ep.maxpacket,
956 						UDC_DMA_IN_STS_TXBYTES);
957 
958 			}
959 		}
960 
961 	}
962 
963 	if (ep->in) {
964 		VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
965 				"maxpacket=%d ep%d\n",
966 				use_dma_ppb, req->req.length,
967 				ep->ep.maxpacket, ep->num);
968 		/*
969 		 * if bytes < max packet then tx bytes must
970 		 * be written in packet per buffer mode
971 		 */
972 		if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
973 				|| ep->num == UDC_EP0OUT_IX
974 				|| ep->num == UDC_EP0IN_IX) {
975 			/* write tx bytes */
976 			req->td_data->status =
977 				AMD_ADDBITS(req->td_data->status,
978 						req->req.length,
979 						UDC_DMA_IN_STS_TXBYTES);
980 			/* reset frame num */
981 			req->td_data->status =
982 				AMD_ADDBITS(req->td_data->status,
983 						0,
984 						UDC_DMA_IN_STS_FRAMENUM);
985 		}
986 		/* set HOST BUSY */
987 		req->td_data->status =
988 			AMD_ADDBITS(req->td_data->status,
989 				UDC_DMA_STP_STS_BS_HOST_BUSY,
990 				UDC_DMA_STP_STS_BS);
991 	} else {
992 		VDBG(ep->dev, "OUT set host ready\n");
993 		/* set HOST READY */
994 		req->td_data->status =
995 			AMD_ADDBITS(req->td_data->status,
996 				UDC_DMA_STP_STS_BS_HOST_READY,
997 				UDC_DMA_STP_STS_BS);
998 
999 
1000 			/* clear NAK by writing CNAK */
1001 			if (ep->naking) {
1002 				tmp = readl(&ep->regs->ctl);
1003 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1004 				writel(tmp, &ep->regs->ctl);
1005 				ep->naking = 0;
1006 				UDC_QUEUE_CNAK(ep, ep->num);
1007 			}
1008 
1009 	}
1010 
1011 	return retval;
1012 }
1013 
1014 /* Completes request packet ... caller MUST hold lock */
1015 static void
complete_req(struct udc_ep * ep,struct udc_request * req,int sts)1016 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
1017 __releases(ep->dev->lock)
1018 __acquires(ep->dev->lock)
1019 {
1020 	struct udc		*dev;
1021 	unsigned		halted;
1022 
1023 	VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
1024 
1025 	dev = ep->dev;
1026 	/* unmap DMA */
1027 	if (ep->dma)
1028 		usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
1029 
1030 	halted = ep->halted;
1031 	ep->halted = 1;
1032 
1033 	/* set new status if pending */
1034 	if (req->req.status == -EINPROGRESS)
1035 		req->req.status = sts;
1036 
1037 	/* remove from ep queue */
1038 	list_del_init(&req->queue);
1039 
1040 	VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
1041 		&req->req, req->req.length, ep->ep.name, sts);
1042 
1043 	spin_unlock(&dev->lock);
1044 	usb_gadget_giveback_request(&ep->ep, &req->req);
1045 	spin_lock(&dev->lock);
1046 	ep->halted = halted;
1047 }
1048 
1049 /* Iterates to the end of a DMA chain and returns last descriptor */
udc_get_last_dma_desc(struct udc_request * req)1050 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
1051 {
1052 	struct udc_data_dma	*td;
1053 
1054 	td = req->td_data;
1055 	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
1056 		td = phys_to_virt(td->next);
1057 
1058 	return td;
1059 
1060 }
1061 
1062 /* Iterates to the end of a DMA chain and counts bytes received */
udc_get_ppbdu_rxbytes(struct udc_request * req)1063 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
1064 {
1065 	struct udc_data_dma	*td;
1066 	u32 count;
1067 
1068 	td = req->td_data;
1069 	/* received number bytes */
1070 	count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
1071 
1072 	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
1073 		td = phys_to_virt(td->next);
1074 		/* received number bytes */
1075 		if (td) {
1076 			count += AMD_GETBITS(td->status,
1077 				UDC_DMA_OUT_STS_RXBYTES);
1078 		}
1079 	}
1080 
1081 	return count;
1082 
1083 }
1084 
1085 /* Enabling RX DMA */
udc_set_rde(struct udc * dev)1086 static void udc_set_rde(struct udc *dev)
1087 {
1088 	u32 tmp;
1089 
1090 	VDBG(dev, "udc_set_rde()\n");
1091 	/* stop RDE timer */
1092 	if (timer_pending(&udc_timer)) {
1093 		set_rde = 0;
1094 		mod_timer(&udc_timer, jiffies - 1);
1095 	}
1096 	/* set RDE */
1097 	tmp = readl(&dev->regs->ctl);
1098 	tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1099 	writel(tmp, &dev->regs->ctl);
1100 }
1101 
1102 /* Queues a request packet, called by gadget driver */
1103 static int
udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1104 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1105 {
1106 	int			retval = 0;
1107 	u8			open_rxfifo = 0;
1108 	unsigned long		iflags;
1109 	struct udc_ep		*ep;
1110 	struct udc_request	*req;
1111 	struct udc		*dev;
1112 	u32			tmp;
1113 
1114 	/* check the inputs */
1115 	req = container_of(usbreq, struct udc_request, req);
1116 
1117 	if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1118 			|| !list_empty(&req->queue))
1119 		return -EINVAL;
1120 
1121 	ep = container_of(usbep, struct udc_ep, ep);
1122 	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1123 		return -EINVAL;
1124 
1125 	VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1126 	dev = ep->dev;
1127 
1128 	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1129 		return -ESHUTDOWN;
1130 
1131 	/* map dma (usually done before) */
1132 	if (ep->dma) {
1133 		VDBG(dev, "DMA map req %p\n", req);
1134 		retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1135 		if (retval)
1136 			return retval;
1137 	}
1138 
1139 	VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1140 			usbep->name, usbreq, usbreq->length,
1141 			req->td_data, usbreq->buf);
1142 
1143 	spin_lock_irqsave(&dev->lock, iflags);
1144 	usbreq->actual = 0;
1145 	usbreq->status = -EINPROGRESS;
1146 	req->dma_done = 0;
1147 
1148 	/* on empty queue just do first transfer */
1149 	if (list_empty(&ep->queue)) {
1150 		/* zlp */
1151 		if (usbreq->length == 0) {
1152 			/* IN zlp's are handled by hardware */
1153 			complete_req(ep, req, 0);
1154 			VDBG(dev, "%s: zlp\n", ep->ep.name);
1155 			/*
1156 			 * if set_config or set_intf is waiting for ack by zlp
1157 			 * then set CSR_DONE
1158 			 */
1159 			if (dev->set_cfg_not_acked) {
1160 				tmp = readl(&dev->regs->ctl);
1161 				tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1162 				writel(tmp, &dev->regs->ctl);
1163 				dev->set_cfg_not_acked = 0;
1164 			}
1165 			/* setup command is ACK'ed now by zlp */
1166 			if (dev->waiting_zlp_ack_ep0in) {
1167 				/* clear NAK by writing CNAK in EP0_IN */
1168 				tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1169 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1170 				writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1171 				dev->ep[UDC_EP0IN_IX].naking = 0;
1172 				UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1173 							UDC_EP0IN_IX);
1174 				dev->waiting_zlp_ack_ep0in = 0;
1175 			}
1176 			goto finished;
1177 		}
1178 		if (ep->dma) {
1179 			retval = prep_dma(ep, req, GFP_ATOMIC);
1180 			if (retval != 0)
1181 				goto finished;
1182 			/* write desc pointer to enable DMA */
1183 			if (ep->in) {
1184 				/* set HOST READY */
1185 				req->td_data->status =
1186 					AMD_ADDBITS(req->td_data->status,
1187 						UDC_DMA_IN_STS_BS_HOST_READY,
1188 						UDC_DMA_IN_STS_BS);
1189 			}
1190 
1191 			/* disabled rx dma while descriptor update */
1192 			if (!ep->in) {
1193 				/* stop RDE timer */
1194 				if (timer_pending(&udc_timer)) {
1195 					set_rde = 0;
1196 					mod_timer(&udc_timer, jiffies - 1);
1197 				}
1198 				/* clear RDE */
1199 				tmp = readl(&dev->regs->ctl);
1200 				tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1201 				writel(tmp, &dev->regs->ctl);
1202 				open_rxfifo = 1;
1203 
1204 				/*
1205 				 * if BNA occurred then let BNA dummy desc.
1206 				 * point to current desc.
