1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 #define CPC_TX_QUEUE_TRIGGER_LOW	25
121 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
122 
123 /*
124  * CAN-Message representation in a CPC_MSG. Message object type is
125  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127  */
128 struct cpc_can_msg {
129 	__le32 id;
130 	u8 length;
131 	u8 msg[8];
132 };
133 
134 /* Representation of the CAN parameters for the SJA1000 controller */
135 struct cpc_sja1000_params {
136 	u8 mode;
137 	u8 acc_code0;
138 	u8 acc_code1;
139 	u8 acc_code2;
140 	u8 acc_code3;
141 	u8 acc_mask0;
142 	u8 acc_mask1;
143 	u8 acc_mask2;
144 	u8 acc_mask3;
145 	u8 btr0;
146 	u8 btr1;
147 	u8 outp_contr;
148 };
149 
150 /* CAN params message representation */
151 struct cpc_can_params {
152 	u8 cc_type;
153 
154 	/* Will support M16C CAN controller in the future */
155 	union {
156 		struct cpc_sja1000_params sja1000;
157 	} cc_params;
158 };
159 
160 /* Structure for confirmed message handling */
161 struct cpc_confirm {
162 	u8 error; /* error code */
163 };
164 
165 /* Structure for overrun conditions */
166 struct cpc_overrun {
167 	u8 event;
168 	u8 count;
169 };
170 
171 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
172 struct cpc_sja1000_can_error {
173 	u8 ecc;
174 	u8 rxerr;
175 	u8 txerr;
176 };
177 
178 /* structure for CAN error conditions */
179 struct cpc_can_error {
180 	u8 ecode;
181 
182 	struct {
183 		u8 cc_type;
184 
185 		/* Other controllers may also provide error code capture regs */
186 		union {
187 			struct cpc_sja1000_can_error sja1000;
188 		} regs;
189 	} cc;
190 };
191 
192 /*
193  * Structure containing RX/TX error counter. This structure is used to request
194  * the values of the CAN controllers TX and RX error counter.
195  */
196 struct cpc_can_err_counter {
197 	u8 rx;
198 	u8 tx;
199 };
200 
201 /* Main message type used between library and application */
202 struct __packed ems_cpc_msg {
203 	u8 type;	/* type of message */
204 	u8 length;	/* length of data within union 'msg' */
205 	u8 msgid;	/* confirmation handle */
206 	__le32 ts_sec;	/* timestamp in seconds */
207 	__le32 ts_nsec;	/* timestamp in nano seconds */
208 
209 	union {
210 		u8 generic[64];
211 		struct cpc_can_msg can_msg;
212 		struct cpc_can_params can_params;
213 		struct cpc_confirm confirmation;
214 		struct cpc_overrun overrun;
215 		struct cpc_can_error error;
216 		struct cpc_can_err_counter err_counter;
217 		u8 can_state;
218 	} msg;
219 };
220 
221 /*
222  * Table of devices that work with this driver
223  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224  */
225 static struct usb_device_id ems_usb_table[] = {
226 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227 	{} /* Terminating entry */
228 };
229 
230 MODULE_DEVICE_TABLE(usb, ems_usb_table);
231 
232 #define RX_BUFFER_SIZE      64
233 #define CPC_HEADER_SIZE     4
234 #define INTR_IN_BUFFER_SIZE 4
235 
236 #define MAX_RX_URBS 10
237 #define MAX_TX_URBS 10
238 
239 struct ems_usb;
240 
241 struct ems_tx_urb_context {
242 	struct ems_usb *dev;
243 
244 	u32 echo_index;
245 	u8 dlc;
246 };
247 
248 struct ems_usb {
249 	struct can_priv can; /* must be the first member */
250 
251 	struct sk_buff *echo_skb[MAX_TX_URBS];
252 
253 	struct usb_device *udev;
254 	struct net_device *netdev;
255 
256 	atomic_t active_tx_urbs;
257 	struct usb_anchor tx_submitted;
258 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259 
260 	struct usb_anchor rx_submitted;
261 
262 	struct urb *intr_urb;
263 
264 	u8 *tx_msg_buffer;
265 
266 	u8 *intr_in_buffer;
267 	unsigned int free_slots; /* remember number of available slots */
268 
269 	struct ems_cpc_msg active_params; /* active controller parameters */
270 };
271 
ems_usb_read_interrupt_callback(struct urb * urb)272 static void ems_usb_read_interrupt_callback(struct urb *urb)
