1 /*
2  * Copyright (C) 1999 - 2010 Intel Corporation.
3  * Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; version 2 of the License.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/interrupt.h>
19 #include <linux/delay.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/errno.h>
27 #include <linux/netdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/can.h>
30 #include <linux/can/dev.h>
31 #include <linux/can/error.h>
32 
33 #define PCH_CTRL_INIT		BIT(0) /* The INIT bit of CANCONT register. */
34 #define PCH_CTRL_IE		BIT(1) /* The IE bit of CAN control register */
35 #define PCH_CTRL_IE_SIE_EIE	(BIT(3) | BIT(2) | BIT(1))
36 #define PCH_CTRL_CCE		BIT(6)
37 #define PCH_CTRL_OPT		BIT(7) /* The OPT bit of CANCONT register. */
38 #define PCH_OPT_SILENT		BIT(3) /* The Silent bit of CANOPT reg. */
39 #define PCH_OPT_LBACK		BIT(4) /* The LoopBack bit of CANOPT reg. */
40 
41 #define PCH_CMASK_RX_TX_SET	0x00f3
42 #define PCH_CMASK_RX_TX_GET	0x0073
43 #define PCH_CMASK_ALL		0xff
44 #define PCH_CMASK_NEWDAT	BIT(2)
45 #define PCH_CMASK_CLRINTPND	BIT(3)
46 #define PCH_CMASK_CTRL		BIT(4)
47 #define PCH_CMASK_ARB		BIT(5)
48 #define PCH_CMASK_MASK		BIT(6)
49 #define PCH_CMASK_RDWR		BIT(7)
50 #define PCH_IF_MCONT_NEWDAT	BIT(15)
51 #define PCH_IF_MCONT_MSGLOST	BIT(14)
52 #define PCH_IF_MCONT_INTPND	BIT(13)
53 #define PCH_IF_MCONT_UMASK	BIT(12)
54 #define PCH_IF_MCONT_TXIE	BIT(11)
55 #define PCH_IF_MCONT_RXIE	BIT(10)
56 #define PCH_IF_MCONT_RMTEN	BIT(9)
57 #define PCH_IF_MCONT_TXRQXT	BIT(8)
58 #define PCH_IF_MCONT_EOB	BIT(7)
59 #define PCH_IF_MCONT_DLC	(BIT(0) | BIT(1) | BIT(2) | BIT(3))
60 #define PCH_MASK2_MDIR_MXTD	(BIT(14) | BIT(15))
61 #define PCH_ID2_DIR		BIT(13)
62 #define PCH_ID2_XTD		BIT(14)
63 #define PCH_ID_MSGVAL		BIT(15)
64 #define PCH_IF_CREQ_BUSY	BIT(15)
65 
66 #define PCH_STATUS_INT		0x8000
67 #define PCH_RP			0x00008000
68 #define PCH_REC			0x00007f00
69 #define PCH_TEC			0x000000ff
70 
71 #define PCH_TX_OK		BIT(3)
72 #define PCH_RX_OK		BIT(4)
73 #define PCH_EPASSIV		BIT(5)
74 #define PCH_EWARN		BIT(6)
75 #define PCH_BUS_OFF		BIT(7)
76 
77 /* bit position of certain controller bits. */
78 #define PCH_BIT_BRP_SHIFT	0
79 #define PCH_BIT_SJW_SHIFT	6
80 #define PCH_BIT_TSEG1_SHIFT	8
81 #define PCH_BIT_TSEG2_SHIFT	12
82 #define PCH_BIT_BRPE_BRPE_SHIFT	6
83 
84 #define PCH_MSK_BITT_BRP	0x3f
85 #define PCH_MSK_BRPE_BRPE	0x3c0
86 #define PCH_MSK_CTRL_IE_SIE_EIE	0x07
87 #define PCH_COUNTER_LIMIT	10
88 
89 #define PCH_CAN_CLK		50000000	/* 50MHz */
90 
91 /*
92  * Define the number of message object.
93  * PCH CAN communications are done via Message RAM.
94  * The Message RAM consists of 32 message objects.
