1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 
29 #include <linux/platform_data/edma.h>
30 
31 #include "dmaengine.h"
32 #include "virt-dma.h"
33 
34 /*
35  * This will go away when the private EDMA API is folded
36  * into this driver and the platform device(s) are
37  * instantiated in the arch code. We can only get away
38  * with this simplification because DA8XX may not be built
39  * in the same kernel image with other DaVinci parts. This
40  * avoids having to sprinkle dmaengine driver platform devices
41  * and data throughout all the existing board files.
42  */
43 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
44 #define EDMA_CTLRS	2
45 #define EDMA_CHANS	32
46 #else
47 #define EDMA_CTLRS	1
48 #define EDMA_CHANS	64
49 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
50 
51 /*
52  * Max of 20 segments per channel to conserve PaRAM slots
53  * Also note that MAX_NR_SG should be atleast the no.of periods
54  * that are required for ASoC, otherwise DMA prep calls will
55  * fail. Today davinci-pcm is the only user of this driver and
56  * requires atleast 17 slots, so we setup the default to 20.
57  */
58 #define MAX_NR_SG		20
59 #define EDMA_MAX_SLOTS		MAX_NR_SG
60 #define EDMA_DESCRIPTORS	16
61 
62 struct edma_pset {
63 	u32				len;
64 	dma_addr_t			addr;
65 	struct edmacc_param		param;
66 };
67 
68 struct edma_desc {
69 	struct virt_dma_desc		vdesc;
70 	struct list_head		node;
71 	enum dma_transfer_direction	direction;
72 	int				cyclic;
73 	int				absync;
74 	int				pset_nr;
75 	struct edma_chan		*echan;
76 	int				processed;
77 
78 	/*
79 	 * The following 4 elements are used for residue accounting.
80 	 *
81 	 * - processed_stat: the number of SG elements we have traversed
82 	 * so far to cover accounting. This is updated directly to processed
83 	 * during edma_callback and is always <= processed, because processed
84 	 * refers to the number of pending transfer (programmed to EDMA
85 	 * controller), where as processed_stat tracks number of transfers
86 	 * accounted for so far.
87 	 *
88 	 * - residue: The amount of bytes we have left to transfer for this desc
89 	 *
90 	 * - residue_stat: The residue in bytes of data we have covered
91 	 * so far for accounting. This is updated directly to residue
92 	 * during callbacks to keep it current.
93 	 *
94 	 * - sg_len: Tracks the length of the current intermediate transfer,
95 	 * this is required to update the residue during intermediate transfer
96 	 * completion callback.
97 	 */
98 	int				processed_stat;
99 	u32				sg_len;
100 	u32				residue;
101 	u32				residue_stat;
102 
103 	struct edma_pset		pset[0];
104 };
105 
106 struct edma_cc;
107 
108 struct edma_chan {
109 	struct virt_dma_chan		vchan;
110 	struct list_head		node;
111 	struct edma_desc		*edesc;
112 	struct edma_cc			*ecc;
113 	int				ch_num;
114 	bool				alloced;
115 	int				slot[EDMA_MAX_SLOTS];
116 	int				missed;
117 	struct dma_slave_config		cfg;
118 };
119 
120 struct edma_cc {
121 	int				ctlr;
122 	struct dma_device		dma_slave;
123 	struct edma_chan		slave_chans[EDMA_CHANS];
124 	int				num_slave_chans;
125 	int				dummy_slot;
126 };
127 
to_edma_cc(struct dma_device * d)128 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
129 {
130 	return container_of(d, struct edma_cc, dma_slave);
131 }
132 
to_edma_chan(struct dma_chan * c)133 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
134 {
135 	return container_of(c, struct edma_chan, vchan.chan);
136 }
137 
138 static inline struct edma_desc
to_edma_desc(struct dma_async_tx_descriptor * tx)139 *to_edma_desc(struct dma_async_tx_descriptor *tx)
140 {
141 	return container_of(tx, struct edma_desc, vdesc.tx);
142 }
143 