273 {
274 	struct ems_usb *dev = urb->context;
275 	struct net_device *netdev = dev->netdev;
276 	int err;
277 
278 	if (!netif_device_present(netdev))
279 		return;
280 
281 	switch (urb->status) {
282 	case 0:
283 		dev->free_slots = dev->intr_in_buffer[1];
284 		if(dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH){
285 			if (netif_queue_stopped(netdev)){
286 				netif_wake_queue(netdev);
287 			}
288 		}
289 		break;
290 
291 	case -ECONNRESET: /* unlink */
292 	case -ENOENT:
293 	case -ESHUTDOWN:
294 		return;
295 
296 	default:
297 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
298 		break;
299 	}
300 
301 	err = usb_submit_urb(urb, GFP_ATOMIC);
302 
303 	if (err == -ENODEV)
304 		netif_device_detach(netdev);
305 	else if (err)
306 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
307 }
308 
ems_usb_rx_can_msg(struct ems_usb * dev,struct ems_cpc_msg * msg)309 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
310 {
311 	struct can_frame *cf;
312 	struct sk_buff *skb;
313 	int i;
314 	struct net_device_stats *stats = &dev->netdev->stats;
315 
316 	skb = alloc_can_skb(dev->netdev, &cf);
317 	if (skb == NULL)
318 		return;
319 
320 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
321 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
322 
323 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
324 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
325 		cf->can_id |= CAN_EFF_FLAG;
326 
327 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
328 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
329 		cf->can_id |= CAN_RTR_FLAG;
330 	} else {
331 		for (i = 0; i < cf->can_dlc; i++)
332 			cf->data[i] = msg->msg.can_msg.msg[i];
333 	}
334 
335 	netif_rx(skb);
336 
337 	stats->rx_packets++;
338 	stats->rx_bytes += cf->can_dlc;
339 }
340 
ems_usb_rx_err(struct ems_usb * dev,struct ems_cpc_msg * msg)341 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
342 {
343 	struct can_frame *cf;
344 	struct sk_buff *skb;
345 	struct net_device_stats *stats = &dev->netdev->stats;
346 
347 	skb = alloc_can_err_skb(dev->netdev, &cf);
348 	if (skb == NULL)
349 		return;
350 
351 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
352 		u8 state = msg->msg.can_state;
353 
354 		if (state & SJA1000_SR_BS) {
355 			dev->can.state = CAN_STATE_BUS_OFF;
356 			cf->can_id |= CAN_ERR_BUSOFF;
357 
358 			dev->can.can_stats.bus_off++;
359 			can_bus_off(dev->netdev);
360 		} else if (state & SJA1000_SR_ES) {
361 			dev->can.state = CAN_STATE_ERROR_WARNING;
362 			dev->can.can_stats.error_warning++;
363 		} else {
364 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
365 			dev->can.can_stats.error_passive++;
366 		}
367 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
368 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
369 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
370 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
371 
372 		/* bus error interrupt */
373 		dev->can.can_stats.bus_error++;
374 		stats->rx_errors++;
375 
376 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
377 
378 		switch (ecc & SJA1000_ECC_MASK) {
379 		case SJA1000_ECC_BIT:
380 			cf->data[2] |= CAN_ERR_PROT_BIT;
381 			break;
382 		case SJA1000_ECC_FORM:
383 			cf->data[2] |= CAN_ERR_PROT_FORM;
384 			break;
385 		case SJA1000_ECC_STUFF:
386 			cf->data[2] |= CAN_ERR_PROT_STUFF;
387 			break;
388 		default:
389 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
390 			cf->data[3] = ecc & SJA1000_ECC_SEG;
391 			break;
392 		}
393 
394 		/* Error occurred during transmission? */
395 		if ((ecc & SJA1000_ECC_DIR) == 0)
396 			cf->data[2] |= CAN_ERR_PROT_TX;
397 
398 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
399 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
400 			cf->data[1] = (txerr > rxerr) ?