95  */
96 #define PCH_RX_OBJ_NUM		26
97 #define PCH_TX_OBJ_NUM		6
98 #define PCH_RX_OBJ_START	1
99 #define PCH_RX_OBJ_END		PCH_RX_OBJ_NUM
100 #define PCH_TX_OBJ_START	(PCH_RX_OBJ_END + 1)
101 #define PCH_TX_OBJ_END		(PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
102 
103 #define PCH_FIFO_THRESH		16
104 
105 /* TxRqst2 show status of MsgObjNo.17~32 */
106 #define PCH_TREQ2_TX_MASK	(((1 << PCH_TX_OBJ_NUM) - 1) <<\
107 							(PCH_RX_OBJ_END - 16))
108 
109 enum pch_ifreg {
110 	PCH_RX_IFREG,
111 	PCH_TX_IFREG,
112 };
113 
114 enum pch_can_err {
115 	PCH_STUF_ERR = 1,
116 	PCH_FORM_ERR,
117 	PCH_ACK_ERR,
118 	PCH_BIT1_ERR,
119 	PCH_BIT0_ERR,
120 	PCH_CRC_ERR,
121 	PCH_LEC_ALL,
122 };
123 
124 enum pch_can_mode {
125 	PCH_CAN_ENABLE,
126 	PCH_CAN_DISABLE,
127 	PCH_CAN_ALL,
128 	PCH_CAN_NONE,
129 	PCH_CAN_STOP,
130 	PCH_CAN_RUN,
131 };
132 
133 struct pch_can_if_regs {
134 	u32 creq;
135 	u32 cmask;
136 	u32 mask1;
137 	u32 mask2;
138 	u32 id1;
139 	u32 id2;
140 	u32 mcont;
141 	u32 data[4];
142 	u32 rsv[13];
143 };
144 
145 struct pch_can_regs {
146 	u32 cont;
147 	u32 stat;
148 	u32 errc;
149 	u32 bitt;
150 	u32 intr;
151 	u32 opt;
152 	u32 brpe;
153 	u32 reserve;
154 	struct pch_can_if_regs ifregs[2]; /* [0]=if1  [1]=if2 */
155 	u32 reserve1[8];
156 	u32 treq1;
157 	u32 treq2;
158 	u32 reserve2[6];
159 	u32 data1;
160 	u32 data2;
161 	u32 reserve3[6];
162 	u32 canipend1;
163 	u32 canipend2;
164 	u32 reserve4[6];
165 	u32 canmval1;
166 	u32 canmval2;
167 	u32 reserve5[37];
168 	u32 srst;
169 };
170 
171 struct pch_can_priv {
172 	struct can_priv can;
173 	struct pci_dev *dev;
174 	u32 tx_enable[PCH_TX_OBJ_END];
175 	u32 rx_enable[PCH_TX_OBJ_END];
176 	u32 rx_link[PCH_TX_OBJ_END];
177 	u32 int_enables;
178 	struct net_device *ndev;
179 	struct pch_can_regs __iomem *regs;
180 	struct napi_struct napi;
181 	int tx_obj;	/* Point next Tx Obj index */
182 	int use_msi;
183 };
184 
185 static const struct can_bittiming_const pch_can_bittiming_const = {
186 	.name = KBUILD_MODNAME,
187 	.tseg1_min = 2,
188 	.tseg1_max = 16,
189 	.tseg2_min = 1,
190 	.tseg2_max = 8,
191 	.sjw_max = 4,
192 	.brp_min = 1,
193 	.brp_max = 1024, /* 6bit + extended 4bit */
194 	.brp_inc = 1,
195 };
196 
197 static const struct pci_device_id pch_pci_tbl[] = {
198 	{PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
199 	{0,}
200 };
201 MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
202 
pch_can_bit_set(void __iomem * addr,u32 mask)203 static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
204 {
205 	iowrite32(ioread32(addr) | mask, addr);
206 }
207 
pch_can_bit_clear(void __iomem * addr,u32 mask)208 static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
209 {
210 	iowrite32(ioread32(addr) & ~mask, addr);
211 }
212 
pch_can_set_run_mode(struct pch_can_priv * priv,enum pch_can_mode mode)213 static void pch_can_set_run_mode(struct pch_can_priv *priv,
214 				 enum pch_can_mode mode)
215 {
216 	switch (mode) {
217 	case PCH_CAN_RUN:
218 		pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
219 		break;
220 
221 	case PCH_CAN_STOP:
222 		pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
223 		break;
224 
225 	default:
226 		netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
227 		break;
228 	}
229 }
230 
pch_can_set_optmode(struct pch_can_priv * priv)231 static void pch_can_set_optmode(struct pch_can_priv *priv)
232 {
233 	u32 reg_val = ioread32(&priv->regs->opt);
234 
235 	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
236 		reg_val |= PCH_OPT_SILENT;
237 
238 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
239 		reg_val |= PCH_OPT_LBACK;
240 
241 	pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
242 	iowrite32(reg_val, &priv->regs->opt);
243 }
244 
pch_can_rw_msg_obj(void __iomem * creq_addr,u32 num)245 static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
246 {
247 	int counter = PCH_COUNTER_LIMIT;
248 	u32 ifx_creq;
249 
250 	iowrite32(num, creq_addr);
251 	while (counter) {
252 		ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
253 		if (!ifx_creq)
254 			break;
255 		counter--;
256 		udelay(1);
257 	}
258 	if (!counter)
259 		pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
260 }
261 
pch_can_set_int_enables(struct pch_can_priv * priv,enum pch_can_mode interrupt_no)262 static void pch_can_set_int_enables(struct pch_can_priv *priv,
263 				    enum pch_can_mode interrupt_no)