edma_desc_free(struct virt_dma_desc * vdesc)144 static void edma_desc_free(struct virt_dma_desc *vdesc)
145 {
146 	kfree(container_of(vdesc, struct edma_desc, vdesc));
147 }
148 
149 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)150 static void edma_execute(struct edma_chan *echan)
151 {
152 	struct virt_dma_desc *vdesc;
153 	struct edma_desc *edesc;
154 	struct device *dev = echan->vchan.chan.device->dev;
155 	int i, j, left, nslots;
156 
157 	/* If either we processed all psets or we're still not started */
158 	if (!echan->edesc ||
159 	    echan->edesc->pset_nr == echan->edesc->processed) {
160 		/* Get next vdesc */
161 		vdesc = vchan_next_desc(&echan->vchan);
162 		if (!vdesc) {
163 			echan->edesc = NULL;
164 			return;
165 		}
166 		list_del(&vdesc->node);
167 		echan->edesc = to_edma_desc(&vdesc->tx);
168 	}
169 
170 	edesc = echan->edesc;
171 
172 	/* Find out how many left */
173 	left = edesc->pset_nr - edesc->processed;
174 	nslots = min(MAX_NR_SG, left);
175 	edesc->sg_len = 0;
176 
177 	/* Write descriptor PaRAM set(s) */
178 	for (i = 0; i < nslots; i++) {
179 		j = i + edesc->processed;
180 		edma_write_slot(echan->slot[i], &edesc->pset[j].param);
181 		edesc->sg_len += edesc->pset[j].len;
182 		dev_vdbg(echan->vchan.chan.device->dev,
183 			"\n pset[%d]:\n"
184 			"  chnum\t%d\n"
185 			"  slot\t%d\n"
186 			"  opt\t%08x\n"
187 			"  src\t%08x\n"
188 			"  dst\t%08x\n"
189 			"  abcnt\t%08x\n"
190 			"  ccnt\t%08x\n"
191 			"  bidx\t%08x\n"
192 			"  cidx\t%08x\n"
193 			"  lkrld\t%08x\n",
194 			j, echan->ch_num, echan->slot[i],
195 			edesc->pset[j].param.opt,
196 			edesc->pset[j].param.src,
197 			edesc->pset[j].param.dst,
198 			edesc->pset[j].param.a_b_cnt,
199 			edesc->pset[j].param.ccnt,
200 			edesc->pset[j].param.src_dst_bidx,
201 			edesc->pset[j].param.src_dst_cidx,
202 			edesc->pset[j].param.link_bcntrld);
203 		/* Link to the previous slot if not the last set */
204 		if (i != (nslots - 1))
205 			edma_link(echan->slot[i], echan->slot[i+1]);
206 	}
207 
208 	edesc->processed += nslots;
209 
210 	/*
211 	 * If this is either the last set in a set of SG-list transactions
212 	 * then setup a link to the dummy slot, this results in all future
213 	 * events being absorbed and that's OK because we're done
214 	 */
215 	if (edesc->processed == edesc->pset_nr) {
216 		if (edesc->cyclic)
217 			edma_link(echan->slot[nslots-1], echan->slot[1]);
218 		else
219 			edma_link(echan->slot[nslots-1],
220 				  echan->ecc->dummy_slot);
221 	}
222 
223 	if (edesc->processed <= MAX_NR_SG) {
224 		dev_dbg(dev, "first transfer starting on channel %d\n",
225 			echan->ch_num);
226 		edma_start(echan->ch_num);
227 	} else {
228 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
229 			echan->ch_num, edesc->processed);
230 		edma_resume(echan->ch_num);
231 	}
232 
233 	/*
234 	 * This happens due to setup times between intermediate transfers
235 	 * in long SG lists which have to be broken up into transfers of
236 	 * MAX_NR_SG
237 	 */
238 	if (echan->missed) {
239 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
240 		edma_clean_channel(echan->ch_num);
241 		edma_stop(echan->ch_num);
242 		edma_start(echan->ch_num);
243 		edma_trigger_channel(echan->ch_num);
244 		echan->missed = 0;
245 	}
246 }
247 
edma_terminate_all(struct dma_chan * chan)248 static int edma_terminate_all(struct dma_chan *chan)
249 {
250 	struct edma_chan *echan = to_edma_chan(chan);
251 	unsigned long flags;
252 	LIST_HEAD(head);
253 
254 	spin_lock_irqsave(&echan->vchan.lock, flags);
255 
256 	/*
257 	 * Stop DMA activity: we assume the callback will not be called
258 	 * after edma_dma() returns (even if it does, it will see
259 	 * echan->edesc is NULL and exit.)
