1 /*
2  * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
3  *
4  * Copyright (c) 2013 Texas Instruments Inc.
5  * David Griego, <dagriego@biglakesoftware.com>
6  * Dale Farnsworth, <dale@farnsworth.org>
7  * Archit Taneja, <archit@ti.com>
8  *
9  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
10  * Pawel Osciak, <pawel@osciak.com>
11  * Marek Szyprowski, <m.szyprowski@samsung.com>
12  *
13  * Based on the virtual v4l2-mem2mem example device
14  *
15  * This program is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License version 2 as published by
17  * the Free Software Foundation
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
23 #include <linux/fs.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/videodev2.h>
34 #include <linux/log2.h>
35 #include <linux/sizes.h>
36 
37 #include <media/v4l2-common.h>
38 #include <media/v4l2-ctrls.h>
39 #include <media/v4l2-device.h>
40 #include <media/v4l2-event.h>
41 #include <media/v4l2-ioctl.h>
42 #include <media/v4l2-mem2mem.h>
43 #include <media/videobuf2-core.h>
44 #include <media/videobuf2-dma-contig.h>
45 
46 #include "vpdma.h"
47 #include "vpe_regs.h"
48 #include "sc.h"
49 #include "csc.h"
50 
51 #define VPE_MODULE_NAME "vpe"
52 
53 /* minimum and maximum frame sizes */
54 #define MIN_W		32
55 #define MIN_H		32
56 #define MAX_W		1920
57 #define MAX_H		1080
58 
59 /* required alignments */
60 #define S_ALIGN		0	/* multiple of 1 */
61 #define H_ALIGN		1	/* multiple of 2 */
62 
63 /* flags that indicate a format can be used for capture/output */
64 #define VPE_FMT_TYPE_CAPTURE	(1 << 0)
65 #define VPE_FMT_TYPE_OUTPUT	(1 << 1)
66 
67 /* used as plane indices */
68 #define VPE_MAX_PLANES	2
69 #define VPE_LUMA	0
70 #define VPE_CHROMA	1
71 
72 /* per m2m context info */
73 #define VPE_MAX_SRC_BUFS	3	/* need 3 src fields to de-interlace */
74 
75 #define VPE_DEF_BUFS_PER_JOB	1	/* default one buffer per batch job */
76 
77 /*
78  * each VPE context can need up to 3 config descriptors, 7 input descriptors,
79  * 3 output descriptors, and 10 control descriptors
80  */
81 #define VPE_DESC_LIST_SIZE	(10 * VPDMA_DTD_DESC_SIZE +	\
82 					13 * VPDMA_CFD_CTD_DESC_SIZE)
83 
84 #define vpe_dbg(vpedev, fmt, arg...)	\
85 		dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
86 #define vpe_err(vpedev, fmt, arg...)	\
87 		dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
88 
89 struct vpe_us_coeffs {
90 	unsigned short	anchor_fid0_c0;
91 	unsigned short	anchor_fid0_c1;
92 	unsigned short	anchor_fid0_c2;
93 	unsigned short	anchor_fid0_c3;
94 	unsigned short	interp_fid0_c0;
95 	unsigned short	interp_fid0_c1;
96 	unsigned short	interp_fid0_c2;
97 	unsigned short	interp_fid0_c3;
98 	unsigned short	anchor_fid1_c0;
99 	unsigned short	anchor_fid1_c1;
100 	unsigned short	anchor_fid1_c2;
101 	unsigned short	anchor_fid1_c3;
102 	unsigned short	interp_fid1_c0;
103 	unsigned short	interp_fid1_c1;
104 	unsigned short	interp_fid1_c2;
105 	unsigned short	interp_fid1_c3;
106 };
107 
108 /*
109  * Default upsampler coefficients
110  */
111 static const struct vpe_us_coeffs us_coeffs[] = {
112 	{
113 		/* Coefficients for progressive input */
114 		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
115 		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
116 	},
117 	{
118 		/* Coefficients for Top Field Interlaced input */
119 		0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
120 		/* Coefficients for Bottom Field Interlaced input */
121 		0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
122 	},
123 };
124 
125 /*
126  * the following registers are for configuring some of the parameters of the
127  * motion and edge detection blocks inside DEI, these generally remain the same,
128  * these could be passed later via userspace if some one needs to tweak these.
129  */
130 struct vpe_dei_regs {
131 	unsigned long mdt_spacial_freq_thr_reg;		/* VPE_DEI_REG2 */
132 	unsigned long edi_config_reg;			/* VPE_DEI_REG3 */
133 	unsigned long edi_lut_reg0;			/* VPE_DEI_REG4 */
134 	unsigned long edi_lut_reg1;			/* VPE_DEI_REG5 */
135 	unsigned long edi_lut_reg2;			/* VPE_DEI_REG6 */
136 	unsigned long edi_lut_reg3;			/* VPE_DEI_REG7 */
137 };
138 
139 /*
140  * default expert DEI register values, unlikely to be modified.
141  */
142 static const struct vpe_dei_regs dei_regs = {
143 	.mdt_spacial_freq_thr_reg = 0x020C0804u,
144 	.edi_config_reg = 0x0118100Fu,
145 	.edi_lut_reg0 = 0x08040200u,
146 	.edi_lut_reg1 = 0x1010100Cu,
147 	.edi_lut_reg2 = 0x10101010u,
148 	.edi_lut_reg3 = 0x10101010u,
149 };
150 
151 /*
152  * The port_data structure contains per-port data.
153  */
154 struct vpe_port_data {
155 	enum vpdma_channel channel;	/* VPDMA channel */
156 	u8	vb_index;		/* input frame f, f-1, f-2 index */
157 	u8	vb_part;		/* plane index for co-panar formats */
158 };
159 
160 /*
161  * Define indices into the port_data tables
162  */
163 #define VPE_PORT_LUMA1_IN	0
164 #define VPE_PORT_CHROMA1_IN	1
165 #define VPE_PORT_LUMA2_IN	2
166 #define VPE_PORT_CHROMA2_IN	3
167 #define VPE_PORT_LUMA3_IN	4
168 #define VPE_PORT_CHROMA3_IN	5
169 #define VPE_PORT_MV_IN		6
170 #define VPE_PORT_MV_OUT		7
171 #define VPE_PORT_LUMA_OUT	8
172 #define VPE_PORT_CHROMA_OUT	9
173 #define VPE_PORT_RGB_OUT	10
174 
175 static const struct vpe_port_data port_data[11] = {
176 	[VPE_PORT_LUMA1_IN] = {
177 		.channel	= VPE_CHAN_LUMA1_IN,
178 		.vb_index	= 0,
179 		.vb_part	= VPE_LUMA,
180 	},
181 	[VPE_PORT_CHROMA1_IN] = {
182 		.channel	= VPE_CHAN_CHROMA1_IN,
183 		.vb_index	= 0,
184 		.vb_part	= VPE_CHROMA,
185 	},
186 	[VPE_PORT_LUMA2_IN] = {
187 		.channel	= VPE_CHAN_LUMA2_IN,
188 		.vb_index	= 1,
189 		.vb_part	= VPE_LUMA,
190 	},
191 	[VPE_PORT_CHROMA2_IN] = {
192 		.channel	= VPE_CHAN_CHROMA2_IN,
193 		.vb_index	= 1,
194 		.vb_part	= VPE_CHROMA,
195 	},
196 	[VPE_PORT_LUMA3_IN] = {
197 		.channel	= VPE_CHAN_LUMA3_IN,
198 		.vb_index	= 2,
199 		.vb_part	= VPE_LUMA,
200 	},
201 	[VPE_PORT_CHROMA3_IN] = {
202 		.channel	= VPE_CHAN_CHROMA3_IN,
203 		.vb_index	= 2,
204 		.vb_part	= VPE_CHROMA,
205 	},
206 	[VPE_PORT_MV_IN] = {
207 		.channel	= VPE_CHAN_MV_IN,
208 	},
209 	[VPE_PORT_MV_OUT] = {
210 		.channel	= VPE_CHAN_MV_OUT,
211 	},
212 	[VPE_PORT_LUMA_OUT] = {
213 		.channel	= VPE_CHAN_LUMA_OUT,
214 		.vb_part	= VPE_LUMA,
215 	},
216 	[VPE_PORT_CHROMA_OUT] = {
217 		.channel	= VPE_CHAN_CHROMA_OUT,
218 		.vb_part	= VPE_CHROMA,
219 	},
220 	[VPE_PORT_RGB_OUT] = {
221 		.channel	= VPE_CHAN_RGB_OUT,
222 		.vb_part	= VPE_LUMA,
223 	},
224 };
225 
226 
227 /* driver info for each of the supported video formats */
228 struct vpe_fmt {
229 	char	*name;			/* human-readable name */
230 	u32	fourcc;			/* standard format identifier */
231 	u8	types;			/* CAPTURE and/or OUTPUT */
232 	u8	coplanar;		/* set for unpacked Luma and Chroma */
233 	/* vpdma format info for each plane */
234 	struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
235 };
236 
237 static struct vpe_fmt vpe_formats[] = {
238 	{
239 		.name		= "YUV 422 co-planar",
240 		.fourcc		= V4L2_PIX_FMT_NV16,
241 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
242 		.coplanar	= 1,
243 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
244 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
245 				  },
246 	},
247 	{
248 		.name		= "YUV 420 co-planar",
249 		.fourcc		= V4L2_PIX_FMT_NV12,
250 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
251 		.coplanar	= 1,
252 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
253 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
254 				  },
255 	},
256 	{
257 		.name		= "YUYV 422 packed",
258 		.fourcc		= V4L2_PIX_FMT_YUYV,
259 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
260 		.coplanar	= 0,
261 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YC422],
262 				  },
263 	},
264 	{
265 		.name		= "UYVY 422 packed",
266 		.fourcc		= V4L2_PIX_FMT_UYVY,
267 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
268 		.coplanar	= 0,
269 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CY422],
270 				  },
271 	},
272 	{
273 		.name		= "RGB888 packed",
274 		.fourcc		= V4L2_PIX_FMT_RGB24,
275 		.types		= VPE_FMT_TYPE_CAPTURE,
276 		.coplanar	= 0,
277 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
278 				  },
279 	},
280 	{
281 		.name		= "ARGB32",
282 		.fourcc		= V4L2_PIX_FMT_RGB32,
283 		.types		= VPE_FMT_TYPE_CAPTURE,
284 		.coplanar	= 0,
285 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
286 				  },
287 	},
288 	{
289 		.name		= "BGR888 packed",
290 		.fourcc		= V4L2_PIX_FMT_BGR24,
291 		.types		= VPE_FMT_TYPE_CAPTURE,
292 		.coplanar	= 0,
293 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
294 				  },
295 	},
296 	{
297 		.name		= "ABGR32",
298 		.fourcc		= V4L2_PIX_FMT_BGR32,
299 		.types		= VPE_FMT_TYPE_CAPTURE,
300 		.coplanar	= 0,
301 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
302 				  },
303 	},
304 };
305 
306 /*
307  * per-queue, driver-specific private data.
