1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
30 
31 #include <linux/platform_data/mtd-nand-omap2.h>
32 
33 #define	DRIVER_NAME	"omap2-nand"
34 #define	OMAP_NAND_TIMEOUT_MS	5000
35 
36 #define NAND_Ecc_P1e		(1 << 0)
37 #define NAND_Ecc_P2e		(1 << 1)
38 #define NAND_Ecc_P4e		(1 << 2)
39 #define NAND_Ecc_P8e		(1 << 3)
40 #define NAND_Ecc_P16e		(1 << 4)
41 #define NAND_Ecc_P32e		(1 << 5)
42 #define NAND_Ecc_P64e		(1 << 6)
43 #define NAND_Ecc_P128e		(1 << 7)
44 #define NAND_Ecc_P256e		(1 << 8)
45 #define NAND_Ecc_P512e		(1 << 9)
46 #define NAND_Ecc_P1024e		(1 << 10)
47 #define NAND_Ecc_P2048e		(1 << 11)
48 
49 #define NAND_Ecc_P1o		(1 << 16)
50 #define NAND_Ecc_P2o		(1 << 17)
51 #define NAND_Ecc_P4o		(1 << 18)
52 #define NAND_Ecc_P8o		(1 << 19)
53 #define NAND_Ecc_P16o		(1 << 20)
54 #define NAND_Ecc_P32o		(1 << 21)
55 #define NAND_Ecc_P64o		(1 << 22)
56 #define NAND_Ecc_P128o		(1 << 23)
57 #define NAND_Ecc_P256o		(1 << 24)
58 #define NAND_Ecc_P512o		(1 << 25)
59 #define NAND_Ecc_P1024o		(1 << 26)
60 #define NAND_Ecc_P2048o		(1 << 27)
61 
62 #define TF(value)	(value ? 1 : 0)
63 
64 #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
65 #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
66 #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
67 #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
68 #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
69 #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
70 #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
71 #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
72 
73 #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
74 #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
75 #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
76 #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
77 #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
78 #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
79 #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
80 #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
81 
82 #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
83 #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
84 #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
85 #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
86 #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
87 #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
88 #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
89 #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
90 
91 #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
92 #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
93 #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
94 #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
95 #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
96 #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
97 #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
98 #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
99 
100 #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
101 #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
102 
103 #define	PREFETCH_CONFIG1_CS_SHIFT	24
104 #define	ECC_CONFIG_CS_SHIFT		1
105 #define	CS_MASK				0x7
106 #define	ENABLE_PREFETCH			(0x1 << 7)
107 #define	DMA_MPU_MODE_SHIFT		2
108 #define	ECCSIZE0_SHIFT			12
109 #define	ECCSIZE1_SHIFT			22
110 #define	ECC1RESULTSIZE			0x1
111 #define	ECCCLEAR			0x100
112 #define	ECC1				0x1
113 #define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
114 #define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
115 #define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
116 #define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
117 #define	STATUS_BUFF_EMPTY		0x00000001
118 
119 #define OMAP24XX_DMA_GPMC		4
120 
121 #define SECTOR_BYTES		512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD		4
124 
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
131 
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
136 
137 #define BADBLOCK_MARKER_LENGTH		2
138 
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 				0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 	0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
146 
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller = {
149 	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
150 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
151 };
152 
153 struct omap_nand_info {
154 	struct omap_nand_platform_data	*pdata;
155 	struct mtd_info			mtd;
156 	struct nand_chip		nand;
157 	struct platform_device		*pdev;
158 
159 	int				gpmc_cs;
160 	unsigned long			phys_base;
161 	enum omap_ecc			ecc_opt;
162 	struct completion		comp;
163 	struct dma_chan			*dma;
164 	int				gpmc_irq_fifo;
165 	int				gpmc_irq_count;
166 	enum {
167 		OMAP_NAND_IO_READ = 0,	/* read */
168 		OMAP_NAND_IO_WRITE,	/* write */
169 	} iomode;
170 	u_char				*buf;
171 	int					buf_len;
172 	struct gpmc_nand_regs		reg;
173 	/* generated at runtime depending on ECC algorithm and layout selected */
174 	struct nand_ecclayout		oobinfo;
175 	/* fields specific for BCHx_HW ECC scheme */
176 	struct device			*elm_dev;
177 	struct device_node		*of_node;
178 };
179 
180 /**
181  * omap_prefetch_enable - configures and starts prefetch transfer
182  * @cs: cs (chip select) number
183  * @fifo_th: fifo threshold to be used for read/ write
184  * @dma_mode: dma mode enable (1) or disable (0)
185  * @u32_count: number of bytes to be transferred
186  * @is_write: prefetch read(0) or write post(1) mode
187  */
omap_prefetch_enable(int cs,int fifo_th,int dma_mode,unsigned int u32_count,int is_write,struct omap_nand_info * info)188 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
189 	unsigned int u32_count, int is_write, struct omap_nand_info *info)
190 {
191 	u32 val;
192 
193 	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
194 		return -1;
195 
196 	if (readl(info->reg.gpmc_prefetch_control))
197 		return -EBUSY;
198 
199 	/* Set the amount of bytes to be prefetched */
200 	writel(u32_count, info->reg.gpmc_prefetch_config2);
201 
202 	/* Set dma/mpu mode, the prefetch read / post write and
203 	 * enable the engine. Set which cs is has requested for.
204 	 */
205 	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
206 		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
207 		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
208 	writel(val, info->reg.gpmc_prefetch_config1);
209 
210 	/*  Start the prefetch engine */
211 	writel(0x1, info->reg.gpmc_prefetch_control);
212 
213 	return 0;
214 }
215 
216 /**
217  * omap_prefetch_reset - disables and stops the prefetch engine
218  */
omap_prefetch_reset(int cs,struct omap_nand_info * info)219 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
220 {
221 	u32 config1;
222 
223 	/* check if the same module/cs is trying to reset */
224 	config1 = readl(info->reg.gpmc_prefetch_config1);
225 	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
226 		return -EINVAL;
227 
228 	/* Stop the PFPW engine */
229 	writel(0x0, info->reg.gpmc_prefetch_control);
230 
231 	/* Reset/disable the PFPW engine */
232 	writel(0x0, info->reg.gpmc_prefetch_config1);
233 
234 	return 0;
235 }
236 
237 /**
238  * omap_hwcontrol - hardware specific access to control-lines
239  * @mtd: MTD device structure
240  * @cmd: command to device
241  * @ctrl:
242  * NAND_NCE: bit 0 -> don't care
243  * NAND_CLE: bit 1 -> Command Latch
244  * NAND_ALE: bit 2 -> Address Latch
245  *
246  * NOTE: boards may use different bits for these!!
