1 /*
2  * S3C24XX DMA handling
3  *
4  * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
5  *
6  * based on amba-pl08x.c
7  *
8  * Copyright (c) 2006 ARM Ltd.
9  * Copyright (c) 2010 ST-Ericsson SA
10  *
11  * Author: Peter Pearse <peter.pearse@arm.com>
12  * Author: Linus Walleij <linus.walleij@stericsson.com>
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option)
17  * any later version.
18  *
19  * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
20  * that can be routed to any of the 4 to 8 hardware-channels.
21  *
22  * Therefore on these DMA controllers the number of channels
23  * and the number of incoming DMA signals are two totally different things.
24  * It is usually not possible to theoretically handle all physical signals,
25  * so a multiplexing scheme with possible denial of use is necessary.
26  *
27  * Open items:
28  * - bursts
29  */
30 
31 #include <linux/platform_device.h>
32 #include <linux/types.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/interrupt.h>
36 #include <linux/clk.h>
37 #include <linux/module.h>
38 #include <linux/slab.h>
39 #include <linux/platform_data/dma-s3c24xx.h>
40 
41 #include "dmaengine.h"
42 #include "virt-dma.h"
43 
44 #define MAX_DMA_CHANNELS	8
45 
46 #define S3C24XX_DISRC			0x00
47 #define S3C24XX_DISRCC			0x04
48 #define S3C24XX_DISRCC_INC_INCREMENT	0
49 #define S3C24XX_DISRCC_INC_FIXED	BIT(0)
50 #define S3C24XX_DISRCC_LOC_AHB		0
51 #define S3C24XX_DISRCC_LOC_APB		BIT(1)
52 
53 #define S3C24XX_DIDST			0x08
54 #define S3C24XX_DIDSTC			0x0c
55 #define S3C24XX_DIDSTC_INC_INCREMENT	0
56 #define S3C24XX_DIDSTC_INC_FIXED	BIT(0)
57 #define S3C24XX_DIDSTC_LOC_AHB		0
58 #define S3C24XX_DIDSTC_LOC_APB		BIT(1)
59 #define S3C24XX_DIDSTC_INT_TC0		0
60 #define S3C24XX_DIDSTC_INT_RELOAD	BIT(2)
61 
62 #define S3C24XX_DCON			0x10
63 
64 #define S3C24XX_DCON_TC_MASK		0xfffff
65 #define S3C24XX_DCON_DSZ_BYTE		(0 << 20)
66 #define S3C24XX_DCON_DSZ_HALFWORD	(1 << 20)
67 #define S3C24XX_DCON_DSZ_WORD		(2 << 20)
68 #define S3C24XX_DCON_DSZ_MASK		(3 << 20)
69 #define S3C24XX_DCON_DSZ_SHIFT		20
70 #define S3C24XX_DCON_AUTORELOAD		0
71 #define S3C24XX_DCON_NORELOAD		BIT(22)
72 #define S3C24XX_DCON_HWTRIG		BIT(23)
73 #define S3C24XX_DCON_HWSRC_SHIFT	24
74 #define S3C24XX_DCON_SERV_SINGLE	0
75 #define S3C24XX_DCON_SERV_WHOLE		BIT(27)
76 #define S3C24XX_DCON_TSZ_UNIT		0
77 #define S3C24XX_DCON_TSZ_BURST4		BIT(28)
78 #define S3C24XX_DCON_INT		BIT(29)
79 #define S3C24XX_DCON_SYNC_PCLK		0
80 #define S3C24XX_DCON_SYNC_HCLK		BIT(30)
81 #define S3C24XX_DCON_DEMAND		0
82 #define S3C24XX_DCON_HANDSHAKE		BIT(31)
83 
84 #define S3C24XX_DSTAT			0x14
85 #define S3C24XX_DSTAT_STAT_BUSY		BIT(20)
86 #define S3C24XX_DSTAT_CURRTC_MASK	0xfffff
87 
88 #define S3C24XX_DMASKTRIG		0x20
89 #define S3C24XX_DMASKTRIG_SWTRIG	BIT(0)
90 #define S3C24XX_DMASKTRIG_ON		BIT(1)
91 #define S3C24XX_DMASKTRIG_STOP		BIT(2)
92 
93 #define S3C24XX_DMAREQSEL		0x24
94 #define S3C24XX_DMAREQSEL_HW		BIT(0)
95 
96 /*
97  * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
98  * for a DMA source. Instead only specific channels are valid.
99  * All of these SoCs have 4 physical channels and the number of request
100  * source bits is 3. Additionally we also need 1 bit to mark the channel
101  * as valid.
102  * Therefore we separate the chansel element of the channel data into 4
103  * parts of 4 bits each, to hold the information if the channel is valid
104  * and the hw request source to use.