1207 				 */
1208 				if (ep->bna_occurred) {
1209 					VDBG(dev, "copy to BNA dummy desc.\n");
1210 					memcpy(ep->bna_dummy_req->td_data,
1211 						req->td_data,
1212 						sizeof(struct udc_data_dma));
1213 				}
1214 			}
1215 			/* write desc pointer */
1216 			writel(req->td_phys, &ep->regs->desptr);
1217 
1218 			/* clear NAK by writing CNAK */
1219 			if (ep->naking) {
1220 				tmp = readl(&ep->regs->ctl);
1221 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1222 				writel(tmp, &ep->regs->ctl);
1223 				ep->naking = 0;
1224 				UDC_QUEUE_CNAK(ep, ep->num);
1225 			}
1226 
1227 			if (ep->in) {
1228 				/* enable ep irq */
1229 				tmp = readl(&dev->regs->ep_irqmsk);
1230 				tmp &= AMD_UNMASK_BIT(ep->num);
1231 				writel(tmp, &dev->regs->ep_irqmsk);
1232 			}
1233 		} else if (ep->in) {
1234 				/* enable ep irq */
1235 				tmp = readl(&dev->regs->ep_irqmsk);
1236 				tmp &= AMD_UNMASK_BIT(ep->num);
1237 				writel(tmp, &dev->regs->ep_irqmsk);
1238 			}
1239 
1240 	} else if (ep->dma) {
1241 
1242 		/*
1243 		 * prep_dma not used for OUT ep's, this is not possible
1244 		 * for PPB modes, because of chain creation reasons
1245 		 */
1246 		if (ep->in) {
1247 			retval = prep_dma(ep, req, GFP_ATOMIC);
1248 			if (retval != 0)
1249 				goto finished;
1250 		}
1251 	}
1252 	VDBG(dev, "list_add\n");
1253 	/* add request to ep queue */
1254 	if (req) {
1255 
1256 		list_add_tail(&req->queue, &ep->queue);
1257 
1258 		/* open rxfifo if out data queued */
1259 		if (open_rxfifo) {
1260 			/* enable DMA */
1261 			req->dma_going = 1;
1262 			udc_set_rde(dev);
1263 			if (ep->num != UDC_EP0OUT_IX)
1264 				dev->data_ep_queued = 1;
1265 		}
1266 		/* stop OUT naking */
1267 		if (!ep->in) {
1268 			if (!use_dma && udc_rxfifo_pending) {
1269 				DBG(dev, "udc_queue(): pending bytes in "
1270 					"rxfifo after nyet\n");
1271 				/*
1272 				 * read pending bytes afer nyet:
1273 				 * referring to isr
1274 				 */
1275 				if (udc_rxfifo_read(ep, req)) {
1276 					/* finish */
1277 					complete_req(ep, req, 0);
1278 				}
1279 				udc_rxfifo_pending = 0;
1280 
1281 			}
1282 		}
1283 	}
1284 
1285 finished:
1286 	spin_unlock_irqrestore(&dev->lock, iflags);
1287 	return retval;
1288 }
1289 
1290 /* Empty request queue of an endpoint; caller holds spinlock */
empty_req_queue(struct udc_ep * ep)1291 static void empty_req_queue(struct udc_ep *ep)
1292 {
1293 	struct udc_request	*req;
1294 
1295 	ep->halted = 1;
1296 	while (!list_empty(&ep->queue)) {
1297 		req = list_entry(ep->queue.next,
1298 			struct udc_request,
1299 			queue);
1300 		complete_req(ep, req, -ESHUTDOWN);
1301 	}
1302 }
1303 
1304 /* Dequeues a request packet, called by gadget driver */
udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1305 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1306 {
1307 	struct udc_ep		*ep;
1308 	struct udc_request	*req;
1309 	unsigned		halted;
1310 	unsigned long		iflags;
1311 
1312 	ep = container_of(usbep, struct udc_ep, ep);
1313 	if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1314 				&& ep->num != UDC_EP0OUT_IX)))
1315 		return -EINVAL;
1316 
1317 	req = container_of(usbreq, struct udc_request, req);
1318 
1319 	spin_lock_irqsave(&ep->dev->lock, iflags);
1320 	halted = ep->halted;
1321 	ep->halted = 1;
1322 	/* request in processing or next one */
1323 	if (ep->queue.next == &req->queue) {
1324 		if (ep->dma && req->dma_going) {
1325 			if (ep->in)
1326 				ep->cancel_transfer = 1;
1327 			else {
1328 				u32 tmp;
1329 				u32 dma_sts;
1330 				/* stop potential receive DMA */
1331 				tmp = readl(&udc->regs->ctl);
1332 				writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1333 							&udc->regs->ctl);
1334 				/*
1335 				 * Cancel transfer later in ISR
1336 				 * if descriptor was touched.
1337 				 */
1338 				dma_sts = AMD_GETBITS(req->td_data->status,
1339 							UDC_DMA_OUT_STS_BS);
1340 				if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1341 					ep->cancel_transfer = 1;
1342 				else {
1343 					udc_init_bna_dummy(ep->req);
1344 					writel(ep->bna_dummy_req->td_phys,
1345 						&ep->regs->desptr);
1346 				}
1347 				writel(tmp, &udc->regs->ctl);
1348 			}
1349 		}
1350 	}
1351 	complete_req(ep, req, -ECONNRESET);
1352 	ep->halted = halted;
1353 
1354 	spin_unlock_irqrestore(&ep->dev->lock, iflags);
1355 	return 0;
1356 }
1357 
1358 /* Halt or clear halt of endpoint */
1359 static int
udc_set_halt(struct usb_ep * usbep,int halt)1360 udc_set_halt(struct usb_ep *usbep, int halt)
1361 {
1362 	struct udc_ep	*ep;
1363 	u32 tmp;
1364 	unsigned long iflags;
1365 	int retval = 0;
1366 
1367 	if (!usbep)
1368 		return -EINVAL;
1369 
1370 	pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1371 
1372 	ep = container_of(usbep, struct udc_ep, ep);
1373 	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1374 		return -EINVAL;
1375 	if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1376 		return -ESHUTDOWN;
1377 
1378 	spin_lock_irqsave(&udc_stall_spinlock, iflags);
1379 	/* halt or clear halt */
1380 	if (halt) {
1381 		if (ep->num == 0)
1382 			ep->dev->stall_ep0in = 1;
1383 		else {
1384 			/*
1385 			 * set STALL
1386 			 * rxfifo empty not taken into acount
1387 			 */
1388 			tmp = readl(&ep->regs->ctl);
1389 			tmp |= AMD_BIT(UDC_EPCTL_S);
1390 			writel(tmp, &ep->regs->ctl);
1391 			ep->halted = 1;
1392 
1393 			/* setup poll timer */
1394 			if (!timer_pending(&udc_pollstall_timer)) {
1395 				udc_pollstall_timer.expires = jiffies +
1396 					HZ * UDC_POLLSTALL_TIMER_USECONDS
1397 					/ (1000 * 1000);
1398 				if (!stop_pollstall_timer) {
1399 					DBG(ep->dev, "start polltimer\n");
1400 					add_timer(&udc_pollstall_timer);
1401 				}
1402 			}
1403 		}
1404 	} else {
1405 		/* ep is halted by set_halt() before */
1406 		if (ep->halted) {
1407 			tmp = readl(&ep->regs->ctl);
1408 			/* clear stall bit */
1409 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1410 			/* clear NAK by writing CNAK */
1411 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1412 			writel(tmp, &ep->regs->ctl);
1413 			ep->halted = 0;
1414 			UDC_QUEUE_CNAK(ep, ep->num);
1415 		}
1416 	}
1417 	spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1418 	return retval;
1419 }
1420 
1421 /* gadget interface */
1422 static const struct usb_ep_ops udc_ep_ops = {
1423 	.enable		= udc_ep_enable,
1424 	.disable	= udc_ep_disable,
1425 
1426 	.alloc_request	= udc_alloc_request,
1427 	.free_request	= udc_free_request,
1428 
1429 	.queue		= udc_queue,
1430 	.dequeue	= udc_dequeue,
1431 
1432 	.set_halt	= udc_set_halt,
1433 	/* fifo ops not implemented */
1434 };
1435 
1436 /*-------------------------------------------------------------------------*/
1437 
1438 /* Get frame counter (not implemented) */
udc_get_frame(struct usb_gadget * gadget)1439 static int udc_get_frame(struct usb_gadget *gadget)
1440 {
1441 	return -EOPNOTSUPP;
1442 }
1443 
1444 /* Initiates a remote wakeup */
udc_remote_wakeup(struct udc * dev)1445 static int udc_remote_wakeup(struct udc *dev)
1446 {
1447 	unsigned long flags;
1448 	u32 tmp;
1449 
1450 	DBG(dev, "UDC initiates remote wakeup\n");
1451 
1452 	spin_lock_irqsave(&dev->lock, flags);
1453 
1454 	tmp = readl(&dev->regs->ctl);
1455 	tmp |= AMD_BIT(UDC_DEVCTL_RES);
1456 	writel(tmp, &dev->regs->ctl);
1457 	tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
1458 	writel(tmp, &dev->regs->ctl);
1459 
1460 	spin_unlock_irqrestore(&dev->lock, flags);
1461 	return 0;
1462 }
1463 
1464 /* Remote wakeup gadget interface */
udc_wakeup(struct usb_gadget * gadget)1465 static int udc_wakeup(struct usb_gadget *gadget)
1466 {
1467 	struct udc		*dev;
1468 
1469 	if (!gadget)
1470 		return -EINVAL;
1471 	dev = container_of(gadget, struct udc, gadget);
1472 	udc_remote_wakeup(dev);
1473 
1474 	return 0;
1475 }
1476 
1477 static int amd5536_udc_start(struct usb_gadget *g,
1478 		struct usb_gadget_driver *driver);
1479 static int amd5536_udc_stop(struct usb_gadget *g);
1480 
1481 static const struct usb_gadget_ops udc_ops = {
1482 	.wakeup		= udc_wakeup,
1483 	.get_frame	= udc_get_frame,
1484 	.udc_start	= amd5536_udc_start,
1485 	.udc_stop	= amd5536_udc_stop,
1486 };
1487 
1488 /* Setups endpoint parameters, adds endpoints to linked list */
make_ep_lists(struct udc * dev)1489 static void make_ep_lists(struct udc *dev)
1490 {
1491 	/* make gadget ep lists */
1492 	INIT_LIST_HEAD(&dev->gadget.ep_list);
1493 	list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1494 						&dev->gadget.ep_list);
1495 	list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1496 						&dev->gadget.ep_list);
1497 	list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1498 						&dev->gadget.ep_list);
1499 
1500 	/* fifo config */
1501 	dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1502 	if (dev->gadget.speed == USB_SPEED_FULL)
1503 		dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1504 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1505 		dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1506 	dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1507 }
1508 
1509 /* Inits UDC context */
udc_basic_init(struct udc * dev)1510 static void udc_basic_init(struct udc *dev)
1511 {
1512 	u32	tmp;
1513 
1514 	DBG(dev, "udc_basic_init()\n");
1515 
1516 	dev->gadget.speed = USB_SPEED_UNKNOWN;
1517 
1518 	/* stop RDE timer */
1519 	if (timer_pending(&udc_timer)) {
1520 		set_rde = 0;
1521 		mod_timer(&udc_timer, jiffies - 1);
1522 	}
1523 	/* stop poll stall timer */
1524 	if (timer_pending(&udc_pollstall_timer))
1525 		mod_timer(&udc_pollstall_timer, jiffies - 1);
1526 	/* disable DMA */
1527 	tmp = readl(&dev->regs->ctl);