247  */
omap_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)248 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
249 {
250 	struct omap_nand_info *info = container_of(mtd,
251 					struct omap_nand_info, mtd);
252 
253 	if (cmd != NAND_CMD_NONE) {
254 		if (ctrl & NAND_CLE)
255 			writeb(cmd, info->reg.gpmc_nand_command);
256 
257 		else if (ctrl & NAND_ALE)
258 			writeb(cmd, info->reg.gpmc_nand_address);
259 
260 		else /* NAND_NCE */
261 			writeb(cmd, info->reg.gpmc_nand_data);
262 	}
263 }
264 
265 /**
266  * omap_read_buf8 - read data from NAND controller into buffer
267  * @mtd: MTD device structure
268  * @buf: buffer to store date
269  * @len: number of bytes to read
270  */
omap_read_buf8(struct mtd_info * mtd,u_char * buf,int len)271 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
272 {
273 	struct nand_chip *nand = mtd->priv;
274 
275 	ioread8_rep(nand->IO_ADDR_R, buf, len);
276 }
277 
278 /**
279  * omap_write_buf8 - write buffer to NAND controller
280  * @mtd: MTD device structure
281  * @buf: data buffer
282  * @len: number of bytes to write
283  */
omap_write_buf8(struct mtd_info * mtd,const u_char * buf,int len)284 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
285 {
286 	struct omap_nand_info *info = container_of(mtd,
287 						struct omap_nand_info, mtd);
288 	u_char *p = (u_char *)buf;
289 	u32	status = 0;
290 
291 	while (len--) {
292 		iowrite8(*p++, info->nand.IO_ADDR_W);
293 		/* wait until buffer is available for write */
294 		do {
295 			status = readl(info->reg.gpmc_status) &
296 					STATUS_BUFF_EMPTY;
297 		} while (!status);
298 	}
299 }
300 
301 /**
302  * omap_read_buf16 - read data from NAND controller into buffer
303  * @mtd: MTD device structure
304  * @buf: buffer to store date
305  * @len: number of bytes to read
306  */
omap_read_buf16(struct mtd_info * mtd,u_char * buf,int len)307 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
308 {
309 	struct nand_chip *nand = mtd->priv;
310 
311 	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
312 }
313 
314 /**
315  * omap_write_buf16 - write buffer to NAND controller
316  * @mtd: MTD device structure
317  * @buf: data buffer
318  * @len: number of bytes to write
319  */
omap_write_buf16(struct mtd_info * mtd,const u_char * buf,int len)320 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
321 {
322 	struct omap_nand_info *info = container_of(mtd,
323 						struct omap_nand_info, mtd);
324 	u16 *p = (u16 *) buf;
325 	u32	status = 0;
326 	/* FIXME try bursts of writesw() or DMA ... */
327 	len >>= 1;
328 
329 	while (len--) {
330 		iowrite16(*p++, info->nand.IO_ADDR_W);
331 		/* wait until buffer is available for write */
332 		do {
333 			status = readl(info->reg.gpmc_status) &
334 					STATUS_BUFF_EMPTY;
335 		} while (!status);
336 	}
337 }
338 
339 /**
340  * omap_read_buf_pref - read data from NAND controller into buffer
341  * @mtd: MTD device structure
342  * @buf: buffer to store date
343  * @len: number of bytes to read
344  */
omap_read_buf_pref(struct mtd_info * mtd,u_char * buf,int len)345 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
346 {
347 	struct omap_nand_info *info = container_of(mtd,
348 						struct omap_nand_info, mtd);
349 	uint32_t r_count = 0;
350 	int ret = 0;
351 	u32 *p = (u32 *)buf;
352 
353 	/* take care of subpage reads */
354 	if (len % 4) {
355 		if (info->nand.options & NAND_BUSWIDTH_16)
356 			omap_read_buf16(mtd, buf, len % 4);
357 		else
358 			omap_read_buf8(mtd, buf, len % 4);
359 		p = (u32 *) (buf + len % 4);
360 		len -= len % 4;
361 	}
362 
363 	/* configure and start prefetch transfer */
364 	ret = omap_prefetch_enable(info->gpmc_cs,
365 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
366 	if (ret) {
367 		/* PFPW engine is busy, use cpu copy method */
368 		if (info->nand.options & NAND_BUSWIDTH_16)
369 			omap_read_buf16(mtd, (u_char *)p, len);
370 		else
371 			omap_read_buf8(mtd, (u_char *)p, len);
372 	} else {
373 		do {
374 			r_count = readl(info->reg.gpmc_prefetch_status);
375 			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
376 			r_count = r_count >> 2;
377 			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
378 			p += r_count;
379 			len -= r_count << 2;
380 		} while (len);
381 		/* disable and stop the PFPW engine */
382 		omap_prefetch_reset(info->gpmc_cs, info);
383 	}
384 }
385 
386 /**
387  * omap_write_buf_pref - write buffer to NAND controller
388  * @mtd: MTD device structure
389  * @buf: data buffer
390  * @len: number of bytes to write
391  */
omap_write_buf_pref(struct mtd_info * mtd,const u_char * buf,int len)392 static void omap_write_buf_pref(struct mtd_info *mtd,
393 					const u_char *buf, int len)
394 {
395 	struct omap_nand_info *info = container_of(mtd,
396 						struct omap_nand_info, mtd);
397 	uint32_t w_count = 0;
398 	int i = 0, ret = 0;
399 	u16 *p = (u16 *)buf;
400 	unsigned long tim, limit;
401 	u32 val;
402 
403 	/* take care of subpage writes */
404 	if (len % 2 != 0) {
405 		writeb(*buf, info->nand.IO_ADDR_W);
406 		p = (u16 *)(buf + 1);
407 		len--;
408 	}
409 
410 	/*  configure and start prefetch transfer */
411 	ret = omap_prefetch_enable(info->gpmc_cs,
412 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
413 	if (ret) {
414 		/* PFPW engine is busy, use cpu copy method */
415 		if (info->nand.options & NAND_BUSWIDTH_16)
416 			omap_write_buf16(mtd, (u_char *)p, len);
417 		else
418 			omap_write_buf8(mtd, (u_char *)p, len);
419 	} else {
420 		while (len) {
421 			w_count = readl(info->reg.gpmc_prefetch_status);
422 			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
423 			w_count = w_count >> 1;
424 			for (i = 0; (i < w_count) && len; i++, len -= 2)
425 				iowrite16(*p++, info->nand.IO_ADDR_W);
426 		}
427 		/* wait for data to flushed-out before reset the prefetch */
428 		tim = 0;
429 		limit = (loops_per_jiffy *
430 					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
431 		do {
432 			cpu_relax();
433 			val = readl(info->reg.gpmc_prefetch_status);
434 			val = PREFETCH_STATUS_COUNT(val);
435 		} while (val && (tim++ < limit));
436 
437 		/* disable and stop the PFPW engine */
438 		omap_prefetch_reset(info->gpmc_cs, info);
439 	}
440 }
441 
442 /*
443  * omap_nand_dma_callback: callback on the completion of dma transfer
444  * @data: pointer to completion data structure
445  */
omap_nand_dma_callback(void * data)446 static void omap_nand_dma_callback(void *data)
447 {
448 	complete((struct completion *) data);
449 }
450 
451 /*
452  * omap_nand_dma_transfer: configure and start dma transfer
453  * @mtd: MTD device structure
454  * @addr: virtual address in RAM of source/destination
455  * @len: number of data bytes to be transferred
456  * @is_write: flag for read/write operation
457  */
omap_nand_dma_transfer(struct mtd_info * mtd,void * addr,unsigned int len,int is_write)458 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
459 					unsigned int len, int is_write)
460 {
461 	struct omap_nand_info *info = container_of(mtd,
462 					struct omap_nand_info, mtd);
463 	struct dma_async_tx_descriptor *tx;
464 	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
465 							DMA_FROM_DEVICE;
466 	struct scatterlist sg;
467 	unsigned long tim, limit;
468 	unsigned n;
469 	int ret;
470 	u32 val;
471 
472 	if (addr >= high_memory) {
473 		struct page *p1;
474 
475 		if (((size_t)addr & PAGE_MASK) !=
476 			((size_t)(addr + len - 1) & PAGE_MASK))
477 			goto out_copy;
478 		p1 = vmalloc_to_page(addr);
479 		if (!p1)
480 			goto out_copy;
481 		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
482 	}
483 
484 	sg_init_one(&sg, addr, len);
485 	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
486 	if (n == 0) {
487 		dev_err(&info->pdev->dev,
488 			"Couldn't DMA map a %d byte buffer\n", len);
489 		goto out_copy;
490 	}
491 
492 	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
493 		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
494 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
495 	if (!tx)
496 		goto out_copy_unmap;
497 
498 	tx->callback = omap_nand_dma_callback;
499 	tx->callback_param = &info->comp;
500 	dmaengine_submit(tx);
501 
502 	/*  configure and start prefetch transfer */
503 	ret = omap_prefetch_enable(info->gpmc_cs,
504 		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
505 	if (ret)
506 		/* PFPW engine is busy, use cpu copy method */
507 		goto out_copy_unmap;
508 
509 	init_completion(&info->comp);
510 	dma_async_issue_pending(info->dma);
511 
512 	/* setup and start DMA using dma_addr */
513 	wait_for_completion(&info->comp);
514 	tim = 0;
515 	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
516 
517 	do {
518 		cpu_relax();
519 		val = readl(info->reg.gpmc_prefetch_status);
520 		val = PREFETCH_STATUS_COUNT(val);
521 	} while (val && (tim++ < limit));
522 
523 	/* disable and stop the PFPW engine */
524 	omap_prefetch_reset(info->gpmc_cs, info);
525 
526 	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
527 	return 0;
528 
529 out_copy_unmap:
530 	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
531 out_copy:
532 	if (info->nand.options & NAND_BUSWIDTH_16)
533 		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
534 			: omap_write_buf16(mtd, (u_char *) addr, len);
535 	else
536 		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
537 			: omap_write_buf8(mtd, (u_char *) addr, len);
538 	return 0;
539 }
540 
541 /**
542  * omap_read_buf_dma_pref - read data from NAND controller into buffer
543  * @mtd: MTD device structure
544  * @buf: buffer to store date
545  * @len: number of bytes to read
546  */
omap_read_buf_dma_pref(struct mtd_info * mtd,u_char * buf,int len)547 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
548 {
549 	if (len <= mtd->oobsize)
550 		omap_read_buf_pref(mtd, buf, len);
551 	else
552 		/* start transfer in DMA mode */
553 		omap_nand_dma_transfer(mtd, buf, len, 0x0);
554 }
555 
556 /**
557  * omap_write_buf_dma_pref - write buffer to NAND controller
558  * @mtd: MTD device structure
559  * @buf: data buffer
560  * @len: number of bytes to write