105  *
106  * Example:
107  * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108  * For it the chansel field would look like
109  *
110  * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111  * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112  * ((BIT(3) | 2) << 0 * 4)   // channel 0, with request source 2
113  */
114 #define S3C24XX_CHANSEL_WIDTH		4
115 #define S3C24XX_CHANSEL_VALID		BIT(3)
116 #define S3C24XX_CHANSEL_REQ_MASK	7
117 
118 /*
119  * struct soc_data - vendor-specific config parameters for individual SoCs
120  * @stride: spacing between the registers of each channel
121  * @has_reqsel: does the controller use the newer requestselection mechanism
122  * @has_clocks: are controllable dma-clocks present
123  */
124 struct soc_data {
125 	int stride;
126 	bool has_reqsel;
127 	bool has_clocks;
128 };
129 
130 /*
131  * enum s3c24xx_dma_chan_state - holds the virtual channel states
132  * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133  * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134  * channel and is running a transfer on it
135  * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136  * channel to become available (only pertains to memcpy channels)
137  */
138 enum s3c24xx_dma_chan_state {
139 	S3C24XX_DMA_CHAN_IDLE,
140 	S3C24XX_DMA_CHAN_RUNNING,
141 	S3C24XX_DMA_CHAN_WAITING,
142 };
143 
144 /*
145  * struct s3c24xx_sg - structure containing data per sg
146  * @src_addr: src address of sg
147  * @dst_addr: dst address of sg
148  * @len: transfer len in bytes
149  * @node: node for txd's dsg_list
150  */
151 struct s3c24xx_sg {
152 	dma_addr_t src_addr;
153 	dma_addr_t dst_addr;
154 	size_t len;
155 	struct list_head node;
156 };
157 
158 /*
159  * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160  * @vd: virtual DMA descriptor
161  * @dsg_list: list of children sg's
162  * @at: sg currently being transfered
163  * @width: transfer width
164  * @disrcc: value for source control register
165  * @didstc: value for destination control register
166  * @dcon: base value for dcon register
167  * @cyclic: indicate cyclic transfer
168  */
169 struct s3c24xx_txd {
170 	struct virt_dma_desc vd;
171 	struct list_head dsg_list;
172 	struct list_head *at;
173 	u8 width;
174 	u32 disrcc;
175 	u32 didstc;
176 	u32 dcon;
177 	bool cyclic;
178 };
179 
180 struct s3c24xx_dma_chan;
181 
182 /*
183  * struct s3c24xx_dma_phy - holder for the physical channels
184  * @id: physical index to this channel
185  * @valid: does the channel have all required elements
186  * @base: virtual memory base (remapped) for the this channel
187  * @irq: interrupt for this channel
188  * @clk: clock for this channel
189  * @lock: a lock to use when altering an instance of this struct
190  * @serving: virtual channel currently being served by this physicalchannel
191  * @host: a pointer to the host (internal use)
192  */
193 struct s3c24xx_dma_phy {
194 	unsigned int			id;
195 	bool				valid;
196 	void __iomem			*base;
197 	int				irq;
198 	struct clk			*clk;
199 	spinlock_t			lock;
200 	struct s3c24xx_dma_chan		*serving;
201 	struct s3c24xx_dma_engine	*host;
202 };
203 
204 /*
205  * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
206  * @id: the id of the channel
207  * @name: name of the channel
208  * @vc: wrappped virtual channel
209  * @phy: the physical channel utilized by this channel, if there is one
210  * @runtime_addr: address for RX/TX according to the runtime config
211  * @at: active transaction on this channel
212  * @lock: a lock for this channel data
213  * @host: a pointer to the host (internal use)
214  * @state: whether the channel is idle, running etc
215  * @slave: whether this channel is a device (slave) or for memcpy
216  */
217 struct s3c24xx_dma_chan {
218 	int id;
219 	const char *name;
220 	struct virt_dma_chan vc;
221 	struct s3c24xx_dma_phy *phy;
222 	struct dma_slave_config cfg;
223 	struct s3c24xx_txd *at;
224 	struct s3c24xx_dma_engine *host;
225 	enum s3c24xx_dma_chan_state state;
226 	bool slave;
227 };
228 
229 /*
230  * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
231  * @pdev: the corresponding platform device
232  * @pdata: platform data passed in from the platform/machine
233  * @base: virtual memory base (remapped)
234  * @slave: slave engine for this instance
235  * @memcpy: memcpy engine for this instance
236  * @phy_chans: array of data for the physical channels
237  */
238 struct s3c24xx_dma_engine {
239 	struct platform_device			*pdev;
240 	const struct s3c24xx_dma_platdata	*pdata;
241 	struct soc_data				*sdata;
242 	void __iomem				*base;
243 	struct dma_device			slave;
244 	struct dma_device			memcpy;
245 	struct s3c24xx_dma_phy			*phy_chans;
246 };
247 
248 /*
249  * Physical channel handling
250  */
251 
252 /*
253  * Check whether a certain channel is busy or not.
254  */
s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy * phy)255 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
256 {
257 	unsigned int val = readl(phy->base + S3C24XX_DSTAT);
258 	return val & S3C24XX_DSTAT_STAT_BUSY;
259 }
260 
s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan * s3cchan,struct s3c24xx_dma_phy * phy)261 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
262 				  struct s3c24xx_dma_phy *phy)
263 {
264 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
265 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
266 	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
267 	int phyvalid;
268 
269 	/* every phy is valid for memcopy channels */
270 	if (!s3cchan->slave)
271 		return true;
272 
273 	/* On newer variants all phys can be used for all virtual channels */
274 	if (s3cdma->sdata->has_reqsel)
275 		return true;
276 
277 	phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
278 	return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
279 }
280 
281 /*
282  * Allocate a physical channel for a virtual channel
283  *
284  * Try to locate a physical channel to be used for this transfer. If all
285  * are taken return NULL and the requester will have to cope by using
286  * some fallback PIO mode or retrying later.