260 	 */
261 	if (echan->edesc) {
262 		int cyclic = echan->edesc->cyclic;
263 
264 		/*
265 		 * free the running request descriptor
266 		 * since it is not in any of the vdesc lists
267 		 */
268 		edma_desc_free(&echan->edesc->vdesc);
269 
270 		echan->edesc = NULL;
271 		edma_stop(echan->ch_num);
272 		/* Move the cyclic channel back to default queue */
273 		if (cyclic)
274 			edma_assign_channel_eventq(echan->ch_num,
275 						   EVENTQ_DEFAULT);
276 	}
277 
278 	vchan_get_all_descriptors(&echan->vchan, &head);
279 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
280 	vchan_dma_desc_free_list(&echan->vchan, &head);
281 
282 	return 0;
283 }
284 
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)285 static int edma_slave_config(struct dma_chan *chan,
286 	struct dma_slave_config *cfg)
287 {
288 	struct edma_chan *echan = to_edma_chan(chan);
289 
290 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
291 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
292 		return -EINVAL;
293 
294 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
295 
296 	return 0;
297 }
298 
edma_dma_pause(struct dma_chan * chan)299 static int edma_dma_pause(struct dma_chan *chan)
300 {
301 	struct edma_chan *echan = to_edma_chan(chan);
302 
303 	/* Pause/Resume only allowed with cyclic mode */
304 	if (!echan->edesc || !echan->edesc->cyclic)
305 		return -EINVAL;
306 
307 	edma_pause(echan->ch_num);
308 	return 0;
309 }
310 
edma_dma_resume(struct dma_chan * chan)311 static int edma_dma_resume(struct dma_chan *chan)
312 {
313 	struct edma_chan *echan = to_edma_chan(chan);
314 
315 	/* Pause/Resume only allowed with cyclic mode */
316 	if (!echan->edesc->cyclic)
317 		return -EINVAL;
318 
319 	edma_resume(echan->ch_num);
320 	return 0;
321 }
322 
323 /*
324  * A PaRAM set configuration abstraction used by other modes
325  * @chan: Channel who's PaRAM set we're configuring
326  * @pset: PaRAM set to initialize and setup.
327  * @src_addr: Source address of the DMA
328  * @dst_addr: Destination address of the DMA
329  * @burst: In units of dev_width, how much to send
330  * @dev_width: How much is the dev_width
331  * @dma_length: Total length of the DMA transfer
332  * @direction: Direction of the transfer
333  */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,enum dma_slave_buswidth dev_width,unsigned int dma_length,enum dma_transfer_direction direction)334 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
335 	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
336 	enum dma_slave_buswidth dev_width, unsigned int dma_length,
337 	enum dma_transfer_direction direction)
338 {
339 	struct edma_chan *echan = to_edma_chan(chan);
340 	struct device *dev = chan->device->dev;
341 	struct edmacc_param *param = &epset->param;
342 	int acnt, bcnt, ccnt, cidx;
343 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
344 	int absync;
345 
346 	acnt = dev_width;
347 
348 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
349 	if (!burst)
350 		burst = 1;
351 	/*
352 	 * If the maxburst is equal to the fifo width, use
353 	 * A-synced transfers. This allows for large contiguous
354 	 * buffer transfers using only one PaRAM set.
355 	 */
356 	if (burst == 1) {
357 		/*
358 		 * For the A-sync case, bcnt and ccnt are the remainder
359 		 * and quotient respectively of the division of:
360 		 * (dma_length / acnt) by (SZ_64K -1). This is so
361 		 * that in case bcnt over flows, we have ccnt to use.
362 		 * Note: In A-sync tranfer only, bcntrld is used, but it
363 		 * only applies for sg_dma_len(sg) >= SZ_64K.
364 		 * In this case, the best way adopted is- bccnt for the
365 		 * first frame will be the remainder below. Then for
366 		 * every successive frame, bcnt will be SZ_64K-1. This
367 		 * is assured as bcntrld = 0xffff in end of function.
368 		 */
369 		absync = false;
370 		ccnt = dma_length / acnt / (SZ_64K - 1);
371 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
372 		/*
373 		 * If bcnt is non-zero, we have a remainder and hence an
374 		 * extra frame to transfer, so increment ccnt.
375 		 */
376 		if (bcnt)
377 			ccnt++;
378 		else
379 			bcnt = SZ_64K - 1;
380 		cidx = acnt;
381 	} else {
382 		/*
383 		 * If maxburst is greater than the fifo address_width,
384 		 * use AB-synced transfers where A count is the fifo
385 		 * address_width and B count is the maxburst. In this
386 		 * case, we are limited to transfers of C count frames
387 		 * of (address_width * maxburst) where C count is limited
388 		 * to SZ_64K-1. This places an upper bound on the length
389 		 * of an SG segment that can be handled.
