1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 #include <linux/of_mtd.h>
38 
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
41 
42 /*
43  * This is a device driver for the NAND flash controller found on the
44  * various DaVinci family chips.  It handles up to four SoC chipselects,
45  * and some flavors of secondary chipselect (e.g. based on A12) as used
46  * with multichip packages.
47  *
48  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49  * available on chips like the DM355 and OMAP-L137 and needed with the
50  * more error-prone MLC NAND chips.
51  *
52  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53  * outputs in a "wire-AND" configuration, with no per-chip signals.
54  */
55 struct davinci_nand_info {
56 	struct mtd_info		mtd;
57 	struct nand_chip	chip;
58 	struct nand_ecclayout	ecclayout;
59 
60 	struct device		*dev;
61 	struct clk		*clk;
62 
63 	bool			is_readmode;
64 
65 	void __iomem		*base;
66 	void __iomem		*vaddr;
67 
68 	uint32_t		ioaddr;
69 	uint32_t		current_cs;
70 
71 	uint32_t		mask_chipsel;
72 	uint32_t		mask_ale;
73 	uint32_t		mask_cle;
74 
75 	uint32_t		core_chipsel;
76 
77 	struct davinci_aemif_timing	*timing;
78 };
79 
80 static DEFINE_SPINLOCK(davinci_nand_lock);
81 static bool ecc4_busy;
82 
83 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84 
85 
davinci_nand_readl(struct davinci_nand_info * info,int offset)86 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 		int offset)
88 {
89 	return __raw_readl(info->base + offset);
90 }
91 
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)92 static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 		int offset, unsigned long value)
94 {
95 	__raw_writel(value, info->base + offset);
96 }
97 
98 /*----------------------------------------------------------------------*/
99 
100 /*
101  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
102  */
103 
nand_davinci_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)104 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 				   unsigned int ctrl)
106 {
107 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
108 	uint32_t			addr = info->current_cs;
109 	struct nand_chip		*nand = mtd->priv;
110 
111 	/* Did the control lines change? */
112 	if (ctrl & NAND_CTRL_CHANGE) {
113 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 			addr |= info->mask_cle;
115 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 			addr |= info->mask_ale;
117 
118 		nand->IO_ADDR_W = (void __iomem __force *)addr;
119 	}
120 
121 	if (cmd != NAND_CMD_NONE)
122 		iowrite8(cmd, nand->IO_ADDR_W);
123 }
124 
nand_davinci_select_chip(struct mtd_info * mtd,int chip)125 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 {
127 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
128 	uint32_t			addr = info->ioaddr;
129 
130 	/* maybe kick in a second chipselect */
131 	if (chip > 0)
132 		addr |= info->mask_chipsel;
133 	info->current_cs = addr;
134 
135 	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137 }
138 
139 /*----------------------------------------------------------------------*/
140 
141 /*
142  * 1-bit hardware ECC ... context maintained for each core chipselect
143  */
144 
nand_davinci_readecc_1bit(struct mtd_info * mtd)145 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 {
147 	struct davinci_nand_info *info = to_davinci_nand(mtd);
148 
149 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 			+ 4 * info->core_chipsel);
151 }
152 
nand_davinci_hwctl_1bit(struct mtd_info * mtd,int mode)153 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 {
155 	struct davinci_nand_info *info;
156 	uint32_t nandcfr;
157 	unsigned long flags;
158 
159 	info = to_davinci_nand(mtd);
160 
161 	/* Reset ECC hardware */
162 	nand_davinci_readecc_1bit(mtd);
163 
164 	spin_lock_irqsave(&davinci_nand_lock, flags);
165 
166 	/* Restart ECC hardware */
167 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 	nandcfr |= BIT(8 + info->core_chipsel);
169 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170 
171 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
172 }
173 
174 /*
175  * Read hardware ECC value and pack into three bytes
176  */
nand_davinci_calculate_1bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)177 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 				      const u_char *dat, u_char *ecc_code)
179 {