287  */
288 static
s3c24xx_dma_get_phy(struct s3c24xx_dma_chan * s3cchan)289 struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
290 {
291 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
292 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
293 	struct s3c24xx_dma_channel *cdata;
294 	struct s3c24xx_dma_phy *phy = NULL;
295 	unsigned long flags;
296 	int i;
297 	int ret;
298 
299 	if (s3cchan->slave)
300 		cdata = &pdata->channels[s3cchan->id];
301 
302 	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
303 		phy = &s3cdma->phy_chans[i];
304 
305 		if (!phy->valid)
306 			continue;
307 
308 		if (!s3c24xx_dma_phy_valid(s3cchan, phy))
309 			continue;
310 
311 		spin_lock_irqsave(&phy->lock, flags);
312 
313 		if (!phy->serving) {
314 			phy->serving = s3cchan;
315 			spin_unlock_irqrestore(&phy->lock, flags);
316 			break;
317 		}
318 
319 		spin_unlock_irqrestore(&phy->lock, flags);
320 	}
321 
322 	/* No physical channel available, cope with it */
323 	if (i == s3cdma->pdata->num_phy_channels) {
324 		dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
325 		return NULL;
326 	}
327 
328 	/* start the phy clock */
329 	if (s3cdma->sdata->has_clocks) {
330 		ret = clk_enable(phy->clk);
331 		if (ret) {
332 			dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
333 				phy->id, ret);
334 			phy->serving = NULL;
335 			return NULL;
336 		}
337 	}
338 
339 	return phy;
340 }
341 
342 /*
343  * Mark the physical channel as free.
344  *
345  * This drops the link between the physical and virtual channel.
346  */
s3c24xx_dma_put_phy(struct s3c24xx_dma_phy * phy)347 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
348 {
349 	struct s3c24xx_dma_engine *s3cdma = phy->host;
350 
351 	if (s3cdma->sdata->has_clocks)
352 		clk_disable(phy->clk);
353 
354 	phy->serving = NULL;
355 }
356 
357 /*
358  * Stops the channel by writing the stop bit.
359  * This should not be used for an on-going transfer, but as a method of
360  * shutting down a channel (eg, when it's no longer used) or terminating a
361  * transfer.
362  */
s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy * phy)363 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
364 {
365 	writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
366 }
367 
368 /*
369  * Virtual channel handling
370  */
371 
372 static inline
to_s3c24xx_dma_chan(struct dma_chan * chan)373 struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
374 {
375 	return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
376 }
377 
s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan * s3cchan)378 static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
379 {
380 	struct s3c24xx_dma_phy *phy = s3cchan->phy;
381 	struct s3c24xx_txd *txd = s3cchan->at;
382 	u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
383 
384 	return tc * txd->width;
385 }
386 
s3c24xx_dma_set_runtime_config(struct dma_chan * chan,struct dma_slave_config * config)387 static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
388 				  struct dma_slave_config *config)
389 {
390 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
391 	unsigned long flags;
392 	int ret = 0;
393 
394 	/* Reject definitely invalid configurations */
395 	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
396 	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
397 		return -EINVAL;
398 
399 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
400 
401 	if (!s3cchan->slave) {
402 		ret = -EINVAL;
403 		goto out;
404 	}
405 
406 	s3cchan->cfg = *config;
407 
408 out:
409 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
410 	return ret;
411 }
412 
413 /*
414  * Transfer handling
415  */
416 
417 static inline
to_s3c24xx_txd(struct dma_async_tx_descriptor * tx)418 struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
419 {
420 	return container_of(tx, struct s3c24xx_txd, vd.tx);
421 }
422 
s3c24xx_dma_get_txd(void)423 static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
424 {
425 	struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
426 
427 	if (txd) {
428 		INIT_LIST_HEAD(&txd->dsg_list);
429 		txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
430 	}
431 
432 	return txd;
433 }
434 
s3c24xx_dma_free_txd(struct s3c24xx_txd * txd)435 static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
436 {
437 	struct s3c24xx_sg *dsg, *_dsg;
438 
439 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
440 		list_del(&dsg->node);
441 		kfree(dsg);
442 	}
443 
444 	kfree(txd);
445 }
446 
s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan * s3cchan,struct s3c24xx_txd * txd)447 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
448 				       struct s3c24xx_txd *txd)
449 {
450 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
451 	struct s3c24xx_dma_phy *phy = s3cchan->phy;
452 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
453 	struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
454 	u32 dcon = txd->dcon;
455 	u32 val;
456 
457 	/* transfer-size and -count from len and width */
458 	switch (txd->width) {
459 	case 1:
460 		dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
461 		break;
462 	case 2:
463 		dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
464 		break;
465 	case 4:
466 		dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
467 		break;
468 	}
469 
470 	if (s3cchan->slave) {
471 		struct s3c24xx_dma_channel *cdata =
472 					&pdata->channels[s3cchan->id];
473 
474 		if (s3cdma->sdata->has_reqsel) {
475 			writel_relaxed((cdata->chansel << 1) |
476 							S3C24XX_DMAREQSEL_HW,
477 					phy->base + S3C24XX_DMAREQSEL);
478 		} else {
479 			int csel = cdata->chansel >> (phy->id *
480 							S3C24XX_CHANSEL_WIDTH);
481 
482 			csel &= S3C24XX_CHANSEL_REQ_MASK;
483 			dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
484 			dcon |= S3C24XX_DCON_HWTRIG;
485 		}
486 	} else {
487 		if (s3cdma->sdata->has_reqsel)
488 			writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
489 	}
490 
491 	writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
492 	writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
493 	writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
494 	writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
495 	writel_relaxed(dcon, phy->base + S3C24XX_DCON);
496 
497 	val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
498 	val &= ~S3C24XX_DMASKTRIG_STOP;
499 	val |= S3C24XX_DMASKTRIG_ON;
500 
501 	/* trigger the dma operation for memcpy transfers */
502 	if (!s3cchan->slave)
503 		val |= S3C24XX_DMASKTRIG_SWTRIG;
504 
505 	writel(val, phy->base + S3C24XX_DMASKTRIG);
506 }
507 
508 /*
509  * Set the initial DMA register values and start first sg.