308  * there is one source queue and one destination queue for each m2m context.
309  */
310 struct vpe_q_data {
311 	unsigned int		width;				/* frame width */
312 	unsigned int		height;				/* frame height */
313 	unsigned int		bytesperline[VPE_MAX_PLANES];	/* bytes per line in memory */
314 	enum v4l2_colorspace	colorspace;
315 	enum v4l2_field		field;				/* supported field value */
316 	unsigned int		flags;
317 	unsigned int		sizeimage[VPE_MAX_PLANES];	/* image size in memory */
318 	struct v4l2_rect	c_rect;				/* crop/compose rectangle */
319 	struct vpe_fmt		*fmt;				/* format info */
320 };
321 
322 /* vpe_q_data flag bits */
323 #define	Q_DATA_FRAME_1D		(1 << 0)
324 #define	Q_DATA_MODE_TILED	(1 << 1)
325 #define	Q_DATA_INTERLACED	(1 << 2)
326 
327 enum {
328 	Q_DATA_SRC = 0,
329 	Q_DATA_DST = 1,
330 };
331 
332 /* find our format description corresponding to the passed v4l2_format */
find_format(struct v4l2_format * f)333 static struct vpe_fmt *find_format(struct v4l2_format *f)
334 {
335 	struct vpe_fmt *fmt;
336 	unsigned int k;
337 
338 	for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
339 		fmt = &vpe_formats[k];
340 		if (fmt->fourcc == f->fmt.pix.pixelformat)
341 			return fmt;
342 	}
343 
344 	return NULL;
345 }
346 
347 /*
348  * there is one vpe_dev structure in the driver, it is shared by
349  * all instances.
350  */
351 struct vpe_dev {
352 	struct v4l2_device	v4l2_dev;
353 	struct video_device	vfd;
354 	struct v4l2_m2m_dev	*m2m_dev;
355 
356 	atomic_t		num_instances;	/* count of driver instances */
357 	dma_addr_t		loaded_mmrs;	/* shadow mmrs in device */
358 	struct mutex		dev_mutex;
359 	spinlock_t		lock;
360 
361 	int			irq;
362 	void __iomem		*base;
363 	struct resource		*res;
364 
365 	struct vb2_alloc_ctx	*alloc_ctx;
366 	struct vpdma_data	*vpdma;		/* vpdma data handle */
367 	struct sc_data		*sc;		/* scaler data handle */
368 	struct csc_data		*csc;		/* csc data handle */
369 };
370 
371 /*
372  * There is one vpe_ctx structure for each m2m context.
373  */
374 struct vpe_ctx {
375 	struct v4l2_fh		fh;
376 	struct vpe_dev		*dev;
377 	struct v4l2_ctrl_handler hdl;
378 
379 	unsigned int		field;			/* current field */
380 	unsigned int		sequence;		/* current frame/field seq */
381 	unsigned int		aborting;		/* abort after next irq */
382 
383 	unsigned int		bufs_per_job;		/* input buffers per batch */
384 	unsigned int		bufs_completed;		/* bufs done in this batch */
385 
386 	struct vpe_q_data	q_data[2];		/* src & dst queue data */
387 	struct vb2_buffer	*src_vbs[VPE_MAX_SRC_BUFS];
388 	struct vb2_buffer	*dst_vb;
389 
390 	dma_addr_t		mv_buf_dma[2];		/* dma addrs of motion vector in/out bufs */
391 	void			*mv_buf[2];		/* virtual addrs of motion vector bufs */
392 	size_t			mv_buf_size;		/* current motion vector buffer size */
393 	struct vpdma_buf	mmr_adb;		/* shadow reg addr/data block */
394 	struct vpdma_buf	sc_coeff_h;		/* h coeff buffer */
395 	struct vpdma_buf	sc_coeff_v;		/* v coeff buffer */
396 	struct vpdma_desc_list	desc_list;		/* DMA descriptor list */
397 
398 	bool			deinterlacing;		/* using de-interlacer */
399 	bool			load_mmrs;		/* have new shadow reg values */
400 
401 	unsigned int		src_mv_buf_selector;
402 };
403 
404 
405 /*
406  * M2M devices get 2 queues.
407  * Return the queue given the type.
408  */
get_q_data(struct vpe_ctx * ctx,enum v4l2_buf_type type)409 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
410 				     enum v4l2_buf_type type)
411 {
412 	switch (type) {
413 	case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
414 	case V4L2_BUF_TYPE_VIDEO_OUTPUT:
415 		return &ctx->q_data[Q_DATA_SRC];
416 	case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
417 	case V4L2_BUF_TYPE_VIDEO_CAPTURE:
418 		return &ctx->q_data[Q_DATA_DST];
419 	default:
420 		BUG();
421 	}
422 	return NULL;
423 }
424 
read_reg(struct vpe_dev * dev,int offset)425 static u32 read_reg(struct vpe_dev *dev, int offset)
426 {
427 	return ioread32(dev->base + offset);
428 }
429 
write_reg(struct vpe_dev * dev,int offset,u32 value)430 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
431 {
432 	iowrite32(value, dev->base + offset);
433 }
434 
435 /* register field read/write helpers */
get_field(u32 value,u32 mask,int shift)436 static int get_field(u32 value, u32 mask, int shift)
437 {
438 	return (value & (mask << shift)) >> shift;
439 }
440 
read_field_reg(struct vpe_dev * dev,int offset,u32 mask,int shift)441 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
442 {
443 	return get_field(read_reg(dev, offset), mask, shift);
444 }
445 
write_field(u32 * valp,u32 field,u32 mask,int shift)446 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
447 {
448 	u32 val = *valp;
449 
450 	val &= ~(mask << shift);
451 	val |= (field & mask) << shift;
452 	*valp = val;
453 }
454 
write_field_reg(struct vpe_dev * dev,int offset,u32 field,u32 mask,int shift)455 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
456 		u32 mask, int shift)
457 {
458 	u32 val = read_reg(dev, offset);
459 
460 	write_field(&val, field, mask, shift);
461 
462 	write_reg(dev, offset, val);
463 }
464 
465 /*
466  * DMA address/data block for the shadow registers
467  */
468 struct vpe_mmr_adb {
469 	struct vpdma_adb_hdr	out_fmt_hdr;
470 	u32			out_fmt_reg[1];
471 	u32			out_fmt_pad[3];
472 	struct vpdma_adb_hdr	us1_hdr;
473 	u32			us1_regs[8];
474 	struct vpdma_adb_hdr	us2_hdr;
475 	u32			us2_regs[8];
476 	struct vpdma_adb_hdr	us3_hdr;
477 	u32			us3_regs[8];
478 	struct vpdma_adb_hdr	dei_hdr;
479 	u32			dei_regs[8];
480 	struct vpdma_adb_hdr	sc_hdr0;
481 	u32			sc_regs0[7];
482 	u32			sc_pad0[1];
483 	struct vpdma_adb_hdr	sc_hdr8;
484 	u32			sc_regs8[6];
485 	u32			sc_pad8[2];
486 	struct vpdma_adb_hdr	sc_hdr17;
487 	u32			sc_regs17[9];
488 	u32			sc_pad17[3];
489 	struct vpdma_adb_hdr	csc_hdr;
490 	u32			csc_regs[6];
491 	u32			csc_pad[2];
492 };
493 
494 #define GET_OFFSET_TOP(ctx, obj, reg)	\
495 	((obj)->res->start - ctx->dev->res->start + reg)
496 
497 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)	\
498 	VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
499 /*
500  * Set the headers for all of the address/data block structures.
501  */
init_adb_hdrs(struct vpe_ctx * ctx)502 static void init_adb_hdrs(struct vpe_ctx *ctx)
503 {
504 	VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
505 	VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
506 	VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
507 	VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
508 	VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
509 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
510 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
511 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
512 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
513 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
514 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
515 	VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
516 		GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
517 };
518 
519 /*
520  * Allocate or re-allocate the motion vector DMA buffers
521  * There are two buffers, one for input and one for output.
522  * However, the roles are reversed after each field is processed.
523  * In other words, after each field is processed, the previous
524  * output (dst) MV buffer becomes the new input (src) MV buffer.
525  */
realloc_mv_buffers(struct vpe_ctx * ctx,size_t size)526 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
527 {
528 	struct device *dev = ctx->dev->v4l2_dev.dev;
529 
530 	if (ctx->mv_buf_size == size)
531 		return 0;
532 
533 	if (ctx->mv_buf[0])
534 		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
535 			ctx->mv_buf_dma[0]);
536 
537 	if (ctx->mv_buf[1])
538 		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
539 			ctx->mv_buf_dma[1]);
540 
541 	if (size == 0)
542 		return 0;
543 
544 	ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
545 				GFP_KERNEL);
546 	if (!ctx->mv_buf[0]) {
547 		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
548 		return -ENOMEM;
549 	}
550 
551 	ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
552 				GFP_KERNEL);
553 	if (!ctx->mv_buf[1]) {
554 		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
555 		dma_free_coherent(dev, size, ctx->mv_buf[0],
556 			ctx->mv_buf_dma[0]);
557 
558 		return -ENOMEM;
559 	}
560 
561 	ctx->mv_buf_size = size;
562 	ctx->src_mv_buf_selector = 0;
563 
564 	return 0;
565 }
566 
free_mv_buffers(struct vpe_ctx * ctx)567 static void free_mv_buffers(struct vpe_ctx *ctx)
568 {
569 	realloc_mv_buffers(ctx, 0);
570 }
571 
572 /*
573  * While de-interlacing, we keep the two most recent input buffers
574  * around.  This function frees those two buffers when we have
575  * finished processing the current stream.