180 	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182 
183 	/* invert so that erased block ecc is correct */
184 	ecc24 = ~ecc24;
185 	ecc_code[0] = (u_char)(ecc24);
186 	ecc_code[1] = (u_char)(ecc24 >> 8);
187 	ecc_code[2] = (u_char)(ecc24 >> 16);
188 
189 	return 0;
190 }
191 
nand_davinci_correct_1bit(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)192 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 				     u_char *read_ecc, u_char *calc_ecc)
194 {
195 	struct nand_chip *chip = mtd->priv;
196 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 					  (read_ecc[2] << 16);
198 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 					  (calc_ecc[2] << 16);
200 	uint32_t diff = eccCalc ^ eccNand;
201 
202 	if (diff) {
203 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 			/* Correctable error */
205 			if ((diff >> (12 + 3)) < chip->ecc.size) {
206 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 				return 1;
208 			} else {
209 				return -1;
210 			}
211 		} else if (!(diff & (diff - 1))) {
212 			/* Single bit ECC error in the ECC itself,
213 			 * nothing to fix */
214 			return 1;
215 		} else {
216 			/* Uncorrectable error */
217 			return -1;
218 		}
219 
220 	}
221 	return 0;
222 }
223 
224 /*----------------------------------------------------------------------*/
225 
226 /*
227  * 4-bit hardware ECC ... context maintained over entire AEMIF
228  *
229  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230  * since that forces use of a problematic "infix OOB" layout.
231  * Among other things, it trashes manufacturer bad block markers.
232  * Also, and specific to this hardware, it ECC-protects the "prepad"
233  * in the OOB ... while having ECC protection for parts of OOB would
234  * seem useful, the current MTD stack sometimes wants to update the
235  * OOB without recomputing ECC.
236  */
237 
nand_davinci_hwctl_4bit(struct mtd_info * mtd,int mode)238 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 {
240 	struct davinci_nand_info *info = to_davinci_nand(mtd);
241 	unsigned long flags;
242 	u32 val;
243 
244 	spin_lock_irqsave(&davinci_nand_lock, flags);
245 
246 	/* Start 4-bit ECC calculation for read/write */
247 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
248 	val &= ~(0x03 << 4);
249 	val |= (info->core_chipsel << 4) | BIT(12);
250 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
251 
252 	info->is_readmode = (mode == NAND_ECC_READ);
253 
254 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
255 }
256 
257 /* Read raw ECC code after writing to NAND. */
258 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])259 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260 {
261 	const u32 mask = 0x03ff03ff;
262 
263 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
264 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
265 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
266 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
267 }
268 
269 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)270 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
271 		const u_char *dat, u_char *ecc_code)
272 {
273 	struct davinci_nand_info *info = to_davinci_nand(mtd);
274 	u32 raw_ecc[4], *p;
275 	unsigned i;
276 
277 	/* After a read, terminate ECC calculation by a dummy read
278 	 * of some 4-bit ECC register.  ECC covers everything that
279 	 * was read; correct() just uses the hardware state, so
280 	 * ecc_code is not needed.
281 	 */
282 	if (info->is_readmode) {
283 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
284 		return 0;
285 	}
286 
287 	/* Pack eight raw 10-bit ecc values into ten bytes, making
288 	 * two passes which each convert four values (in upper and
289 	 * lower halves of two 32-bit words) into five bytes.  The
290 	 * ROM boot loader uses this same packing scheme.
291 	 */
292 	nand_davinci_readecc_4bit(info, raw_ecc);
293 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
294 		*ecc_code++ =   p[0]        & 0xff;
295 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
296 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
297 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
298 		*ecc_code++ =  (p[1] >> 18) & 0xff;
299 	}
300 
301 	return 0;
302 }
303 
304 /* Correct up to 4 bits in data we just read, using state left in the
305  * hardware plus the ecc_code computed when it was first written.