561  */
omap_write_buf_dma_pref(struct mtd_info * mtd,const u_char * buf,int len)562 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
563 					const u_char *buf, int len)
564 {
565 	if (len <= mtd->oobsize)
566 		omap_write_buf_pref(mtd, buf, len);
567 	else
568 		/* start transfer in DMA mode */
569 		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
570 }
571 
572 /*
573  * omap_nand_irq - GPMC irq handler
574  * @this_irq: gpmc irq number
575  * @dev: omap_nand_info structure pointer is passed here
576  */
omap_nand_irq(int this_irq,void * dev)577 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
578 {
579 	struct omap_nand_info *info = (struct omap_nand_info *) dev;
580 	u32 bytes;
581 
582 	bytes = readl(info->reg.gpmc_prefetch_status);
583 	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
584 	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
585 	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
586 		if (this_irq == info->gpmc_irq_count)
587 			goto done;
588 
589 		if (info->buf_len && (info->buf_len < bytes))
590 			bytes = info->buf_len;
591 		else if (!info->buf_len)
592 			bytes = 0;
593 		iowrite32_rep(info->nand.IO_ADDR_W,
594 						(u32 *)info->buf, bytes >> 2);
595 		info->buf = info->buf + bytes;
596 		info->buf_len -= bytes;
597 
598 	} else {
599 		ioread32_rep(info->nand.IO_ADDR_R,
600 						(u32 *)info->buf, bytes >> 2);
601 		info->buf = info->buf + bytes;
602 
603 		if (this_irq == info->gpmc_irq_count)
604 			goto done;
605 	}
606 
607 	return IRQ_HANDLED;
608 
609 done:
610 	complete(&info->comp);
611 
612 	disable_irq_nosync(info->gpmc_irq_fifo);
613 	disable_irq_nosync(info->gpmc_irq_count);
614 
615 	return IRQ_HANDLED;
616 }
617 
618 /*
619  * omap_read_buf_irq_pref - read data from NAND controller into buffer
620  * @mtd: MTD device structure
621  * @buf: buffer to store date
622  * @len: number of bytes to read
623  */
omap_read_buf_irq_pref(struct mtd_info * mtd,u_char * buf,int len)624 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
625 {
626 	struct omap_nand_info *info = container_of(mtd,
627 						struct omap_nand_info, mtd);
628 	int ret = 0;
629 
630 	if (len <= mtd->oobsize) {
631 		omap_read_buf_pref(mtd, buf, len);
632 		return;
633 	}
634 
635 	info->iomode = OMAP_NAND_IO_READ;
636 	info->buf = buf;
637 	init_completion(&info->comp);
638 
639 	/*  configure and start prefetch transfer */
640 	ret = omap_prefetch_enable(info->gpmc_cs,
641 			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
642 	if (ret)
643 		/* PFPW engine is busy, use cpu copy method */
644 		goto out_copy;
645 
646 	info->buf_len = len;
647 
648 	enable_irq(info->gpmc_irq_count);
649 	enable_irq(info->gpmc_irq_fifo);
650 
651 	/* waiting for read to complete */
652 	wait_for_completion(&info->comp);
653 
654 	/* disable and stop the PFPW engine */
655 	omap_prefetch_reset(info->gpmc_cs, info);
656 	return;
657 
658 out_copy:
659 	if (info->nand.options & NAND_BUSWIDTH_16)
660 		omap_read_buf16(mtd, buf, len);
661 	else
662 		omap_read_buf8(mtd, buf, len);
663 }
664 
665 /*
666  * omap_write_buf_irq_pref - write buffer to NAND controller
667  * @mtd: MTD device structure
668  * @buf: data buffer
669  * @len: number of bytes to write
670  */
omap_write_buf_irq_pref(struct mtd_info * mtd,const u_char * buf,int len)671 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
672 					const u_char *buf, int len)
673 {
674 	struct omap_nand_info *info = container_of(mtd,
675 						struct omap_nand_info, mtd);
676 	int ret = 0;
677 	unsigned long tim, limit;
678 	u32 val;
679 
680 	if (len <= mtd->oobsize) {
681 		omap_write_buf_pref(mtd, buf, len);
682 		return;
683 	}
684 
685 	info->iomode = OMAP_NAND_IO_WRITE;
686 	info->buf = (u_char *) buf;
687 	init_completion(&info->comp);
688 
689 	/* configure and start prefetch transfer : size=24 */
690 	ret = omap_prefetch_enable(info->gpmc_cs,
691 		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
692 	if (ret)
693 		/* PFPW engine is busy, use cpu copy method */
694 		goto out_copy;
695 
696 	info->buf_len = len;
697 
698 	enable_irq(info->gpmc_irq_count);
699 	enable_irq(info->gpmc_irq_fifo);
700 
701 	/* waiting for write to complete */
702 	wait_for_completion(&info->comp);
703 
704 	/* wait for data to flushed-out before reset the prefetch */
705 	tim = 0;
706 	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
707 	do {
708 		val = readl(info->reg.gpmc_prefetch_status);
709 		val = PREFETCH_STATUS_COUNT(val);
710 		cpu_relax();
711 	} while (val && (tim++ < limit));
712 
713 	/* disable and stop the PFPW engine */
714 	omap_prefetch_reset(info->gpmc_cs, info);
715 	return;
716 
717 out_copy:
718 	if (info->nand.options & NAND_BUSWIDTH_16)
719 		omap_write_buf16(mtd, buf, len);
720 	else
721 		omap_write_buf8(mtd, buf, len);
722 }
723 
724 /**
725  * gen_true_ecc - This function will generate true ECC value
726  * @ecc_buf: buffer to store ecc code
727  *
728  * This generated true ECC value can be used when correcting
729  * data read from NAND flash memory core
730  */
gen_true_ecc(u8 * ecc_buf)731 static void gen_true_ecc(u8 *ecc_buf)
732 {
733 	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
734 		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
735 
736 	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
737 			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
738 	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
739 			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
740 	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
741 			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
742 }
743 
744 /**
745  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
746  * @ecc_data1:  ecc code from nand spare area
747  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
748  * @page_data:  page data
749  *
750  * This function compares two ECC's and indicates if there is an error.
751  * If the error can be corrected it will be corrected to the buffer.
752  * If there is no error, %0 is returned. If there is an error but it
753  * was corrected, %1 is returned. Otherwise, %-1 is returned.
754  */
omap_compare_ecc(u8 * ecc_data1,u8 * ecc_data2,u8 * page_data)755 static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
756 			    u8 *ecc_data2,	/* read from register */
757 			    u8 *page_data)
758 {
759 	uint	i;
760 	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
761 	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
762 	u8	ecc_bit[24];
763 	u8	ecc_sum = 0;
764 	u8	find_bit = 0;
765 	uint	find_byte = 0;
766 	int	isEccFF;
767 
768 	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
769 
770 	gen_true_ecc(ecc_data1);
771 	gen_true_ecc(ecc_data2);
772 
773 	for (i = 0; i <= 2; i++) {
774 		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
775 		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
776 	}
777 
778 	for (i = 0; i < 8; i++) {
779 		tmp0_bit[i]     = *ecc_data1 % 2;
780 		*ecc_data1	= *ecc_data1 / 2;
781 	}
782 
783 	for (i = 0; i < 8; i++) {
784 		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
785 		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
786 	}
787 
788 	for (i = 0; i < 8; i++) {
789 		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
790 		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
791 	}
792 
793 	for (i = 0; i < 8; i++) {
794 		comp0_bit[i]     = *ecc_data2 % 2;
795 		*ecc_data2       = *ecc_data2 / 2;
796 	}
797 
798 	for (i = 0; i < 8; i++) {
799 		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
800 		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
801 	}
802 
803 	for (i = 0; i < 8; i++) {
804 		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
805 		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
806 	}
807 
808 	for (i = 0; i < 6; i++)
809 		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
810 
811 	for (i = 0; i < 8; i++)
812 		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
813 
814 	for (i = 0; i < 8; i++)
815 		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
816 
817 	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
818 	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
819 
820 	for (i = 0; i < 24; i++)
821 		ecc_sum += ecc_bit[i];
822 
823 	switch (ecc_sum) {
824 	case 0:
825 		/* Not reached because this function is not called if
826 		 *  ECC values are equal
827 		 */
828 		return 0;
829 
830 	case 1:
831 		/* Uncorrectable error */
832 		pr_debug("ECC UNCORRECTED_ERROR 1\n");
833 		return -1;
834 
835 	case 11:
836 		/* UN-Correctable error */
837 		pr_debug("ECC UNCORRECTED_ERROR B\n");
838 		return -1;
839 
840 	case 12:
841 		/* Correctable error */
842 		find_byte = (ecc_bit[23] << 8) +
843 			    (ecc_bit[21] << 7) +
844 			    (ecc_bit[19] << 6) +
845 			    (ecc_bit[17] << 5) +
846 			    (ecc_bit[15] << 4) +
847 			    (ecc_bit[13] << 3) +
848 			    (ecc_bit[11] << 2) +
849 			    (ecc_bit[9]  << 1) +
850 			    ecc_bit[7];
851 
852 		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
853 
854 		pr_debug("Correcting single bit ECC error at offset: "
855 				"%d, bit: %d\n", find_byte, find_bit);
856 
857 		page_data[find_byte] ^= (1 << find_bit);
858 
859 		return 1;
860 	default:
861 		if (isEccFF) {
862 			if (ecc_data2[0] == 0 &&
863 			    ecc_data2[1] == 0 &&
864 			    ecc_data2[2] == 0)
865 				return 0;
866 		}
867 		pr_debug("UNCORRECTED_ERROR default\n");
868 		return -1;
869 	}
870 }
871 
872 /**
873  * omap_correct_data - Compares the ECC read with HW generated ECC
874  * @mtd: MTD device structure
875  * @dat: page data
876  * @read_ecc: ecc read from nand flash
877  * @calc_ecc: ecc read from HW ECC registers
878  *
879  * Compares the ecc read from nand spare area with ECC registers values
880  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
881  * detection and correction. If there are no errors, %0 is returned. If
882  * there were errors and all of the errors were corrected, the number of
883  * corrected errors is returned. If uncorrectable errors exist, %-1 is
884  * returned.