576  */
free_vbs(struct vpe_ctx * ctx)577 static void free_vbs(struct vpe_ctx *ctx)
578 {
579 	struct vpe_dev *dev = ctx->dev;
580 	unsigned long flags;
581 
582 	if (ctx->src_vbs[2] == NULL)
583 		return;
584 
585 	spin_lock_irqsave(&dev->lock, flags);
586 	if (ctx->src_vbs[2]) {
587 		v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
588 		v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
589 	}
590 	spin_unlock_irqrestore(&dev->lock, flags);
591 }
592 
593 /*
594  * Enable or disable the VPE clocks
595  */
vpe_set_clock_enable(struct vpe_dev * dev,bool on)596 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
597 {
598 	u32 val = 0;
599 
600 	if (on)
601 		val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
602 	write_reg(dev, VPE_CLK_ENABLE, val);
603 }
604 
vpe_top_reset(struct vpe_dev * dev)605 static void vpe_top_reset(struct vpe_dev *dev)
606 {
607 
608 	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
609 		VPE_DATA_PATH_CLK_RESET_SHIFT);
610 
611 	usleep_range(100, 150);
612 
613 	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
614 		VPE_DATA_PATH_CLK_RESET_SHIFT);
615 }
616 
vpe_top_vpdma_reset(struct vpe_dev * dev)617 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
618 {
619 	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
620 		VPE_VPDMA_CLK_RESET_SHIFT);
621 
622 	usleep_range(100, 150);
623 
624 	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
625 		VPE_VPDMA_CLK_RESET_SHIFT);
626 }
627 
628 /*
629  * Load the correct of upsampler coefficients into the shadow MMRs
630  */
set_us_coefficients(struct vpe_ctx * ctx)631 static void set_us_coefficients(struct vpe_ctx *ctx)
632 {
633 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
634 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
635 	u32 *us1_reg = &mmr_adb->us1_regs[0];
636 	u32 *us2_reg = &mmr_adb->us2_regs[0];
637 	u32 *us3_reg = &mmr_adb->us3_regs[0];
638 	const unsigned short *cp, *end_cp;
639 
640 	cp = &us_coeffs[0].anchor_fid0_c0;
641 
642 	if (s_q_data->flags & Q_DATA_INTERLACED)	/* interlaced */
643 		cp += sizeof(us_coeffs[0]) / sizeof(*cp);
644 
645 	end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
646 
647 	while (cp < end_cp) {
648 		write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
649 		write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
650 		*us2_reg++ = *us1_reg;
651 		*us3_reg++ = *us1_reg++;
652 	}
653 	ctx->load_mmrs = true;
654 }
655 
656 /*
657  * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
658  */
set_cfg_and_line_modes(struct vpe_ctx * ctx)659 static void set_cfg_and_line_modes(struct vpe_ctx *ctx)
660 {
661 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
662 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
663 	u32 *us1_reg0 = &mmr_adb->us1_regs[0];
664 	u32 *us2_reg0 = &mmr_adb->us2_regs[0];
665 	u32 *us3_reg0 = &mmr_adb->us3_regs[0];
666 	int line_mode = 1;
667 	int cfg_mode = 1;
668 
669 	/*
670 	 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
671 	 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
672 	 */
673 
674 	if (fmt->fourcc == V4L2_PIX_FMT_NV12) {
675 		cfg_mode = 0;
676 		line_mode = 0;		/* double lines to line buffer */
677 	}
678 
679 	write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
680 	write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
681 	write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
682 
683 	/* regs for now */
684 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
685 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
686 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
687 
688 	/* frame start for input luma */
689 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
690 		VPE_CHAN_LUMA1_IN);
691 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
692 		VPE_CHAN_LUMA2_IN);
693 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
694 		VPE_CHAN_LUMA3_IN);
695 
696 	/* frame start for input chroma */
697 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
698 		VPE_CHAN_CHROMA1_IN);
699 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
700 		VPE_CHAN_CHROMA2_IN);
701 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
702 		VPE_CHAN_CHROMA3_IN);
703 
704 	/* frame start for MV in client */
705 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
706 		VPE_CHAN_MV_IN);
707 
708 	ctx->load_mmrs = true;
709 }
710 
711 /*
712  * Set the shadow registers that are modified when the source
713  * format changes.
714  */
set_src_registers(struct vpe_ctx * ctx)715 static void set_src_registers(struct vpe_ctx *ctx)
716 {
717 	set_us_coefficients(ctx);
718 }
719 
720 /*
721  * Set the shadow registers that are modified when the destination
722  * format changes.
723  */
set_dst_registers(struct vpe_ctx * ctx)724 static void set_dst_registers(struct vpe_ctx *ctx)
725 {
726 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
727 	enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
728 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
729 	u32 val = 0;
730 
731 	if (clrspc == V4L2_COLORSPACE_SRGB)
732 		val |= VPE_RGB_OUT_SELECT;
733 	else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
734 		val |= VPE_COLOR_SEPARATE_422;
735 
736 	/*
737 	 * the source of CHR_DS and CSC is always the scaler, irrespective of
738 	 * whether it's used or not
739 	 */
740 	val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
741 
742 	if (fmt->fourcc != V4L2_PIX_FMT_NV12)
743 		val |= VPE_DS_BYPASS;
744 
745 	mmr_adb->out_fmt_reg[0] = val;
746 
747 	ctx->load_mmrs = true;
748 }
749 
750 /*
751  * Set the de-interlacer shadow register values
752  */
set_dei_regs(struct vpe_ctx * ctx)753 static void set_dei_regs(struct vpe_ctx *ctx)
754 {
755 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
756 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
757 	unsigned int src_h = s_q_data->c_rect.height;
758 	unsigned int src_w = s_q_data->c_rect.width;
759 	u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
760 	bool deinterlace = true;
761 	u32 val = 0;
762 
763 	/*
764 	 * according to TRM, we should set DEI in progressive bypass mode when
765 	 * the input content is progressive, however, DEI is bypassed correctly
766 	 * for both progressive and interlace content in interlace bypass mode.
767 	 * It has been recommended not to use progressive bypass mode.
768 	 */
769 	if ((!ctx->deinterlacing && (s_q_data->flags & Q_DATA_INTERLACED)) ||
770 			!(s_q_data->flags & Q_DATA_INTERLACED)) {
771 		deinterlace = false;
772 		val = VPE_DEI_INTERLACE_BYPASS;
773 	}
774 
775 	src_h = deinterlace ? src_h * 2 : src_h;
776 
777 	val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
778 		(src_w << VPE_DEI_WIDTH_SHIFT) |
779 		VPE_DEI_FIELD_FLUSH;
780 
781 	*dei_mmr0 = val;
782 
783 	ctx->load_mmrs = true;
784 }
785 
set_dei_shadow_registers(struct vpe_ctx * ctx)786 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
787 {
788 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
789 	u32 *dei_mmr = &mmr_adb->dei_regs[0];
790 	const struct vpe_dei_regs *cur = &dei_regs;
791 
792 	dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
793 	dei_mmr[3]  = cur->edi_config_reg;
794 	dei_mmr[4]  = cur->edi_lut_reg0;
795 	dei_mmr[5]  = cur->edi_lut_reg1;
796 	dei_mmr[6]  = cur->edi_lut_reg2;
797 	dei_mmr[7]  = cur->edi_lut_reg3;
798 
799 	ctx->load_mmrs = true;
800 }
801 
802 /*
803  * Set the shadow registers whose values are modified when either the
804  * source or destination format is changed.