390 		 */
391 		absync = true;
392 		bcnt = burst;
393 		ccnt = dma_length / (acnt * bcnt);
394 		if (ccnt > (SZ_64K - 1)) {
395 			dev_err(dev, "Exceeded max SG segment size\n");
396 			return -EINVAL;
397 		}
398 		cidx = acnt * bcnt;
399 	}
400 
401 	epset->len = dma_length;
402 
403 	if (direction == DMA_MEM_TO_DEV) {
404 		src_bidx = acnt;
405 		src_cidx = cidx;
406 		dst_bidx = 0;
407 		dst_cidx = 0;
408 		epset->addr = src_addr;
409 	} else if (direction == DMA_DEV_TO_MEM)  {
410 		src_bidx = 0;
411 		src_cidx = 0;
412 		dst_bidx = acnt;
413 		dst_cidx = cidx;
414 		epset->addr = dst_addr;
415 	} else if (direction == DMA_MEM_TO_MEM)  {
416 		src_bidx = acnt;
417 		src_cidx = cidx;
418 		dst_bidx = acnt;
419 		dst_cidx = cidx;
420 	} else {
421 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
422 		return -EINVAL;
423 	}
424 
425 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
426 	/* Configure A or AB synchronized transfers */
427 	if (absync)
428 		param->opt |= SYNCDIM;
429 
430 	param->src = src_addr;
431 	param->dst = dst_addr;
432 
433 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
434 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
435 
436 	param->a_b_cnt = bcnt << 16 | acnt;
437 	param->ccnt = ccnt;
438 	/*
439 	 * Only time when (bcntrld) auto reload is required is for
440 	 * A-sync case, and in this case, a requirement of reload value
441 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
442 	 * and then later will be populated by edma_execute.
443 	 */
444 	param->link_bcntrld = 0xffffffff;
445 	return absync;
446 }
447 
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)448 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
449 	struct dma_chan *chan, struct scatterlist *sgl,
450 	unsigned int sg_len, enum dma_transfer_direction direction,
451 	unsigned long tx_flags, void *context)
452 {
453 	struct edma_chan *echan = to_edma_chan(chan);
454 	struct device *dev = chan->device->dev;
455 	struct edma_desc *edesc;
456 	dma_addr_t src_addr = 0, dst_addr = 0;
457 	enum dma_slave_buswidth dev_width;
458 	u32 burst;
459 	struct scatterlist *sg;
460 	int i, nslots, ret;
461 
462 	if (unlikely(!echan || !sgl || !sg_len))
463 		return NULL;
464 
465 	if (direction == DMA_DEV_TO_MEM) {
466 		src_addr = echan->cfg.src_addr;
467 		dev_width = echan->cfg.src_addr_width;
468 		burst = echan->cfg.src_maxburst;
469 	} else if (direction == DMA_MEM_TO_DEV) {
470 		dst_addr = echan->cfg.dst_addr;
471 		dev_width = echan->cfg.dst_addr_width;
472 		burst = echan->cfg.dst_maxburst;
473 	} else {
474 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
475 		return NULL;
476 	}
477 
478 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
479 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
480 		return NULL;
481 	}
482 
483 	edesc = kzalloc(sizeof(*edesc) + sg_len *
484 		sizeof(edesc->pset[0]), GFP_ATOMIC);
485 	if (!edesc) {
486 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
487 		return NULL;
488 	}
489 
490 	edesc->pset_nr = sg_len;
491 	edesc->residue = 0;
492 	edesc->direction = direction;
493 	edesc->echan = echan;
494 
495 	/* Allocate a PaRAM slot, if needed */
496 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
497 
498 	for (i = 0; i < nslots; i++) {
499 		if (echan->slot[i] < 0) {
500 			echan->slot[i] =
501 				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
502 						EDMA_SLOT_ANY);
503 			if (echan->slot[i] < 0) {
504 				kfree(edesc);
505 				dev_err(dev, "%s: Failed to allocate slot\n",
506 					__func__);
507 				return NULL;
508 			}
509 		}
510 	}
511 
512 	/* Configure PaRAM sets for each SG */
513 	for_each_sg(sgl, sg, sg_len, i) {
514 		/* Get address for each SG */
515 		if (direction == DMA_DEV_TO_MEM)
516 			dst_addr = sg_dma_address(sg);
517 		else
518 			src_addr = sg_dma_address(sg);
519 
520 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
521 				       dst_addr, burst, dev_width,
522 				       sg_dma_len(sg), direction);
523 		if (ret < 0) {
524 			kfree(edesc);
525 			return NULL;
526 		}
527 
528 		edesc->absync = ret;
529 		edesc->residue += sg_dma_len(sg);
530 
531 		/* If this is the last in a current SG set of transactions,
532 		   enable interrupts so that next set is processed */
533 		if (!((i+1) % MAX_NR_SG))
534 			edesc->pset[i].param.opt |= TCINTEN;
535 
536 		/* If this is the last set, enable completion interrupt flag */
537 		if (i == sg_len - 1)
538 			edesc->pset[i].param.opt |= TCINTEN;
539 	}
540 	edesc->residue_stat = edesc->residue;
541 
542 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
543 }
544 
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)545 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
546 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
547 	size_t len, unsigned long tx_flags)
548 {
549 	int ret;
550 	struct edma_desc *edesc;
551 	struct device *dev = chan->device->dev;
552 	struct edma_chan *echan = to_edma_chan(chan);
553 
554 	if (unlikely(!echan || !len))
555 		return NULL;
556 
557 	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
558 	if (!edesc) {
559 		dev_dbg(dev, "Failed to allocate a descriptor\n");
560 		return NULL;
561 	}
562 
563 	edesc->pset_nr = 1;
564 
565 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
566 			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
567 	if (ret < 0)
568 		return NULL;
569 
570 	edesc->absync = ret;
571 
572 	/*
573 	 * Enable intermediate transfer chaining to re-trigger channel
574 	 * on completion of every TR, and enable transfer-completion
575 	 * interrupt on completion of the whole transfer.