1528 	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1529 	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1530 	writel(tmp, &dev->regs->ctl);
1531 
1532 	/* enable dynamic CSR programming */
1533 	tmp = readl(&dev->regs->cfg);
1534 	tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1535 	/* set self powered */
1536 	tmp |= AMD_BIT(UDC_DEVCFG_SP);
1537 	/* set remote wakeupable */
1538 	tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1539 	writel(tmp, &dev->regs->cfg);
1540 
1541 	make_ep_lists(dev);
1542 
1543 	dev->data_ep_enabled = 0;
1544 	dev->data_ep_queued = 0;
1545 }
1546 
1547 /* init registers at driver load time */
startup_registers(struct udc * dev)1548 static int startup_registers(struct udc *dev)
1549 {
1550 	u32 tmp;
1551 
1552 	/* init controller by soft reset */
1553 	udc_soft_reset(dev);
1554 
1555 	/* mask not needed interrupts */
1556 	udc_mask_unused_interrupts(dev);
1557 
1558 	/* put into initial config */
1559 	udc_basic_init(dev);
1560 	/* link up all endpoints */
1561 	udc_setup_endpoints(dev);
1562 
1563 	/* program speed */
1564 	tmp = readl(&dev->regs->cfg);
1565 	if (use_fullspeed)
1566 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1567 	else
1568 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1569 	writel(tmp, &dev->regs->cfg);
1570 
1571 	return 0;
1572 }
1573 
1574 /* Sets initial endpoint parameters */
udc_setup_endpoints(struct udc * dev)1575 static void udc_setup_endpoints(struct udc *dev)
1576 {
1577 	struct udc_ep	*ep;
1578 	u32	tmp;
1579 	u32	reg;
1580 
1581 	DBG(dev, "udc_setup_endpoints()\n");
1582 
1583 	/* read enum speed */
1584 	tmp = readl(&dev->regs->sts);
1585 	tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1586 	if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1587 		dev->gadget.speed = USB_SPEED_HIGH;
1588 	else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1589 		dev->gadget.speed = USB_SPEED_FULL;
1590 
1591 	/* set basic ep parameters */
1592 	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1593 		ep = &dev->ep[tmp];
1594 		ep->dev = dev;
1595 		ep->ep.name = ep_info[tmp].name;
1596 		ep->ep.caps = ep_info[tmp].caps;
1597 		ep->num = tmp;
1598 		/* txfifo size is calculated at enable time */
1599 		ep->txfifo = dev->txfifo;
1600 
1601 		/* fifo size */
1602 		if (tmp < UDC_EPIN_NUM) {
1603 			ep->fifo_depth = UDC_TXFIFO_SIZE;
1604 			ep->in = 1;
1605 		} else {
1606 			ep->fifo_depth = UDC_RXFIFO_SIZE;
1607 			ep->in = 0;
1608 
1609 		}
1610 		ep->regs = &dev->ep_regs[tmp];
1611 		/*
1612 		 * ep will be reset only if ep was not enabled before to avoid
1613 		 * disabling ep interrupts when ENUM interrupt occurs but ep is
1614 		 * not enabled by gadget driver
1615 		 */
1616 		if (!ep->ep.desc)
1617 			ep_init(dev->regs, ep);
1618 
1619 		if (use_dma) {
1620 			/*
1621 			 * ep->dma is not really used, just to indicate that
1622 			 * DMA is active: remove this
1623 			 * dma regs = dev control regs
1624 			 */
1625 			ep->dma = &dev->regs->ctl;
1626 
1627 			/* nak OUT endpoints until enable - not for ep0 */
1628 			if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1629 						&& tmp > UDC_EPIN_NUM) {
1630 				/* set NAK */
1631 				reg = readl(&dev->ep[tmp].regs->ctl);
1632 				reg |= AMD_BIT(UDC_EPCTL_SNAK);
1633 				writel(reg, &dev->ep[tmp].regs->ctl);
1634 				dev->ep[tmp].naking = 1;
1635 
1636 			}
1637 		}
1638 	}
1639 	/* EP0 max packet */
1640 	if (dev->gadget.speed == USB_SPEED_FULL) {
1641 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1642 					   UDC_FS_EP0IN_MAX_PKT_SIZE);
1643 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1644 					   UDC_FS_EP0OUT_MAX_PKT_SIZE);
1645 	} else if (dev->gadget.speed == USB_SPEED_HIGH) {
1646 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1647 					   UDC_EP0IN_MAX_PKT_SIZE);
1648 		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1649 					   UDC_EP0OUT_MAX_PKT_SIZE);
1650 	}
1651 
1652 	/*
1653 	 * with suspend bug workaround, ep0 params for gadget driver
1654 	 * are set at gadget driver bind() call
1655 	 */
1656 	dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1657 	dev->ep[UDC_EP0IN_IX].halted = 0;
1658 	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1659 
1660 	/* init cfg/alt/int */
1661 	dev->cur_config = 0;
1662 	dev->cur_intf = 0;
1663 	dev->cur_alt = 0;
1664 }
1665 
1666 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
usb_connect(struct udc * dev)1667 static void usb_connect(struct udc *dev)
1668 {
1669 
1670 	dev_info(&dev->pdev->dev, "USB Connect\n");
1671 
1672 	dev->connected = 1;
1673 
1674 	/* put into initial config */
1675 	udc_basic_init(dev);
1676 
1677 	/* enable device setup interrupts */
1678 	udc_enable_dev_setup_interrupts(dev);
1679 }
1680 
1681 /*
1682  * Calls gadget with disconnect event and resets the UDC and makes
1683  * initial bringup to be ready for ep0 events
1684  */
usb_disconnect(struct udc * dev)1685 static void usb_disconnect(struct udc *dev)
1686 {
1687 
1688 	dev_info(&dev->pdev->dev, "USB Disconnect\n");
1689 
1690 	dev->connected = 0;
1691 
1692 	/* mask interrupts */
1693 	udc_mask_unused_interrupts(dev);
1694 
1695 	/* REVISIT there doesn't seem to be a point to having this
1696 	 * talk to a tasklet ... do it directly, we already hold
1697 	 * the spinlock needed to process the disconnect.
1698 	 */
1699 
1700 	tasklet_schedule(&disconnect_tasklet);
1701 }
1702 
1703 /* Tasklet for disconnect to be outside of interrupt context */
udc_tasklet_disconnect(unsigned long par)1704 static void udc_tasklet_disconnect(unsigned long par)
1705 {
1706 	struct udc *dev = (struct udc *)(*((struct udc **) par));
1707 	u32 tmp;
1708 
1709 	DBG(dev, "Tasklet disconnect\n");
1710 	spin_lock_irq(&dev->lock);
1711 
1712 	if (dev->driver) {
1713 		spin_unlock(&dev->lock);
1714 		dev->driver->disconnect(&dev->gadget);
1715 		spin_lock(&dev->lock);
1716 
1717 		/* empty queues */
1718 		for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1719 			empty_req_queue(&dev->ep[tmp]);
1720 
1721 	}
1722 
1723 	/* disable ep0 */
1724 	ep_init(dev->regs,
1725 			&dev->ep[UDC_EP0IN_IX]);
1726 
1727 
1728 	if (!soft_reset_occured) {
1729 		/* init controller by soft reset */
1730 		udc_soft_reset(dev);
1731 		soft_reset_occured++;
1732 	}
1733 
1734 	/* re-enable dev interrupts */
1735 	udc_enable_dev_setup_interrupts(dev);
1736 	/* back to full speed ? */
1737 	if (use_fullspeed) {
1738 		tmp = readl(&dev->regs->cfg);
1739 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1740 		writel(tmp, &dev->regs->cfg);
1741 	}
1742 
1743 	spin_unlock_irq(&dev->lock);
1744 }
1745 
1746 /* Reset the UDC core */
udc_soft_reset(struct udc * dev)1747 static void udc_soft_reset(struct udc *dev)
1748 {
1749 	unsigned long	flags;
1750 
1751 	DBG(dev, "Soft reset\n");
1752 	/*
1753 	 * reset possible waiting interrupts, because int.
1754 	 * status is lost after soft reset,
1755 	 * ep int. status reset
1756 	 */
1757 	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1758 	/* device int. status reset */
1759 	writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1760 
1761 	spin_lock_irqsave(&udc_irq_spinlock, flags);
1762 	writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1763 	readl(&dev->regs->cfg);
1764 	spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1765 
1766 }
1767 
1768 /* RDE timer callback to set RDE bit */
udc_timer_function(unsigned long v)1769 static void udc_timer_function(unsigned long v)
1770 {
1771 	u32 tmp;
1772 
1773 	spin_lock_irq(&udc_irq_spinlock);
1774 
1775 	if (set_rde > 0) {
1776 		/*
1777 		 * open the fifo if fifo was filled on last timer call
1778 		 * conditionally
1779 		 */
1780 		if (set_rde > 1) {
1781 			/* set RDE to receive setup data */
1782 			tmp = readl(&udc->regs->ctl);
1783 			tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1784 			writel(tmp, &udc->regs->ctl);
1785 			set_rde = -1;
1786 		} else if (readl(&udc->regs->sts)
1787 				& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1788 			/*
1789 			 * if fifo empty setup polling, do not just
1790 			 * open the fifo
1791 			 */
1792 			udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1793 			if (!stop_timer)
1794 				add_timer(&udc_timer);
1795 		} else {
1796 			/*
1797 			 * fifo contains data now, setup timer for opening
1798 			 * the fifo when timer expires to be able to receive
1799 			 * setup packets, when data packets gets queued by
1800 			 * gadget layer then timer will forced to expire with
1801 			 * set_rde=0 (RDE is set in udc_queue())
1802 			 */
1803 			set_rde++;
1804 			/* debug: lhadmot_timer_start = 221070 */
1805 			udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1806 			if (!stop_timer)
1807 				add_timer(&udc_timer);
1808 		}
1809 
1810 	} else
1811 		set_rde = -1; /* RDE was set by udc_queue() */
1812 	spin_unlock_irq(&udc_irq_spinlock);
1813 	if (stop_timer)
1814 		complete(&on_exit);
1815 
1816 }
1817 
1818 /* Handle halt state, used in stall poll timer */
udc_handle_halt_state(struct udc_ep * ep)1819 static void udc_handle_halt_state(struct udc_ep *ep)
1820 {
1821 	u32 tmp;
1822 	/* set stall as long not halted */
1823 	if (ep->halted == 1) {
1824 		tmp = readl(&ep->regs->ctl);
1825 		/* STALL cleared ? */
1826 		if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1827 			/*
1828 			 * FIXME: MSC spec requires that stall remains
1829 			 * even on receivng of CLEAR_FEATURE HALT. So
1830 			 * we would set STALL again here to be compliant.
1831 			 * But with current mass storage drivers this does
1832 			 * not work (would produce endless host retries).
1833 			 * So we clear halt on CLEAR_FEATURE.