885  */
omap_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)886 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
887 				u_char *read_ecc, u_char *calc_ecc)
888 {
889 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
890 							mtd);
891 	int blockCnt = 0, i = 0, ret = 0;
892 	int stat = 0;
893 
894 	/* Ex NAND_ECC_HW12_2048 */
895 	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
896 			(info->nand.ecc.size  == 2048))
897 		blockCnt = 4;
898 	else
899 		blockCnt = 1;
900 
901 	for (i = 0; i < blockCnt; i++) {
902 		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
903 			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
904 			if (ret < 0)
905 				return ret;
906 			/* keep track of the number of corrected errors */
907 			stat += ret;
908 		}
909 		read_ecc += 3;
910 		calc_ecc += 3;
911 		dat      += 512;
912 	}
913 	return stat;
914 }
915 
916 /**
917  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
918  * @mtd: MTD device structure
919  * @dat: The pointer to data on which ecc is computed
920  * @ecc_code: The ecc_code buffer
921  *
922  * Using noninverted ECC can be considered ugly since writing a blank
923  * page ie. padding will clear the ECC bytes. This is no problem as long
924  * nobody is trying to write data on the seemingly unused page. Reading
925  * an erased page will produce an ECC mismatch between generated and read
926  * ECC bytes that has to be dealt with separately.
927  */
omap_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)928 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
929 				u_char *ecc_code)
930 {
931 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
932 							mtd);
933 	u32 val;
934 
935 	val = readl(info->reg.gpmc_ecc_config);
936 	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
937 		return -EINVAL;
938 
939 	/* read ecc result */
940 	val = readl(info->reg.gpmc_ecc1_result);
941 	*ecc_code++ = val;          /* P128e, ..., P1e */
942 	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
943 	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
944 	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
945 
946 	return 0;
947 }
948 
949 /**
950  * omap_enable_hwecc - This function enables the hardware ecc functionality
951  * @mtd: MTD device structure
952  * @mode: Read/Write mode
953  */
omap_enable_hwecc(struct mtd_info * mtd,int mode)954 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
955 {
956 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
957 							mtd);
958 	struct nand_chip *chip = mtd->priv;
959 	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
960 	u32 val;
961 
962 	/* clear ecc and enable bits */
963 	val = ECCCLEAR | ECC1;
964 	writel(val, info->reg.gpmc_ecc_control);
965 
966 	/* program ecc and result sizes */
967 	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
968 			 ECC1RESULTSIZE);
969 	writel(val, info->reg.gpmc_ecc_size_config);
970 
971 	switch (mode) {
972 	case NAND_ECC_READ:
973 	case NAND_ECC_WRITE:
974 		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
975 		break;
976 	case NAND_ECC_READSYN:
977 		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
978 		break;
979 	default:
980 		dev_info(&info->pdev->dev,
981 			"error: unrecognized Mode[%d]!\n", mode);
982 		break;
983 	}
984 
985 	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
986 	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
987 	writel(val, info->reg.gpmc_ecc_config);
988 }
989 
990 /**
991  * omap_wait - wait until the command is done
992  * @mtd: MTD device structure
993  * @chip: NAND Chip structure
994  *
995  * Wait function is called during Program and erase operations and
996  * the way it is called from MTD layer, we should wait till the NAND
997  * chip is ready after the programming/erase operation has completed.
998  *
999  * Erase can take up to 400ms and program up to 20ms according to
1000  * general NAND and SmartMedia specs
1001  */
omap_wait(struct mtd_info * mtd,struct nand_chip * chip)1002 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1003 {
1004 	struct nand_chip *this = mtd->priv;
1005 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1006 							mtd);
1007 	unsigned long timeo = jiffies;
1008 	int status, state = this->state;
1009 
1010 	if (state == FL_ERASING)
1011 		timeo += msecs_to_jiffies(400);
1012 	else
1013 		timeo += msecs_to_jiffies(20);
1014 
1015 	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1016 	while (time_before(jiffies, timeo)) {
1017 		status = readb(info->reg.gpmc_nand_data);
1018 		if (status & NAND_STATUS_READY)
1019 			break;
1020 		cond_resched();
1021 	}
1022 
1023 	status = readb(info->reg.gpmc_nand_data);
1024 	return status;
1025 }
1026 
1027 /**
1028  * omap_dev_ready - calls the platform specific dev_ready function
1029  * @mtd: MTD device structure
1030  */
omap_dev_ready(struct mtd_info * mtd)1031 static int omap_dev_ready(struct mtd_info *mtd)
1032 {
1033 	unsigned int val = 0;
1034 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1035 							mtd);
1036 
1037 	val = readl(info->reg.gpmc_status);
1038 
1039 	if ((val & 0x100) == 0x100) {
1040 		return 1;
1041 	} else {
1042 		return 0;
1043 	}
1044 }
1045 
1046 /**
1047  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1048  * @mtd: MTD device structure
1049  * @mode: Read/Write mode
1050  *
1051  * When using BCH with SW correction (i.e. no ELM), sector size is set
1052  * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1053  * for both reading and writing with:
1054  * eccsize0 = 0  (no additional protected byte in spare area)
1055  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1056  */
omap_enable_hwecc_bch(struct mtd_info * mtd,int mode)1057 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1058 {
1059 	unsigned int bch_type;
1060 	unsigned int dev_width, nsectors;
1061 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1062 						   mtd);
1063 	enum omap_ecc ecc_opt = info->ecc_opt;
1064 	struct nand_chip *chip = mtd->priv;
1065 	u32 val, wr_mode;
1066 	unsigned int ecc_size1, ecc_size0;
1067 
1068 	/* GPMC configurations for calculating ECC */
1069 	switch (ecc_opt) {
1070 	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1071 		bch_type = 0;
1072 		nsectors = 1;
1073 		wr_mode	  = BCH_WRAPMODE_6;
1074 		ecc_size0 = BCH_ECC_SIZE0;
1075 		ecc_size1 = BCH_ECC_SIZE1;
1076 		break;
1077 	case OMAP_ECC_BCH4_CODE_HW:
1078 		bch_type = 0;
1079 		nsectors = chip->ecc.steps;
1080 		if (mode == NAND_ECC_READ) {
1081 			wr_mode	  = BCH_WRAPMODE_1;
1082 			ecc_size0 = BCH4R_ECC_SIZE0;
1083 			ecc_size1 = BCH4R_ECC_SIZE1;
1084 		} else {
1085 			wr_mode   = BCH_WRAPMODE_6;
1086 			ecc_size0 = BCH_ECC_SIZE0;
1087 			ecc_size1 = BCH_ECC_SIZE1;
1088 		}
1089 		break;
1090 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1091 		bch_type = 1;
1092 		nsectors = 1;
1093 		wr_mode	  = BCH_WRAPMODE_6;
1094 		ecc_size0 = BCH_ECC_SIZE0;
1095 		ecc_size1 = BCH_ECC_SIZE1;
1096 		break;
1097 	case OMAP_ECC_BCH8_CODE_HW:
1098 		bch_type = 1;
1099 		nsectors = chip->ecc.steps;
1100 		if (mode == NAND_ECC_READ) {
1101 			wr_mode	  = BCH_WRAPMODE_1;
1102 			ecc_size0 = BCH8R_ECC_SIZE0;
1103 			ecc_size1 = BCH8R_ECC_SIZE1;
1104 		} else {
1105 			wr_mode   = BCH_WRAPMODE_6;
1106 			ecc_size0 = BCH_ECC_SIZE0;
1107 			ecc_size1 = BCH_ECC_SIZE1;
1108 		}
1109 		break;
1110 	case OMAP_ECC_BCH16_CODE_HW:
1111 		bch_type = 0x2;
1112 		nsectors = chip->ecc.steps;
1113 		if (mode == NAND_ECC_READ) {
1114 			wr_mode	  = 0x01;
1115 			ecc_size0 = 52; /* ECC bits in nibbles per sector */
1116 			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1117 		} else {
1118 			wr_mode	  = 0x01;
1119 			ecc_size0 = 0;  /* extra bits in nibbles per sector */
1120 			ecc_size1 = 52; /* OOB bits in nibbles per sector */
1121 		}
1122 		break;
1123 	default:
1124 		return;
1125 	}
1126 
1127 	writel(ECC1, info->reg.gpmc_ecc_control);
1128 
1129 	/* Configure ecc size for BCH */
1130 	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1131 	writel(val, info->reg.gpmc_ecc_size_config);