805  */
set_srcdst_params(struct vpe_ctx * ctx)806 static int set_srcdst_params(struct vpe_ctx *ctx)
807 {
808 	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
809 	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
810 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
811 	unsigned int src_w = s_q_data->c_rect.width;
812 	unsigned int src_h = s_q_data->c_rect.height;
813 	unsigned int dst_w = d_q_data->c_rect.width;
814 	unsigned int dst_h = d_q_data->c_rect.height;
815 	size_t mv_buf_size;
816 	int ret;
817 
818 	ctx->sequence = 0;
819 	ctx->field = V4L2_FIELD_TOP;
820 
821 	if ((s_q_data->flags & Q_DATA_INTERLACED) &&
822 			!(d_q_data->flags & Q_DATA_INTERLACED)) {
823 		int bytes_per_line;
824 		const struct vpdma_data_format *mv =
825 			&vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
826 
827 		/*
828 		 * we make sure that the source image has a 16 byte aligned
829 		 * stride, we need to do the same for the motion vector buffer
830 		 * by aligning it's stride to the next 16 byte boundry. this
831 		 * extra space will not be used by the de-interlacer, but will
832 		 * ensure that vpdma operates correctly
833 		 */
834 		bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
835 					VPDMA_STRIDE_ALIGN);
836 		mv_buf_size = bytes_per_line * s_q_data->height;
837 
838 		ctx->deinterlacing = true;
839 		src_h <<= 1;
840 	} else {
841 		ctx->deinterlacing = false;
842 		mv_buf_size = 0;
843 	}
844 
845 	free_vbs(ctx);
846 
847 	ret = realloc_mv_buffers(ctx, mv_buf_size);
848 	if (ret)
849 		return ret;
850 
851 	set_cfg_and_line_modes(ctx);
852 	set_dei_regs(ctx);
853 
854 	csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
855 		s_q_data->colorspace, d_q_data->colorspace);
856 
857 	sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
858 	sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
859 
860 	sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
861 		&mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
862 		src_w, src_h, dst_w, dst_h);
863 
864 	return 0;
865 }
866 
867 /*
868  * Return the vpe_ctx structure for a given struct file
869  */
file2ctx(struct file * file)870 static struct vpe_ctx *file2ctx(struct file *file)
871 {
872 	return container_of(file->private_data, struct vpe_ctx, fh);
873 }
874 
875 /*
876  * mem2mem callbacks
877  */
878 
879 /**
880  * job_ready() - check whether an instance is ready to be scheduled to run
881  */
job_ready(void * priv)882 static int job_ready(void *priv)
883 {
884 	struct vpe_ctx *ctx = priv;
885 	int needed = ctx->bufs_per_job;
886 
887 	if (ctx->deinterlacing && ctx->src_vbs[2] == NULL)
888 		needed += 2;	/* need additional two most recent fields */
889 
890 	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < needed)
891 		return 0;
892 
893 	if (v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < needed)
894 		return 0;
895 
896 	return 1;
897 }
898 
job_abort(void * priv)899 static void job_abort(void *priv)
900 {
901 	struct vpe_ctx *ctx = priv;
902 
903 	/* Will cancel the transaction in the next interrupt handler */
904 	ctx->aborting = 1;
905 }
906 
907 /*
908  * Lock access to the device
909  */
vpe_lock(void * priv)910 static void vpe_lock(void *priv)
911 {
912 	struct vpe_ctx *ctx = priv;
913 	struct vpe_dev *dev = ctx->dev;
914 	mutex_lock(&dev->dev_mutex);
915 }
916 
vpe_unlock(void * priv)917 static void vpe_unlock(void *priv)
918 {
919 	struct vpe_ctx *ctx = priv;
920 	struct vpe_dev *dev = ctx->dev;
921 	mutex_unlock(&dev->dev_mutex);
922 }
923 
vpe_dump_regs(struct vpe_dev * dev)924 static void vpe_dump_regs(struct vpe_dev *dev)
925 {
926 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
927 
928 	vpe_dbg(dev, "VPE Registers:\n");
929 
930 	DUMPREG(PID);
931 	DUMPREG(SYSCONFIG);
932 	DUMPREG(INT0_STATUS0_RAW);
933 	DUMPREG(INT0_STATUS0);
934 	DUMPREG(INT0_ENABLE0);
935 	DUMPREG(INT0_STATUS1_RAW);
936 	DUMPREG(INT0_STATUS1);
937 	DUMPREG(INT0_ENABLE1);
938 	DUMPREG(CLK_ENABLE);
939 	DUMPREG(CLK_RESET);
940 	DUMPREG(CLK_FORMAT_SELECT);
941 	DUMPREG(CLK_RANGE_MAP);
942 	DUMPREG(US1_R0);
943 	DUMPREG(US1_R1);
944 	DUMPREG(US1_R2);
945 	DUMPREG(US1_R3);
946 	DUMPREG(US1_R4);
947 	DUMPREG(US1_R5);
948 	DUMPREG(US1_R6);
949 	DUMPREG(US1_R7);
950 	DUMPREG(US2_R0);
951 	DUMPREG(US2_R1);
952 	DUMPREG(US2_R2);
953 	DUMPREG(US2_R3);
954 	DUMPREG(US2_R4);
955 	DUMPREG(US2_R5);
956 	DUMPREG(US2_R6);
957 	DUMPREG(US2_R7);
958 	DUMPREG(US3_R0);
959 	DUMPREG(US3_R1);
960 	DUMPREG(US3_R2);
961 	DUMPREG(US3_R3);
962 	DUMPREG(US3_R4);
963 	DUMPREG(US3_R5);
964 	DUMPREG(US3_R6);
965 	DUMPREG(US3_R7);
966 	DUMPREG(DEI_FRAME_SIZE);
967 	DUMPREG(MDT_BYPASS);
968 	DUMPREG(MDT_SF_THRESHOLD);
969 	DUMPREG(EDI_CONFIG);
970 	DUMPREG(DEI_EDI_LUT_R0);
971 	DUMPREG(DEI_EDI_LUT_R1);
972 	DUMPREG(DEI_EDI_LUT_R2);
973 	DUMPREG(DEI_EDI_LUT_R3);
974 	DUMPREG(DEI_FMD_WINDOW_R0);
975 	DUMPREG(DEI_FMD_WINDOW_R1);
976 	DUMPREG(DEI_FMD_CONTROL_R0);
977 	DUMPREG(DEI_FMD_CONTROL_R1);
978 	DUMPREG(DEI_FMD_STATUS_R0);
979 	DUMPREG(DEI_FMD_STATUS_R1);
980 	DUMPREG(DEI_FMD_STATUS_R2);
981 #undef DUMPREG
982 
983 	sc_dump_regs(dev->sc);
984 	csc_dump_regs(dev->csc);
985 }
986 
add_out_dtd(struct vpe_ctx * ctx,int port)987 static void add_out_dtd(struct vpe_ctx *ctx, int port)
988 {
989 	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
990 	const struct vpe_port_data *p_data = &port_data[port];
991 	struct vb2_buffer *vb = ctx->dst_vb;
992 	struct vpe_fmt *fmt = q_data->fmt;
993 	const struct vpdma_data_format *vpdma_fmt;
994 	int mv_buf_selector = !ctx->src_mv_buf_selector;
995 	dma_addr_t dma_addr;
996 	u32 flags = 0;
997 
998 	if (port == VPE_PORT_MV_OUT) {
999 		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1000 		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1001 	} else {
1002 		/* to incorporate interleaved formats */
1003 		int plane = fmt->coplanar ? p_data->vb_part : 0;
1004 
1005 		vpdma_fmt = fmt->vpdma_fmt[plane];
1006 		dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1007 		if (!dma_addr) {
1008 			vpe_err(ctx->dev,
1009 				"acquiring output buffer(%d) dma_addr failed\n",
1010 				port);
1011 			return;
1012 		}
1013 	}
1014 
1015 	if (q_data->flags & Q_DATA_FRAME_1D)
1016 		flags |= VPDMA_DATA_FRAME_1D;
1017 	if (q_data->flags & Q_DATA_MODE_TILED)
1018 		flags |= VPDMA_DATA_MODE_TILED;
1019 
1020 	vpdma_add_out_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1021 		vpdma_fmt, dma_addr, p_data->channel, flags);
1022 }
1023 
add_in_dtd(struct vpe_ctx * ctx,int port)1024 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1025 {
1026 	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1027 	const struct vpe_port_data *p_data = &port_data[port];
1028 	struct vb2_buffer *vb = ctx->src_vbs[p_data->vb_index];
1029 	struct vpe_fmt *fmt = q_data->fmt;
1030 	const struct vpdma_data_format *vpdma_fmt;
1031 	int mv_buf_selector = ctx->src_mv_buf_selector;
1032 	int field = vb->v4l2_buf.field == V4L2_FIELD_BOTTOM;
1033 	int frame_width, frame_height;
1034 	dma_addr_t dma_addr;
1035 	u32 flags = 0;
1036 
1037 	if (port == VPE_PORT_MV_IN) {
1038 		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1039 		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1040 	} else {
1041 		/* to incorporate interleaved formats */
1042 		int plane = fmt->coplanar ? p_data->vb_part : 0;
1043 
1044 		vpdma_fmt = fmt->vpdma_fmt[plane];
1045 
1046 		dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1047 		if (!dma_addr) {
1048 			vpe_err(ctx->dev,
1049 				"acquiring input buffer(%d) dma_addr failed\n",
1050 				port);
1051 			return;
1052 		}
1053 	}
1054 
1055 	if (q_data->flags & Q_DATA_FRAME_1D)
1056 		flags |= VPDMA_DATA_FRAME_1D;
1057 	if (q_data->flags & Q_DATA_MODE_TILED)
1058 		flags |= VPDMA_DATA_MODE_TILED;
1059 
1060 	frame_width = q_data->c_rect.width;
1061 	frame_height = q_data->c_rect.height;
1062 
1063 	if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1064 		frame_height /= 2;
1065 
1066 	vpdma_add_in_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1067 		vpdma_fmt, dma_addr, p_data->channel, field, flags, frame_width,
1068 		frame_height, 0, 0);
1069 }
1070 
1071 /*
1072  * Enable the expected IRQ sources
1073  */
enable_irqs(struct vpe_ctx * ctx)1074 static void enable_irqs(struct vpe_ctx *ctx)
1075 {
1076 	write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1077 	write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1078 				VPE_DS1_UV_ERROR_INT);
1079 
1080 	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, true);
1081 }
1082 
disable_irqs(struct vpe_ctx * ctx)1083 static void disable_irqs(struct vpe_ctx *ctx)
1084 {
1085 	write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1086 	write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1087 
1088 	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, false);
1089 }
1090 
1091 /* device_run() - prepares and starts the device
1092  *
1093  * This function is only called when both the source and destination
1094  * buffers are in place.