510  */
s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan * s3cchan)511 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
512 {
513 	struct s3c24xx_dma_phy *phy = s3cchan->phy;
514 	struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
515 	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
516 
517 	list_del(&txd->vd.node);
518 
519 	s3cchan->at = txd;
520 
521 	/* Wait for channel inactive */
522 	while (s3c24xx_dma_phy_busy(phy))
523 		cpu_relax();
524 
525 	/* point to the first element of the sg list */
526 	txd->at = txd->dsg_list.next;
527 	s3c24xx_dma_start_next_sg(s3cchan, txd);
528 }
529 
s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine * s3cdma,struct s3c24xx_dma_chan * s3cchan)530 static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
531 				struct s3c24xx_dma_chan *s3cchan)
532 {
533 	LIST_HEAD(head);
534 
535 	vchan_get_all_descriptors(&s3cchan->vc, &head);
536 	vchan_dma_desc_free_list(&s3cchan->vc, &head);
537 }
538 
539 /*
540  * Try to allocate a physical channel.  When successful, assign it to
541  * this virtual channel, and initiate the next descriptor.  The
542  * virtual channel lock must be held at this point.
543  */
s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan * s3cchan)544 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
545 {
546 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
547 	struct s3c24xx_dma_phy *phy;
548 
549 	phy = s3c24xx_dma_get_phy(s3cchan);
550 	if (!phy) {
551 		dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
552 			s3cchan->name);
553 		s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
554 		return;
555 	}
556 
557 	dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
558 		phy->id, s3cchan->name);
559 
560 	s3cchan->phy = phy;
561 	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
562 
563 	s3c24xx_dma_start_next_txd(s3cchan);
564 }
565 
s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy * phy,struct s3c24xx_dma_chan * s3cchan)566 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
567 	struct s3c24xx_dma_chan *s3cchan)
568 {
569 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
570 
571 	dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
572 		phy->id, s3cchan->name);
573 
574 	/*
575 	 * We do this without taking the lock; we're really only concerned
576 	 * about whether this pointer is NULL or not, and we're guaranteed
577 	 * that this will only be called when it _already_ is non-NULL.
578 	 */
579 	phy->serving = s3cchan;
580 	s3cchan->phy = phy;
581 	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
582 	s3c24xx_dma_start_next_txd(s3cchan);
583 }
584 
585 /*
586  * Free a physical DMA channel, potentially reallocating it to another
587  * virtual channel if we have any pending.
588  */
s3c24xx_dma_phy_free(struct s3c24xx_dma_chan * s3cchan)589 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
590 {
591 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
592 	struct s3c24xx_dma_chan *p, *next;
593 
594 retry:
595 	next = NULL;
596 
597 	/* Find a waiting virtual channel for the next transfer. */
598 	list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
599 		if (p->state == S3C24XX_DMA_CHAN_WAITING) {
600 			next = p;
601 			break;
602 		}
603 
604 	if (!next) {
605 		list_for_each_entry(p, &s3cdma->slave.channels,
606 				    vc.chan.device_node)
607 			if (p->state == S3C24XX_DMA_CHAN_WAITING &&
608 				      s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
609 				next = p;
610 				break;
611 			}
612 	}
613 
614 	/* Ensure that the physical channel is stopped */
615 	s3c24xx_dma_terminate_phy(s3cchan->phy);
616 
617 	if (next) {
618 		bool success;
619 
620 		/*
621 		 * Eww.  We know this isn't going to deadlock
622 		 * but lockdep probably doesn't.
623 		 */
624 		spin_lock(&next->vc.lock);
625 		/* Re-check the state now that we have the lock */
626 		success = next->state == S3C24XX_DMA_CHAN_WAITING;
627 		if (success)
628 			s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
629 		spin_unlock(&next->vc.lock);
630 
631 		/* If the state changed, try to find another channel */
632 		if (!success)
633 			goto retry;
634 	} else {
635 		/* No more jobs, so free up the physical channel */
636 		s3c24xx_dma_put_phy(s3cchan->phy);
637 	}
638 
639 	s3cchan->phy = NULL;
640 	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
641 }
642 
s3c24xx_dma_desc_free(struct virt_dma_desc * vd)643 static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
644 {
645 	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
646 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
647 
648 	if (!s3cchan->slave)
649 		dma_descriptor_unmap(&vd->tx);
650 
651 	s3c24xx_dma_free_txd(txd);
652 }
653 
s3c24xx_dma_irq(int irq,void * data)654 static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
655 {
656 	struct s3c24xx_dma_phy *phy = data;
657 	struct s3c24xx_dma_chan *s3cchan = phy->serving;
658 	struct s3c24xx_txd *txd;
659 
660 	dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
661 
662 	/*
663 	 * Interrupts happen to notify the completion of a transfer and the
664 	 * channel should have moved into its stop state already on its own.
665 	 * Therefore interrupts on channels not bound to a virtual channel
666 	 * should never happen. Nevertheless send a terminate command to the
667 	 * channel if the unlikely case happens.
668 	 */
669 	if (unlikely(!s3cchan)) {
670 		dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
671 			phy->id);
672 
673 		s3c24xx_dma_terminate_phy(phy);
674 
675 		return IRQ_HANDLED;
676 	}
677 
678 	spin_lock(&s3cchan->vc.lock);
679 	txd = s3cchan->at;
680 	if (txd) {
681 		/* when more sg's are in this txd, start the next one */
682 		if (!list_is_last(txd->at, &txd->dsg_list)) {
683 			txd->at = txd->at->next;
684 			if (txd->cyclic)
685 				vchan_cyclic_callback(&txd->vd);
686 			s3c24xx_dma_start_next_sg(s3cchan, txd);
687 		} else if (!txd->cyclic) {
688 			s3cchan->at = NULL;
689 			vchan_cookie_complete(&txd->vd);
690 
691 			/*
692 			 * And start the next descriptor (if any),
693 			 * otherwise free this channel.