1132 
1133 	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1134 
1135 	/* BCH configuration */
1136 	val = ((1                        << 16) | /* enable BCH */
1137 	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1138 	       (wr_mode                  <<  8) | /* wrap mode */
1139 	       (dev_width                <<  7) | /* bus width */
1140 	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1141 	       (info->gpmc_cs            <<  1) | /* ECC CS */
1142 	       (0x1));                            /* enable ECC */
1143 
1144 	writel(val, info->reg.gpmc_ecc_config);
1145 
1146 	/* Clear ecc and enable bits */
1147 	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1148 }
1149 
1150 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1151 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1152 				0x97, 0x79, 0xe5, 0x24, 0xb5};
1153 
1154 /**
1155  * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1156  * @mtd:	MTD device structure
1157  * @dat:	The pointer to data on which ecc is computed
1158  * @ecc_code:	The ecc_code buffer
1159  *
1160  * Support calculating of BCH4/8 ecc vectors for the page
1161  */
omap_calculate_ecc_bch(struct mtd_info * mtd,const u_char * dat,u_char * ecc_calc)1162 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1163 					const u_char *dat, u_char *ecc_calc)
1164 {
1165 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1166 						   mtd);
1167 	int eccbytes	= info->nand.ecc.bytes;
1168 	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
1169 	u8 *ecc_code;
1170 	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1171 	u32 val;
1172 	int i, j;
1173 
1174 	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1175 	for (i = 0; i < nsectors; i++) {
1176 		ecc_code = ecc_calc;
1177 		switch (info->ecc_opt) {
1178 		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1179 		case OMAP_ECC_BCH8_CODE_HW:
1180 			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181 			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182 			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1183 			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1184 			*ecc_code++ = (bch_val4 & 0xFF);
1185 			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1186 			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1187 			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1188 			*ecc_code++ = (bch_val3 & 0xFF);
1189 			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1190 			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1191 			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1192 			*ecc_code++ = (bch_val2 & 0xFF);
1193 			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1194 			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1195 			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1196 			*ecc_code++ = (bch_val1 & 0xFF);
1197 			break;
1198 		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1199 		case OMAP_ECC_BCH4_CODE_HW:
1200 			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1201 			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1202 			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1203 			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1204 			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
1205 				((bch_val1 >> 28) & 0xF);
1206 			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1207 			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1208 			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1209 			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1210 			break;
1211 		case OMAP_ECC_BCH16_CODE_HW:
1212 			val = readl(gpmc_regs->gpmc_bch_result6[i]);
1213 			ecc_code[0]  = ((val >>  8) & 0xFF);
1214 			ecc_code[1]  = ((val >>  0) & 0xFF);
1215 			val = readl(gpmc_regs->gpmc_bch_result5[i]);
1216 			ecc_code[2]  = ((val >> 24) & 0xFF);
1217 			ecc_code[3]  = ((val >> 16) & 0xFF);
1218 			ecc_code[4]  = ((val >>  8) & 0xFF);
1219 			ecc_code[5]  = ((val >>  0) & 0xFF);
1220 			val = readl(gpmc_regs->gpmc_bch_result4[i]);
1221 			ecc_code[6]  = ((val >> 24) & 0xFF);
1222 			ecc_code[7]  = ((val >> 16) & 0xFF);
1223 			ecc_code[8]  = ((val >>  8) & 0xFF);
1224 			ecc_code[9]  = ((val >>  0) & 0xFF);
1225 			val = readl(gpmc_regs->gpmc_bch_result3[i]);
1226 			ecc_code[10] = ((val >> 24) & 0xFF);
1227 			ecc_code[11] = ((val >> 16) & 0xFF);
1228 			ecc_code[12] = ((val >>  8) & 0xFF);
1229 			ecc_code[13] = ((val >>  0) & 0xFF);
1230 			val = readl(gpmc_regs->gpmc_bch_result2[i]);
1231 			ecc_code[14] = ((val >> 24) & 0xFF);
1232 			ecc_code[15] = ((val >> 16) & 0xFF);
1233 			ecc_code[16] = ((val >>  8) & 0xFF);
1234 			ecc_code[17] = ((val >>  0) & 0xFF);
1235 			val = readl(gpmc_regs->gpmc_bch_result1[i]);
1236 			ecc_code[18] = ((val >> 24) & 0xFF);
1237 			ecc_code[19] = ((val >> 16) & 0xFF);
1238 			ecc_code[20] = ((val >>  8) & 0xFF);
1239 			ecc_code[21] = ((val >>  0) & 0xFF);
1240 			val = readl(gpmc_regs->gpmc_bch_result0[i]);
1241 			ecc_code[22] = ((val >> 24) & 0xFF);
1242 			ecc_code[23] = ((val >> 16) & 0xFF);
1243 			ecc_code[24] = ((val >>  8) & 0xFF);
1244 			ecc_code[25] = ((val >>  0) & 0xFF);
1245 			break;
1246 		default:
1247 			return -EINVAL;
1248 		}
1249 
1250 		/* ECC scheme specific syndrome customizations */
1251 		switch (info->ecc_opt) {
1252 		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1253 			/* Add constant polynomial to remainder, so that
1254 			 * ECC of blank pages results in 0x0 on reading back */
1255 			for (j = 0; j < eccbytes; j++)
1256 				ecc_calc[j] ^= bch4_polynomial[j];
1257 			break;
1258 		case OMAP_ECC_BCH4_CODE_HW:
1259 			/* Set  8th ECC byte as 0x0 for ROM compatibility */
1260 			ecc_calc[eccbytes - 1] = 0x0;
1261 			break;
1262 		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1263 			/* Add constant polynomial to remainder, so that
1264 			 * ECC of blank pages results in 0x0 on reading back */
1265 			for (j = 0; j < eccbytes; j++)
1266 				ecc_calc[j] ^= bch8_polynomial[j];
1267 			break;
1268 		case OMAP_ECC_BCH8_CODE_HW:
1269 			/* Set 14th ECC byte as 0x0 for ROM compatibility */
1270 			ecc_calc[eccbytes - 1] = 0x0;
1271 			break;
1272 		case OMAP_ECC_BCH16_CODE_HW:
1273 			break;
1274 		default:
1275 			return -EINVAL;
1276 		}
1277 
1278 	ecc_calc += eccbytes;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 /**
1285  * erased_sector_bitflips - count bit flips
1286  * @data:	data sector buffer
1287  * @oob:	oob buffer
1288  * @info:	omap_nand_info
1289  *
1290  * Check the bit flips in erased page falls below correctable level.
1291  * If falls below, report the page as erased with correctable bit
1292  * flip, else report as uncorrectable page.
1293  */
erased_sector_bitflips(u_char * data,u_char * oob,struct omap_nand_info * info)1294 static int erased_sector_bitflips(u_char *data, u_char *oob,
1295 		struct omap_nand_info *info)
1296 {
1297 	int flip_bits = 0, i;
1298 
1299 	for (i = 0; i < info->nand.ecc.size; i++) {
1300 		flip_bits += hweight8(~data[i]);
1301 		if (flip_bits > info->nand.ecc.strength)
1302 			return 0;
1303 	}
1304 
1305 	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1306 		flip_bits += hweight8(~oob[i]);
1307 		if (flip_bits > info->nand.ecc.strength)
1308 			return 0;
1309 	}
1310 
1311 	/*
1312 	 * Bit flips falls in correctable level.
1313 	 * Fill data area with 0xFF
1314 	 */
1315 	if (flip_bits) {
1316 		memset(data, 0xFF, info->nand.ecc.size);
1317 		memset(oob, 0xFF, info->nand.ecc.bytes);
1318 	}
1319 
1320 	return flip_bits;
1321 }
1322 
1323 /**
1324  * omap_elm_correct_data - corrects page data area in case error reported
1325  * @mtd:	MTD device structure
1326  * @data:	page data
1327  * @read_ecc:	ecc read from nand flash
1328  * @calc_ecc:	ecc read from HW ECC registers
1329  *
1330  * Calculated ecc vector reported as zero in case of non-error pages.
1331  * In case of non-zero ecc vector, first filter out erased-pages, and
1332  * then process data via ELM to detect bit-flips.