1095  */
device_run(void * priv)1096 static void device_run(void *priv)
1097 {
1098 	struct vpe_ctx *ctx = priv;
1099 	struct sc_data *sc = ctx->dev->sc;
1100 	struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1101 
1102 	if (ctx->deinterlacing && ctx->src_vbs[2] == NULL) {
1103 		ctx->src_vbs[2] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1104 		WARN_ON(ctx->src_vbs[2] == NULL);
1105 		ctx->src_vbs[1] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1106 		WARN_ON(ctx->src_vbs[1] == NULL);
1107 	}
1108 
1109 	ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1110 	WARN_ON(ctx->src_vbs[0] == NULL);
1111 	ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1112 	WARN_ON(ctx->dst_vb == NULL);
1113 
1114 	/* config descriptors */
1115 	if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1116 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1117 		vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1118 		ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1119 		ctx->load_mmrs = false;
1120 	}
1121 
1122 	if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1123 			sc->load_coeff_h) {
1124 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1125 		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1126 			&ctx->sc_coeff_h, 0);
1127 
1128 		sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1129 		sc->load_coeff_h = false;
1130 	}
1131 
1132 	if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1133 			sc->load_coeff_v) {
1134 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1135 		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1136 			&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1137 
1138 		sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1139 		sc->load_coeff_v = false;
1140 	}
1141 
1142 	/* output data descriptors */
1143 	if (ctx->deinterlacing)
1144 		add_out_dtd(ctx, VPE_PORT_MV_OUT);
1145 
1146 	if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1147 		add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1148 	} else {
1149 		add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1150 		if (d_q_data->fmt->coplanar)
1151 			add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1152 	}
1153 
1154 	/* input data descriptors */
1155 	if (ctx->deinterlacing) {
1156 		add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1157 		add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1158 
1159 		add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1160 		add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1161 	}
1162 
1163 	add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1164 	add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1165 
1166 	if (ctx->deinterlacing)
1167 		add_in_dtd(ctx, VPE_PORT_MV_IN);
1168 
1169 	/* sync on channel control descriptors for input ports */
1170 	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1171 	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1172 
1173 	if (ctx->deinterlacing) {
1174 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1175 			VPE_CHAN_LUMA2_IN);
1176 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1177 			VPE_CHAN_CHROMA2_IN);
1178 
1179 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1180 			VPE_CHAN_LUMA3_IN);
1181 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1182 			VPE_CHAN_CHROMA3_IN);
1183 
1184 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1185 	}
1186 
1187 	/* sync on channel control descriptors for output ports */
1188 	if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1189 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1190 			VPE_CHAN_RGB_OUT);
1191 	} else {
1192 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1193 			VPE_CHAN_LUMA_OUT);
1194 		if (d_q_data->fmt->coplanar)
1195 			vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1196 				VPE_CHAN_CHROMA_OUT);
1197 	}
1198 
1199 	if (ctx->deinterlacing)
1200 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1201 
1202 	enable_irqs(ctx);
1203 
1204 	vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1205 	vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list);
1206 }
1207 
dei_error(struct vpe_ctx * ctx)1208 static void dei_error(struct vpe_ctx *ctx)
1209 {
1210 	dev_warn(ctx->dev->v4l2_dev.dev,
1211 		"received DEI error interrupt\n");
1212 }
1213 
ds1_uv_error(struct vpe_ctx * ctx)1214 static void ds1_uv_error(struct vpe_ctx *ctx)
1215 {
1216 	dev_warn(ctx->dev->v4l2_dev.dev,
1217 		"received downsampler error interrupt\n");
1218 }
1219 
vpe_irq(int irq_vpe,void * data)1220 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1221 {
1222 	struct vpe_dev *dev = (struct vpe_dev *)data;
1223 	struct vpe_ctx *ctx;
1224 	struct vpe_q_data *d_q_data;
1225 	struct vb2_buffer *s_vb, *d_vb;
1226 	struct v4l2_buffer *s_buf, *d_buf;
1227 	unsigned long flags;
1228 	u32 irqst0, irqst1;
1229 
1230 	irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1231 	if (irqst0) {
1232 		write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1233 		vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1234 	}
1235 
1236 	irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1237 	if (irqst1) {
1238 		write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1239 		vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1240 	}
1241 
1242 	ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1243 	if (!ctx) {
1244 		vpe_err(dev, "instance released before end of transaction\n");
1245 		goto handled;
1246 	}
1247 
1248 	if (irqst1) {
1249 		if (irqst1 & VPE_DEI_ERROR_INT) {
1250 			irqst1 &= ~VPE_DEI_ERROR_INT;
1251 			dei_error(ctx);
1252 		}
1253 		if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1254 			irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1255 			ds1_uv_error(ctx);
1256 		}
1257 	}
1258 
1259 	if (irqst0) {
1260 		if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1261 			vpdma_clear_list_stat(ctx->dev->vpdma);
1262 
1263 		irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1264 	}
1265 
1266 	if (irqst0 | irqst1) {
1267 		dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: "
1268 			"INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1269 			irqst0, irqst1);
1270 	}
1271 
1272 	disable_irqs(ctx);
1273 
1274 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1275 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1276 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1277 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1278 
1279 	vpdma_reset_desc_list(&ctx->desc_list);
1280 
1281 	 /* the previous dst mv buffer becomes the next src mv buffer */
1282 	ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1283 
1284 	if (ctx->aborting)
1285 		goto finished;
1286 
1287 	s_vb = ctx->src_vbs[0];
1288 	d_vb = ctx->dst_vb;
1289 	s_buf = &s_vb->v4l2_buf;
1290 	d_buf = &d_vb->v4l2_buf;
1291 
1292 	d_buf->flags = s_buf->flags;
1293 
1294 	d_buf->timestamp = s_buf->timestamp;
1295 	if (s_buf->flags & V4L2_BUF_FLAG_TIMECODE)
1296 		d_buf->timecode = s_buf->timecode;
1297 
1298 	d_buf->sequence = ctx->sequence;
1299 
1300 	d_q_data = &ctx->q_data[Q_DATA_DST];
1301 	if (d_q_data->flags & Q_DATA_INTERLACED) {
1302 		d_buf->field = ctx->field;
1303 		if (ctx->field == V4L2_FIELD_BOTTOM) {
1304 			ctx->sequence++;
1305 			ctx->field = V4L2_FIELD_TOP;
1306 		} else {
1307 			WARN_ON(ctx->field != V4L2_FIELD_TOP);
1308 			ctx->field = V4L2_FIELD_BOTTOM;
1309 		}
1310 	} else {
1311 		d_buf->field = V4L2_FIELD_NONE;
1312 		ctx->sequence++;
1313 	}
1314 
1315 	if (ctx->deinterlacing)
1316 		s_vb = ctx->src_vbs[2];
1317 
1318 	spin_lock_irqsave(&dev->lock, flags);
1319 	v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1320 	v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1321 	spin_unlock_irqrestore(&dev->lock, flags);
1322 
1323 	if (ctx->deinterlacing) {
1324 		ctx->src_vbs[2] = ctx->src_vbs[1];
1325 		ctx->src_vbs[1] = ctx->src_vbs[0];
1326 	}
1327 
1328 	ctx->bufs_completed++;
1329 	if (ctx->bufs_completed < ctx->bufs_per_job) {
1330 		device_run(ctx);
1331 		goto handled;
1332 	}
1333 
1334 finished:
1335 	vpe_dbg(ctx->dev, "finishing transaction\n");
1336 	ctx->bufs_completed = 0;
1337 	v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1338 handled:
1339 	return IRQ_HANDLED;
1340 }
1341 
1342 /*
1343  * video ioctls
1344  */
vpe_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1345 static int vpe_querycap(struct file *file, void *priv,
1346 			struct v4l2_capability *cap)
1347 {
1348 	strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
1349 	strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
1350 	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1351 		VPE_MODULE_NAME);
1352 	cap->device_caps  = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1353 	cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1354 	return 0;
1355 }
1356 
__enum_fmt(struct v4l2_fmtdesc * f,u32 type)1357 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1358 {
1359 	int i, index;
1360 	struct vpe_fmt *fmt = NULL;
1361 
1362 	index = 0;
1363 	for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1364 		if (vpe_formats[i].types & type) {
1365 			if (index == f->index) {
1366 				fmt = &vpe_formats[i];
1367 				break;
1368 			}
1369 			index++;
1370 		}
1371 	}
1372 
1373 	if (!fmt)
1374 		return -EINVAL;
1375 
1376 	strncpy(f->description, fmt->name, sizeof(f->description) - 1);
1377 	f->pixelformat = fmt->fourcc;
1378 	return 0;
1379 }
1380 
vpe_enum_fmt(struct file * file,void * priv,struct v4l2_fmtdesc * f)1381 static int vpe_enum_fmt(struct file *file, void *priv,