264 {
265 	switch (interrupt_no) {
266 	case PCH_CAN_DISABLE:
267 		pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
268 		break;
269 
270 	case PCH_CAN_ALL:
271 		pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
272 		break;
273 
274 	case PCH_CAN_NONE:
275 		pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
276 		break;
277 
278 	default:
279 		netdev_err(priv->ndev, "Invalid interrupt number.\n");
280 		break;
281 	}
282 }
283 
pch_can_set_rxtx(struct pch_can_priv * priv,u32 buff_num,int set,enum pch_ifreg dir)284 static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
285 			     int set, enum pch_ifreg dir)
286 {
287 	u32 ie;
288 
289 	if (dir)
290 		ie = PCH_IF_MCONT_TXIE;
291 	else
292 		ie = PCH_IF_MCONT_RXIE;
293 
294 	/* Reading the Msg buffer from Message RAM to IF1/2 registers. */
295 	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
296 	pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
297 
298 	/* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
299 	iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
300 		  &priv->regs->ifregs[dir].cmask);
301 
302 	if (set) {
303 		/* Setting the MsgVal and RxIE/TxIE bits */
304 		pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
305 		pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
306 	} else {
307 		/* Clearing the MsgVal and RxIE/TxIE bits */
308 		pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
309 		pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
310 	}
311 
312 	pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
313 }
314 
pch_can_set_rx_all(struct pch_can_priv * priv,int set)315 static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
316 {
317 	int i;
318 
319 	/* Traversing to obtain the object configured as receivers. */
320 	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
321 		pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
322 }
323 
pch_can_set_tx_all(struct pch_can_priv * priv,int set)324 static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
325 {
326 	int i;
327 
328 	/* Traversing to obtain the object configured as transmit object. */
329 	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
330 		pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
331 }
332 
pch_can_int_pending(struct pch_can_priv * priv)333 static u32 pch_can_int_pending(struct pch_can_priv *priv)
334 {
335 	return ioread32(&priv->regs->intr) & 0xffff;
336 }
337 
pch_can_clear_if_buffers(struct pch_can_priv * priv)338 static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
339 {
340 	int i; /* Msg Obj ID (1~32) */
341 
342 	for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
343 		iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
344 		iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
345 		iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
346 		iowrite32(0x0, &priv->regs->ifregs[0].id1);
347 		iowrite32(0x0, &priv->regs->ifregs[0].id2);
348 		iowrite32(0x0, &priv->regs->ifregs[0].mcont);
349 		iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
350 		iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
351 		iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
352 		iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
353 		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
354 			  PCH_CMASK_ARB | PCH_CMASK_CTRL,
355 			  &priv->regs->ifregs[0].cmask);
356 		pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
357 	}
358 }
359 
pch_can_config_rx_tx_buffers(struct pch_can_priv * priv)360 static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
361 {
362 	int i;
363 
364 	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
365 		iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
366 		pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
367 
368 		iowrite32(0x0, &priv->regs->ifregs[0].id1);
369 		iowrite32(0x0, &priv->regs->ifregs[0].id2);
370 
371 		pch_can_bit_set(&priv->regs->ifregs[0].mcont,
372 				PCH_IF_MCONT_UMASK);
373 
374 		/* In case FIFO mode, Last EoB of Rx Obj must be 1 */
375 		if (i == PCH_RX_OBJ_END)
376 			pch_can_bit_set(&priv->regs->ifregs[0].mcont,
377 					PCH_IF_MCONT_EOB);
378 		else
379 			pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
380 					  PCH_IF_MCONT_EOB);
381 
382 		iowrite32(0, &priv->regs->ifregs[0].mask1);
383 		pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