576 	 */
577 	edesc->pset[0].param.opt |= ITCCHEN;
578 	edesc->pset[0].param.opt |= TCINTEN;
579 
580 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
581 }
582 
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)583 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
584 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
585 	size_t period_len, enum dma_transfer_direction direction,
586 	unsigned long tx_flags)
587 {
588 	struct edma_chan *echan = to_edma_chan(chan);
589 	struct device *dev = chan->device->dev;
590 	struct edma_desc *edesc;
591 	dma_addr_t src_addr, dst_addr;
592 	enum dma_slave_buswidth dev_width;
593 	u32 burst;
594 	int i, ret, nslots;
595 
596 	if (unlikely(!echan || !buf_len || !period_len))
597 		return NULL;
598 
599 	if (direction == DMA_DEV_TO_MEM) {
600 		src_addr = echan->cfg.src_addr;
601 		dst_addr = buf_addr;
602 		dev_width = echan->cfg.src_addr_width;
603 		burst = echan->cfg.src_maxburst;
604 	} else if (direction == DMA_MEM_TO_DEV) {
605 		src_addr = buf_addr;
606 		dst_addr = echan->cfg.dst_addr;
607 		dev_width = echan->cfg.dst_addr_width;
608 		burst = echan->cfg.dst_maxburst;
609 	} else {
610 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
611 		return NULL;
612 	}
613 
614 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
615 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
616 		return NULL;
617 	}
618 
619 	if (unlikely(buf_len % period_len)) {
620 		dev_err(dev, "Period should be multiple of Buffer length\n");
621 		return NULL;
622 	}
623 
624 	nslots = (buf_len / period_len) + 1;
625 
626 	/*
627 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
628 	 * by cases where the number of periods is more than the maximum
629 	 * number of SGs the EDMA driver can handle at a time. For DMA types
630 	 * such as Slave SGs, such delays are tolerable and synchronized,
631 	 * but the synchronization is difficult to achieve with Cyclic and
632 	 * cannot be guaranteed, so we error out early.