401 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
402 		}
403 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
404 		cf->can_id |= CAN_ERR_CRTL;
405 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
406 
407 		stats->rx_over_errors++;
408 		stats->rx_errors++;
409 	}
410 
411 	netif_rx(skb);
412 
413 	stats->rx_packets++;
414 	stats->rx_bytes += cf->can_dlc;
415 }
416 
417 /*
418  * callback for bulk IN urb
419  */
ems_usb_read_bulk_callback(struct urb * urb)420 static void ems_usb_read_bulk_callback(struct urb *urb)
421 {
422 	struct ems_usb *dev = urb->context;
423 	struct net_device *netdev;
424 	int retval;
425 
426 	netdev = dev->netdev;
427 
428 	if (!netif_device_present(netdev))
429 		return;
430 
431 	switch (urb->status) {
432 	case 0: /* success */
433 		break;
434 
435 	case -ENOENT:
436 		return;
437 
438 	default:
439 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
440 		goto resubmit_urb;
441 	}
442 
443 	if (urb->actual_length > CPC_HEADER_SIZE) {
444 		struct ems_cpc_msg *msg;
445 		u8 *ibuf = urb->transfer_buffer;
446 		u8 msg_count, start;
447 
448 		msg_count = ibuf[0] & ~0x80;
449 
450 		start = CPC_HEADER_SIZE;
451 
452 		while (msg_count) {
453 			msg = (struct ems_cpc_msg *)&ibuf[start];
454 
455 			switch (msg->type) {
456 			case CPC_MSG_TYPE_CAN_STATE:
457 				/* Process CAN state changes */
458 				ems_usb_rx_err(dev, msg);
459 				break;
460 
461 			case CPC_MSG_TYPE_CAN_FRAME:
462 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
463 			case CPC_MSG_TYPE_RTR_FRAME:
464 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
465 				ems_usb_rx_can_msg(dev, msg);
466 				break;
467 
468 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
469 				/* Process errorframe */
470 				ems_usb_rx_err(dev, msg);
471 				break;
472 
473 			case CPC_MSG_TYPE_OVERRUN:
474 				/* Message lost while receiving */
475 				ems_usb_rx_err(dev, msg);
476 				break;
477 			}
478 
479 			start += CPC_MSG_HEADER_LEN + msg->length;
480 			msg_count--;
481 
482 			if (start > urb->transfer_buffer_length) {
483 				netdev_err(netdev, "format error\n");
484 				break;
485 			}
486 		}
487 	}
488 
489 resubmit_urb:
490 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
491 			  urb->transfer_buffer, RX_BUFFER_SIZE,
492 			  ems_usb_read_bulk_callback, dev);
493 
494 	retval = usb_submit_urb(urb, GFP_ATOMIC);
495 
496 	if (retval == -ENODEV)
497 		netif_device_detach(netdev);
498 	else if (retval)
499 		netdev_err(netdev,
500 			   "failed resubmitting read bulk urb: %d\n", retval);
501 }
502 
503 /*
504  * callback for bulk IN urb
505  */
ems_usb_write_bulk_callback(struct urb * urb)506 static void ems_usb_write_bulk_callback(struct urb *urb)
507 {
508 	struct ems_tx_urb_context *context = urb->context;
509 	struct ems_usb *dev;
510 	struct net_device *netdev;
511 
512 	BUG_ON(!context);
513 
514 	dev = context->dev;
515 	netdev = dev->netdev;
516 
517 	/* free up our allocated buffer */
518 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
519 			  urb->transfer_buffer, urb->transfer_dma);
520 
521 	atomic_dec(&dev->active_tx_urbs);
522 
523 	if (!netif_device_present(netdev))
524 		return;
525 
526 	if (urb->status)
527 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
528 
529 	netdev->trans_start = jiffies;
530 
531 	/* transmission complete interrupt */
532 	netdev->stats.tx_packets++;
533 	netdev->stats.tx_bytes += context->dlc;
534 
535 	can_get_echo_skb(netdev, context->echo_index);
536 
537 	/* Release context */
538 	context->echo_index = MAX_TX_URBS;
539 
540 }
541 
542 /*
543  * Send the given CPC command synchronously
544  */
ems_usb_command_msg(struct ems_usb * dev,struct ems_cpc_msg * msg)545 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
546 {
547 	int actual_length;
548 
549 	/* Copy payload */
550 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
551 	       msg->length + CPC_MSG_HEADER_LEN);
552 
553 	/* Clear header */
554 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
555 
556 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
557 			    &dev->tx_msg_buffer[0],
558 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
559 			    &actual_length, 1000);
560 }
561 
562 /*
563  * Change CAN controllers' mode register
564  */
ems_usb_write_mode(struct ems_usb * dev,u8 mode)565 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
566 {
567 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
568 
569 	return ems_usb_command_msg(dev, &dev->active_params);
570 }
571 
572 /*
573  * Send a CPC_Control command to change behaviour when interface receives a CAN
574  * message, bus error or CAN state changed notifications.