1834 			 *
1835 			DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1836 			tmp |= AMD_BIT(UDC_EPCTL_S);
1837 			writel(tmp, &ep->regs->ctl);*/
1838 
1839 			/* clear NAK by writing CNAK */
1840 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1841 			writel(tmp, &ep->regs->ctl);
1842 			ep->halted = 0;
1843 			UDC_QUEUE_CNAK(ep, ep->num);
1844 		}
1845 	}
1846 }
1847 
1848 /* Stall timer callback to poll S bit and set it again after */
udc_pollstall_timer_function(unsigned long v)1849 static void udc_pollstall_timer_function(unsigned long v)
1850 {
1851 	struct udc_ep *ep;
1852 	int halted = 0;
1853 
1854 	spin_lock_irq(&udc_stall_spinlock);
1855 	/*
1856 	 * only one IN and OUT endpoints are handled
1857 	 * IN poll stall
1858 	 */
1859 	ep = &udc->ep[UDC_EPIN_IX];
1860 	udc_handle_halt_state(ep);
1861 	if (ep->halted)
1862 		halted = 1;
1863 	/* OUT poll stall */
1864 	ep = &udc->ep[UDC_EPOUT_IX];
1865 	udc_handle_halt_state(ep);
1866 	if (ep->halted)
1867 		halted = 1;
1868 
1869 	/* setup timer again when still halted */
1870 	if (!stop_pollstall_timer && halted) {
1871 		udc_pollstall_timer.expires = jiffies +
1872 					HZ * UDC_POLLSTALL_TIMER_USECONDS
1873 					/ (1000 * 1000);
1874 		add_timer(&udc_pollstall_timer);
1875 	}
1876 	spin_unlock_irq(&udc_stall_spinlock);
1877 
1878 	if (stop_pollstall_timer)
1879 		complete(&on_pollstall_exit);
1880 }
1881 
1882 /* Inits endpoint 0 so that SETUP packets are processed */
activate_control_endpoints(struct udc * dev)1883 static void activate_control_endpoints(struct udc *dev)
1884 {
1885 	u32 tmp;
1886 
1887 	DBG(dev, "activate_control_endpoints\n");
1888 
1889 	/* flush fifo */
1890 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1891 	tmp |= AMD_BIT(UDC_EPCTL_F);
1892 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1893 
1894 	/* set ep0 directions */
1895 	dev->ep[UDC_EP0IN_IX].in = 1;
1896 	dev->ep[UDC_EP0OUT_IX].in = 0;
1897 
1898 	/* set buffer size (tx fifo entries) of EP0_IN */
1899 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1900 	if (dev->gadget.speed == USB_SPEED_FULL)
1901 		tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1902 					UDC_EPIN_BUFF_SIZE);
1903 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1904 		tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1905 					UDC_EPIN_BUFF_SIZE);
1906 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1907 
1908 	/* set max packet size of EP0_IN */
1909 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1910 	if (dev->gadget.speed == USB_SPEED_FULL)
1911 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1912 					UDC_EP_MAX_PKT_SIZE);
1913 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1914 		tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1915 				UDC_EP_MAX_PKT_SIZE);
1916 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1917 
1918 	/* set max packet size of EP0_OUT */
1919 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1920 	if (dev->gadget.speed == USB_SPEED_FULL)
1921 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1922 					UDC_EP_MAX_PKT_SIZE);
1923 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1924 		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1925 					UDC_EP_MAX_PKT_SIZE);
1926 	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1927 
1928 	/* set max packet size of EP0 in UDC CSR */
1929 	tmp = readl(&dev->csr->ne[0]);
1930 	if (dev->gadget.speed == USB_SPEED_FULL)
1931 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1932 					UDC_CSR_NE_MAX_PKT);
1933 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1934 		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1935 					UDC_CSR_NE_MAX_PKT);
1936 	writel(tmp, &dev->csr->ne[0]);
1937 
1938 	if (use_dma) {
1939 		dev->ep[UDC_EP0OUT_IX].td->status |=
1940 			AMD_BIT(UDC_DMA_OUT_STS_L);
1941 		/* write dma desc address */
1942 		writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1943 			&dev->ep[UDC_EP0OUT_IX].regs->subptr);
1944 		writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1945 			&dev->ep[UDC_EP0OUT_IX].regs->desptr);
1946 		/* stop RDE timer */
1947 		if (timer_pending(&udc_timer)) {
1948 			set_rde = 0;
1949 			mod_timer(&udc_timer, jiffies - 1);
1950 		}
1951 		/* stop pollstall timer */
1952 		if (timer_pending(&udc_pollstall_timer))
1953 			mod_timer(&udc_pollstall_timer, jiffies - 1);
1954 		/* enable DMA */
1955 		tmp = readl(&dev->regs->ctl);
1956 		tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1957 				| AMD_BIT(UDC_DEVCTL_RDE)
1958 				| AMD_BIT(UDC_DEVCTL_TDE);
1959 		if (use_dma_bufferfill_mode)
1960 			tmp |= AMD_BIT(UDC_DEVCTL_BF);
1961 		else if (use_dma_ppb_du)
1962 			tmp |= AMD_BIT(UDC_DEVCTL_DU);
1963 		writel(tmp, &dev->regs->ctl);
1964 	}
1965 
1966 	/* clear NAK by writing CNAK for EP0IN */
1967 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1968 	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1969 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1970 	dev->ep[UDC_EP0IN_IX].naking = 0;
1971 	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1972 
1973 	/* clear NAK by writing CNAK for EP0OUT */
1974 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1975 	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1976 	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1977 	dev->ep[UDC_EP0OUT_IX].naking = 0;
1978 	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1979 }
1980 
1981 /* Make endpoint 0 ready for control traffic */
setup_ep0(struct udc * dev)1982 static int setup_ep0(struct udc *dev)
1983 {
1984 	activate_control_endpoints(dev);
1985 	/* enable ep0 interrupts */
1986 	udc_enable_ep0_interrupts(dev);
1987 	/* enable device setup interrupts */
1988 	udc_enable_dev_setup_interrupts(dev);
1989 
1990 	return 0;
1991 }
1992 
1993 /* Called by gadget driver to register itself */
amd5536_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1994 static int amd5536_udc_start(struct usb_gadget *g,
1995 		struct usb_gadget_driver *driver)
1996 {
1997 	struct udc *dev = to_amd5536_udc(g);
1998 	u32 tmp;
1999 
2000 	driver->driver.bus = NULL;
2001 	dev->driver = driver;
2002 
2003 	/* Some gadget drivers use both ep0 directions.
2004 	 * NOTE: to gadget driver, ep0 is just one endpoint...
2005 	 */
2006 	dev->ep[UDC_EP0OUT_IX].ep.driver_data =
2007 		dev->ep[UDC_EP0IN_IX].ep.driver_data;
2008 
2009 	/* get ready for ep0 traffic */
2010 	setup_ep0(dev);
2011 
2012 	/* clear SD */
2013 	tmp = readl(&dev->regs->ctl);
2014 	tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
2015 	writel(tmp, &dev->regs->ctl);
2016 
2017 	usb_connect(dev);
2018 
2019 	return 0;
2020 }
2021 
2022 /* shutdown requests and disconnect from gadget */
2023 static void
shutdown(struct udc * dev,struct usb_gadget_driver * driver)2024 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2025 __releases(dev->lock)
2026 __acquires(dev->lock)
2027 {
2028 	int tmp;
2029 
2030 	/* empty queues and init hardware */
2031 	udc_basic_init(dev);
2032 
2033 	for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
2034 		empty_req_queue(&dev->ep[tmp]);
2035 
2036 	udc_setup_endpoints(dev);
2037 }
2038 
2039 /* Called by gadget driver to unregister itself */
amd5536_udc_stop(struct usb_gadget * g)2040 static int amd5536_udc_stop(struct usb_gadget *g)
2041 {
2042 	struct udc *dev = to_amd5536_udc(g);
2043 	unsigned long flags;
2044 	u32 tmp;
2045 
2046 	spin_lock_irqsave(&dev->lock, flags);
2047 	udc_mask_unused_interrupts(dev);
2048 	shutdown(dev, NULL);
2049 	spin_unlock_irqrestore(&dev->lock, flags);
2050 
2051 	dev->driver = NULL;
2052 
2053 	/* set SD */
2054 	tmp = readl(&dev->regs->ctl);
2055 	tmp |= AMD_BIT(UDC_DEVCTL_SD);
2056 	writel(tmp, &dev->regs->ctl);
2057 
2058 	return 0;
2059 }
2060 
2061 /* Clear pending NAK bits */
udc_process_cnak_queue(struct udc * dev)2062 static void udc_process_cnak_queue(struct udc *dev)
2063 {
2064 	u32 tmp;
2065 	u32 reg;
2066 
2067 	/* check epin's */
2068 	DBG(dev, "CNAK pending queue processing\n");
2069 	for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2070 		if (cnak_pending & (1 << tmp)) {
2071 			DBG(dev, "CNAK pending for ep%d\n", tmp);
2072 			/* clear NAK by writing CNAK */
2073 			reg = readl(&dev->ep[tmp].regs->ctl);
2074 			reg |= AMD_BIT(UDC_EPCTL_CNAK);
2075 			writel(reg, &dev->ep[tmp].regs->ctl);
2076 			dev->ep[tmp].naking = 0;
2077 			UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2078 		}
2079 	}
2080 	/* ...	and ep0out */
2081 	if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2082 		DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2083 		/* clear NAK by writing CNAK */
2084 		reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2085 		reg |= AMD_BIT(UDC_EPCTL_CNAK);
2086 		writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2087 		dev->ep[UDC_EP0OUT_IX].naking = 0;
2088 		UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2089 				dev->ep[UDC_EP0OUT_IX].num);
2090 	}
2091 }
2092 
2093 /* Enabling RX DMA after setup packet */
udc_ep0_set_rde(struct udc * dev)2094 static void udc_ep0_set_rde(struct udc *dev)
2095 {
2096 	if (use_dma) {
2097 		/*
2098 		 * only enable RXDMA when no data endpoint enabled
2099 		 * or data is queued
2100 		 */
2101 		if (!dev->data_ep_enabled || dev->data_ep_queued) {
2102 			udc_set_rde(dev);
2103 		} else {
2104 			/*
2105 			 * setup timer for enabling RDE (to not enable
2106 			 * RXFIFO DMA for data endpoints to early)
2107 			 */
2108 			if (set_rde != 0 && !timer_pending(&udc_timer)) {
2109 				udc_timer.expires =
2110 					jiffies + HZ/UDC_RDE_TIMER_DIV;
2111 				set_rde = 1;
2112 				if (!stop_timer)
2113 					add_timer(&udc_timer);
2114 			}
2115 		}
2116 	}
2117 }
2118 
2119 
2120 /* Interrupt handler for data OUT traffic */
udc_data_out_isr(struct udc * dev,int ep_ix)2121 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2122 {
2123 	irqreturn_t		ret_val = IRQ_NONE;
2124 	u32			tmp;
2125 	struct udc_ep		*ep;
2126 	struct udc_request	*req;
2127 	unsigned int		count;
2128 	struct udc_data_dma	*td = NULL;
2129 	unsigned		dma_done;
2130 
2131 	VDBG(dev, "ep%d irq\n", ep_ix);
2132 	ep = &dev->ep[ep_ix];
2133 
2134 	tmp = readl(&ep->regs->sts);
2135 	if (use_dma) {
2136 		/* BNA event ? */
2137 		if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2138 			DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2139 					ep->num, readl(&ep->regs->desptr));
2140 			/* clear BNA */
2141 			writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2142 			if (!ep->cancel_transfer)
2143 				ep->bna_occurred = 1;
2144 			else
2145 				ep->cancel_transfer = 0;
2146 			ret_val = IRQ_HANDLED;
2147 			goto finished;
2148 		}
2149 	}
2150 	/* HE event ? */
2151 	if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2152 		dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2153 
2154 		/* clear HE */
2155 		writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2156 		ret_val = IRQ_HANDLED;
2157 		goto finished;
2158 	}
2159 
2160 	if (!list_empty(&ep->queue)) {
2161 
2162 		/* next request */
2163 		req = list_entry(ep->queue.next,
2164 			struct udc_request, queue);
2165 	} else {
2166 		req = NULL;
2167 		udc_rxfifo_pending = 1;
2168 	}
2169 	VDBG(dev, "req = %p\n", req);
2170 	/* fifo mode */
2171 	if (!use_dma) {
2172 
2173 		/* read fifo */
2174 		if (req && udc_rxfifo_read(ep, req)) {
2175 			ret_val = IRQ_HANDLED;
2176 
2177 			/* finish */
2178 			complete_req(ep, req, 0);
2179 			/* next request */
2180 			if (!list_empty(&ep->queue) && !ep->halted) {
2181 				req = list_entry(ep->queue.next,
2182 					struct udc_request, queue);
2183 			} else
2184 				req = NULL;
2185 		}
2186 
2187 	/* DMA */
2188 	} else if (!ep->cancel_transfer && req) {
2189 		ret_val = IRQ_HANDLED;
2190 
2191 		/* check for DMA done */
2192 		if (!use_dma_ppb) {
2193 			dma_done = AMD_GETBITS(req->td_data->status,
2194 						UDC_DMA_OUT_STS_BS);
2195 		/* packet per buffer mode - rx bytes */
2196 		} else {
2197 			/*
2198 			 * if BNA occurred then recover desc. from
2199 			 * BNA dummy desc.