306  */
nand_davinci_correct_4bit(struct mtd_info * mtd,u_char * data,u_char * ecc_code,u_char * null)307 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
308 		u_char *data, u_char *ecc_code, u_char *null)
309 {
310 	int i;
311 	struct davinci_nand_info *info = to_davinci_nand(mtd);
312 	unsigned short ecc10[8];
313 	unsigned short *ecc16;
314 	u32 syndrome[4];
315 	u32 ecc_state;
316 	unsigned num_errors, corrected;
317 	unsigned long timeo;
318 
319 	/* All bytes 0xff?  It's an erased page; ignore its ECC. */
320 	for (i = 0; i < 10; i++) {
321 		if (ecc_code[i] != 0xff)
322 			goto compare;
323 	}
324 	return 0;
325 
326 compare:
327 	/* Unpack ten bytes into eight 10 bit values.  We know we're
328 	 * little-endian, and use type punning for less shifting/masking.
329 	 */
330 	if (WARN_ON(0x01 & (unsigned) ecc_code))
331 		return -EINVAL;
332 	ecc16 = (unsigned short *)ecc_code;
333 
334 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
335 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
336 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
337 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
338 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
339 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
340 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
341 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
342 
343 	/* Tell ECC controller about the expected ECC codes. */
344 	for (i = 7; i >= 0; i--)
345 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
346 
347 	/* Allow time for syndrome calculation ... then read it.
348 	 * A syndrome of all zeroes 0 means no detected errors.
349 	 */
350 	davinci_nand_readl(info, NANDFSR_OFFSET);
351 	nand_davinci_readecc_4bit(info, syndrome);
352 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
353 		return 0;
354 
355 	/*
356 	 * Clear any previous address calculation by doing a dummy read of an
357 	 * error address register.
358 	 */
359 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
360 
361 	/* Start address calculation, and wait for it to complete.
362 	 * We _could_ start reading more data while this is working,
363 	 * to speed up the overall page read.
364 	 */
365 	davinci_nand_writel(info, NANDFCR_OFFSET,
366 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
367 
368 	/*
369 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
370 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
371 	 * begin trying to poll for the state, you may fall right out of your
372 	 * loop without any of the correction calculations having taken place.
373 	 * The recommendation from the hardware team is to initially delay as
374 	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
375 	 * correction state.
376 	 */
377 	timeo = jiffies + usecs_to_jiffies(100);
378 	do {
379 		ecc_state = (davinci_nand_readl(info,
380 				NANDFSR_OFFSET) >> 8) & 0x0f;
381 		cpu_relax();
382 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
383 
384 	for (;;) {
385 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
386 
387 		switch ((fsr >> 8) & 0x0f) {
388 		case 0:		/* no error, should not happen */
389 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
390 			return 0;
391 		case 1:		/* five or more errors detected */
392 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393 			return -EIO;
394 		case 2:		/* error addresses computed */
395 		case 3:
396 			num_errors = 1 + ((fsr >> 16) & 0x03);
397 			goto correct;
398 		default:	/* still working on it */
399 			cpu_relax();
400 			continue;
401 		}
402 	}
403 
404 correct:
405 	/* correct each error */
406 	for (i = 0, corrected = 0; i < num_errors; i++) {
407 		int error_address, error_value;
408 
409 		if (i > 1) {
410 			error_address = davinci_nand_readl(info,
411 						NAND_ERR_ADD2_OFFSET);
412 			error_value = davinci_nand_readl(info,
413 						NAND_ERR_ERRVAL2_OFFSET);
414 		} else {
415 			error_address = davinci_nand_readl(info,
416 						NAND_ERR_ADD1_OFFSET);
417 			error_value = davinci_nand_readl(info,
418 						NAND_ERR_ERRVAL1_OFFSET);
419 		}
420 
421 		if (i & 1) {
422 			error_address >>= 16;
423 			error_value >>= 16;
424 		}
425 		error_address &= 0x3ff;
426 		error_address = (512 + 7) - error_address;
427 
428 		if (error_address < 512) {
429 			data[error_address] ^= error_value;
430 			corrected++;
431 		}
432 	}
433 
434 	return corrected;
435 }
436 
437 /*----------------------------------------------------------------------*/
438 
439 /*
440  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
441  * how these chips are normally wired.  This translates to both 8 and 16
442  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
443  *
444  * For now we assume that configuration, or any other one which ignores
445  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
446  * and have that transparently morphed into multiple NAND operations.