1382 				struct v4l2_fmtdesc *f)
1383 {
1384 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1385 		return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1386 
1387 	return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1388 }
1389 
vpe_g_fmt(struct file * file,void * priv,struct v4l2_format * f)1390 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1391 {
1392 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1393 	struct vpe_ctx *ctx = file2ctx(file);
1394 	struct vb2_queue *vq;
1395 	struct vpe_q_data *q_data;
1396 	int i;
1397 
1398 	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1399 	if (!vq)
1400 		return -EINVAL;
1401 
1402 	q_data = get_q_data(ctx, f->type);
1403 
1404 	pix->width = q_data->width;
1405 	pix->height = q_data->height;
1406 	pix->pixelformat = q_data->fmt->fourcc;
1407 	pix->field = q_data->field;
1408 
1409 	if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1410 		pix->colorspace = q_data->colorspace;
1411 	} else {
1412 		struct vpe_q_data *s_q_data;
1413 
1414 		/* get colorspace from the source queue */
1415 		s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1416 
1417 		pix->colorspace = s_q_data->colorspace;
1418 	}
1419 
1420 	pix->num_planes = q_data->fmt->coplanar ? 2 : 1;
1421 
1422 	for (i = 0; i < pix->num_planes; i++) {
1423 		pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1424 		pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1425 	}
1426 
1427 	return 0;
1428 }
1429 
__vpe_try_fmt(struct vpe_ctx * ctx,struct v4l2_format * f,struct vpe_fmt * fmt,int type)1430 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1431 		       struct vpe_fmt *fmt, int type)
1432 {
1433 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1434 	struct v4l2_plane_pix_format *plane_fmt;
1435 	unsigned int w_align;
1436 	int i, depth, depth_bytes;
1437 
1438 	if (!fmt || !(fmt->types & type)) {
1439 		vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1440 			pix->pixelformat);
1441 		return -EINVAL;
1442 	}
1443 
1444 	if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE)
1445 		pix->field = V4L2_FIELD_NONE;
1446 
1447 	depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1448 
1449 	/*
1450 	 * the line stride should 16 byte aligned for VPDMA to work, based on
1451 	 * the bytes per pixel, figure out how much the width should be aligned
1452 	 * to make sure line stride is 16 byte aligned
1453 	 */
1454 	depth_bytes = depth >> 3;
1455 
1456 	if (depth_bytes == 3)
1457 		/*
1458 		 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1459 		 * really help in ensuring line stride is 16 byte aligned
1460 		 */
1461 		w_align = 4;
1462 	else
1463 		/*
1464 		 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1465 		 * can ensure a line stride alignment of 16 bytes. For example,
1466 		 * if bpp is 2, then the line stride can be 16 byte aligned if
1467 		 * the width is 8 byte aligned
1468 		 */
1469 		w_align = order_base_2(VPDMA_DESC_ALIGN / depth_bytes);
1470 
1471 	v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1472 			      &pix->height, MIN_H, MAX_H, H_ALIGN,
1473 			      S_ALIGN);
1474 
1475 	pix->num_planes = fmt->coplanar ? 2 : 1;
1476 	pix->pixelformat = fmt->fourcc;
1477 
1478 	if (!pix->colorspace) {
1479 		if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1480 				fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1481 				fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1482 				fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1483 			pix->colorspace = V4L2_COLORSPACE_SRGB;
1484 		} else {
1485 			if (pix->height > 1280)	/* HD */
1486 				pix->colorspace = V4L2_COLORSPACE_REC709;
1487 			else			/* SD */
1488 				pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1489 		}
1490 	}
1491 
1492 	memset(pix->reserved, 0, sizeof(pix->reserved));
1493 	for (i = 0; i < pix->num_planes; i++) {
1494 		plane_fmt = &pix->plane_fmt[i];
1495 		depth = fmt->vpdma_fmt[i]->depth;
1496 
1497 		if (i == VPE_LUMA)
1498 			plane_fmt->bytesperline = (pix->width * depth) >> 3;
1499 		else
1500 			plane_fmt->bytesperline = pix->width;
1501 
1502 		plane_fmt->sizeimage =
1503 				(pix->height * pix->width * depth) >> 3;
1504 
1505 		memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1506 	}
1507 
1508 	return 0;
1509 }
1510 
vpe_try_fmt(struct file * file,void * priv,struct v4l2_format * f)1511 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1512 {
1513 	struct vpe_ctx *ctx = file2ctx(file);
1514 	struct vpe_fmt *fmt = find_format(f);
1515 
1516 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1517 		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1518 	else
1519 		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1520 }
1521 
__vpe_s_fmt(struct vpe_ctx * ctx,struct v4l2_format * f)1522 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1523 {
1524 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1525 	struct v4l2_plane_pix_format *plane_fmt;
1526 	struct vpe_q_data *q_data;
1527 	struct vb2_queue *vq;
1528 	int i;
1529 
1530 	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1531 	if (!vq)
1532 		return -EINVAL;
1533 
1534 	if (vb2_is_busy(vq)) {
1535 		vpe_err(ctx->dev, "queue busy\n");
1536 		return -EBUSY;
1537 	}
1538 
1539 	q_data = get_q_data(ctx, f->type);
1540 	if (!q_data)
1541 		return -EINVAL;
1542 
1543 	q_data->fmt		= find_format(f);
1544 	q_data->width		= pix->width;
1545 	q_data->height		= pix->height;
1546 	q_data->colorspace	= pix->colorspace;
1547 	q_data->field		= pix->field;
1548 
1549 	for (i = 0; i < pix->num_planes; i++) {
1550 		plane_fmt = &pix->plane_fmt[i];
1551 
1552 		q_data->bytesperline[i]	= plane_fmt->bytesperline;
1553 		q_data->sizeimage[i]	= plane_fmt->sizeimage;
1554 	}
1555 
1556 	q_data->c_rect.left	= 0;
1557 	q_data->c_rect.top	= 0;
1558 	q_data->c_rect.width	= q_data->width;
1559 	q_data->c_rect.height	= q_data->height;
1560 
1561 	if (q_data->field == V4L2_FIELD_ALTERNATE)
1562 		q_data->flags |= Q_DATA_INTERLACED;
1563 	else
1564 		q_data->flags &= ~Q_DATA_INTERLACED;
1565 
1566 	vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1567 		f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1568 		q_data->bytesperline[VPE_LUMA]);
1569 	if (q_data->fmt->coplanar)
1570 		vpe_dbg(ctx->dev, " bpl_uv %d\n",
1571 			q_data->bytesperline[VPE_CHROMA]);
1572 
1573 	return 0;
1574 }
1575 
vpe_s_fmt(struct file * file,void * priv,struct v4l2_format * f)1576 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1577 {
1578 	int ret;
1579 	struct vpe_ctx *ctx = file2ctx(file);
1580 
1581 	ret = vpe_try_fmt(file, priv, f);
1582 	if (ret)
1583 		return ret;
1584 
1585 	ret = __vpe_s_fmt(ctx, f);
1586 	if (ret)
1587 		return ret;
1588 
1589 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1590 		set_src_registers(ctx);
1591 	else
1592 		set_dst_registers(ctx);
1593 
1594 	return set_srcdst_params(ctx);
1595 }
1596 
__vpe_try_selection(struct vpe_ctx * ctx,struct v4l2_selection * s)1597 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1598 {
1599 	struct vpe_q_data *q_data;
1600 
1601 	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1602 	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1603 		return -EINVAL;
1604 
1605 	q_data = get_q_data(ctx, s->type);
1606 	if (!q_data)
1607 		return -EINVAL;
1608 
1609 	switch (s->target) {
1610 	case V4L2_SEL_TGT_COMPOSE:
1611 		/*
1612 		 * COMPOSE target is only valid for capture buffer type, return
1613 		 * error for output buffer type
1614 		 */
1615 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1616 			return -EINVAL;
1617 		break;
1618 	case V4L2_SEL_TGT_CROP:
1619 		/*
1620 		 * CROP target is only valid for output buffer type, return
1621 		 * error for capture buffer type
1622 		 */
1623 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1624 			return -EINVAL;
1625 		break;
1626 	/*
1627 	 * bound and default crop/compose targets are invalid targets to
1628 	 * try/set
1629 	 */
1630 	default:
1631 		return -EINVAL;
1632 	}
1633 
1634 	if (s->r.top < 0 || s->r.left < 0) {
1635 		vpe_err(ctx->dev, "negative values for top and left\n");
1636 		s->r.top = s->r.left = 0;
1637 	}
1638 
1639 	v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1640 		&s->r.height, MIN_H, q_data->height, H_ALIGN, S_ALIGN);
1641 
1642 	/* adjust left/top if cropping rectangle is out of bounds */
1643 	if (s->r.left + s->r.width > q_data->width)
1644 		s->r.left = q_data->width - s->r.width;
1645 	if (s->r.top + s->r.height > q_data->height)
1646 		s->r.top = q_data->height - s->r.height;
1647 
1648 	return 0;
1649 }
1650 
vpe_g_selection(struct file * file,void * fh,struct v4l2_selection * s)1651 static int vpe_g_selection(struct file *file, void *fh,
1652 		struct v4l2_selection *s)
1653 {
1654 	struct vpe_ctx *ctx = file2ctx(file);
1655 	struct vpe_q_data *q_data;
1656 	bool use_c_rect = false;
1657 
1658 	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1659 	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1660 		return -EINVAL;
1661 
1662 	q_data = get_q_data(ctx, s->type);
1663 	if (!q_data)
1664 		return -EINVAL;
1665 
1666 	switch (s->target) {
1667 	case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1668 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1669 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1670 			return -EINVAL;
1671 		break;
1672 	case V4L2_SEL_TGT_CROP_BOUNDS:
1673 	case V4L2_SEL_TGT_CROP_DEFAULT:
1674 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1675 			return -EINVAL;
1676 		break;
1677 	case V4L2_SEL_TGT_COMPOSE:
1678 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1679 			return -EINVAL;
1680 		use_c_rect = true;
1681 		break;
1682 	case V4L2_SEL_TGT_CROP:
1683 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1684 			return -EINVAL;
1685 		use_c_rect = true;
1686 		break;
1687 	default:
1688 		return -EINVAL;
1689 	}
1690 
1691 	if (use_c_rect) {
1692 		/*
1693 		 * for CROP/COMPOSE target type, return c_rect params from the
1694 		 * respective buffer type
1695 		 */
1696 		s->r = q_data->c_rect;
1697 	} else {
1698 		/*
1699 		 * for DEFAULT/BOUNDS target type, return width and height from
1700 		 * S_FMT of the respective buffer type
1701 		 */
1702 		s->r.left = 0;
1703 		s->r.top = 0;
1704 		s->r.width = q_data->width;
1705 		s->r.height = q_data->height;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 
vpe_s_selection(struct file * file,void * fh,struct v4l2_selection * s)1712 static int vpe_s_selection(struct file *file, void *fh,
1713 		struct v4l2_selection *s)
1714 {
1715 	struct vpe_ctx *ctx = file2ctx(file);
1716 	struct vpe_q_data *q_data;
1717 	struct v4l2_selection sel = *s;
1718 	int ret;
1719 
1720 	ret = __vpe_try_selection(ctx, &sel);
1721 	if (ret)
1722 		return ret;
1723 
1724 	q_data = get_q_data(ctx, sel.type);
1725 	if (!q_data)
1726 		return -EINVAL;
1727 
1728 	if ((q_data->c_rect.left == sel.r.left) &&
1729 			(q_data->c_rect.top == sel.r.top) &&
1730 			(q_data->c_rect.width == sel.r.width) &&
1731 			(q_data->c_rect.height == sel.r.height)) {
1732 		vpe_dbg(ctx->dev,
1733 			"requested crop/compose values are already set\n");
1734 		return 0;
1735 	}
1736 
1737 	q_data->c_rect = sel.r;
1738 
1739 	return set_srcdst_params(ctx);
1740 }
1741 
1742 /*
1743  * defines number of buffers/frames a context can process with VPE before
1744  * switching to a different context. default value is 1 buffer per context
1745  */
1746 #define V4L2_CID_VPE_BUFS_PER_JOB		(V4L2_CID_USER_TI_VPE_BASE + 0)
1747 
vpe_s_ctrl(struct v4l2_ctrl * ctrl)1748 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1749 {
1750 	struct vpe_ctx *ctx =
1751 		container_of(ctrl->handler, struct vpe_ctx, hdl);
1752 
1753 	switch (ctrl->id) {
1754 	case V4L2_CID_VPE_BUFS_PER_JOB:
1755 		ctx->bufs_per_job = ctrl->val;
1756 		break;
1757 
1758 	default:
1759 		vpe_err(ctx->dev, "Invalid control\n");
1760 		return -EINVAL;
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1767 	.s_ctrl = vpe_s_ctrl,
1768 };
1769 
1770 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1771 	.vidioc_querycap		= vpe_querycap,
1772 
1773 	.vidioc_enum_fmt_vid_cap_mplane	= vpe_enum_fmt,
1774 	.vidioc_g_fmt_vid_cap_mplane	= vpe_g_fmt,
1775 	.vidioc_try_fmt_vid_cap_mplane	= vpe_try_fmt,
1776 	.vidioc_s_fmt_vid_cap_mplane	= vpe_s_fmt,
1777 
1778 	.vidioc_enum_fmt_vid_out_mplane	= vpe_enum_fmt,
1779 	.vidioc_g_fmt_vid_out_mplane	= vpe_g_fmt,
1780 	.vidioc_try_fmt_vid_out_mplane	= vpe_try_fmt,
1781 	.vidioc_s_fmt_vid_out_mplane	= vpe_s_fmt,
1782 
1783 	.vidioc_g_selection		= vpe_g_selection,
1784 	.vidioc_s_selection		= vpe_s_selection,
1785 
1786 	.vidioc_reqbufs			= v4l2_m2m_ioctl_reqbufs,
1787 	.vidioc_querybuf		= v4l2_m2m_ioctl_querybuf,
1788 	.vidioc_qbuf			= v4l2_m2m_ioctl_qbuf,
1789 	.vidioc_dqbuf			= v4l2_m2m_ioctl_dqbuf,
1790 	.vidioc_streamon		= v4l2_m2m_ioctl_streamon,
1791 	.vidioc_streamoff		= v4l2_m2m_ioctl_streamoff,
1792 
1793 	.vidioc_subscribe_event		= v4l2_ctrl_subscribe_event,
1794 	.vidioc_unsubscribe_event	= v4l2_event_unsubscribe,
1795 };
1796 
1797 /*
1798  * Queue operations
1799  */
vpe_queue_setup(struct vb2_queue * vq,const struct v4l2_format * fmt,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],void * alloc_ctxs[])1800 static int vpe_queue_setup(struct vb2_queue *vq,
1801 			   const struct v4l2_format *fmt,
1802 			   unsigned int *nbuffers, unsigned int *nplanes,
1803 			   unsigned int sizes[], void *alloc_ctxs[])
1804 {
1805 	int i;
1806 	struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
1807 	struct vpe_q_data *q_data;
1808 
1809 	q_data = get_q_data(ctx, vq->type);
1810 
1811 	*nplanes = q_data->fmt->coplanar ? 2 : 1;
1812 
1813 	for (i = 0; i < *nplanes; i++) {
1814 		sizes[i] = q_data->sizeimage[i];
1815 		alloc_ctxs[i] = ctx->dev->alloc_ctx;
1816 	}
1817 
1818 	vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
1819 		sizes[VPE_LUMA]);
1820 	if (q_data->fmt->coplanar)
1821 		vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
1822 
1823 	return 0;
1824 }
1825 
vpe_buf_prepare(struct vb2_buffer * vb)1826 static int vpe_buf_prepare(struct vb2_buffer *vb)
1827 {
1828 	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1829 	struct vpe_q_data *q_data;
1830 	int i, num_planes;
1831 
1832 	vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
1833 
1834 	q_data = get_q_data(ctx, vb->vb2_queue->type);
1835 	num_planes = q_data->fmt->coplanar ? 2 : 1;
1836 
1837 	if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1838 		if (!(q_data->flags & Q_DATA_INTERLACED)) {
1839 			vb->v4l2_buf.field = V4L2_FIELD_NONE;
1840 		} else {
1841 			if (vb->v4l2_buf.field != V4L2_FIELD_TOP &&
1842 					vb->v4l2_buf.field != V4L2_FIELD_BOTTOM)
1843 				return -EINVAL;
1844 		}
1845 	}
1846 
1847 	for (i = 0; i < num_planes; i++) {
1848 		if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
1849 			vpe_err(ctx->dev,
1850 				"data will not fit into plane (%lu < %lu)\n",
1851 				vb2_plane_size(vb, i),
1852 				(long) q_data->sizeimage[i]);
1853 			return -EINVAL;
1854 		}
1855 	}
1856 
1857 	for (i = 0; i < num_planes; i++)
1858 		vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
1859 
1860 	return 0;
1861 }
1862 
vpe_buf_queue(struct vb2_buffer * vb)1863 static void vpe_buf_queue(struct vb2_buffer *vb)
1864 {
1865 	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1866 
1867 	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vb);
1868 }
1869 
vpe_start_streaming(struct vb2_queue * q,unsigned int count)1870 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
1871 {
1872 	/* currently we do nothing here */
1873 
1874 	return 0;
1875 }
1876 
vpe_stop_streaming(struct vb2_queue * q)1877 static void vpe_stop_streaming(struct vb2_queue *q)
1878 {
1879 	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
1880 
1881 	vpe_dump_regs(ctx->dev);
1882 	vpdma_dump_regs(ctx->dev->vpdma);
1883 }
1884 
1885 static struct vb2_ops vpe_qops = {
1886 	.queue_setup	 = vpe_queue_setup,
1887 	.buf_prepare	 = vpe_buf_prepare,
1888 	.buf_queue	 = vpe_buf_queue,
1889 	.wait_prepare	 = vb2_ops_wait_prepare,
1890 	.wait_finish	 = vb2_ops_wait_finish,
1891 	.start_streaming = vpe_start_streaming,
1892 	.stop_streaming  = vpe_stop_streaming,
1893 };
1894 
queue_init(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq)1895 static int queue_init(void *priv, struct vb2_queue *src_vq,
1896 		      struct vb2_queue *dst_vq)
1897 {
1898 	struct vpe_ctx *ctx = priv;
1899 	struct vpe_dev *dev = ctx->dev;
1900 	int ret;
1901 
1902 	memset(src_vq, 0, sizeof(*src_vq));
1903 	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1904 	src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
1905 	src_vq->drv_priv = ctx;
1906 	src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
1907 	src_vq->ops = &vpe_qops;
1908 	src_vq->mem_ops = &vb2_dma_contig_memops;
1909 	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1910 	src_vq->lock = &dev->dev_mutex;
1911 
1912 	ret = vb2_queue_init(src_vq);
1913 	if (ret)
1914 		return ret;
1915 
1916 	memset(dst_vq, 0, sizeof(*dst_vq));
1917 	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1918 	dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
1919 	dst_vq->drv_priv = ctx;
1920 	dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
1921 	dst_vq->ops = &vpe_qops;
1922 	dst_vq->mem_ops = &vb2_dma_contig_memops;
1923 	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1924 	dst_vq->lock = &dev->dev_mutex;
1925 
1926 	return vb2_queue_init(dst_vq);
1927 }
1928 
1929 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
1930 	.ops = &vpe_ctrl_ops,
1931 	.id = V4L2_CID_VPE_BUFS_PER_JOB,
1932 	.name = "Buffers Per Transaction",
1933 	.type = V4L2_CTRL_TYPE_INTEGER,
1934 	.def = VPE_DEF_BUFS_PER_JOB,
1935 	.min = 1,
1936 	.max = VIDEO_MAX_FRAME,
1937 	.step = 1,
1938 };
1939 
1940 /*
1941  * File operations
1942  */
vpe_open(struct file * file)1943 static int vpe_open(struct file *file)
1944 {
1945 	struct vpe_dev *dev = video_drvdata(file);
1946 	struct vpe_q_data *s_q_data;
1947 	struct v4l2_ctrl_handler *hdl;
1948 	struct vpe_ctx *ctx;
1949 	int ret;
1950 
1951 	vpe_dbg(dev, "vpe_open\n");
1952 
1953 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1954 	if (!ctx)
1955 		return -ENOMEM;
1956 
1957 	ctx->dev = dev;
1958 
1959 	if (mutex_lock_interruptible(&dev->dev_mutex)) {
1960 		ret = -ERESTARTSYS;
1961 		goto free_ctx;
1962 	}
1963 
1964 	ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
1965 			VPDMA_LIST_TYPE_NORMAL);
1966 	if (ret != 0)
1967 		goto unlock;
1968 
1969 	ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
1970 	if (ret != 0)
1971 		goto free_desc_list;
1972 
1973 	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
1974 	if (ret != 0)
1975 		goto free_mmr_adb;
1976 
1977 	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
1978 	if (ret != 0)
1979 		goto free_sc_h;
1980 
1981 	init_adb_hdrs(ctx);
1982 
1983 	v4l2_fh_init(&ctx->fh, video_devdata(file));
1984 	file->private_data = &ctx->fh;
1985 
1986 	hdl = &ctx->hdl;
1987 	v4l2_ctrl_handler_init(hdl, 1);
1988 	v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