2200 			 */
2201 			if (ep->bna_occurred) {
2202 				VDBG(dev, "Recover desc. from BNA dummy\n");
2203 				memcpy(req->td_data, ep->bna_dummy_req->td_data,
2204 						sizeof(struct udc_data_dma));
2205 				ep->bna_occurred = 0;
2206 				udc_init_bna_dummy(ep->req);
2207 			}
2208 			td = udc_get_last_dma_desc(req);
2209 			dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2210 		}
2211 		if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2212 			/* buffer fill mode - rx bytes */
2213 			if (!use_dma_ppb) {
2214 				/* received number bytes */
2215 				count = AMD_GETBITS(req->td_data->status,
2216 						UDC_DMA_OUT_STS_RXBYTES);
2217 				VDBG(dev, "rx bytes=%u\n", count);
2218 			/* packet per buffer mode - rx bytes */
2219 			} else {
2220 				VDBG(dev, "req->td_data=%p\n", req->td_data);
2221 				VDBG(dev, "last desc = %p\n", td);
2222 				/* received number bytes */
2223 				if (use_dma_ppb_du) {
2224 					/* every desc. counts bytes */
2225 					count = udc_get_ppbdu_rxbytes(req);
2226 				} else {
2227 					/* last desc. counts bytes */
2228 					count = AMD_GETBITS(td->status,
2229 						UDC_DMA_OUT_STS_RXBYTES);
2230 					if (!count && req->req.length
2231 						== UDC_DMA_MAXPACKET) {
2232 						/*
2233 						 * on 64k packets the RXBYTES
2234 						 * field is zero
2235 						 */
2236 						count = UDC_DMA_MAXPACKET;
2237 					}
2238 				}
2239 				VDBG(dev, "last desc rx bytes=%u\n", count);
2240 			}
2241 
2242 			tmp = req->req.length - req->req.actual;
2243 			if (count > tmp) {
2244 				if ((tmp % ep->ep.maxpacket) != 0) {
2245 					DBG(dev, "%s: rx %db, space=%db\n",
2246 						ep->ep.name, count, tmp);
2247 					req->req.status = -EOVERFLOW;
2248 				}
2249 				count = tmp;
2250 			}
2251 			req->req.actual += count;
2252 			req->dma_going = 0;
2253 			/* complete request */
2254 			complete_req(ep, req, 0);
2255 
2256 			/* next request */
2257 			if (!list_empty(&ep->queue) && !ep->halted) {
2258 				req = list_entry(ep->queue.next,
2259 					struct udc_request,
2260 					queue);
2261 				/*
2262 				 * DMA may be already started by udc_queue()
2263 				 * called by gadget drivers completion
2264 				 * routine. This happens when queue
2265 				 * holds one request only.
2266 				 */
2267 				if (req->dma_going == 0) {
2268 					/* next dma */
2269 					if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2270 						goto finished;
2271 					/* write desc pointer */
2272 					writel(req->td_phys,
2273 						&ep->regs->desptr);
2274 					req->dma_going = 1;
2275 					/* enable DMA */
2276 					udc_set_rde(dev);
2277 				}
2278 			} else {
2279 				/*
2280 				 * implant BNA dummy descriptor to allow
2281 				 * RXFIFO opening by RDE
2282 				 */
2283 				if (ep->bna_dummy_req) {
2284 					/* write desc pointer */
2285 					writel(ep->bna_dummy_req->td_phys,
2286 						&ep->regs->desptr);
2287 					ep->bna_occurred = 0;
2288 				}
2289 
2290 				/*
2291 				 * schedule timer for setting RDE if queue
2292 				 * remains empty to allow ep0 packets pass
2293 				 * through
2294 				 */
2295 				if (set_rde != 0
2296 						&& !timer_pending(&udc_timer)) {
2297 					udc_timer.expires =
2298 						jiffies
2299 						+ HZ*UDC_RDE_TIMER_SECONDS;
2300 					set_rde = 1;
2301 					if (!stop_timer)
2302 						add_timer(&udc_timer);
2303 				}
2304 				if (ep->num != UDC_EP0OUT_IX)
2305 					dev->data_ep_queued = 0;
2306 			}
2307 
2308 		} else {
2309 			/*
2310 			* RX DMA must be reenabled for each desc in PPBDU mode
2311 			* and must be enabled for PPBNDU mode in case of BNA
2312 			*/
2313 			udc_set_rde(dev);
2314 		}
2315 
2316 	} else if (ep->cancel_transfer) {
2317 		ret_val = IRQ_HANDLED;
2318 		ep->cancel_transfer = 0;
2319 	}
2320 
2321 	/* check pending CNAKS */
2322 	if (cnak_pending) {
2323 		/* CNAk processing when rxfifo empty only */
2324 		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2325 			udc_process_cnak_queue(dev);
2326 	}
2327 
2328 	/* clear OUT bits in ep status */
2329 	writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2330 finished:
2331 	return ret_val;
2332 }
2333 
2334 /* Interrupt handler for data IN traffic */
udc_data_in_isr(struct udc * dev,int ep_ix)2335 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2336 {
2337 	irqreturn_t ret_val = IRQ_NONE;
2338 	u32 tmp;
2339 	u32 epsts;
2340 	struct udc_ep *ep;
2341 	struct udc_request *req;
2342 	struct udc_data_dma *td;
2343 	unsigned dma_done;
2344 	unsigned len;
2345 
2346 	ep = &dev->ep[ep_ix];
2347 
2348 	epsts = readl(&ep->regs->sts);
2349 	if (use_dma) {
2350 		/* BNA ? */
2351 		if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2352 			dev_err(&dev->pdev->dev,
2353 				"BNA ep%din occurred - DESPTR = %08lx\n",
2354 				ep->num,
2355 				(unsigned long) readl(&ep->regs->desptr));
2356 
2357 			/* clear BNA */
2358 			writel(epsts, &ep->regs->sts);
2359 			ret_val = IRQ_HANDLED;
2360 			goto finished;
2361 		}
2362 	}
2363 	/* HE event ? */
2364 	if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2365 		dev_err(&dev->pdev->dev,
2366 			"HE ep%dn occurred - DESPTR = %08lx\n",
2367 			ep->num, (unsigned long) readl(&ep->regs->desptr));
2368 
2369 		/* clear HE */
2370 		writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2371 		ret_val = IRQ_HANDLED;
2372 		goto finished;
2373 	}
2374 
2375 	/* DMA completion */
2376 	if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2377 		VDBG(dev, "TDC set- completion\n");
2378 		ret_val = IRQ_HANDLED;
2379 		if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2380 			req = list_entry(ep->queue.next,
2381 					struct udc_request, queue);
2382 			/*
2383 			 * length bytes transferred
2384 			 * check dma done of last desc. in PPBDU mode
2385 			 */
2386 			if (use_dma_ppb_du) {
2387 				td = udc_get_last_dma_desc(req);
2388 				if (td) {
2389 					dma_done =
2390 						AMD_GETBITS(td->status,
2391 						UDC_DMA_IN_STS_BS);
2392 					/* don't care DMA done */
2393 					req->req.actual = req->req.length;
2394 				}
2395 			} else {
2396 				/* assume all bytes transferred */
2397 				req->req.actual = req->req.length;
2398 			}
2399 
2400 			if (req->req.actual == req->req.length) {
2401 				/* complete req */
2402 				complete_req(ep, req, 0);
2403 				req->dma_going = 0;
2404 				/* further request available ? */
2405 				if (list_empty(&ep->queue)) {
2406 					/* disable interrupt */
2407 					tmp = readl(&dev->regs->ep_irqmsk);
2408 					tmp |= AMD_BIT(ep->num);
2409 					writel(tmp, &dev->regs->ep_irqmsk);
2410 				}
2411 			}
2412 		}
2413 		ep->cancel_transfer = 0;
2414 
2415 	}
2416 	/*
2417 	 * status reg has IN bit set and TDC not set (if TDC was handled,
2418 	 * IN must not be handled (UDC defect) ?
2419 	 */
2420 	if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2421 			&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2422 		ret_val = IRQ_HANDLED;
2423 		if (!list_empty(&ep->queue)) {
2424 			/* next request */
2425 			req = list_entry(ep->queue.next,
2426 					struct udc_request, queue);
2427 			/* FIFO mode */
2428 			if (!use_dma) {
2429 				/* write fifo */
2430 				udc_txfifo_write(ep, &req->req);
2431 				len = req->req.length - req->req.actual;
2432 				if (len > ep->ep.maxpacket)
2433 					len = ep->ep.maxpacket;
2434 				req->req.actual += len;
2435 				if (req->req.actual == req->req.length
2436 					|| (len != ep->ep.maxpacket)) {
2437 					/* complete req */
2438 					complete_req(ep, req, 0);
2439 				}
2440 			/* DMA */
2441 			} else if (req && !req->dma_going) {
2442 				VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2443 					req, req->td_data);
2444 				if (req->td_data) {
2445 
2446 					req->dma_going = 1;
2447 
2448 					/*
2449 					 * unset L bit of first desc.