575  */
ems_usb_control_cmd(struct ems_usb * dev,u8 val)576 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
577 {
578 	struct ems_cpc_msg cmd;
579 
580 	cmd.type = CPC_CMD_TYPE_CONTROL;
581 	cmd.length = CPC_MSG_HEADER_LEN + 1;
582 
583 	cmd.msgid = 0;
584 
585 	cmd.msg.generic[0] = val;
586 
587 	return ems_usb_command_msg(dev, &cmd);
588 }
589 
590 /*
591  * Start interface
592  */
ems_usb_start(struct ems_usb * dev)593 static int ems_usb_start(struct ems_usb *dev)
594 {
595 	struct net_device *netdev = dev->netdev;
596 	int err, i;
597 
598 	dev->intr_in_buffer[0] = 0;
599 	dev->free_slots = 50; /* initial size */
600 
601 	for (i = 0; i < MAX_RX_URBS; i++) {
602 		struct urb *urb = NULL;
603 		u8 *buf = NULL;
604 
605 		/* create a URB, and a buffer for it */
606 		urb = usb_alloc_urb(0, GFP_KERNEL);
607 		if (!urb) {
608 			netdev_err(netdev, "No memory left for URBs\n");
609 			err = -ENOMEM;
610 			break;
611 		}
612 
613 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
614 					 &urb->transfer_dma);
615 		if (!buf) {
616 			netdev_err(netdev, "No memory left for USB buffer\n");
617 			usb_free_urb(urb);
618 			err = -ENOMEM;
619 			break;
620 		}
621 
622 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
623 				  buf, RX_BUFFER_SIZE,
624 				  ems_usb_read_bulk_callback, dev);
625 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
626 		usb_anchor_urb(urb, &dev->rx_submitted);
627 
628 		err = usb_submit_urb(urb, GFP_KERNEL);
629 		if (err) {
630 			usb_unanchor_urb(urb);
631 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
632 					  urb->transfer_dma);
633 			usb_free_urb(urb);
634 			break;
635 		}
636 
637 		/* Drop reference, USB core will take care of freeing it */
638 		usb_free_urb(urb);
639 	}
640 
641 	/* Did we submit any URBs */
642 	if (i == 0) {
643 		netdev_warn(netdev, "couldn't setup read URBs\n");
644 		return err;
645 	}
646 
647 	/* Warn if we've couldn't transmit all the URBs */
648 	if (i < MAX_RX_URBS)
649 		netdev_warn(netdev, "rx performance may be slow\n");
650 
651 	/* Setup and start interrupt URB */
652 	usb_fill_int_urb(dev->intr_urb, dev->udev,
653 			 usb_rcvintpipe(dev->udev, 1),
654 			 dev->intr_in_buffer,
655 			 INTR_IN_BUFFER_SIZE,
656 			 ems_usb_read_interrupt_callback, dev, 1);
657 
658 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
659 	if (err) {
660 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
661 
662 		return err;
663 	}
664 
665 	/* CPC-USB will transfer received message to host */
666 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
667 	if (err)
668 		goto failed;
669 
670 	/* CPC-USB will transfer CAN state changes to host */
671 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
672 	if (err)
673 		goto failed;
674 
675 	/* CPC-USB will transfer bus errors to host */
676 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
677 	if (err)
678 		goto failed;
679 
680 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
681 	if (err)
682 		goto failed;
683 
684 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
685 
686 	return 0;
687 
688 failed:
689 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
690 
691 	return err;
692 }
693 
unlink_all_urbs(struct ems_usb * dev)694 static void unlink_all_urbs(struct ems_usb *dev)
695 {
696 	int i;
697 
698 	usb_unlink_urb(dev->intr_urb);
699 
700 	usb_kill_anchored_urbs(&dev->rx_submitted);
701 
702 	usb_kill_anchored_urbs(&dev->tx_submitted);
703 	atomic_set(&dev->active_tx_urbs, 0);
704 
705 	for (i = 0; i < MAX_TX_URBS; i++)
706 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
707 }
708 
ems_usb_open(struct net_device * netdev)709 static int ems_usb_open(struct net_device *netdev)
710 {
711 	struct ems_usb *dev = netdev_priv(netdev);
712 	int err;
713 
714 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
715 	if (err)
716 		return err;
717 
718 	/* common open */
719 	err = open_candev(netdev);
720 	if (err)
721 		return err;
722 
723 	/* finally start device */
724 	err = ems_usb_start(dev);
725 	if (err) {
726 		if (err == -ENODEV)
727 			netif_device_detach(dev->netdev);
728 
729 		netdev_warn(netdev, "couldn't start device: %d\n", err);
730 
731 		close_candev(netdev);
732 
733 		return err;
734 	}
735 
736 
737 	netif_start_queue(netdev);
738 
739 	return 0;
740 }
741 
ems_usb_start_xmit(struct sk_buff * skb,struct net_device * netdev)742 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
743 {
744 	struct ems_usb *dev = netdev_priv(netdev);
745 	struct ems_tx_urb_context *context = NULL;
746 	struct net_device_stats *stats = &netdev->stats;
747 	struct can_frame *cf = (struct can_frame *)skb->data;
748 	struct ems_cpc_msg *msg;
749 	struct urb *urb;
750 	u8 *buf;
751 	int i, err;
752 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
753 			+ sizeof(struct cpc_can_msg);
754 
755 	if (can_dropped_invalid_skb(netdev, skb))
756 		return NETDEV_TX_OK;
757 
758 	/* create a URB, and a buffer for it, and copy the data to the URB */
759 	urb = usb_alloc_urb(0, GFP_ATOMIC);
760 	if (!urb) {
761 		netdev_err(netdev, "No memory left for URBs\n");
762 		goto nomem;
763 	}
764 
765 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
766 	if (!buf) {
767 		netdev_err(netdev, "No memory left for USB buffer\n");
768 		usb_free_urb(urb);
769 		goto nomem;
770 	}
771 
772 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
773 
774 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
775 	msg->msg.can_msg.length = cf->can_dlc;
776 
777 	if (cf->can_id & CAN_RTR_FLAG) {
778 		msg->type = cf->can_id & CAN_EFF_FLAG ?
779 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
780 
781 		msg->length = CPC_CAN_MSG_MIN_SIZE;
782 	} else {
783 		msg->type = cf->can_id & CAN_EFF_FLAG ?
784 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
785 
786 		for (i = 0; i < cf->can_dlc; i++)
787 			msg->msg.can_msg.msg[i] = cf->data[i];
788 
789 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
790 	}
791 
792 	for (i = 0; i < MAX_TX_URBS; i++) {
793 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
794 			context = &dev->tx_contexts[i];
795 			break;
796 		}
797 	}
798 
799 	/*
800 	 * May never happen! When this happens we'd more URBs in flight as
801 	 * allowed (MAX_TX_URBS).