694 			 */
695 			if (vchan_next_desc(&s3cchan->vc))
696 				s3c24xx_dma_start_next_txd(s3cchan);
697 			else
698 				s3c24xx_dma_phy_free(s3cchan);
699 		} else {
700 			vchan_cyclic_callback(&txd->vd);
701 
702 			/* Cyclic: reset at beginning */
703 			txd->at = txd->dsg_list.next;
704 			s3c24xx_dma_start_next_sg(s3cchan, txd);
705 		}
706 	}
707 	spin_unlock(&s3cchan->vc.lock);
708 
709 	return IRQ_HANDLED;
710 }
711 
712 /*
713  * The DMA ENGINE API
714  */
715 
s3c24xx_dma_terminate_all(struct dma_chan * chan)716 static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
717 {
718 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
719 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
720 	unsigned long flags;
721 	int ret = 0;
722 
723 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
724 
725 	if (!s3cchan->phy && !s3cchan->at) {
726 		dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
727 			s3cchan->id);
728 		ret = -EINVAL;
729 		goto unlock;
730 	}
731 
732 	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
733 
734 	/* Mark physical channel as free */
735 	if (s3cchan->phy)
736 		s3c24xx_dma_phy_free(s3cchan);
737 
738 	/* Dequeue current job */
739 	if (s3cchan->at) {
740 		s3c24xx_dma_desc_free(&s3cchan->at->vd);
741 		s3cchan->at = NULL;
742 	}
743 
744 	/* Dequeue jobs not yet fired as well */
745 	s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
746 unlock:
747 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
748 
749 	return ret;
750 }
751 
s3c24xx_dma_free_chan_resources(struct dma_chan * chan)752 static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
753 {
754 	/* Ensure all queued descriptors are freed */
755 	vchan_free_chan_resources(to_virt_chan(chan));
756 }
757 
s3c24xx_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)758 static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
759 		dma_cookie_t cookie, struct dma_tx_state *txstate)
760 {
761 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
762 	struct s3c24xx_txd *txd;
763 	struct s3c24xx_sg *dsg;
764 	struct virt_dma_desc *vd;
765 	unsigned long flags;
766 	enum dma_status ret;
767 	size_t bytes = 0;
768 
769 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
770 	ret = dma_cookie_status(chan, cookie, txstate);
771 	if (ret == DMA_COMPLETE) {
772 		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
773 		return ret;
774 	}
775 
776 	/*
777 	 * There's no point calculating the residue if there's
778 	 * no txstate to store the value.
779 	 */
780 	if (!txstate) {
781 		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
782 		return ret;
783 	}
784 
785 	vd = vchan_find_desc(&s3cchan->vc, cookie);
786 	if (vd) {
787 		/* On the issued list, so hasn't been processed yet */
788 		txd = to_s3c24xx_txd(&vd->tx);
789 
790 		list_for_each_entry(dsg, &txd->dsg_list, node)
791 			bytes += dsg->len;
792 	} else {
793 		/*
794 		 * Currently running, so sum over the pending sg's and
795 		 * the currently active one.
796 		 */
797 		txd = s3cchan->at;
798 
799 		dsg = list_entry(txd->at, struct s3c24xx_sg, node);
800 		list_for_each_entry_from(dsg, &txd->dsg_list, node)
801 			bytes += dsg->len;
802 
803 		bytes += s3c24xx_dma_getbytes_chan(s3cchan);
804 	}
805 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
806 
807 	/*
808 	 * This cookie not complete yet
809 	 * Get number of bytes left in the active transactions and queue
810 	 */
811 	dma_set_residue(txstate, bytes);
812 
813 	/* Whether waiting or running, we're in progress */
814 	return ret;
815 }
816 
817 /*
818  * Initialize a descriptor to be used by memcpy submit
819  */
s3c24xx_dma_prep_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)820 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
821 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
822 		size_t len, unsigned long flags)
823 {
824 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
825 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
826 	struct s3c24xx_txd *txd;
827 	struct s3c24xx_sg *dsg;
828 	int src_mod, dest_mod;
829 
830 	dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %d bytes from %s\n",
831 			len, s3cchan->name);
832 
833 	if ((len & S3C24XX_DCON_TC_MASK) != len) {
834 		dev_err(&s3cdma->pdev->dev, "memcpy size %d to large\n", len);
835 		return NULL;
836 	}
837 
838 	txd = s3c24xx_dma_get_txd();
839 	if (!txd)
840 		return NULL;
841 
842 	dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
843 	if (!dsg) {
844 		s3c24xx_dma_free_txd(txd);
845 		return NULL;
846 	}
847 	list_add_tail(&dsg->node, &txd->dsg_list);
848 
849 	dsg->src_addr = src;
850 	dsg->dst_addr = dest;
851 	dsg->len = len;
852 
853 	/*
854 	 * Determine a suitable transfer width.
855 	 * The DMA controller cannot fetch/store information which is not
856 	 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
857 	 * an address divisible by 4 - more generally addr % width must be 0.