447  */
nand_davinci_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)448 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
449 {
450 	struct nand_chip *chip = mtd->priv;
451 
452 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
453 		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
454 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
455 		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
456 	else
457 		ioread8_rep(chip->IO_ADDR_R, buf, len);
458 }
459 
nand_davinci_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)460 static void nand_davinci_write_buf(struct mtd_info *mtd,
461 		const uint8_t *buf, int len)
462 {
463 	struct nand_chip *chip = mtd->priv;
464 
465 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
466 		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
467 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
468 		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
469 	else
470 		iowrite8_rep(chip->IO_ADDR_R, buf, len);
471 }
472 
473 /*
474  * Check hardware register for wait status. Returns 1 if device is ready,
475  * 0 if it is still busy.
476  */
nand_davinci_dev_ready(struct mtd_info * mtd)477 static int nand_davinci_dev_ready(struct mtd_info *mtd)
478 {
479 	struct davinci_nand_info *info = to_davinci_nand(mtd);
480 
481 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
482 }
483 
484 /*----------------------------------------------------------------------*/
485 
486 /* An ECC layout for using 4-bit ECC with small-page flash, storing
487  * ten ECC bytes plus the manufacturer's bad block marker byte, and
488  * and not overlapping the default BBT markers.
489  */
490 static struct nand_ecclayout hwecc4_small = {
491 	.eccbytes = 10,
492 	.eccpos = { 0, 1, 2, 3, 4,
493 		/* offset 5 holds the badblock marker */
494 		6, 7,
495 		13, 14, 15, },
496 	.oobfree = {
497 		{.offset = 8, .length = 5, },
498 		{.offset = 16, },
499 	},
500 };
501 
502 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
503  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
504  * and not overlapping the default BBT markers.
505  */
506 static struct nand_ecclayout hwecc4_2048 = {
507 	.eccbytes = 40,
508 	.eccpos = {
509 		/* at the end of spare sector */
510 		24, 25, 26, 27, 28, 29,	30, 31, 32, 33,
511 		34, 35, 36, 37, 38, 39,	40, 41, 42, 43,
512 		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
513 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
514 		},
515 	.oobfree = {
516 		/* 2 bytes at offset 0 hold manufacturer badblock markers */
517 		{.offset = 2, .length = 22, },
518 		/* 5 bytes at offset 8 hold BBT markers */
519 		/* 8 bytes at offset 16 hold JFFS2 clean markers */
520 	},
521 };
522 
523 #if defined(CONFIG_OF)
524 static const struct of_device_id davinci_nand_of_match[] = {
525 	{.compatible = "ti,davinci-nand", },
526 	{.compatible = "ti,keystone-nand", },
527 	{},
528 };
529 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
530 
531 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)532 	*nand_davinci_get_pdata(struct platform_device *pdev)
533 {
534 	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
535 		struct davinci_nand_pdata *pdata;
536 		const char *mode;
537 		u32 prop;
538 
539 		pdata =  devm_kzalloc(&pdev->dev,
540 				sizeof(struct davinci_nand_pdata),
541 				GFP_KERNEL);
542 		pdev->dev.platform_data = pdata;
543 		if (!pdata)
544 			return ERR_PTR(-ENOMEM);