633 	 */
634 	if (nslots > MAX_NR_SG)
635 		return NULL;
636 
637 	edesc = kzalloc(sizeof(*edesc) + nslots *
638 		sizeof(edesc->pset[0]), GFP_ATOMIC);
639 	if (!edesc) {
640 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
641 		return NULL;
642 	}
643 
644 	edesc->cyclic = 1;
645 	edesc->pset_nr = nslots;
646 	edesc->residue = edesc->residue_stat = buf_len;
647 	edesc->direction = direction;
648 	edesc->echan = echan;
649 
650 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
651 		__func__, echan->ch_num, nslots, period_len, buf_len);
652 
653 	for (i = 0; i < nslots; i++) {
654 		/* Allocate a PaRAM slot, if needed */
655 		if (echan->slot[i] < 0) {
656 			echan->slot[i] =
657 				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
658 						EDMA_SLOT_ANY);
659 			if (echan->slot[i] < 0) {
660 				kfree(edesc);
661 				dev_err(dev, "%s: Failed to allocate slot\n",
662 					__func__);
663 				return NULL;
664 			}
665 		}
666 
667 		if (i == nslots - 1) {
668 			memcpy(&edesc->pset[i], &edesc->pset[0],
669 			       sizeof(edesc->pset[0]));
670 			break;
671 		}
672 
673 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
674 				       dst_addr, burst, dev_width, period_len,
675 				       direction);
676 		if (ret < 0) {
677 			kfree(edesc);
678 			return NULL;
679 		}
680 
681 		if (direction == DMA_DEV_TO_MEM)
682 			dst_addr += period_len;
683 		else
684 			src_addr += period_len;
685 
686 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
687 		dev_vdbg(dev,
688 			"\n pset[%d]:\n"
689 			"  chnum\t%d\n"
690 			"  slot\t%d\n"
691 			"  opt\t%08x\n"
692 			"  src\t%08x\n"
693 			"  dst\t%08x\n"
694 			"  abcnt\t%08x\n"
695 			"  ccnt\t%08x\n"
696 			"  bidx\t%08x\n"
697 			"  cidx\t%08x\n"
698 			"  lkrld\t%08x\n",
699 			i, echan->ch_num, echan->slot[i],
700 			edesc->pset[i].param.opt,
701 			edesc->pset[i].param.src,
702 			edesc->pset[i].param.dst,
703 			edesc->pset[i].param.a_b_cnt,
704 			edesc->pset[i].param.ccnt,
705 			edesc->pset[i].param.src_dst_bidx,
706 			edesc->pset[i].param.src_dst_cidx,
707 			edesc->pset[i].param.link_bcntrld);
708 
709 		edesc->absync = ret;
710 
711 		/*
712 		 * Enable period interrupt only if it is requested
713 		 */
714 		if (tx_flags & DMA_PREP_INTERRUPT)
715 			edesc->pset[i].param.opt |= TCINTEN;
716 	}
717 
718 	/* Place the cyclic channel to highest priority queue */
719 	edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);
720 
721 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
722 }
723 
edma_callback(unsigned ch_num,u16 ch_status,void * data)724 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
725 {
726 	struct edma_chan *echan = data;
727 	struct device *dev = echan->vchan.chan.device->dev;
728 	struct edma_desc *edesc;
729 	struct edmacc_param p;
730 
731 	edesc = echan->edesc;
732 
733 	/* Pause the channel for non-cyclic */
734 	if (!edesc || (edesc && !edesc->cyclic))
735 		edma_pause(echan->ch_num);
736 
737 	switch (ch_status) {
738 	case EDMA_DMA_COMPLETE:
739 		spin_lock(&echan->vchan.lock);
740 
741 		if (edesc) {
742 			if (edesc->cyclic) {
743 				vchan_cyclic_callback(&edesc->vdesc);
744 			} else if (edesc->processed == edesc->pset_nr) {
745 				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
746 				edesc->residue = 0;
747 				edma_stop(echan->ch_num);
748 				vchan_cookie_complete(&edesc->vdesc);
749 				edma_execute(echan);
750 			} else {
751 				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
752 
753 				/* Update statistics for tx_status */
754 				edesc->residue -= edesc->sg_len;
755 				edesc->residue_stat = edesc->residue;
756 				edesc->processed_stat = edesc->processed;
757 
758 				edma_execute(echan);
759 			}
760 		}
761 
762 		spin_unlock(&echan->vchan.lock);
763 
764 		break;
765 	case EDMA_DMA_CC_ERROR:
766 		spin_lock(&echan->vchan.lock);
767 
768 		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
769 
770 		/*
771 		 * Issue later based on missed flag which will be sure
772 		 * to happen as:
773 		 * (1) we finished transmitting an intermediate slot and
774 		 *     edma_execute is coming up.
775 		 * (2) or we finished current transfer and issue will
776 		 *     call edma_execute.
777 		 *
778 		 * Important note: issuing can be dangerous here and
779 		 * lead to some nasty recursion when we are in a NULL
780 		 * slot. So we avoid doing so and set the missed flag.
781 		 */
782 		if (p.a_b_cnt == 0 && p.ccnt == 0) {
783 			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
784 			echan->missed = 1;
785 		} else {
786 			/*
787 			 * The slot is already programmed but the event got
788 			 * missed, so its safe to issue it here.