858 	 */
859 	src_mod = src % 4;
860 	dest_mod = dest % 4;
861 	switch (len % 4) {
862 	case 0:
863 		txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
864 		break;
865 	case 2:
866 		txd->width = ((src_mod == 2 || src_mod == 0) &&
867 			      (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
868 		break;
869 	default:
870 		txd->width = 1;
871 		break;
872 	}
873 
874 	txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
875 	txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
876 	txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
877 		     S3C24XX_DCON_SERV_WHOLE;
878 
879 	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
880 }
881 
s3c24xx_dma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t addr,size_t size,size_t period,enum dma_transfer_direction direction,unsigned long flags)882 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
883 	struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
884 	enum dma_transfer_direction direction, unsigned long flags)
885 {
886 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
887 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
888 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
889 	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
890 	struct s3c24xx_txd *txd;
891 	struct s3c24xx_sg *dsg;
892 	unsigned sg_len;
893 	dma_addr_t slave_addr;
894 	u32 hwcfg = 0;
895 	int i;
896 
897 	dev_dbg(&s3cdma->pdev->dev,
898 		"prepare cyclic transaction of %zu bytes with period %zu from %s\n",
899 		size, period, s3cchan->name);
900 
901 	if (!is_slave_direction(direction)) {
902 		dev_err(&s3cdma->pdev->dev,
903 			"direction %d unsupported\n", direction);
904 		return NULL;
905 	}
906 
907 	txd = s3c24xx_dma_get_txd();
908 	if (!txd)
909 		return NULL;
910 
911 	txd->cyclic = 1;
912 
913 	if (cdata->handshake)
914 		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
915 
916 	switch (cdata->bus) {
917 	case S3C24XX_DMA_APB:
918 		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
919 		hwcfg |= S3C24XX_DISRCC_LOC_APB;
920 		break;
921 	case S3C24XX_DMA_AHB:
922 		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
923 		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
924 		break;
925 	}
926 
927 	/*
928 	 * Always assume our peripheral desintation is a fixed
929 	 * address in memory.
930 	 */
931 	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
932 
933 	/*
934 	 * Individual dma operations are requested by the slave,
935 	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
936 	 */
937 	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
938 
939 	if (direction == DMA_MEM_TO_DEV) {
940 		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
941 			      S3C24XX_DISRCC_INC_INCREMENT;
942 		txd->didstc = hwcfg;
943 		slave_addr = s3cchan->cfg.dst_addr;
944 		txd->width = s3cchan->cfg.dst_addr_width;
945 	} else {
946 		txd->disrcc = hwcfg;
947 		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
948 			      S3C24XX_DIDSTC_INC_INCREMENT;
949 		slave_addr = s3cchan->cfg.src_addr;
950 		txd->width = s3cchan->cfg.src_addr_width;
951 	}
952 
953 	sg_len = size / period;
954 
955 	for (i = 0; i < sg_len; i++) {
956 		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
957 		if (!dsg) {
958 			s3c24xx_dma_free_txd(txd);
959 			return NULL;
960 		}
961 		list_add_tail(&dsg->node, &txd->dsg_list);
962 
963 		dsg->len = period;
964 		/* Check last period length */
965 		if (i == sg_len - 1)
966 			dsg->len = size - period * i;
967 		if (direction == DMA_MEM_TO_DEV) {
968 			dsg->src_addr = addr + period * i;
969 			dsg->dst_addr = slave_addr;
970 		} else { /* DMA_DEV_TO_MEM */
971 			dsg->src_addr = slave_addr;
972 			dsg->dst_addr = addr + period * i;
973 		}
974 	}
975 
976 	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
977 }
978 
s3c24xx_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)979 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
980 		struct dma_chan *chan, struct scatterlist *sgl,
981 		unsigned int sg_len, enum dma_transfer_direction direction,
982 		unsigned long flags, void *context)
983 {
984 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
985 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
986 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
987 	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
988 	struct s3c24xx_txd *txd;
989 	struct s3c24xx_sg *dsg;
990 	struct scatterlist *sg;
991 	dma_addr_t slave_addr;
992 	u32 hwcfg = 0;
993 	int tmp;
994 
995 	dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
996 			sg_dma_len(sgl), s3cchan->name);
997 
998 	txd = s3c24xx_dma_get_txd();
999 	if (!txd)
1000 		return NULL;
1001 
1002 	if (cdata->handshake)
1003 		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
1004 
1005 	switch (cdata->bus) {
1006 	case S3C24XX_DMA_APB:
1007 		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1008 		hwcfg |= S3C24XX_DISRCC_LOC_APB;
1009 		break;
1010 	case S3C24XX_DMA_AHB:
1011 		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1012 		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1013 		break;
1014 	}
1015 
1016 	/*
1017 	 * Always assume our peripheral desintation is a fixed
1018 	 * address in memory.
1019 	 */
1020 	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1021 
1022 	/*
1023 	 * Individual dma operations are requested by the slave,
1024 	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1025 	 */
1026 	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1027 
1028 	if (direction == DMA_MEM_TO_DEV) {
1029 		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1030 			      S3C24XX_DISRCC_INC_INCREMENT;
1031 		txd->didstc = hwcfg;
1032 		slave_addr = s3cchan->cfg.dst_addr;
1033 		txd->width = s3cchan->cfg.dst_addr_width;
1034 	} else if (direction == DMA_DEV_TO_MEM) {
1035 		txd->disrcc = hwcfg;
1036 		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1037 			      S3C24XX_DIDSTC_INC_INCREMENT;
1038 		slave_addr = s3cchan->cfg.src_addr;
1039 		txd->width = s3cchan->cfg.src_addr_width;
1040 	} else {
1041 		s3c24xx_dma_free_txd(txd);
1042 		dev_err(&s3cdma->pdev->dev,
1043 			"direction %d unsupported\n", direction);
1044 		return NULL;
1045 	}
1046 
1047 	for_each_sg(sgl, sg, sg_len, tmp) {
1048 		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1049 		if (!dsg) {
1050 			s3c24xx_dma_free_txd(txd);
1051 			return NULL;
1052 		}
1053 		list_add_tail(&dsg->node, &txd->dsg_list);
1054 
1055 		dsg->len = sg_dma_len(sg);
1056 		if (direction == DMA_MEM_TO_DEV) {
1057 			dsg->src_addr = sg_dma_address(sg);
1058 			dsg->dst_addr = slave_addr;
1059 		} else { /* DMA_DEV_TO_MEM */
1060 			dsg->src_addr = slave_addr;
1061 			dsg->dst_addr = sg_dma_address(sg);
1062 		}
1063 	}
1064 
1065 	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1066 }
1067 
1068 /*
1069  * Slave transactions callback to the slave device to allow
1070  * synchronization of slave DMA signals with the DMAC enable
1071  */
s3c24xx_dma_issue_pending(struct dma_chan * chan)1072 static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1073 {
1074 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1075 	unsigned long flags;
1076 
1077 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
1078 	if (vchan_issue_pending(&s3cchan->vc)) {
1079 		if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1080 			s3c24xx_dma_phy_alloc_and_start(s3cchan);
1081 	}
1082 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1083 }
1084 
1085 /*
1086  * Bringup and teardown
1087  */
1088 
1089 /*
1090  * Initialise the DMAC memcpy/slave channels.