545 		if (!of_property_read_u32(pdev->dev.of_node,
546 			"ti,davinci-chipselect", &prop))
547 			pdev->id = prop;
548 		else
549 			return ERR_PTR(-EINVAL);
550 
551 		if (!of_property_read_u32(pdev->dev.of_node,
552 			"ti,davinci-mask-ale", &prop))
553 			pdata->mask_ale = prop;
554 		if (!of_property_read_u32(pdev->dev.of_node,
555 			"ti,davinci-mask-cle", &prop))
556 			pdata->mask_cle = prop;
557 		if (!of_property_read_u32(pdev->dev.of_node,
558 			"ti,davinci-mask-chipsel", &prop))
559 			pdata->mask_chipsel = prop;
560 		if (!of_property_read_string(pdev->dev.of_node,
561 			"nand-ecc-mode", &mode) ||
562 		    !of_property_read_string(pdev->dev.of_node,
563 			"ti,davinci-ecc-mode", &mode)) {
564 			if (!strncmp("none", mode, 4))
565 				pdata->ecc_mode = NAND_ECC_NONE;
566 			if (!strncmp("soft", mode, 4))
567 				pdata->ecc_mode = NAND_ECC_SOFT;
568 			if (!strncmp("hw", mode, 2))
569 				pdata->ecc_mode = NAND_ECC_HW;
570 		}
571 		if (!of_property_read_u32(pdev->dev.of_node,
572 			"ti,davinci-ecc-bits", &prop))
573 			pdata->ecc_bits = prop;
574 
575 		prop = of_get_nand_bus_width(pdev->dev.of_node);
576 		if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
577 			"ti,davinci-nand-buswidth", &prop))
578 			if (prop == 16)
579 				pdata->options |= NAND_BUSWIDTH_16;
580 		if (of_property_read_bool(pdev->dev.of_node,
581 			"nand-on-flash-bbt") ||
582 		    of_property_read_bool(pdev->dev.of_node,
583 			"ti,davinci-nand-use-bbt"))
584 			pdata->bbt_options = NAND_BBT_USE_FLASH;
585 
586 		if (of_device_is_compatible(pdev->dev.of_node,
587 					    "ti,keystone-nand")) {
588 			pdata->options |= NAND_NO_SUBPAGE_WRITE;
589 		}
590 	}
591 
592 	return dev_get_platdata(&pdev->dev);
593 }
594 #else
595 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)596 	*nand_davinci_get_pdata(struct platform_device *pdev)
597 {
598 	return dev_get_platdata(&pdev->dev);
599 }
600 #endif
601 
nand_davinci_probe(struct platform_device * pdev)602 static int nand_davinci_probe(struct platform_device *pdev)
603 {
604 	struct davinci_nand_pdata	*pdata;
605 	struct davinci_nand_info	*info;
606 	struct resource			*res1;
607 	struct resource			*res2;
608 	void __iomem			*vaddr;
609 	void __iomem			*base;
610 	int				ret;
611 	uint32_t			val;
612 	nand_ecc_modes_t		ecc_mode;
613 
614 	pdata = nand_davinci_get_pdata(pdev);
615 	if (IS_ERR(pdata))
616 		return PTR_ERR(pdata);
617 
618 	/* insist on board-specific configuration */
619 	if (!pdata)
620 		return -ENODEV;
621 
622 	/* which external chipselect will we be managing? */
623 	if (pdev->id < 0 || pdev->id > 3)
624 		return -ENODEV;
625 
626 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
627 	if (!info)
628 		return -ENOMEM;
629 
630 	platform_set_drvdata(pdev, info);
631 
632 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
633 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
634 	if (!res1 || !res2) {
635 		dev_err(&pdev->dev, "resource missing\n");
636 		return -EINVAL;
637 	}
638 
639 	vaddr = devm_ioremap_resource(&pdev->dev, res1);
640 	if (IS_ERR(vaddr))
641 		return PTR_ERR(vaddr);
642 
643 	/*
644 	 * This registers range is used to setup NAND settings. In case with
645 	 * TI AEMIF driver, the same memory address range is requested already
646 	 * by AEMIF, so we cannot request it twice, just ioremap.
647 	 * The AEMIF and NAND drivers not use the same registers in this range.