384 				  0x1fff | PCH_MASK2_MDIR_MXTD);
385 
386 		/* Setting CMASK for writing */
387 		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
388 			  PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
389 
390 		pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
391 	}
392 
393 	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
394 		iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
395 		pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
396 
397 		/* Resetting DIR bit for reception */
398 		iowrite32(0x0, &priv->regs->ifregs[1].id1);
399 		iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
400 
401 		/* Setting EOB bit for transmitter */
402 		iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
403 			  &priv->regs->ifregs[1].mcont);
404 
405 		iowrite32(0, &priv->regs->ifregs[1].mask1);
406 		pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
407 
408 		/* Setting CMASK for writing */
409 		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
410 			  PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
411 
412 		pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
413 	}
414 }
415 
pch_can_init(struct pch_can_priv * priv)416 static void pch_can_init(struct pch_can_priv *priv)
417 {
418 	/* Stopping the Can device. */
419 	pch_can_set_run_mode(priv, PCH_CAN_STOP);
420 
421 	/* Clearing all the message object buffers. */
422 	pch_can_clear_if_buffers(priv);
423 
424 	/* Configuring the respective message object as either rx/tx object. */
425 	pch_can_config_rx_tx_buffers(priv);
426 
427 	/* Enabling the interrupts. */
428 	pch_can_set_int_enables(priv, PCH_CAN_ALL);
429 }
430 
pch_can_release(struct pch_can_priv * priv)431 static void pch_can_release(struct pch_can_priv *priv)
432 {
433 	/* Stooping the CAN device. */
434 	pch_can_set_run_mode(priv, PCH_CAN_STOP);
435 
436 	/* Disabling the interrupts. */
437 	pch_can_set_int_enables(priv, PCH_CAN_NONE);
438 
439 	/* Disabling all the receive object. */
440 	pch_can_set_rx_all(priv, 0);
441 
442 	/* Disabling all the transmit object. */
443 	pch_can_set_tx_all(priv, 0);
444 }
445 
446 /* This function clears interrupt(s) from the CAN device. */
pch_can_int_clr(struct pch_can_priv * priv,u32 mask)447 static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
448 {
449 	/* Clear interrupt for transmit object */
450 	if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
451 		/* Setting CMASK for clearing the reception interrupts. */
452 		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
453 			  &priv->regs->ifregs[0].cmask);
454 
455 		/* Clearing the Dir bit. */
456 		pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
457 
458 		/* Clearing NewDat & IntPnd */
459 		pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
460 				  PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
461 
462 		pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
463 	} else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
464 		/*
465 		 * Setting CMASK for clearing interrupts for frame transmission.
466 		 */
467 		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
468 			  &priv->regs->ifregs[1].cmask);
469 
470 		/* Resetting the ID registers. */
471 		pch_can_bit_set(&priv->regs->ifregs[1].id2,
472 			       PCH_ID2_DIR | (0x7ff << 2));
473 		iowrite32(0x0, &priv->regs->ifregs[1].id1);
474 
475 		/* Claring NewDat, TxRqst & IntPnd */
476 		pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
477 				  PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
478 				  PCH_IF_MCONT_TXRQXT);
479 		pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
480 	}
481 }
482 
pch_can_reset(struct pch_can_priv * priv)483 static void pch_can_reset(struct pch_can_priv *priv)
484 {
485 	/* write to sw reset register */
486 	iowrite32(1, &priv->regs->srst);
487 	iowrite32(0, &priv->regs->srst);
488 }
489 
pch_can_error(struct net_device * ndev,u32 status)490 static void pch_can_error(struct net_device *ndev, u32 status)
491 {
492 	struct sk_buff *skb;
493 	struct pch_can_priv *priv = netdev_priv(ndev);
494 	struct can_frame *cf;
495 	u32 errc, lec;
496 	struct net_device_stats *stats = &(priv->ndev->stats);
497 	enum can_state state = priv->can.state;
498 
499 	skb = alloc_can_err_skb(ndev, &cf);
500 	if (!skb)
501 		return;
502 
503 	if (status & PCH_BUS_OFF) {
504 		pch_can_set_tx_all(priv, 0);