1333  */
omap_elm_correct_data(struct mtd_info * mtd,u_char * data,u_char * read_ecc,u_char * calc_ecc)1334 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1335 				u_char *read_ecc, u_char *calc_ecc)
1336 {
1337 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1338 			mtd);
1339 	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1340 	int eccsteps = info->nand.ecc.steps;
1341 	int i , j, stat = 0;
1342 	int eccflag, actual_eccbytes;
1343 	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1344 	u_char *ecc_vec = calc_ecc;
1345 	u_char *spare_ecc = read_ecc;
1346 	u_char *erased_ecc_vec;
1347 	u_char *buf;
1348 	int bitflip_count;
1349 	bool is_error_reported = false;
1350 	u32 bit_pos, byte_pos, error_max, pos;
1351 	int err;
1352 
1353 	switch (info->ecc_opt) {
1354 	case OMAP_ECC_BCH4_CODE_HW:
1355 		/* omit  7th ECC byte reserved for ROM code compatibility */
1356 		actual_eccbytes = ecc->bytes - 1;
1357 		erased_ecc_vec = bch4_vector;
1358 		break;
1359 	case OMAP_ECC_BCH8_CODE_HW:
1360 		/* omit 14th ECC byte reserved for ROM code compatibility */
1361 		actual_eccbytes = ecc->bytes - 1;
1362 		erased_ecc_vec = bch8_vector;
1363 		break;
1364 	case OMAP_ECC_BCH16_CODE_HW:
1365 		actual_eccbytes = ecc->bytes;
1366 		erased_ecc_vec = bch16_vector;
1367 		break;
1368 	default:
1369 		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1370 		return -EINVAL;
1371 	}
1372 
1373 	/* Initialize elm error vector to zero */
1374 	memset(err_vec, 0, sizeof(err_vec));
1375 
1376 	for (i = 0; i < eccsteps ; i++) {
1377 		eccflag = 0;	/* initialize eccflag */
1378 
1379 		/*
1380 		 * Check any error reported,
1381 		 * In case of error, non zero ecc reported.
1382 		 */
1383 		for (j = 0; j < actual_eccbytes; j++) {
1384 			if (calc_ecc[j] != 0) {
1385 				eccflag = 1; /* non zero ecc, error present */
1386 				break;
1387 			}
1388 		}
1389 
1390 		if (eccflag == 1) {
1391 			if (memcmp(calc_ecc, erased_ecc_vec,
1392 						actual_eccbytes) == 0) {
1393 				/*
1394 				 * calc_ecc[] matches pattern for ECC(all 0xff)
1395 				 * so this is definitely an erased-page
1396 				 */
1397 			} else {
1398 				buf = &data[info->nand.ecc.size * i];
1399 				/*
1400 				 * count number of 0-bits in read_buf.
1401 				 * This check can be removed once a similar
1402 				 * check is introduced in generic NAND driver
1403 				 */
1404 				bitflip_count = erased_sector_bitflips(
1405 						buf, read_ecc, info);
1406 				if (bitflip_count) {
1407 					/*
1408 					 * number of 0-bits within ECC limits
1409 					 * So this may be an erased-page
1410 					 */
1411 					stat += bitflip_count;
1412 				} else {
1413 					/*
1414 					 * Too many 0-bits. It may be a
1415 					 * - programmed-page, OR
1416 					 * - erased-page with many bit-flips
1417 					 * So this page requires check by ELM
1418 					 */
1419 					err_vec[i].error_reported = true;
1420 					is_error_reported = true;
1421 				}
1422 			}
1423 		}
1424 
1425 		/* Update the ecc vector */
1426 		calc_ecc += ecc->bytes;
1427 		read_ecc += ecc->bytes;
1428 	}
1429 
1430 	/* Check if any error reported */
1431 	if (!is_error_reported)
1432 		return stat;
1433 
1434 	/* Decode BCH error using ELM module */
1435 	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1436 
1437 	err = 0;
1438 	for (i = 0; i < eccsteps; i++) {
1439 		if (err_vec[i].error_uncorrectable) {
1440 			dev_err(&info->pdev->dev,
1441 				"uncorrectable bit-flips found\n");
1442 			err = -EBADMSG;
1443 		} else if (err_vec[i].error_reported) {
1444 			for (j = 0; j < err_vec[i].error_count; j++) {
1445 				switch (info->ecc_opt) {
1446 				case OMAP_ECC_BCH4_CODE_HW:
1447 					/* Add 4 bits to take care of padding */
1448 					pos = err_vec[i].error_loc[j] +
1449 						BCH4_BIT_PAD;
1450 					break;
1451 				case OMAP_ECC_BCH8_CODE_HW:
1452 				case OMAP_ECC_BCH16_CODE_HW:
1453 					pos = err_vec[i].error_loc[j];
1454 					break;
1455 				default:
1456 					return -EINVAL;
1457 				}
1458 				error_max = (ecc->size + actual_eccbytes) * 8;
1459 				/* Calculate bit position of error */
1460 				bit_pos = pos % 8;
1461 
1462 				/* Calculate byte position of error */
1463 				byte_pos = (error_max - pos - 1) / 8;
1464 
1465 				if (pos < error_max) {
1466 					if (byte_pos < 512) {
1467 						pr_debug("bitflip@dat[%d]=%x\n",
1468 						     byte_pos, data[byte_pos]);
1469 						data[byte_pos] ^= 1 << bit_pos;
1470 					} else {
1471 						pr_debug("bitflip@oob[%d]=%x\n",
1472 							(byte_pos - 512),
1473 						     spare_ecc[byte_pos - 512]);
1474 						spare_ecc[byte_pos - 512] ^=
1475 							1 << bit_pos;
1476 					}
1477 				} else {
1478 					dev_err(&info->pdev->dev,
1479 						"invalid bit-flip @ %d:%d\n",
1480 						byte_pos, bit_pos);
1481 					err = -EBADMSG;
1482 				}
1483 			}
1484 		}
1485 
1486 		/* Update number of correctable errors */
1487 		stat += err_vec[i].error_count;
1488 
1489 		/* Update page data with sector size */
1490 		data += ecc->size;
1491 		spare_ecc += ecc->bytes;
1492 	}
1493 
1494 	return (err) ? err : stat;
1495 }
1496 
1497 /**
1498  * omap_write_page_bch - BCH ecc based write page function for entire page
1499  * @mtd:		mtd info structure
1500  * @chip:		nand chip info structure
1501  * @buf:		data buffer
1502  * @oob_required:	must write chip->oob_poi to OOB
1503  * @page:		page
1504  *
1505  * Custom write page method evolved to support multi sector writing in one shot
1506  */
omap_write_page_bch(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1507 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1508 			       const uint8_t *buf, int oob_required, int page)
1509 {
1510 	int i;
1511 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1512 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1513 
1514 	/* Enable GPMC ecc engine */
1515 	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1516 
1517 	/* Write data */
1518 	chip->write_buf(mtd, buf, mtd->writesize);
1519 
1520 	/* Update ecc vector from GPMC result registers */
1521 	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1522 
1523 	for (i = 0; i < chip->ecc.total; i++)
1524 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1525 
1526 	/* Write ecc vector to OOB area */
1527 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1528 	return 0;
1529 }
1530 
1531 /**
1532  * omap_read_page_bch - BCH ecc based page read function for entire page
1533  * @mtd:		mtd info structure
1534  * @chip:		nand chip info structure
1535  * @buf:		buffer to store read data
1536  * @oob_required:	caller requires OOB data read to chip->oob_poi
1537  * @page:		page number to read
1538  *
1539  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1540  * used for error correction.
1541  * Custom method evolved to support ELM error correction & multi sector
1542  * reading. On reading page data area is read along with OOB data with
1543  * ecc engine enabled. ecc vector updated after read of OOB data.
1544  * For non error pages ecc vector reported as zero.