1989 	if (hdl->error) {
1990 		ret = hdl->error;
1991 		goto exit_fh;
1992 	}
1993 	ctx->fh.ctrl_handler = hdl;
1994 	v4l2_ctrl_handler_setup(hdl);
1995 
1996 	s_q_data = &ctx->q_data[Q_DATA_SRC];
1997 	s_q_data->fmt = &vpe_formats[2];
1998 	s_q_data->width = 1920;
1999 	s_q_data->height = 1080;
2000 	s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2001 			s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2002 	s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2003 			s_q_data->height);
2004 	s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2005 	s_q_data->field = V4L2_FIELD_NONE;
2006 	s_q_data->c_rect.left = 0;
2007 	s_q_data->c_rect.top = 0;
2008 	s_q_data->c_rect.width = s_q_data->width;
2009 	s_q_data->c_rect.height = s_q_data->height;
2010 	s_q_data->flags = 0;
2011 
2012 	ctx->q_data[Q_DATA_DST] = *s_q_data;
2013 
2014 	set_dei_shadow_registers(ctx);
2015 	set_src_registers(ctx);
2016 	set_dst_registers(ctx);
2017 	ret = set_srcdst_params(ctx);
2018 	if (ret)
2019 		goto exit_fh;
2020 
2021 	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2022 
2023 	if (IS_ERR(ctx->fh.m2m_ctx)) {
2024 		ret = PTR_ERR(ctx->fh.m2m_ctx);
2025 		goto exit_fh;
2026 	}
2027 
2028 	v4l2_fh_add(&ctx->fh);
2029 
2030 	/*
2031 	 * for now, just report the creation of the first instance, we can later
2032 	 * optimize the driver to enable or disable clocks when the first
2033 	 * instance is created or the last instance released
2034 	 */
2035 	if (atomic_inc_return(&dev->num_instances) == 1)
2036 		vpe_dbg(dev, "first instance created\n");
2037 
2038 	ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2039 
2040 	ctx->load_mmrs = true;
2041 
2042 	vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2043 		ctx, ctx->fh.m2m_ctx);
2044 
2045 	mutex_unlock(&dev->dev_mutex);
2046 
2047 	return 0;
2048 exit_fh:
2049 	v4l2_ctrl_handler_free(hdl);
2050 	v4l2_fh_exit(&ctx->fh);
2051 	vpdma_free_desc_buf(&ctx->sc_coeff_v);
2052 free_sc_h:
2053 	vpdma_free_desc_buf(&ctx->sc_coeff_h);
2054 free_mmr_adb:
2055 	vpdma_free_desc_buf(&ctx->mmr_adb);
2056 free_desc_list:
2057 	vpdma_free_desc_list(&ctx->desc_list);
2058 unlock:
2059 	mutex_unlock(&dev->dev_mutex);
2060 free_ctx:
2061 	kfree(ctx);
2062 	return ret;
2063 }
2064 
vpe_release(struct file * file)2065 static int vpe_release(struct file *file)
2066 {
2067 	struct vpe_dev *dev = video_drvdata(file);
2068 	struct vpe_ctx *ctx = file2ctx(file);
2069 
2070 	vpe_dbg(dev, "releasing instance %p\n", ctx);
2071 
2072 	mutex_lock(&dev->dev_mutex);
2073 	free_vbs(ctx);
2074 	free_mv_buffers(ctx);
2075 	vpdma_free_desc_list(&ctx->desc_list);
2076 	vpdma_free_desc_buf(&ctx->mmr_adb);
2077 
2078 	v4l2_fh_del(&ctx->fh);
2079 	v4l2_fh_exit(&ctx->fh);
2080 	v4l2_ctrl_handler_free(&ctx->hdl);
2081 	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2082 
2083 	kfree(ctx);
2084 
2085 	/*
2086 	 * for now, just report the release of the last instance, we can later
2087 	 * optimize the driver to enable or disable clocks when the first
2088 	 * instance is created or the last instance released
2089 	 */
2090 	if (atomic_dec_return(&dev->num_instances) == 0)
2091 		vpe_dbg(dev, "last instance released\n");
2092 
2093 	mutex_unlock(&dev->dev_mutex);
2094 
2095 	return 0;
2096 }
2097 
2098 static const struct v4l2_file_operations vpe_fops = {
2099 	.owner		= THIS_MODULE,
2100 	.open		= vpe_open,
2101 	.release	= vpe_release,
2102 	.poll		= v4l2_m2m_fop_poll,
2103 	.unlocked_ioctl	= video_ioctl2,
2104 	.mmap		= v4l2_m2m_fop_mmap,
2105 };
2106 
2107 static struct video_device vpe_videodev = {
2108 	.name		= VPE_MODULE_NAME,
2109 	.fops		= &vpe_fops,
2110 	.ioctl_ops	= &vpe_ioctl_ops,
2111 	.minor		= -1,
2112 	.release	= video_device_release_empty,
2113 	.vfl_dir	= VFL_DIR_M2M,
2114 };
2115 
2116 static struct v4l2_m2m_ops m2m_ops = {
2117 	.device_run	= device_run,
2118 	.job_ready	= job_ready,
2119 	.job_abort	= job_abort,
2120 	.lock		= vpe_lock,
2121 	.unlock		= vpe_unlock,
2122 };
2123 
vpe_runtime_get(struct platform_device * pdev)2124 static int vpe_runtime_get(struct platform_device *pdev)
2125 {
2126 	int r;
2127 
2128 	dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2129 
2130 	r = pm_runtime_get_sync(&pdev->dev);
2131 	WARN_ON(r < 0);
2132 	return r < 0 ? r : 0;
2133 }
2134 
vpe_runtime_put(struct platform_device * pdev)2135 static void vpe_runtime_put(struct platform_device *pdev)
2136 {
2137 
2138 	int r;
2139 
2140 	dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2141 
2142 	r = pm_runtime_put_sync(&pdev->dev);
2143 	WARN_ON(r < 0 && r != -ENOSYS);
2144 }
2145 
vpe_fw_cb(struct platform_device * pdev)2146 static void vpe_fw_cb(struct platform_device *pdev)
2147 {
2148 	struct vpe_dev *dev = platform_get_drvdata(pdev);
2149 	struct video_device *vfd;
2150 	int ret;
2151 
2152 	vfd = &dev->vfd;
2153 	*vfd = vpe_videodev;
2154 	vfd->lock = &dev->dev_mutex;
2155 	vfd->v4l2_dev = &dev->v4l2_dev;
2156 
2157 	ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2158 	if (ret) {
2159 		vpe_err(dev, "Failed to register video device\n");
2160 
2161 		vpe_set_clock_enable(dev, 0);
2162 		vpe_runtime_put(pdev);
2163 		pm_runtime_disable(&pdev->dev);
2164 		v4l2_m2m_release(dev->m2m_dev);
2165 		vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2166 		v4l2_device_unregister(&dev->v4l2_dev);
2167 
2168 		return;
2169 	}
2170 
2171 	video_set_drvdata(vfd, dev);
2172 	snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name);
2173 	dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2174 		vfd->num);
2175 }
2176 
vpe_probe(struct platform_device * pdev)2177 static int vpe_probe(struct platform_device *pdev)
2178 {
2179 	struct vpe_dev *dev;
2180 	int ret, irq, func;
2181 
2182 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2183 	if (!dev)
2184 		return -ENOMEM;
2185 
2186 	spin_lock_init(&dev->lock);
2187 
2188 	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2189 	if (ret)
2190 		return ret;
2191 
2192 	atomic_set(&dev->num_instances, 0);
2193 	mutex_init(&dev->dev_mutex);
2194 
2195 	dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2196 			"vpe_top");
2197 	/*
2198 	 * HACK: we get resource info from device tree in the form of a list of
2199 	 * VPE sub blocks, the driver currently uses only the base of vpe_top
2200 	 * for register access, the driver should be changed later to access
2201 	 * registers based on the sub block base addresses
2202 	 */
2203 	dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2204 	if (!dev->base) {
2205 		ret = -ENOMEM;
2206 		goto v4l2_dev_unreg;
2207 	}
2208 
2209 	irq = platform_get_irq(pdev, 0);
2210 	ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2211 			dev);
2212 	if (ret)
2213 		goto v4l2_dev_unreg;
2214 
2215 	platform_set_drvdata(pdev, dev);
2216 
2217 	dev->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
2218 	if (IS_ERR(dev->alloc_ctx)) {
2219 		vpe_err(dev, "Failed to alloc vb2 context\n");
2220 		ret = PTR_ERR(dev->alloc_ctx);
2221 		goto v4l2_dev_unreg;
2222 	}
2223 
2224 	dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2225 	if (IS_ERR(dev->m2m_dev)) {
2226 		vpe_err(dev, "Failed to init mem2mem device\n");
2227 		ret = PTR_ERR(dev->m2m_dev);
2228 		goto rel_ctx;
2229 	}
2230 
2231 	pm_runtime_enable(&pdev->dev);
2232 
2233 	ret = vpe_runtime_get(pdev);
2234 	if (ret)
2235 		goto rel_m2m;
2236 
2237 	/* Perform clk enable followed by reset */
2238 	vpe_set_clock_enable(dev, 1);
2239 
2240 	vpe_top_reset(dev);
2241 
2242 	func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2243 		VPE_PID_FUNC_SHIFT);
2244 	vpe_dbg(dev, "VPE PID function %x\n", func);
2245 
2246 	vpe_top_vpdma_reset(dev);
2247 
2248 	dev->sc = sc_create(pdev);
2249 	if (IS_ERR(dev->sc)) {
2250 		ret = PTR_ERR(dev->sc);
2251 		goto runtime_put;
2252 	}
2253 
2254 	dev->csc = csc_create(pdev);
2255 	if (IS_ERR(dev->csc)) {
2256 		ret = PTR_ERR(dev->csc);
2257 		goto runtime_put;
2258 	}
2259 
2260 	dev->vpdma = vpdma_create(pdev, vpe_fw_cb);
2261 	if (IS_ERR(dev->vpdma)) {
2262 		ret = PTR_ERR(dev->vpdma);
2263 		goto runtime_put;
2264 	}
2265 
2266 	return 0;
2267 
2268 runtime_put:
2269 	vpe_runtime_put(pdev);
2270 rel_m2m:
2271 	pm_runtime_disable(&pdev->dev);
2272 	v4l2_m2m_release(dev->m2m_dev);
2273 rel_ctx:
2274 	vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2275 v4l2_dev_unreg:
2276 	v4l2_device_unregister(&dev->v4l2_dev);
2277 
2278 	return ret;
2279 }
2280 
vpe_remove(struct platform_device * pdev)2281 static int vpe_remove(struct platform_device *pdev)
2282 {
2283 	struct vpe_dev *dev = platform_get_drvdata(pdev);
2284 
2285 	v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2286 
2287 	v4l2_m2m_release(dev->m2m_dev);
2288 	video_unregister_device(&dev->vfd);
2289 	v4l2_device_unregister(&dev->v4l2_dev);
2290 	vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2291 
2292 	vpe_set_clock_enable(dev, 0);
2293 	vpe_runtime_put(pdev);
2294 	pm_runtime_disable(&pdev->dev);
2295 
2296 	return 0;
2297 }
2298 
2299 #if defined(CONFIG_OF)
2300 static const struct of_device_id vpe_of_match[] = {
2301 	{
2302 		.compatible = "ti,vpe",
2303 	},
2304 	{},
2305 };
2306 #endif
2307 
2308 static struct platform_driver vpe_pdrv = {
2309 	.probe		= vpe_probe,
2310 	.remove		= vpe_remove,
2311 	.driver		= {
2312 		.name	= VPE_MODULE_NAME,
2313 		.of_match_table = of_match_ptr(vpe_of_match),
2314 	},
2315 };
2316 
2317 module_platform_driver(vpe_pdrv);
2318 
2319 MODULE_DESCRIPTION("TI VPE driver");
2320 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2321 MODULE_LICENSE("GPL");
2322