802 	 */
803 	if (!context) {
804 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
805 		usb_free_urb(urb);
806 
807 		netdev_warn(netdev, "couldn't find free context\n");
808 
809 		return NETDEV_TX_BUSY;
810 	}
811 
812 	context->dev = dev;
813 	context->echo_index = i;
814 	context->dlc = cf->can_dlc;
815 
816 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
817 			  size, ems_usb_write_bulk_callback, context);
818 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
819 	usb_anchor_urb(urb, &dev->tx_submitted);
820 
821 	can_put_echo_skb(skb, netdev, context->echo_index);
822 
823 	atomic_inc(&dev->active_tx_urbs);
824 
825 	err = usb_submit_urb(urb, GFP_ATOMIC);
826 	if (unlikely(err)) {
827 		can_free_echo_skb(netdev, context->echo_index);
828 
829 		usb_unanchor_urb(urb);
830 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
831 		dev_kfree_skb(skb);
832 
833 		atomic_dec(&dev->active_tx_urbs);
834 
835 		if (err == -ENODEV) {
836 			netif_device_detach(netdev);
837 		} else {
838 			netdev_warn(netdev, "failed tx_urb %d\n", err);
839 
840 			stats->tx_dropped++;
841 		}
842 	} else {
843 		netdev->trans_start = jiffies;
844 
845 		/* Slow down tx path */
846 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
847 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
848 			netif_stop_queue(netdev);
849 		}
850 	}
851 
852 	/*
853 	 * Release our reference to this URB, the USB core will eventually free
854 	 * it entirely.
855 	 */
856 	usb_free_urb(urb);
857 
858 	return NETDEV_TX_OK;
859 
860 nomem:
861 	dev_kfree_skb(skb);
862 	stats->tx_dropped++;
863 
864 	return NETDEV_TX_OK;
865 }
866 
ems_usb_close(struct net_device * netdev)867 static int ems_usb_close(struct net_device *netdev)
868 {
869 	struct ems_usb *dev = netdev_priv(netdev);
870 
871 	/* Stop polling */
872 	unlink_all_urbs(dev);
873 
874 	netif_stop_queue(netdev);
875 
876 	/* Set CAN controller to reset mode */
877 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
878 		netdev_warn(netdev, "couldn't stop device");
879 
880 	close_candev(netdev);
881 
882 	return 0;
883 }
884 
885 static const struct net_device_ops ems_usb_netdev_ops = {
886 	.ndo_open = ems_usb_open,
887 	.ndo_stop = ems_usb_close,
888 	.ndo_start_xmit = ems_usb_start_xmit,
889 	.ndo_change_mtu = can_change_mtu,
890 };
891 
892 static const struct can_bittiming_const ems_usb_bittiming_const = {
893 	.name = "ems_usb",
894 	.tseg1_min = 1,
895 	.tseg1_max = 16,
896 	.tseg2_min = 1,
897 	.tseg2_max = 8,
898 	.sjw_max = 4,
899 	.brp_min = 1,
900 	.brp_max = 64,
901 	.brp_inc = 1,
902 };
903 
ems_usb_set_mode(struct net_device * netdev,enum can_mode mode)904 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
905 {
906 	struct ems_usb *dev = netdev_priv(netdev);
907 
908 	switch (mode) {
909 	case CAN_MODE_START:
910 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
911 			netdev_warn(netdev, "couldn't start device");
912 
913 		if (netif_queue_stopped(netdev))
914 			netif_wake_queue(netdev);
915 		break;
916 
917 	default:
918 		return -EOPNOTSUPP;
919 	}
920 
921 	return 0;
922 }
923 
ems_usb_set_bittiming(struct net_device * netdev)924 static int ems_usb_set_bittiming(struct net_device *netdev)
925 {
926 	struct ems_usb *dev = netdev_priv(netdev);
927 	struct can_bittiming *bt = &dev->can.bittiming;
928 	u8 btr0, btr1;
929 
930 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
931 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
932 		(((bt->phase_seg2 - 1) & 0x7) << 4);
933 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
934 		btr1 |= 0x80;
935 
936 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
937 
938 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
939 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
940 
941 	return ems_usb_command_msg(dev, &dev->active_params);
942 }
943 
init_params_sja1000(struct ems_cpc_msg * msg)944 static void init_params_sja1000(struct ems_cpc_msg *msg)
945 {
946 	struct cpc_sja1000_params *sja1000 =
947 		&msg->msg.can_params.cc_params.sja1000;
948 
949 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