2450 					 * for chain
2451 					 */
2452 					if (use_dma_ppb && req->req.length >
2453 							ep->ep.maxpacket) {
2454 						req->td_data->status &=
2455 							AMD_CLEAR_BIT(
2456 							UDC_DMA_IN_STS_L);
2457 					}
2458 
2459 					/* write desc pointer */
2460 					writel(req->td_phys, &ep->regs->desptr);
2461 
2462 					/* set HOST READY */
2463 					req->td_data->status =
2464 						AMD_ADDBITS(
2465 						req->td_data->status,
2466 						UDC_DMA_IN_STS_BS_HOST_READY,
2467 						UDC_DMA_IN_STS_BS);
2468 
2469 					/* set poll demand bit */
2470 					tmp = readl(&ep->regs->ctl);
2471 					tmp |= AMD_BIT(UDC_EPCTL_P);
2472 					writel(tmp, &ep->regs->ctl);
2473 				}
2474 			}
2475 
2476 		} else if (!use_dma && ep->in) {
2477 			/* disable interrupt */
2478 			tmp = readl(
2479 				&dev->regs->ep_irqmsk);
2480 			tmp |= AMD_BIT(ep->num);
2481 			writel(tmp,
2482 				&dev->regs->ep_irqmsk);
2483 		}
2484 	}
2485 	/* clear status bits */
2486 	writel(epsts, &ep->regs->sts);
2487 
2488 finished:
2489 	return ret_val;
2490 
2491 }
2492 
2493 /* Interrupt handler for Control OUT traffic */
udc_control_out_isr(struct udc * dev)2494 static irqreturn_t udc_control_out_isr(struct udc *dev)
2495 __releases(dev->lock)
2496 __acquires(dev->lock)
2497 {
2498 	irqreturn_t ret_val = IRQ_NONE;
2499 	u32 tmp;
2500 	int setup_supported;
2501 	u32 count;
2502 	int set = 0;
2503 	struct udc_ep	*ep;
2504 	struct udc_ep	*ep_tmp;
2505 
2506 	ep = &dev->ep[UDC_EP0OUT_IX];
2507 
2508 	/* clear irq */
2509 	writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2510 
2511 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2512 	/* check BNA and clear if set */
2513 	if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2514 		VDBG(dev, "ep0: BNA set\n");
2515 		writel(AMD_BIT(UDC_EPSTS_BNA),
2516 			&dev->ep[UDC_EP0OUT_IX].regs->sts);
2517 		ep->bna_occurred = 1;
2518 		ret_val = IRQ_HANDLED;
2519 		goto finished;
2520 	}
2521 
2522 	/* type of data: SETUP or DATA 0 bytes */
2523 	tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2524 	VDBG(dev, "data_typ = %x\n", tmp);
2525 
2526 	/* setup data */
2527 	if (tmp == UDC_EPSTS_OUT_SETUP) {
2528 		ret_val = IRQ_HANDLED;
2529 
2530 		ep->dev->stall_ep0in = 0;
2531 		dev->waiting_zlp_ack_ep0in = 0;
2532 
2533 		/* set NAK for EP0_IN */
2534 		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2535 		tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2536 		writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2537 		dev->ep[UDC_EP0IN_IX].naking = 1;
2538 		/* get setup data */
2539 		if (use_dma) {
2540 
2541 			/* clear OUT bits in ep status */
2542 			writel(UDC_EPSTS_OUT_CLEAR,
2543 				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2544 
2545 			setup_data.data[0] =
2546 				dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2547 			setup_data.data[1] =
2548 				dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2549 			/* set HOST READY */
2550 			dev->ep[UDC_EP0OUT_IX].td_stp->status =
2551 					UDC_DMA_STP_STS_BS_HOST_READY;
2552 		} else {
2553 			/* read fifo */
2554 			udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2555 		}
2556 
2557 		/* determine direction of control data */
2558 		if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2559 			dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2560 			/* enable RDE */
2561 			udc_ep0_set_rde(dev);
2562 			set = 0;
2563 		} else {
2564 			dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2565 			/*
2566 			 * implant BNA dummy descriptor to allow RXFIFO opening
2567 			 * by RDE
2568 			 */
2569 			if (ep->bna_dummy_req) {
2570 				/* write desc pointer */
2571 				writel(ep->bna_dummy_req->td_phys,
2572 					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2573 				ep->bna_occurred = 0;
2574 			}
2575 
2576 			set = 1;
2577 			dev->ep[UDC_EP0OUT_IX].naking = 1;
2578 			/*
2579 			 * setup timer for enabling RDE (to not enable
2580 			 * RXFIFO DMA for data to early)
2581 			 */
2582 			set_rde = 1;
2583 			if (!timer_pending(&udc_timer)) {
2584 				udc_timer.expires = jiffies +
2585 							HZ/UDC_RDE_TIMER_DIV;
2586 				if (!stop_timer)
2587 					add_timer(&udc_timer);
2588 			}
2589 		}
2590 
2591 		/*
2592 		 * mass storage reset must be processed here because
2593 		 * next packet may be a CLEAR_FEATURE HALT which would not
2594 		 * clear the stall bit when no STALL handshake was received
2595 		 * before (autostall can cause this)
2596 		 */
2597 		if (setup_data.data[0] == UDC_MSCRES_DWORD0
2598 				&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
2599 			DBG(dev, "MSC Reset\n");
2600 			/*
2601 			 * clear stall bits
2602 			 * only one IN and OUT endpoints are handled
2603 			 */
2604 			ep_tmp = &udc->ep[UDC_EPIN_IX];
2605 			udc_set_halt(&ep_tmp->ep, 0);
2606 			ep_tmp = &udc->ep[UDC_EPOUT_IX];
2607 			udc_set_halt(&ep_tmp->ep, 0);
2608 		}
2609 
2610 		/* call gadget with setup data received */
2611 		spin_unlock(&dev->lock);
2612 		setup_supported = dev->driver->setup(&dev->gadget,
2613 						&setup_data.request);
2614 		spin_lock(&dev->lock);
2615 
2616 		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2617 		/* ep0 in returns data (not zlp) on IN phase */
2618 		if (setup_supported >= 0 && setup_supported <
2619 				UDC_EP0IN_MAXPACKET) {
2620 			/* clear NAK by writing CNAK in EP0_IN */
2621 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2622 			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2623 			dev->ep[UDC_EP0IN_IX].naking = 0;
2624 			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2625 
2626 		/* if unsupported request then stall */
2627 		} else if (setup_supported < 0) {
2628 			tmp |= AMD_BIT(UDC_EPCTL_S);
2629 			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2630 		} else
2631 			dev->waiting_zlp_ack_ep0in = 1;
2632 
2633 
2634 		/* clear NAK by writing CNAK in EP0_OUT */
2635 		if (!set) {
2636 			tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2637 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2638 			writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2639 			dev->ep[UDC_EP0OUT_IX].naking = 0;
2640 			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2641 		}
2642 
2643 		if (!use_dma) {
2644 			/* clear OUT bits in ep status */
2645 			writel(UDC_EPSTS_OUT_CLEAR,
2646 				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2647 		}
2648 
2649 	/* data packet 0 bytes */
2650 	} else if (tmp == UDC_EPSTS_OUT_DATA) {
2651 		/* clear OUT bits in ep status */
2652 		writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2653 
2654 		/* get setup data: only 0 packet */
2655 		if (use_dma) {
2656 			/* no req if 0 packet, just reactivate */
2657 			if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2658 				VDBG(dev, "ZLP\n");
2659 
2660 				/* set HOST READY */
2661 				dev->ep[UDC_EP0OUT_IX].td->status =
2662 					AMD_ADDBITS(
2663 					dev->ep[UDC_EP0OUT_IX].td->status,
2664 					UDC_DMA_OUT_STS_BS_HOST_READY,
2665 					UDC_DMA_OUT_STS_BS);
2666 				/* enable RDE */
2667 				udc_ep0_set_rde(dev);
2668 				ret_val = IRQ_HANDLED;
2669 
2670 			} else {
2671 				/* control write */
2672 				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2673 				/* re-program desc. pointer for possible ZLPs */
2674 				writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2675 					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2676 				/* enable RDE */
2677 				udc_ep0_set_rde(dev);
2678 			}
2679 		} else {
2680 
2681 			/* received number bytes */
2682 			count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2683 			count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2684 			/* out data for fifo mode not working */
2685 			count = 0;
2686 
2687 			/* 0 packet or real data ? */
2688 			if (count != 0) {
2689 				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2690 			} else {
2691 				/* dummy read confirm */
2692 				readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2693 				ret_val = IRQ_HANDLED;
2694 			}
2695 		}
2696 	}
2697 
2698 	/* check pending CNAKS */
2699 	if (cnak_pending) {
2700 		/* CNAk processing when rxfifo empty only */
2701 		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2702 			udc_process_cnak_queue(dev);
2703 	}
2704 
2705 finished:
2706 	return ret_val;
2707 }
2708 
2709 /* Interrupt handler for Control IN traffic */
udc_control_in_isr(struct udc * dev)2710 static irqreturn_t udc_control_in_isr(struct udc *dev)
2711 {
2712 	irqreturn_t ret_val = IRQ_NONE;
2713 	u32 tmp;
2714 	struct udc_ep *ep;
2715 	struct udc_request *req;
2716 	unsigned len;
2717 
2718 	ep = &dev->ep[UDC_EP0IN_IX];
2719 
2720 	/* clear irq */
2721 	writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2722 
2723 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2724 	/* DMA completion */
2725 	if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2726 		VDBG(dev, "isr: TDC clear\n");
2727 		ret_val = IRQ_HANDLED;
2728 
2729 		/* clear TDC bit */
2730 		writel(AMD_BIT(UDC_EPSTS_TDC),
2731 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2732 
2733 	/* status reg has IN bit set ? */
2734 	} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2735 		ret_val = IRQ_HANDLED;
2736 
2737 		if (ep->dma) {
2738 			/* clear IN bit */
2739 			writel(AMD_BIT(UDC_EPSTS_IN),
2740 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2741 		}
2742 		if (dev->stall_ep0in) {
2743 			DBG(dev, "stall ep0in\n");
2744 			/* halt ep0in */
2745 			tmp = readl(&ep->regs->ctl);
2746 			tmp |= AMD_BIT(UDC_EPCTL_S);
2747 			writel(tmp, &ep->regs->ctl);
2748 		} else {
2749 			if (!list_empty(&ep->queue)) {
2750 				/* next request */
2751 				req = list_entry(ep->queue.next,
2752 						struct udc_request, queue);
2753 
2754 				if (ep->dma) {
2755 					/* write desc pointer */
2756 					writel(req->td_phys, &ep->regs->desptr);
2757 					/* set HOST READY */
2758 					req->td_data->status =
2759 						AMD_ADDBITS(