789 			 */
790 			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
791 			edma_clean_channel(echan->ch_num);
792 			edma_stop(echan->ch_num);
793 			edma_start(echan->ch_num);
794 			edma_trigger_channel(echan->ch_num);
795 		}
796 
797 		spin_unlock(&echan->vchan.lock);
798 
799 		break;
800 	default:
801 		break;
802 	}
803 }
804 
805 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)806 static int edma_alloc_chan_resources(struct dma_chan *chan)
807 {
808 	struct edma_chan *echan = to_edma_chan(chan);
809 	struct device *dev = chan->device->dev;
810 	int ret;
811 	int a_ch_num;
812 	LIST_HEAD(descs);
813 
814 	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
815 					echan, EVENTQ_DEFAULT);
816 
817 	if (a_ch_num < 0) {
818 		ret = -ENODEV;
819 		goto err_no_chan;
820 	}
821 
822 	if (a_ch_num != echan->ch_num) {
823 		dev_err(dev, "failed to allocate requested channel %u:%u\n",
824 			EDMA_CTLR(echan->ch_num),
825 			EDMA_CHAN_SLOT(echan->ch_num));
826 		ret = -ENODEV;
827 		goto err_wrong_chan;
828 	}
829 
830 	echan->alloced = true;
831 	echan->slot[0] = echan->ch_num;
832 
833 	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
834 		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
835 
836 	return 0;
837 
838 err_wrong_chan:
839 	edma_free_channel(a_ch_num);
840 err_no_chan:
841 	return ret;
842 }
843 
844 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)845 static void edma_free_chan_resources(struct dma_chan *chan)
846 {
847 	struct edma_chan *echan = to_edma_chan(chan);
848 	struct device *dev = chan->device->dev;
849 	int i;
850 
851 	/* Terminate transfers */
852 	edma_stop(echan->ch_num);
853 
854 	vchan_free_chan_resources(&echan->vchan);
855 
856 	/* Free EDMA PaRAM slots */
857 	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
858 		if (echan->slot[i] >= 0) {
859 			edma_free_slot(echan->slot[i]);
860 			echan->slot[i] = -1;
861 		}
862 	}
863 
864 	/* Free EDMA channel */
865 	if (echan->alloced) {
866 		edma_free_channel(echan->ch_num);
867 		echan->alloced = false;
868 	}
869 
870 	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
871 }
872 
873 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)874 static void edma_issue_pending(struct dma_chan *chan)
875 {
876 	struct edma_chan *echan = to_edma_chan(chan);
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&echan->vchan.lock, flags);
880 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
881 		edma_execute(echan);
882 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
883 }
884 
edma_residue(struct edma_desc * edesc)885 static u32 edma_residue(struct edma_desc *edesc)
886 {
887 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
888 	struct edma_pset *pset = edesc->pset;
889 	dma_addr_t done, pos;
890 	int i;
891 
892 	/*
893 	 * We always read the dst/src position from the first RamPar
894 	 * pset. That's the one which is active now.
895 	 */
896 	pos = edma_get_position(edesc->echan->slot[0], dst);
897 
898 	/*
899 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
900 	 *
901 	 * We never update edesc->residue in the cyclic case, so we
902 	 * can tell the remaining room to the end of the circular
903 	 * buffer.
904 	 */
905 	if (edesc->cyclic) {
906 		done = pos - pset->addr;
907 		edesc->residue_stat = edesc->residue - done;
908 		return edesc->residue_stat;
909 	}
910 
911 	/*
912 	 * For SG operation we catch up with the last processed
913 	 * status.
914 	 */
915 	pset += edesc->processed_stat;
916 
917 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
918 		/*
919 		 * If we are inside this pset address range, we know
920 		 * this is the active one. Get the current delta and
921 		 * stop walking the psets.