1091  * Make a local wrapper to hold required data
1092  */
s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine * s3cdma,struct dma_device * dmadev,unsigned int channels,bool slave)1093 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1094 		struct dma_device *dmadev, unsigned int channels, bool slave)
1095 {
1096 	struct s3c24xx_dma_chan *chan;
1097 	int i;
1098 
1099 	INIT_LIST_HEAD(&dmadev->channels);
1100 
1101 	/*
1102 	 * Register as many many memcpy as we have physical channels,
1103 	 * we won't always be able to use all but the code will have
1104 	 * to cope with that situation.
1105 	 */
1106 	for (i = 0; i < channels; i++) {
1107 		chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1108 		if (!chan) {
1109 			dev_err(dmadev->dev,
1110 				"%s no memory for channel\n", __func__);
1111 			return -ENOMEM;
1112 		}
1113 
1114 		chan->id = i;
1115 		chan->host = s3cdma;
1116 		chan->state = S3C24XX_DMA_CHAN_IDLE;
1117 
1118 		if (slave) {
1119 			chan->slave = true;
1120 			chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1121 			if (!chan->name)
1122 				return -ENOMEM;
1123 		} else {
1124 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1125 			if (!chan->name)
1126 				return -ENOMEM;
1127 		}
1128 		dev_dbg(dmadev->dev,
1129 			 "initialize virtual channel \"%s\"\n",
1130 			 chan->name);
1131 
1132 		chan->vc.desc_free = s3c24xx_dma_desc_free;
1133 		vchan_init(&chan->vc, dmadev);
1134 	}
1135 	dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1136 		 i, slave ? "slave" : "memcpy");
1137 	return i;
1138 }
1139 
s3c24xx_dma_free_virtual_channels(struct dma_device * dmadev)1140 static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1141 {
1142 	struct s3c24xx_dma_chan *chan = NULL;
1143 	struct s3c24xx_dma_chan *next;
1144 
1145 	list_for_each_entry_safe(chan,
1146 				 next, &dmadev->channels, vc.chan.device_node)
1147 		list_del(&chan->vc.chan.device_node);
1148 }
1149 
1150 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1151 static struct soc_data soc_s3c2410 = {
1152 	.stride = 0x40,
1153 	.has_reqsel = false,
1154 	.has_clocks = false,
1155 };
1156 
1157 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1158 static struct soc_data soc_s3c2412 = {
1159 	.stride = 0x40,
1160 	.has_reqsel = true,
1161 	.has_clocks = true,
1162 };
1163 
1164 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1165 static struct soc_data soc_s3c2443 = {
1166 	.stride = 0x100,
1167 	.has_reqsel = true,
1168 	.has_clocks = true,
1169 };
1170 
1171 static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
1172 	{
1173 		.name		= "s3c2410-dma",
1174 		.driver_data	= (kernel_ulong_t)&soc_s3c2410,
1175 	}, {
1176 		.name		= "s3c2412-dma",
1177 		.driver_data	= (kernel_ulong_t)&soc_s3c2412,
1178 	}, {
1179 		.name		= "s3c2443-dma",
1180 		.driver_data	= (kernel_ulong_t)&soc_s3c2443,
1181 	},
1182 	{ },
1183 };
1184 
s3c24xx_dma_get_soc_data(struct platform_device * pdev)1185 static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1186 {
1187 	return (struct soc_data *)
1188 			 platform_get_device_id(pdev)->driver_data;
1189 }
1190 
s3c24xx_dma_probe(struct platform_device * pdev)1191 static int s3c24xx_dma_probe(struct platform_device *pdev)
1192 {
1193 	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1194 	struct s3c24xx_dma_engine *s3cdma;
1195 	struct soc_data *sdata;
1196 	struct resource *res;
1197 	int ret;
1198 	int i;
1199 
1200 	if (!pdata) {
1201 		dev_err(&pdev->dev, "platform data missing\n");
1202 		return -ENODEV;
1203 	}
1204 
1205 	/* Basic sanity check */
1206 	if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1207 		dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
1208 			pdata->num_phy_channels, MAX_DMA_CHANNELS);
1209 		return -EINVAL;
1210 	}
1211 
1212 	sdata = s3c24xx_dma_get_soc_data(pdev);
1213 	if (!sdata)
1214 		return -EINVAL;
1215 
1216 	s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1217 	if (!s3cdma)
1218 		return -ENOMEM;
1219 
1220 	s3cdma->pdev = pdev;
1221 	s3cdma->pdata = pdata;
1222 	s3cdma->sdata = sdata;
1223 
1224 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1225 	s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1226 	if (IS_ERR(s3cdma->base))
1227 		return PTR_ERR(s3cdma->base);
1228 
1229 	s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
1230 					      sizeof(struct s3c24xx_dma_phy) *
1231 							pdata->num_phy_channels,
1232 					      GFP_KERNEL);
1233 	if (!s3cdma->phy_chans)
1234 		return -ENOMEM;
1235 
1236 	/* acquire irqs and clocks for all physical channels */
1237 	for (i = 0; i < pdata->num_phy_channels; i++) {
1238 		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1239 		char clk_name[6];
1240 
1241 		phy->id = i;
1242 		phy->base = s3cdma->base + (i * sdata->stride);
1243 		phy->host = s3cdma;
1244 
1245 		phy->irq = platform_get_irq(pdev, i);
1246 		if (phy->irq < 0) {
1247 			dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
1248 				i, phy->irq);
1249 			continue;
1250 		}
1251 
1252 		ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1253 				       0, pdev->name, phy);
1254 		if (ret) {
1255 			dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1256 				i, ret);
1257 			continue;
1258 		}
1259 
1260 		if (sdata->has_clocks) {
1261 			sprintf(clk_name, "dma.%d", i);
1262 			phy->clk = devm_clk_get(&pdev->dev, clk_name);