648 	 */
649 	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
650 	if (!base) {
651 		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
652 		return -EADDRNOTAVAIL;
653 	}
654 
655 	info->dev		= &pdev->dev;
656 	info->base		= base;
657 	info->vaddr		= vaddr;
658 
659 	info->mtd.priv		= &info->chip;
660 	info->mtd.name		= dev_name(&pdev->dev);
661 	info->mtd.owner		= THIS_MODULE;
662 
663 	info->mtd.dev.parent	= &pdev->dev;
664 
665 	info->chip.IO_ADDR_R	= vaddr;
666 	info->chip.IO_ADDR_W	= vaddr;
667 	info->chip.chip_delay	= 0;
668 	info->chip.select_chip	= nand_davinci_select_chip;
669 
670 	/* options such as NAND_BBT_USE_FLASH */
671 	info->chip.bbt_options	= pdata->bbt_options;
672 	/* options such as 16-bit widths */
673 	info->chip.options	= pdata->options;
674 	info->chip.bbt_td	= pdata->bbt_td;
675 	info->chip.bbt_md	= pdata->bbt_md;
676 	info->timing		= pdata->timing;
677 
678 	info->ioaddr		= (uint32_t __force) vaddr;
679 
680 	info->current_cs	= info->ioaddr;
681 	info->core_chipsel	= pdev->id;
682 	info->mask_chipsel	= pdata->mask_chipsel;
683 
684 	/* use nandboot-capable ALE/CLE masks by default */
685 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
686 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
687 
688 	/* Set address of hardware control function */
689 	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
690 	info->chip.dev_ready	= nand_davinci_dev_ready;
691 
692 	/* Speed up buffer I/O */
693 	info->chip.read_buf     = nand_davinci_read_buf;
694 	info->chip.write_buf    = nand_davinci_write_buf;
695 
696 	/* Use board-specific ECC config */
697 	ecc_mode		= pdata->ecc_mode;
698 
699 	ret = -EINVAL;
700 	switch (ecc_mode) {
701 	case NAND_ECC_NONE:
702 	case NAND_ECC_SOFT:
703 		pdata->ecc_bits = 0;
704 		break;
705 	case NAND_ECC_HW:
706 		if (pdata->ecc_bits == 4) {
707 			/* No sanity checks:  CPUs must support this,
708 			 * and the chips may not use NAND_BUSWIDTH_16.
709 			 */
710 
711 			/* No sharing 4-bit hardware between chipselects yet */
712 			spin_lock_irq(&davinci_nand_lock);
713 			if (ecc4_busy)
714 				ret = -EBUSY;
715 			else
716 				ecc4_busy = true;
717 			spin_unlock_irq(&davinci_nand_lock);
718 
719 			if (ret == -EBUSY)
720 				return ret;
721 
722 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
723 			info->chip.ecc.correct = nand_davinci_correct_4bit;
724 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
725 			info->chip.ecc.bytes = 10;
726 		} else {
727 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
728 			info->chip.ecc.correct = nand_davinci_correct_1bit;
729 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
730 			info->chip.ecc.bytes = 3;
731 		}
732 		info->chip.ecc.size = 512;
733 		info->chip.ecc.strength = pdata->ecc_bits;
734 		break;
735 	default:
736 		return -EINVAL;
737 	}
738 	info->chip.ecc.mode = ecc_mode;
739 
740 	info->clk = devm_clk_get(&pdev->dev, "aemif");
741 	if (IS_ERR(info->clk)) {
742 		ret = PTR_ERR(info->clk);
743 		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
744 		return ret;
745 	}
746 
747 	ret = clk_prepare_enable(info->clk);
748 	if (ret < 0) {
749 		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
750 			ret);
751 		goto err_clk_enable;
752 	}
753 
754 	spin_lock_irq(&davinci_nand_lock);
755 
756 	/* put CSxNAND into NAND mode */
757 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
758 	val |= BIT(info->core_chipsel);
759 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
760 
761 	spin_unlock_irq(&davinci_nand_lock);
762 
763 	/* Scan to find existence of the device(s) */
764 	ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
765 	if (ret < 0) {
766 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
767 		goto err;
768 	}
769 
770 	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
771 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
772 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
773 	 * usable:  10 bytes are needed, not 6.