1545  */
omap_read_page_bch(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1546 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1547 				uint8_t *buf, int oob_required, int page)
1548 {
1549 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1550 	uint8_t *ecc_code = chip->buffers->ecccode;
1551 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1552 	uint8_t *oob = &chip->oob_poi[eccpos[0]];
1553 	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1554 	int stat;
1555 	unsigned int max_bitflips = 0;
1556 
1557 	/* Enable GPMC ecc engine */
1558 	chip->ecc.hwctl(mtd, NAND_ECC_READ);
1559 
1560 	/* Read data */
1561 	chip->read_buf(mtd, buf, mtd->writesize);
1562 
1563 	/* Read oob bytes */
1564 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1565 	chip->read_buf(mtd, oob, chip->ecc.total);
1566 
1567 	/* Calculate ecc bytes */
1568 	chip->ecc.calculate(mtd, buf, ecc_calc);
1569 
1570 	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1571 
1572 	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1573 
1574 	if (stat < 0) {
1575 		mtd->ecc_stats.failed++;
1576 	} else {
1577 		mtd->ecc_stats.corrected += stat;
1578 		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1579 	}
1580 
1581 	return max_bitflips;
1582 }
1583 
1584 /**
1585  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1586  * @omap_nand_info: NAND device structure containing platform data
1587  */
is_elm_present(struct omap_nand_info * info,struct device_node * elm_node)1588 static bool is_elm_present(struct omap_nand_info *info,
1589 			   struct device_node *elm_node)
1590 {
1591 	struct platform_device *pdev;
1592 
1593 	/* check whether elm-id is passed via DT */
1594 	if (!elm_node) {
1595 		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1596 		return false;
1597 	}
1598 	pdev = of_find_device_by_node(elm_node);
1599 	/* check whether ELM device is registered */
1600 	if (!pdev) {
1601 		dev_err(&info->pdev->dev, "ELM device not found\n");
1602 		return false;
1603 	}
1604 	/* ELM module available, now configure it */
1605 	info->elm_dev = &pdev->dev;
1606 	return true;
1607 }
1608 
omap2_nand_ecc_check(struct omap_nand_info * info,struct omap_nand_platform_data * pdata)1609 static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1610 				 struct omap_nand_platform_data	*pdata)
1611 {
1612 	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1613 
1614 	switch (info->ecc_opt) {
1615 	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1616 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1617 		ecc_needs_omap_bch = false;
1618 		ecc_needs_bch = true;
1619 		ecc_needs_elm = false;
1620 		break;
1621 	case OMAP_ECC_BCH4_CODE_HW:
1622 	case OMAP_ECC_BCH8_CODE_HW:
1623 	case OMAP_ECC_BCH16_CODE_HW:
1624 		ecc_needs_omap_bch = true;
1625 		ecc_needs_bch = false;
1626 		ecc_needs_elm = true;
1627 		break;
1628 	default:
1629 		ecc_needs_omap_bch = false;
1630 		ecc_needs_bch = false;
1631 		ecc_needs_elm = false;
1632 		break;
1633 	}
1634 
1635 	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1636 		dev_err(&info->pdev->dev,
1637 			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1638 		return false;
1639 	}
1640 	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1641 		dev_err(&info->pdev->dev,
1642 			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1643 		return false;
1644 	}
1645 	if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1646 		dev_err(&info->pdev->dev, "ELM not available\n");
1647 		return false;
1648 	}
1649 
1650 	return true;
1651 }
1652 
omap_nand_probe(struct platform_device * pdev)1653 static int omap_nand_probe(struct platform_device *pdev)
1654 {
1655 	struct omap_nand_info		*info;
1656 	struct omap_nand_platform_data	*pdata;
1657 	struct mtd_info			*mtd;
1658 	struct nand_chip		*nand_chip;
1659 	struct nand_ecclayout		*ecclayout;
1660 	int				err;
1661 	int				i;
1662 	dma_cap_mask_t			mask;
1663 	unsigned			sig;
1664 	unsigned			oob_index;
1665 	struct resource			*res;
1666 	struct mtd_part_parser_data	ppdata = {};
1667 
1668 	pdata = dev_get_platdata(&pdev->dev);
1669 	if (pdata == NULL) {
1670 		dev_err(&pdev->dev, "platform data missing\n");
1671 		return -ENODEV;
1672 	}
1673 
1674 	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1675 				GFP_KERNEL);
1676 	if (!info)
1677 		return -ENOMEM;
1678 
1679 	platform_set_drvdata(pdev, info);
1680 
1681 	info->pdev		= pdev;
1682 	info->gpmc_cs		= pdata->cs;
1683 	info->reg		= pdata->reg;
1684 	info->of_node		= pdata->of_node;
1685 	info->ecc_opt		= pdata->ecc_opt;
1686 	mtd			= &info->mtd;
1687 	mtd->priv		= &info->nand;
1688 	mtd->dev.parent		= &pdev->dev;
1689 	nand_chip		= &info->nand;
1690 	nand_chip->ecc.priv	= NULL;
1691 
1692 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1693 	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1694 	if (IS_ERR(nand_chip->IO_ADDR_R))
1695 		return PTR_ERR(nand_chip->IO_ADDR_R);
1696 
1697 	info->phys_base = res->start;
1698 
1699 	nand_chip->controller = &omap_gpmc_controller;
1700 
1701 	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1702 	nand_chip->cmd_ctrl  = omap_hwcontrol;
1703 
1704 	/*
1705 	 * If RDY/BSY line is connected to OMAP then use the omap ready
1706 	 * function and the generic nand_wait function which reads the status
1707 	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1708 	 * chip delay which is slightly more than tR (AC Timing) of the NAND
1709 	 * device and read status register until you get a failure or success
1710 	 */
1711 	if (pdata->dev_ready) {
1712 		nand_chip->dev_ready = omap_dev_ready;
1713 		nand_chip->chip_delay = 0;
1714 	} else {
1715 		nand_chip->waitfunc = omap_wait;
1716 		nand_chip->chip_delay = 50;
1717 	}
1718 
1719 	if (pdata->flash_bbt)
1720 		nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1721 	else
1722 		nand_chip->options |= NAND_SKIP_BBTSCAN;
1723 
1724 	/* scan NAND device connected to chip controller */
1725 	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1726 	if (nand_scan_ident(mtd, 1, NULL)) {
1727 		dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1728 		err = -ENXIO;
1729 		goto return_error;
1730 	}
1731 
1732 	/* re-populate low-level callbacks based on xfer modes */
1733 	switch (pdata->xfer_type) {
1734 	case NAND_OMAP_PREFETCH_POLLED:
1735 		nand_chip->read_buf   = omap_read_buf_pref;
1736 		nand_chip->write_buf  = omap_write_buf_pref;
1737 		break;
1738 
1739 	case NAND_OMAP_POLLED:
1740 		/* Use nand_base defaults for {read,write}_buf */
1741 		break;
1742 
1743 	case NAND_OMAP_PREFETCH_DMA:
1744 		dma_cap_zero(mask);
1745 		dma_cap_set(DMA_SLAVE, mask);
1746 		sig = OMAP24XX_DMA_GPMC;
1747 		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1748 		if (!info->dma) {
1749 			dev_err(&pdev->dev, "DMA engine request failed\n");
1750 			err = -ENXIO;
1751 			goto return_error;
1752 		} else {
1753 			struct dma_slave_config cfg;
1754 
1755 			memset(&cfg, 0, sizeof(cfg));
1756 			cfg.src_addr = info->phys_base;
1757 			cfg.dst_addr = info->phys_base;
1758 			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1759 			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1760 			cfg.src_maxburst = 16;
1761 			cfg.dst_maxburst = 16;
1762 			err = dmaengine_slave_config(info->dma, &cfg);
1763 			if (err) {
1764 				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1765 					err);
1766 				goto return_error;
1767 			}
1768 			nand_chip->read_buf   = omap_read_buf_dma_pref;
1769 			nand_chip->write_buf  = omap_write_buf_dma_pref;
1770 		}
1771 		break;
1772 
1773 	case NAND_OMAP_PREFETCH_IRQ:
1774 		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1775 		if (info->gpmc_irq_fifo <= 0) {
1776 			dev_err(&pdev->dev, "error getting fifo irq\n");
1777 			err = -ENODEV;
1778 			goto return_error;
1779 		}
1780 		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1781 					omap_nand_irq, IRQF_SHARED,
1782 					"gpmc-nand-fifo", info);
1783 		if (err) {
1784 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1785 						info->gpmc_irq_fifo, err);
1786 			info->gpmc_irq_fifo = 0;
1787 			goto return_error;
1788 		}
1789 
1790 		info->gpmc_irq_count = platform_get_irq(pdev, 1);
1791 		if (info->gpmc_irq_count <= 0) {
1792 			dev_err(&pdev->dev, "error getting count irq\n");
1793 			err = -ENODEV;
1794 			goto return_error;
1795 		}
1796 		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1797 					omap_nand_irq, IRQF_SHARED,
1798 					"gpmc-nand-count", info);
1799 		if (err) {
1800 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1801 						info->gpmc_irq_count, err);
1802 			info->gpmc_irq_count = 0;
1803 			goto return_error;
1804 		}
1805 
1806 		nand_chip->read_buf  = omap_read_buf_irq_pref;
1807 		nand_chip->write_buf = omap_write_buf_irq_pref;
1808 
1809 		break;
1810 
1811 	default:
1812 		dev_err(&pdev->dev,
1813 			"xfer_type(%d) not supported!\n", pdata->xfer_type);
1814 		err = -EINVAL;
1815 		goto return_error;
1816 	}
1817 
1818 	if (!omap2_nand_ecc_check(info, pdata)) {
1819 		err = -EINVAL;
1820 		goto return_error;
1821 	}
1822 
1823 	/* populate MTD interface based on ECC scheme */
1824 	ecclayout		= &info->oobinfo;
1825 	switch (info->ecc_opt) {
1826 	case OMAP_ECC_HAM1_CODE_SW:
1827 		nand_chip->ecc.mode = NAND_ECC_SOFT;
1828 		break;
1829 
1830 	case OMAP_ECC_HAM1_CODE_HW:
1831 		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1832 		nand_chip->ecc.mode             = NAND_ECC_HW;
1833 		nand_chip->ecc.bytes            = 3;
1834 		nand_chip->ecc.size             = 512;