2760 						req->td_data->status,
2761 						UDC_DMA_STP_STS_BS_HOST_READY,
2762 						UDC_DMA_STP_STS_BS);
2763 
2764 					/* set poll demand bit */
2765 					tmp =
2766 					readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2767 					tmp |= AMD_BIT(UDC_EPCTL_P);
2768 					writel(tmp,
2769 					&dev->ep[UDC_EP0IN_IX].regs->ctl);
2770 
2771 					/* all bytes will be transferred */
2772 					req->req.actual = req->req.length;
2773 
2774 					/* complete req */
2775 					complete_req(ep, req, 0);
2776 
2777 				} else {
2778 					/* write fifo */
2779 					udc_txfifo_write(ep, &req->req);
2780 
2781 					/* lengh bytes transferred */
2782 					len = req->req.length - req->req.actual;
2783 					if (len > ep->ep.maxpacket)
2784 						len = ep->ep.maxpacket;
2785 
2786 					req->req.actual += len;
2787 					if (req->req.actual == req->req.length
2788 						|| (len != ep->ep.maxpacket)) {
2789 						/* complete req */
2790 						complete_req(ep, req, 0);
2791 					}
2792 				}
2793 
2794 			}
2795 		}
2796 		ep->halted = 0;
2797 		dev->stall_ep0in = 0;
2798 		if (!ep->dma) {
2799 			/* clear IN bit */
2800 			writel(AMD_BIT(UDC_EPSTS_IN),
2801 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2802 		}
2803 	}
2804 
2805 	return ret_val;
2806 }
2807 
2808 
2809 /* Interrupt handler for global device events */
udc_dev_isr(struct udc * dev,u32 dev_irq)2810 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2811 __releases(dev->lock)
2812 __acquires(dev->lock)
2813 {
2814 	irqreturn_t ret_val = IRQ_NONE;
2815 	u32 tmp;
2816 	u32 cfg;
2817 	struct udc_ep *ep;
2818 	u16 i;
2819 	u8 udc_csr_epix;
2820 
2821 	/* SET_CONFIG irq ? */
2822 	if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2823 		ret_val = IRQ_HANDLED;
2824 
2825 		/* read config value */
2826 		tmp = readl(&dev->regs->sts);
2827 		cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2828 		DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2829 		dev->cur_config = cfg;
2830 		dev->set_cfg_not_acked = 1;
2831 
2832 		/* make usb request for gadget driver */
2833 		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2834 		setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2835 		setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2836 
2837 		/* programm the NE registers */
2838 		for (i = 0; i < UDC_EP_NUM; i++) {
2839 			ep = &dev->ep[i];
2840 			if (ep->in) {
2841 
2842 				/* ep ix in UDC CSR register space */
2843 				udc_csr_epix = ep->num;
2844 
2845 
2846 			/* OUT ep */
2847 			} else {
2848 				/* ep ix in UDC CSR register space */
2849 				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2850 			}
2851 
2852 			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2853 			/* ep cfg */
2854 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2855 						UDC_CSR_NE_CFG);
2856 			/* write reg */
2857 			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2858 
2859 			/* clear stall bits */
2860 			ep->halted = 0;
2861 			tmp = readl(&ep->regs->ctl);
2862 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2863 			writel(tmp, &ep->regs->ctl);
2864 		}
2865 		/* call gadget zero with setup data received */
2866 		spin_unlock(&dev->lock);
2867 		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2868 		spin_lock(&dev->lock);
2869 
2870 	} /* SET_INTERFACE ? */
2871 	if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2872 		ret_val = IRQ_HANDLED;
2873 
2874 		dev->set_cfg_not_acked = 1;
2875 		/* read interface and alt setting values */
2876 		tmp = readl(&dev->regs->sts);
2877 		dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2878 		dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2879 
2880 		/* make usb request for gadget driver */
2881 		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2882 		setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2883 		setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2884 		setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2885 		setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2886 
2887 		DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2888 				dev->cur_alt, dev->cur_intf);
2889 
2890 		/* programm the NE registers */
2891 		for (i = 0; i < UDC_EP_NUM; i++) {
2892 			ep = &dev->ep[i];
2893 			if (ep->in) {
2894 
2895 				/* ep ix in UDC CSR register space */
2896 				udc_csr_epix = ep->num;
2897 
2898 
2899 			/* OUT ep */
2900 			} else {
2901 				/* ep ix in UDC CSR register space */
2902 				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2903 			}
2904 
2905 			/* UDC CSR reg */
2906 			/* set ep values */
2907 			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2908 			/* ep interface */
2909 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2910 						UDC_CSR_NE_INTF);
2911 			/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2912 			/* ep alt */
2913 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2914 						UDC_CSR_NE_ALT);
2915 			/* write reg */
2916 			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2917 
2918 			/* clear stall bits */
2919 			ep->halted = 0;
2920 			tmp = readl(&ep->regs->ctl);
2921 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2922 			writel(tmp, &ep->regs->ctl);
2923 		}
2924 
2925 		/* call gadget zero with setup data received */
2926 		spin_unlock(&dev->lock);
2927 		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2928 		spin_lock(&dev->lock);
2929 
2930 	} /* USB reset */
2931 	if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2932 		DBG(dev, "USB Reset interrupt\n");
2933 		ret_val = IRQ_HANDLED;
2934 
2935 		/* allow soft reset when suspend occurs */
2936 		soft_reset_occured = 0;
2937 
2938 		dev->waiting_zlp_ack_ep0in = 0;
2939 		dev->set_cfg_not_acked = 0;
2940 
2941 		/* mask not needed interrupts */
2942 		udc_mask_unused_interrupts(dev);
2943 
2944 		/* call gadget to resume and reset configs etc. */
2945 		spin_unlock(&dev->lock);
2946 		if (dev->sys_suspended && dev->driver->resume) {
2947 			dev->driver->resume(&dev->gadget);
2948 			dev->sys_suspended = 0;
2949 		}
2950 		usb_gadget_udc_reset(&dev->gadget, dev->driver);
2951 		spin_lock(&dev->lock);
2952 
2953 		/* disable ep0 to empty req queue */
2954 		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2955 		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2956 
2957 		/* soft reset when rxfifo not empty */
2958 		tmp = readl(&dev->regs->sts);
2959 		if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2960 				&& !soft_reset_after_usbreset_occured) {
2961 			udc_soft_reset(dev);
2962 			soft_reset_after_usbreset_occured++;
2963 		}
2964 
2965 		/*
2966 		 * DMA reset to kill potential old DMA hw hang,
2967 		 * POLL bit is already reset by ep_init() through
2968 		 * disconnect()
2969 		 */
2970 		DBG(dev, "DMA machine reset\n");
2971 		tmp = readl(&dev->regs->cfg);
2972 		writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2973 		writel(tmp, &dev->regs->cfg);
2974 
2975 		/* put into initial config */
2976 		udc_basic_init(dev);
2977 
2978 		/* enable device setup interrupts */
2979 		udc_enable_dev_setup_interrupts(dev);
2980 
2981 		/* enable suspend interrupt */
2982 		tmp = readl(&dev->regs->irqmsk);
2983 		tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2984 		writel(tmp, &dev->regs->irqmsk);
2985 
2986 	} /* USB suspend */
2987 	if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2988 		DBG(dev, "USB Suspend interrupt\n");
2989 		ret_val = IRQ_HANDLED;
2990 		if (dev->driver->suspend) {
2991 			spin_unlock(&dev->lock);
2992 			dev->sys_suspended = 1;
2993 			dev->driver->suspend(&dev->gadget);
2994 			spin_lock(&dev->lock);
2995 		}
2996 	} /* new speed ? */
2997 	if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2998 		DBG(dev, "ENUM interrupt\n");
2999 		ret_val = IRQ_HANDLED;
3000 		soft_reset_after_usbreset_occured = 0;
3001 
3002 		/* disable ep0 to empty req queue */
3003 		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3004 		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3005 
3006 		/* link up all endpoints */
3007 		udc_setup_endpoints(dev);
3008 		dev_info(&dev->pdev->dev, "Connect: %s\n",
3009 			 usb_speed_string(dev->gadget.speed));
3010 
3011 		/* init ep 0 */
3012 		activate_control_endpoints(dev);
3013 
3014 		/* enable ep0 interrupts */
3015 		udc_enable_ep0_interrupts(dev);
3016 	}
3017 	/* session valid change interrupt */
3018 	if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3019 		DBG(dev, "USB SVC interrupt\n");
3020 		ret_val = IRQ_HANDLED;
3021 
3022 		/* check that session is not valid to detect disconnect */
3023 		tmp = readl(&dev->regs->sts);
3024 		if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3025 			/* disable suspend interrupt */
3026 			tmp = readl(&dev->regs->irqmsk);
3027 			tmp |= AMD_BIT(UDC_DEVINT_US);
3028 			writel(tmp, &dev->regs->irqmsk);
3029 			DBG(dev, "USB Disconnect (session valid low)\n");
3030 			/* cleanup on disconnect */
3031 			usb_disconnect(udc);
3032 		}
3033 
3034 	}
3035 
3036 	return ret_val;
3037 }
3038 
3039 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
udc_irq(int irq,void * pdev)3040 static irqreturn_t udc_irq(int irq, void *pdev)
3041 {
3042 	struct udc *dev = pdev;
3043 	u32 reg;
3044 	u16 i;
3045 	u32 ep_irq;
3046 	irqreturn_t ret_val = IRQ_NONE;
3047 
3048 	spin_lock(&dev->lock);
3049 
3050 	/* check for ep irq */
3051 	reg = readl(&dev->regs->ep_irqsts);
3052 	if (reg) {
3053 		if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3054 			ret_val |= udc_control_out_isr(dev);
3055 		if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3056 			ret_val |= udc_control_in_isr(dev);
3057 
3058 		/*
3059 		 * data endpoint
3060 		 * iterate ep's
3061 		 */
3062 		for (i = 1; i < UDC_EP_NUM; i++) {
3063 			ep_irq = 1 << i;
3064 			if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3065 				continue;
3066 
3067 			/* clear irq status */
3068 			writel(ep_irq, &dev->regs->ep_irqsts);
3069 
3070 			/* irq for out ep ? */