950 	msg->length = sizeof(struct cpc_can_params);
951 	msg->msgid = 0;
952 
953 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
954 
955 	/* Acceptance filter open */
956 	sja1000->acc_code0 = 0x00;
957 	sja1000->acc_code1 = 0x00;
958 	sja1000->acc_code2 = 0x00;
959 	sja1000->acc_code3 = 0x00;
960 
961 	/* Acceptance filter open */
962 	sja1000->acc_mask0 = 0xFF;
963 	sja1000->acc_mask1 = 0xFF;
964 	sja1000->acc_mask2 = 0xFF;
965 	sja1000->acc_mask3 = 0xFF;
966 
967 	sja1000->btr0 = 0;
968 	sja1000->btr1 = 0;
969 
970 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
971 	sja1000->mode = SJA1000_MOD_RM;
972 }
973 
974 /*
975  * probe function for new CPC-USB devices
976  */
ems_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)977 static int ems_usb_probe(struct usb_interface *intf,
978 			 const struct usb_device_id *id)
979 {
980 	struct net_device *netdev;
981 	struct ems_usb *dev;
982 	int i, err = -ENOMEM;
983 
984 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
985 	if (!netdev) {
986 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
987 		return -ENOMEM;
988 	}
989 
990 	dev = netdev_priv(netdev);
991 
992 	dev->udev = interface_to_usbdev(intf);
993 	dev->netdev = netdev;
994 
995 	dev->can.state = CAN_STATE_STOPPED;
996 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
997 	dev->can.bittiming_const = &ems_usb_bittiming_const;
998 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
999 	dev->can.do_set_mode = ems_usb_set_mode;
1000 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1001 
1002 	netdev->netdev_ops = &ems_usb_netdev_ops;
1003 
1004 	netdev->flags |= IFF_ECHO; /* we support local echo */
1005 
1006 	init_usb_anchor(&dev->rx_submitted);
1007 
1008 	init_usb_anchor(&dev->tx_submitted);
1009 	atomic_set(&dev->active_tx_urbs, 0);
1010 
1011 	for (i = 0; i < MAX_TX_URBS; i++)
1012 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1013 
1014 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1015 	if (!dev->intr_urb) {
1016 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1017 		goto cleanup_candev;
1018 	}
1019 
1020 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1021 	if (!dev->intr_in_buffer)
1022 		goto cleanup_intr_urb;
1023 
1024 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1025 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1026 	if (!dev->tx_msg_buffer)
1027 		goto cleanup_intr_in_buffer;
1028 
1029 	usb_set_intfdata(intf, dev);
1030 
1031 	SET_NETDEV_DEV(netdev, &intf->dev);
1032 
1033 	init_params_sja1000(&dev->active_params);
1034 
1035 	err = ems_usb_command_msg(dev, &dev->active_params);
1036 	if (err) {
1037 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1038 		goto cleanup_tx_msg_buffer;
1039 	}
1040 
1041 	err = register_candev(netdev);
1042 	if (err) {
1043 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1044 		goto cleanup_tx_msg_buffer;
1045 	}
1046 
1047 	return 0;
1048 
1049 cleanup_tx_msg_buffer:
1050 	kfree(dev->tx_msg_buffer);
1051 
1052 cleanup_intr_in_buffer:
1053 	kfree(dev->intr_in_buffer);
1054 
1055 cleanup_intr_urb:
1056 	usb_free_urb(dev->intr_urb);
1057 
1058 cleanup_candev:
1059 	free_candev(netdev);
1060 
1061 	return err;
1062 }
1063 
1064 /*
1065  * called by the usb core when the device is removed from the system
1066  */
ems_usb_disconnect(struct usb_interface * intf)1067 static void ems_usb_disconnect(struct usb_interface *intf)
1068 {
1069 	struct ems_usb *dev = usb_get_intfdata(intf);
1070 
1071 	usb_set_intfdata(intf, NULL);
1072 
1073 	if (dev) {
1074 		unregister_netdev(dev->netdev);
1075 		free_candev(dev->netdev);
1076 
1077 		unlink_all_urbs(dev);
1078 
1079 		usb_free_urb(dev->intr_urb);
1080 
1081 		kfree(dev->intr_in_buffer);
1082 	}
1083 }
1084 
1085 /* usb specific object needed to register this driver with the usb subsystem */
1086 static struct usb_driver ems_usb_driver = {
1087 	.name = "ems_usb",
1088 	.probe = ems_usb_probe,
1089 	.disconnect = ems_usb_disconnect,
1090 	.id_table = ems_usb_table,
1091 };
1092 
1093 module_usb_driver(ems_usb_driver);
1094