1835 		nand_chip->ecc.strength         = 1;
1836 		nand_chip->ecc.calculate        = omap_calculate_ecc;
1837 		nand_chip->ecc.hwctl            = omap_enable_hwecc;
1838 		nand_chip->ecc.correct          = omap_correct_data;
1839 		/* define ECC layout */
1840 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1841 							(mtd->writesize /
1842 							nand_chip->ecc.size);
1843 		if (nand_chip->options & NAND_BUSWIDTH_16)
1844 			oob_index		= BADBLOCK_MARKER_LENGTH;
1845 		else
1846 			oob_index		= 1;
1847 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1848 			ecclayout->eccpos[i]	= oob_index;
1849 		/* no reserved-marker in ecclayout for this ecc-scheme */
1850 		ecclayout->oobfree->offset	=
1851 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1852 		break;
1853 
1854 	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1855 		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1856 		nand_chip->ecc.mode		= NAND_ECC_HW;
1857 		nand_chip->ecc.size		= 512;
1858 		nand_chip->ecc.bytes		= 7;
1859 		nand_chip->ecc.strength		= 4;
1860 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1861 		nand_chip->ecc.correct		= nand_bch_correct_data;
1862 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1863 		/* define ECC layout */
1864 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1865 							(mtd->writesize /
1866 							nand_chip->ecc.size);
1867 		oob_index			= BADBLOCK_MARKER_LENGTH;
1868 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1869 			ecclayout->eccpos[i] = oob_index;
1870 			if (((i + 1) % nand_chip->ecc.bytes) == 0)
1871 				oob_index++;
1872 		}
1873 		/* include reserved-marker in ecclayout->oobfree calculation */
1874 		ecclayout->oobfree->offset	= 1 +
1875 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1876 		/* software bch library is used for locating errors */
1877 		nand_chip->ecc.priv		= nand_bch_init(mtd,
1878 							nand_chip->ecc.size,
1879 							nand_chip->ecc.bytes,
1880 							&ecclayout);
1881 		if (!nand_chip->ecc.priv) {
1882 			dev_err(&info->pdev->dev, "unable to use BCH library\n");
1883 			err = -EINVAL;
1884 			goto return_error;
1885 		}
1886 		break;
1887 
1888 	case OMAP_ECC_BCH4_CODE_HW:
1889 		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1890 		nand_chip->ecc.mode		= NAND_ECC_HW;
1891 		nand_chip->ecc.size		= 512;
1892 		/* 14th bit is kept reserved for ROM-code compatibility */
1893 		nand_chip->ecc.bytes		= 7 + 1;
1894 		nand_chip->ecc.strength		= 4;
1895 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1896 		nand_chip->ecc.correct		= omap_elm_correct_data;
1897 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1898 		nand_chip->ecc.read_page	= omap_read_page_bch;
1899 		nand_chip->ecc.write_page	= omap_write_page_bch;
1900 		/* define ECC layout */
1901 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1902 							(mtd->writesize /
1903 							nand_chip->ecc.size);
1904 		oob_index			= BADBLOCK_MARKER_LENGTH;
1905 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1906 			ecclayout->eccpos[i]	= oob_index;
1907 		/* reserved marker already included in ecclayout->eccbytes */
1908 		ecclayout->oobfree->offset	=
1909 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1910 
1911 		err = elm_config(info->elm_dev, BCH4_ECC,
1912 				 info->mtd.writesize / nand_chip->ecc.size,
1913 				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1914 		if (err < 0)
1915 			goto return_error;
1916 		break;
1917 
1918 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1919 		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1920 		nand_chip->ecc.mode		= NAND_ECC_HW;
1921 		nand_chip->ecc.size		= 512;
1922 		nand_chip->ecc.bytes		= 13;
1923 		nand_chip->ecc.strength		= 8;
1924 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1925 		nand_chip->ecc.correct		= nand_bch_correct_data;
1926 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1927 		/* define ECC layout */
1928 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1929 							(mtd->writesize /
1930 							nand_chip->ecc.size);
1931 		oob_index			= BADBLOCK_MARKER_LENGTH;
1932 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1933 			ecclayout->eccpos[i] = oob_index;
1934 			if (((i + 1) % nand_chip->ecc.bytes) == 0)
1935 				oob_index++;
1936 		}
1937 		/* include reserved-marker in ecclayout->oobfree calculation */
1938 		ecclayout->oobfree->offset	= 1 +
1939 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1940 		/* software bch library is used for locating errors */
1941 		nand_chip->ecc.priv		= nand_bch_init(mtd,
1942 							nand_chip->ecc.size,
1943 							nand_chip->ecc.bytes,
1944 							&ecclayout);
1945 		if (!nand_chip->ecc.priv) {
1946 			dev_err(&info->pdev->dev, "unable to use BCH library\n");
1947 			err = -EINVAL;
1948 			goto return_error;
1949 		}
1950 		break;
1951 
1952 	case OMAP_ECC_BCH8_CODE_HW:
1953 		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1954 		nand_chip->ecc.mode		= NAND_ECC_HW;
1955 		nand_chip->ecc.size		= 512;
1956 		/* 14th bit is kept reserved for ROM-code compatibility */
1957 		nand_chip->ecc.bytes		= 13 + 1;
1958 		nand_chip->ecc.strength		= 8;
1959 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1960 		nand_chip->ecc.correct		= omap_elm_correct_data;
1961 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1962 		nand_chip->ecc.read_page	= omap_read_page_bch;
1963 		nand_chip->ecc.write_page	= omap_write_page_bch;
1964 
1965 		err = elm_config(info->elm_dev, BCH8_ECC,
1966 				 info->mtd.writesize / nand_chip->ecc.size,
1967 				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1968 		if (err < 0)
1969 			goto return_error;
1970 
1971 		/* define ECC layout */
1972 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1973 							(mtd->writesize /
1974 							nand_chip->ecc.size);
1975 		oob_index			= BADBLOCK_MARKER_LENGTH;
1976 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1977 			ecclayout->eccpos[i]	= oob_index;
1978 		/* reserved marker already included in ecclayout->eccbytes */
1979 		ecclayout->oobfree->offset	=
1980 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1981 		break;
1982 
1983 	case OMAP_ECC_BCH16_CODE_HW:
1984 		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1985 		nand_chip->ecc.mode		= NAND_ECC_HW;
1986 		nand_chip->ecc.size		= 512;
1987 		nand_chip->ecc.bytes		= 26;
1988 		nand_chip->ecc.strength		= 16;
1989 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1990 		nand_chip->ecc.correct		= omap_elm_correct_data;
1991 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1992 		nand_chip->ecc.read_page	= omap_read_page_bch;
1993 		nand_chip->ecc.write_page	= omap_write_page_bch;
1994 
1995 		err = elm_config(info->elm_dev, BCH16_ECC,
1996 				 info->mtd.writesize / nand_chip->ecc.size,
1997 				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1998 		if (err < 0)
1999 			goto return_error;
2000 
2001 		/* define ECC layout */
2002 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
2003 							(mtd->writesize /
2004 							nand_chip->ecc.size);
2005 		oob_index			= BADBLOCK_MARKER_LENGTH;
2006 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2007 			ecclayout->eccpos[i]	= oob_index;
2008 		/* reserved marker already included in ecclayout->eccbytes */
2009 		ecclayout->oobfree->offset	=
2010 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2011 		break;
2012 	default:
2013 		dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2014 		err = -EINVAL;
2015 		goto return_error;
2016 	}
2017 
2018 	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW)
2019 		goto scan_tail;
2020 
2021 	/* all OOB bytes from oobfree->offset till end off OOB are free */
2022 	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2023 	/* check if NAND device's OOB is enough to store ECC signatures */
2024 	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2025 		dev_err(&info->pdev->dev,
2026 			"not enough OOB bytes required = %d, available=%d\n",
2027 			ecclayout->eccbytes, mtd->oobsize);
2028 		err = -EINVAL;
2029 		goto return_error;
2030 	}
2031 	nand_chip->ecc.layout = ecclayout;
2032 
2033 scan_tail:
2034 	/* second phase scan */
2035 	if (nand_scan_tail(mtd)) {
2036 		err = -ENXIO;
2037 		goto return_error;
2038 	}
2039 
2040 	ppdata.of_node = pdata->of_node;
2041 	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2042 				  pdata->nr_parts);
2043 
2044 	platform_set_drvdata(pdev, mtd);
2045 
2046 	return 0;
2047 
2048 return_error:
2049 	if (info->dma)
2050 		dma_release_channel(info->dma);
2051 	if (nand_chip->ecc.priv) {
2052 		nand_bch_free(nand_chip->ecc.priv);
2053 		nand_chip->ecc.priv = NULL;
2054 	}
2055 	return err;
2056 }
2057 
omap_nand_remove(struct platform_device * pdev)2058 static int omap_nand_remove(struct platform_device *pdev)
2059 {
2060 	struct mtd_info *mtd = platform_get_drvdata(pdev);
2061 	struct nand_chip *nand_chip = mtd->priv;
2062 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2063 							mtd);
2064 	if (nand_chip->ecc.priv) {
2065 		nand_bch_free(nand_chip->ecc.priv);
2066 		nand_chip->ecc.priv = NULL;
2067 	}
2068 	if (info->dma)
2069 		dma_release_channel(info->dma);
2070 	nand_release(mtd);
2071 	return 0;
2072 }
2073 
2074 static struct platform_driver omap_nand_driver = {
2075 	.probe		= omap_nand_probe,
2076 	.remove		= omap_nand_remove,
2077 	.driver		= {
2078 		.name	= DRIVER_NAME,
2079 	},
2080 };
2081 
2082 module_platform_driver(omap_nand_driver);
2083 
2084 MODULE_ALIAS("platform:" DRIVER_NAME);
2085 MODULE_LICENSE("GPL");
2086 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2087