3071 			if (i > UDC_EPIN_NUM)
3072 				ret_val |= udc_data_out_isr(dev, i);
3073 			else
3074 				ret_val |= udc_data_in_isr(dev, i);
3075 		}
3076 
3077 	}
3078 
3079 
3080 	/* check for dev irq */
3081 	reg = readl(&dev->regs->irqsts);
3082 	if (reg) {
3083 		/* clear irq */
3084 		writel(reg, &dev->regs->irqsts);
3085 		ret_val |= udc_dev_isr(dev, reg);
3086 	}
3087 
3088 
3089 	spin_unlock(&dev->lock);
3090 	return ret_val;
3091 }
3092 
3093 /* Tears down device */
gadget_release(struct device * pdev)3094 static void gadget_release(struct device *pdev)
3095 {
3096 	struct amd5536udc *dev = dev_get_drvdata(pdev);
3097 	kfree(dev);
3098 }
3099 
3100 /* Cleanup on device remove */
udc_remove(struct udc * dev)3101 static void udc_remove(struct udc *dev)
3102 {
3103 	/* remove timer */
3104 	stop_timer++;
3105 	if (timer_pending(&udc_timer))
3106 		wait_for_completion(&on_exit);
3107 	if (udc_timer.data)
3108 		del_timer_sync(&udc_timer);
3109 	/* remove pollstall timer */
3110 	stop_pollstall_timer++;
3111 	if (timer_pending(&udc_pollstall_timer))
3112 		wait_for_completion(&on_pollstall_exit);
3113 	if (udc_pollstall_timer.data)
3114 		del_timer_sync(&udc_pollstall_timer);
3115 	udc = NULL;
3116 }
3117 
3118 /* free all the dma pools */
free_dma_pools(struct udc * dev)3119 static void free_dma_pools(struct udc *dev)
3120 {
3121 	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
3122 		      dev->ep[UDC_EP0OUT_IX].td_phys);
3123 	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3124 		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3125 	dma_pool_destroy(dev->stp_requests);
3126 	dma_pool_destroy(dev->data_requests);
3127 }
3128 
3129 /* Reset all pci context */
udc_pci_remove(struct pci_dev * pdev)3130 static void udc_pci_remove(struct pci_dev *pdev)
3131 {
3132 	struct udc		*dev;
3133 
3134 	dev = pci_get_drvdata(pdev);
3135 
3136 	usb_del_gadget_udc(&udc->gadget);
3137 	/* gadget driver must not be registered */
3138 	if (WARN_ON(dev->driver))
3139 		return;
3140 
3141 	/* dma pool cleanup */
3142 	free_dma_pools(dev);
3143 
3144 	/* reset controller */
3145 	writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3146 	free_irq(pdev->irq, dev);
3147 	iounmap(dev->virt_addr);
3148 	release_mem_region(pci_resource_start(pdev, 0),
3149 			   pci_resource_len(pdev, 0));
3150 	pci_disable_device(pdev);
3151 
3152 	udc_remove(dev);
3153 }
3154 
3155 /* create dma pools on init */
init_dma_pools(struct udc * dev)3156 static int init_dma_pools(struct udc *dev)
3157 {
3158 	struct udc_stp_dma	*td_stp;
3159 	struct udc_data_dma	*td_data;
3160 	int retval;
3161 
3162 	/* consistent DMA mode setting ? */
3163 	if (use_dma_ppb) {
3164 		use_dma_bufferfill_mode = 0;
3165 	} else {
3166 		use_dma_ppb_du = 0;
3167 		use_dma_bufferfill_mode = 1;
3168 	}
3169 
3170 	/* DMA setup */
3171 	dev->data_requests = dma_pool_create("data_requests", NULL,
3172 		sizeof(struct udc_data_dma), 0, 0);
3173 	if (!dev->data_requests) {
3174 		DBG(dev, "can't get request data pool\n");
3175 		return -ENOMEM;
3176 	}
3177 
3178 	/* EP0 in dma regs = dev control regs */
3179 	dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3180 
3181 	/* dma desc for setup data */
3182 	dev->stp_requests = dma_pool_create("setup requests", NULL,
3183 		sizeof(struct udc_stp_dma), 0, 0);
3184 	if (!dev->stp_requests) {
3185 		DBG(dev, "can't get stp request pool\n");
3186 		retval = -ENOMEM;
3187 		goto err_create_dma_pool;
3188 	}
3189 	/* setup */
3190 	td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3191 				&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3192 	if (!td_stp) {
3193 		retval = -ENOMEM;
3194 		goto err_alloc_dma;
3195 	}
3196 	dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3197 
3198 	/* data: 0 packets !? */
3199 	td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3200 				&dev->ep[UDC_EP0OUT_IX].td_phys);
3201 	if (!td_data) {
3202 		retval = -ENOMEM;
3203 		goto err_alloc_phys;
3204 	}
3205 	dev->ep[UDC_EP0OUT_IX].td = td_data;
3206 	return 0;
3207 
3208 err_alloc_phys:
3209 	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3210 		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3211 err_alloc_dma:
3212 	dma_pool_destroy(dev->stp_requests);
3213 	dev->stp_requests = NULL;
3214 err_create_dma_pool:
3215 	dma_pool_destroy(dev->data_requests);
3216 	dev->data_requests = NULL;
3217 	return retval;
3218 }
3219 
3220 /* general probe */
udc_probe(struct udc * dev)3221 static int udc_probe(struct udc *dev)
3222 {
3223 	char		tmp[128];
3224 	u32		reg;
3225 	int		retval;
3226 
3227 	/* mark timer as not initialized */
3228 	udc_timer.data = 0;
3229 	udc_pollstall_timer.data = 0;
3230 
3231 	/* device struct setup */
3232 	dev->gadget.ops = &udc_ops;
3233 
3234 	dev_set_name(&dev->gadget.dev, "gadget");
3235 	dev->gadget.name = name;
3236 	dev->gadget.max_speed = USB_SPEED_HIGH;
3237 
3238 	/* init registers, interrupts, ... */
3239 	startup_registers(dev);
3240 
3241 	dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3242 
3243 	snprintf(tmp, sizeof(tmp), "%d", dev->irq);
3244 	dev_info(&dev->pdev->dev,
3245 		 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3246 		 tmp, dev->phys_addr, dev->chiprev,
3247 		 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3248 	strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3249 	if (dev->chiprev == UDC_HSA0_REV) {
3250 		dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3251 		retval = -ENODEV;
3252 		goto finished;
3253 	}
3254 	dev_info(&dev->pdev->dev,
3255 		 "driver version: %s(for Geode5536 B1)\n", tmp);
3256 	udc = dev;
3257 
3258 	retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
3259 					    gadget_release);
3260 	if (retval)
3261 		goto finished;
3262 
3263 	/* timer init */
3264 	init_timer(&udc_timer);
3265 	udc_timer.function = udc_timer_function;
3266 	udc_timer.data = 1;
3267 	/* timer pollstall init */
3268 	init_timer(&udc_pollstall_timer);
3269 	udc_pollstall_timer.function = udc_pollstall_timer_function;
3270 	udc_pollstall_timer.data = 1;
3271 
3272 	/* set SD */
3273 	reg = readl(&dev->regs->ctl);
3274 	reg |= AMD_BIT(UDC_DEVCTL_SD);
3275 	writel(reg, &dev->regs->ctl);
3276 
3277 	/* print dev register info */
3278 	print_regs(dev);
3279 
3280 	return 0;
3281 
3282 finished:
3283 	return retval;
3284 }
3285 
3286 /* Called by pci bus driver to init pci context */
udc_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)3287 static int udc_pci_probe(
3288 	struct pci_dev *pdev,
3289 	const struct pci_device_id *id
3290 )
3291 {
3292 	struct udc		*dev;
3293 	unsigned long		resource;
3294 	unsigned long		len;
3295 	int			retval = 0;
3296 
3297 	/* one udc only */
3298 	if (udc) {
3299 		dev_dbg(&pdev->dev, "already probed\n");
3300 		return -EBUSY;
3301 	}
3302 
3303 	/* init */
3304 	dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3305 	if (!dev)
3306 		return -ENOMEM;
3307 
3308 	/* pci setup */
3309 	if (pci_enable_device(pdev) < 0) {
3310 		retval = -ENODEV;
3311 		goto err_pcidev;
3312 	}
3313 
3314 	/* PCI resource allocation */
3315 	resource = pci_resource_start(pdev, 0);
3316 	len = pci_resource_len(pdev, 0);
3317 
3318 	if (!request_mem_region(resource, len, name)) {
3319 		dev_dbg(&pdev->dev, "pci device used already\n");
3320 		retval = -EBUSY;
3321 		goto err_memreg;
3322 	}
3323 
3324 	dev->virt_addr = ioremap_nocache(resource, len);
3325 	if (!dev->virt_addr) {
3326 		dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3327 		retval = -EFAULT;
3328 		goto err_ioremap;
3329 	}
3330 
3331 	if (!pdev->irq) {
3332 		dev_err(&pdev->dev, "irq not set\n");
3333 		retval = -ENODEV;
3334 		goto err_irq;
3335 	}
3336 
3337 	spin_lock_init(&dev->lock);
3338 	/* udc csr registers base */
3339 	dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3340 	/* dev registers base */
3341 	dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3342 	/* ep registers base */
3343 	dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3344 	/* fifo's base */
3345 	dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3346 	dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3347 
3348 	if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3349 		dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3350 		retval = -EBUSY;
3351 		goto err_irq;
3352 	}
3353 
3354 	pci_set_drvdata(pdev, dev);
3355 
3356 	/* chip revision for Hs AMD5536 */
3357 	dev->chiprev = pdev->revision;
3358 
3359 	pci_set_master(pdev);
3360 	pci_try_set_mwi(pdev);
3361 
3362 	/* init dma pools */
3363 	if (use_dma) {
3364 		retval = init_dma_pools(dev);
3365 		if (retval != 0)
3366 			goto err_dma;
3367 	}
3368 
3369 	dev->phys_addr = resource;
3370 	dev->irq = pdev->irq;
3371 	dev->pdev = pdev;
3372 
3373 	/* general probing */
3374 	if (udc_probe(dev)) {
3375 		retval = -ENODEV;
3376 		goto err_probe;
3377 	}
3378 	return 0;
3379 
3380 err_probe:
3381 	if (use_dma)
3382 		free_dma_pools(dev);
3383 err_dma:
3384 	free_irq(pdev->irq, dev);
3385 err_irq:
3386 	iounmap(dev->virt_addr);
3387 err_ioremap:
3388 	release_mem_region(resource, len);
3389 err_memreg:
3390 	pci_disable_device(pdev);
3391 err_pcidev:
3392 	kfree(dev);
3393 	return retval;
3394 }
3395 
3396 /* PCI device parameters */
3397 static const struct pci_device_id pci_id[] = {
3398 	{
3399 		PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3400 		.class =	(PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3401 		.class_mask =	0xffffffff,
3402 	},
3403 	{},
3404 };
3405 MODULE_DEVICE_TABLE(pci, pci_id);
3406 
3407 /* PCI functions */
3408 static struct pci_driver udc_pci_driver = {
3409 	.name =		(char *) name,
3410 	.id_table =	pci_id,
3411 	.probe =	udc_pci_probe,
3412 	.remove =	udc_pci_remove,
3413 };
3414 
3415 module_pci_driver(udc_pci_driver);
3416 
3417 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3418 MODULE_AUTHOR("Thomas Dahlmann");
3419 MODULE_LICENSE("GPL");
3420 
3421