774 	 */
775 	if (pdata->ecc_bits == 4) {
776 		int	chunks = info->mtd.writesize / 512;
777 
778 		if (!chunks || info->mtd.oobsize < 16) {
779 			dev_dbg(&pdev->dev, "too small\n");
780 			ret = -EINVAL;
781 			goto err;
782 		}
783 
784 		/* For small page chips, preserve the manufacturer's
785 		 * badblock marking data ... and make sure a flash BBT
786 		 * table marker fits in the free bytes.
787 		 */
788 		if (chunks == 1) {
789 			info->ecclayout = hwecc4_small;
790 			info->ecclayout.oobfree[1].length =
791 				info->mtd.oobsize - 16;
792 			goto syndrome_done;
793 		}
794 		if (chunks == 4) {
795 			info->ecclayout = hwecc4_2048;
796 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
797 			goto syndrome_done;
798 		}
799 
800 		/* 4KiB page chips are not yet supported. The eccpos from
801 		 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
802 		 * breaks userspace ioctl interface with mtd-utils. Once we
803 		 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
804 		 * for the 4KiB page chips.
805 		 *
806 		 * TODO: Note that nand_ecclayout has now been expanded and can
807 		 *  hold plenty of OOB entries.
808 		 */
809 		dev_warn(&pdev->dev, "no 4-bit ECC support yet "
810 				"for 4KiB-page NAND\n");
811 		ret = -EIO;
812 		goto err;
813 
814 syndrome_done:
815 		info->chip.ecc.layout = &info->ecclayout;
816 	}
817 
818 	ret = nand_scan_tail(&info->mtd);
819 	if (ret < 0)
820 		goto err;
821 
822 	if (pdata->parts)
823 		ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
824 					pdata->parts, pdata->nr_parts);
825 	else {
826 		struct mtd_part_parser_data	ppdata;
827 
828 		ppdata.of_node = pdev->dev.of_node;
829 		ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
830 						NULL, 0);
831 	}
832 	if (ret < 0)
833 		goto err;
834 
835 	val = davinci_nand_readl(info, NRCSR_OFFSET);
836 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
837 	       (val >> 8) & 0xff, val & 0xff);
838 
839 	return 0;
840 
841 err:
842 	clk_disable_unprepare(info->clk);
843 
844 err_clk_enable:
845 	spin_lock_irq(&davinci_nand_lock);
846 	if (ecc_mode == NAND_ECC_HW_SYNDROME)
847 		ecc4_busy = false;
848 	spin_unlock_irq(&davinci_nand_lock);
849 	return ret;
850 }
851 
nand_davinci_remove(struct platform_device * pdev)852 static int nand_davinci_remove(struct platform_device *pdev)
853 {
854 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
855 
856 	spin_lock_irq(&davinci_nand_lock);
857 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
858 		ecc4_busy = false;
859 	spin_unlock_irq(&davinci_nand_lock);
860 
861 	nand_release(&info->mtd);
862 
863 	clk_disable_unprepare(info->clk);
864 
865 	return 0;
866 }
867 
868 static struct platform_driver nand_davinci_driver = {
869 	.probe		= nand_davinci_probe,
870 	.remove		= nand_davinci_remove,
871 	.driver		= {
872 		.name	= "davinci_nand",
873 		.of_match_table = of_match_ptr(davinci_nand_of_match),
874 	},
875 };
876 MODULE_ALIAS("platform:davinci_nand");
877 
878 module_platform_driver(nand_davinci_driver);
879 
880 MODULE_LICENSE("GPL");
881 MODULE_AUTHOR("Texas Instruments");
882 MODULE_DESCRIPTION("Davinci NAND flash driver");
883 
884