1263 			if (IS_ERR(phy->clk) && sdata->has_clocks) {
1264 				dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1265 					i, PTR_ERR(phy->clk));
1266 				continue;
1267 			}
1268 
1269 			ret = clk_prepare(phy->clk);
1270 			if (ret) {
1271 				dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1272 					i, ret);
1273 				continue;
1274 			}
1275 		}
1276 
1277 		spin_lock_init(&phy->lock);
1278 		phy->valid = true;
1279 
1280 		dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1281 			i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1282 	}
1283 
1284 	/* Initialize memcpy engine */
1285 	dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1286 	dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1287 	s3cdma->memcpy.dev = &pdev->dev;
1288 	s3cdma->memcpy.device_free_chan_resources =
1289 					s3c24xx_dma_free_chan_resources;
1290 	s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1291 	s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1292 	s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1293 	s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1294 	s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1295 
1296 	/* Initialize slave engine for SoC internal dedicated peripherals */
1297 	dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1298 	dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1299 	dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1300 	s3cdma->slave.dev = &pdev->dev;
1301 	s3cdma->slave.device_free_chan_resources =
1302 					s3c24xx_dma_free_chan_resources;
1303 	s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1304 	s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1305 	s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1306 	s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1307 	s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1308 	s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1309 
1310 	/* Register as many memcpy channels as there are physical channels */
1311 	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1312 						pdata->num_phy_channels, false);
1313 	if (ret <= 0) {
1314 		dev_warn(&pdev->dev,
1315 			 "%s failed to enumerate memcpy channels - %d\n",
1316 			 __func__, ret);
1317 		goto err_memcpy;
1318 	}
1319 
1320 	/* Register slave channels */
1321 	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1322 				pdata->num_channels, true);
1323 	if (ret <= 0) {
1324 		dev_warn(&pdev->dev,
1325 			"%s failed to enumerate slave channels - %d\n",
1326 				__func__, ret);
1327 		goto err_slave;
1328 	}
1329 
1330 	ret = dma_async_device_register(&s3cdma->memcpy);
1331 	if (ret) {
1332 		dev_warn(&pdev->dev,
1333 			"%s failed to register memcpy as an async device - %d\n",
1334 			__func__, ret);
1335 		goto err_memcpy_reg;
1336 	}
1337 
1338 	ret = dma_async_device_register(&s3cdma->slave);
1339 	if (ret) {
1340 		dev_warn(&pdev->dev,
1341 			"%s failed to register slave as an async device - %d\n",
1342 			__func__, ret);
1343 		goto err_slave_reg;
1344 	}
1345 
1346 	platform_set_drvdata(pdev, s3cdma);
1347 	dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1348 		 pdata->num_phy_channels);
1349 
1350 	return 0;
1351 
1352 err_slave_reg:
1353 	dma_async_device_unregister(&s3cdma->memcpy);
1354 err_memcpy_reg:
1355 	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1356 err_slave:
1357 	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1358 err_memcpy:
1359 	if (sdata->has_clocks)
1360 		for (i = 0; i < pdata->num_phy_channels; i++) {
1361 			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1362 			if (phy->valid)
1363 				clk_unprepare(phy->clk);
1364 		}
1365 
1366 	return ret;
1367 }
1368 
s3c24xx_dma_remove(struct platform_device * pdev)1369 static int s3c24xx_dma_remove(struct platform_device *pdev)
1370 {
1371 	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1372 	struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1373 	struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1374 	int i;
1375 
1376 	dma_async_device_unregister(&s3cdma->slave);
1377 	dma_async_device_unregister(&s3cdma->memcpy);
1378 
1379 	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1380 	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1381 
1382 	if (sdata->has_clocks)
1383 		for (i = 0; i < pdata->num_phy_channels; i++) {
1384 			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1385 			if (phy->valid)
1386 				clk_unprepare(phy->clk);
1387 		}
1388 
1389 	return 0;
1390 }
1391 
1392 static struct platform_driver s3c24xx_dma_driver = {
1393 	.driver		= {
1394 		.name	= "s3c24xx-dma",
1395 	},
1396 	.id_table	= s3c24xx_dma_driver_ids,
1397 	.probe		= s3c24xx_dma_probe,
1398 	.remove		= s3c24xx_dma_remove,
1399 };
1400 
1401 module_platform_driver(s3c24xx_dma_driver);
1402 
s3c24xx_dma_filter(struct dma_chan * chan,void * param)1403 bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1404 {
1405 	struct s3c24xx_dma_chan *s3cchan;
1406 
1407 	if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1408 		return false;
1409 
1410 	s3cchan = to_s3c24xx_dma_chan(chan);
1411 
1412 	return s3cchan->id == (int)param;
1413 }
1414 EXPORT_SYMBOL(s3c24xx_dma_filter);
1415 
1416 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1417 MODULE_AUTHOR("Heiko Stuebner");
1418 MODULE_LICENSE("GPL v2");
1419