922 		 */
923 		if (pos >= pset->addr && pos < pset->addr + pset->len)
924 			return edesc->residue_stat - (pos - pset->addr);
925 
926 		/* Otherwise mark it done and update residue_stat. */
927 		edesc->processed_stat++;
928 		edesc->residue_stat -= pset->len;
929 	}
930 	return edesc->residue_stat;
931 }
932 
933 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)934 static enum dma_status edma_tx_status(struct dma_chan *chan,
935 				      dma_cookie_t cookie,
936 				      struct dma_tx_state *txstate)
937 {
938 	struct edma_chan *echan = to_edma_chan(chan);
939 	struct virt_dma_desc *vdesc;
940 	enum dma_status ret;
941 	unsigned long flags;
942 
943 	ret = dma_cookie_status(chan, cookie, txstate);
944 	if (ret == DMA_COMPLETE || !txstate)
945 		return ret;
946 
947 	spin_lock_irqsave(&echan->vchan.lock, flags);
948 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
949 		txstate->residue = edma_residue(echan->edesc);
950 	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
951 		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
952 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
953 
954 	return ret;
955 }
956 
edma_chan_init(struct edma_cc * ecc,struct dma_device * dma,struct edma_chan * echans)957 static void __init edma_chan_init(struct edma_cc *ecc,
958 				  struct dma_device *dma,
959 				  struct edma_chan *echans)
960 {
961 	int i, j;
962 
963 	for (i = 0; i < EDMA_CHANS; i++) {
964 		struct edma_chan *echan = &echans[i];
965 		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
966 		echan->ecc = ecc;
967 		echan->vchan.desc_free = edma_desc_free;
968 
969 		vchan_init(&echan->vchan, dma);
970 
971 		INIT_LIST_HEAD(&echan->node);
972 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
973 			echan->slot[j] = -1;
974 	}
975 }
976 
977 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
978 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
979 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
980 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
981 
edma_dma_init(struct edma_cc * ecc,struct dma_device * dma,struct device * dev)982 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
983 			  struct device *dev)
984 {
985 	dma->device_prep_slave_sg = edma_prep_slave_sg;
986 	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
987 	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
988 	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
989 	dma->device_free_chan_resources = edma_free_chan_resources;
990 	dma->device_issue_pending = edma_issue_pending;
991 	dma->device_tx_status = edma_tx_status;
992 	dma->device_config = edma_slave_config;
993 	dma->device_pause = edma_dma_pause;
994 	dma->device_resume = edma_dma_resume;
995 	dma->device_terminate_all = edma_terminate_all;
996 
997 	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
998 	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
999 	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1000 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1001 
1002 	dma->dev = dev;
1003 
1004 	/*
1005 	 * code using dma memcpy must make sure alignment of
1006 	 * length is at dma->copy_align boundary.
1007 	 */
1008 	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;
1009 
1010 	INIT_LIST_HEAD(&dma->channels);
1011 }
1012 
edma_probe(struct platform_device * pdev)1013 static int edma_probe(struct platform_device *pdev)
1014 {
1015 	struct edma_cc *ecc;
1016 	int ret;
1017 
1018 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 	if (ret)
1020 		return ret;
1021 
1022 	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
1023 	if (!ecc) {
1024 		dev_err(&pdev->dev, "Can't allocate controller\n");
1025 		return -ENOMEM;
1026 	}
1027 
1028 	ecc->ctlr = pdev->id;
1029 	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
1030 	if (ecc->dummy_slot < 0) {
1031 		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1032 		return ecc->dummy_slot;
1033 	}
1034 
1035 	dma_cap_zero(ecc->dma_slave.cap_mask);
1036 	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1037 	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1038 	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1039 
1040 	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
1041 
1042 	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
1043 
1044 	ret = dma_async_device_register(&ecc->dma_slave);
1045 	if (ret)
1046 		goto err_reg1;
1047 
1048 	platform_set_drvdata(pdev, ecc);
1049 
1050 	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
1051 
1052 	return 0;
1053 
1054 err_reg1:
1055 	edma_free_slot(ecc->dummy_slot);
1056 	return ret;
1057 }
1058 
edma_remove(struct platform_device * pdev)1059 static int edma_remove(struct platform_device *pdev)
1060 {
1061 	struct device *dev = &pdev->dev;
1062 	struct edma_cc *ecc = dev_get_drvdata(dev);
1063 
1064 	dma_async_device_unregister(&ecc->dma_slave);
1065 	edma_free_slot(ecc->dummy_slot);
1066 
1067 	return 0;
1068 }
1069 
1070 static struct platform_driver edma_driver = {
1071 	.probe		= edma_probe,
1072 	.remove		= edma_remove,
1073 	.driver = {
1074 		.name = "edma-dma-engine",
1075 	},
1076 };
1077 
edma_filter_fn(struct dma_chan * chan,void * param)1078 bool edma_filter_fn(struct dma_chan *chan, void *param)
1079 {
1080 	if (chan->device->dev->driver == &edma_driver.driver) {
1081 		struct edma_chan *echan = to_edma_chan(chan);
1082 		unsigned ch_req = *(unsigned *)param;
1083 		return ch_req == echan->ch_num;
1084 	}
1085 	return false;
1086 }
1087 EXPORT_SYMBOL(edma_filter_fn);
1088 
edma_init(void)1089 static int edma_init(void)
1090 {
1091 	return platform_driver_register(&edma_driver);
1092 }
1093 subsys_initcall(edma_init);
1094 
edma_exit(void)1095 static void __exit edma_exit(void)
1096 {
1097 	platform_driver_unregister(&edma_driver);
1098 }
1099 module_exit(edma_exit);
1100 
1101 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1102 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1103 MODULE_LICENSE("GPL v2");
1104