505 		pch_can_set_rx_all(priv, 0);
506 		state = CAN_STATE_BUS_OFF;
507 		cf->can_id |= CAN_ERR_BUSOFF;
508 		priv->can.can_stats.bus_off++;
509 		can_bus_off(ndev);
510 	}
511 
512 	errc = ioread32(&priv->regs->errc);
513 	/* Warning interrupt. */
514 	if (status & PCH_EWARN) {
515 		state = CAN_STATE_ERROR_WARNING;
516 		priv->can.can_stats.error_warning++;
517 		cf->can_id |= CAN_ERR_CRTL;
518 		if (((errc & PCH_REC) >> 8) > 96)
519 			cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
520 		if ((errc & PCH_TEC) > 96)
521 			cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
522 		netdev_dbg(ndev,
523 			"%s -> Error Counter is more than 96.\n", __func__);
524 	}
525 	/* Error passive interrupt. */
526 	if (status & PCH_EPASSIV) {
527 		priv->can.can_stats.error_passive++;
528 		state = CAN_STATE_ERROR_PASSIVE;
529 		cf->can_id |= CAN_ERR_CRTL;
530 		if (errc & PCH_RP)
531 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
532 		if ((errc & PCH_TEC) > 127)
533 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
534 		netdev_dbg(ndev,
535 			"%s -> CAN controller is ERROR PASSIVE .\n", __func__);
536 	}
537 
538 	lec = status & PCH_LEC_ALL;
539 	switch (lec) {
540 	case PCH_STUF_ERR:
541 		cf->data[2] |= CAN_ERR_PROT_STUFF;
542 		priv->can.can_stats.bus_error++;
543 		stats->rx_errors++;
544 		break;
545 	case PCH_FORM_ERR:
546 		cf->data[2] |= CAN_ERR_PROT_FORM;
547 		priv->can.can_stats.bus_error++;
548 		stats->rx_errors++;
549 		break;
550 	case PCH_ACK_ERR:
551 		cf->can_id |= CAN_ERR_ACK;
552 		priv->can.can_stats.bus_error++;
553 		stats->rx_errors++;
554 		break;
555 	case PCH_BIT1_ERR:
556 	case PCH_BIT0_ERR:
557 		cf->data[2] |= CAN_ERR_PROT_BIT;
558 		priv->can.can_stats.bus_error++;
559 		stats->rx_errors++;
560 		break;
561 	case PCH_CRC_ERR:
562 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ |
563 			       CAN_ERR_PROT_LOC_CRC_DEL;
564 		priv->can.can_stats.bus_error++;
565 		stats->rx_errors++;
566 		break;
567 	case PCH_LEC_ALL: /* Written by CPU. No error status */
568 		break;
569 	}
570 
571 	cf->data[6] = errc & PCH_TEC;
572 	cf->data[7] = (errc & PCH_REC) >> 8;
573 
574 	priv->can.state = state;
575 	netif_receive_skb(skb);
576 
577 	stats->rx_packets++;
578 	stats->rx_bytes += cf->can_dlc;
579 }
580 
pch_can_interrupt(int irq,void * dev_id)581 static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
582 {
583 	struct net_device *ndev = (struct net_device *)dev_id;
584 	struct pch_can_priv *priv = netdev_priv(ndev);
585 
586 	if (!pch_can_int_pending(priv))
587 		return IRQ_NONE;
588 
589 	pch_can_set_int_enables(priv, PCH_CAN_NONE);
590 	napi_schedule(&priv->napi);
591 	return IRQ_HANDLED;
592 }
593 
pch_fifo_thresh(struct pch_can_priv * priv,int obj_id)594 static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
595 {
596 	if (obj_id < PCH_FIFO_THRESH) {
597 		iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
598 			  PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
599 
600 		/* Clearing the Dir bit. */
601 		pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
602 
603 		/* Clearing NewDat & IntPnd */
604 		pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
605 				  PCH_IF_MCONT_INTPND);
606 		pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
607 	} else if (obj_id > PCH_FIFO_THRESH) {
608 		pch_can_int_clr(priv, obj_id);
609 	} else if (obj_id == PCH_FIFO_THRESH) {
610 		int cnt;
611 		for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
612 			pch_can_int_clr(priv, cnt + 1);
613 	}
614 }
615 
pch_can_rx_msg_lost(struct net_device * ndev,int obj_id)616 static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
617 {
618 	struct pch_can_priv *priv = netdev_priv(ndev);
619 	struct net_device_stats *stats = &(priv->ndev->stats);
620 	struct sk_buff *skb;
621 	struct can_frame *cf;
622 
623 	netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
624 	pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
625 			  PCH_IF_MCONT_MSGLOST);
626 	iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
627 		  &priv->regs->ifregs[0].cmask);
628 	pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
629 
630 	skb = alloc_can_err_skb(ndev, &cf);
631 	if (!skb)
632 		return;
633 
634 	cf->can_id |= CAN_ERR_CRTL;
635 	cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
636 	stats->rx_over_errors++;
637 	stats->rx_errors++;
638 
639 	netif_receive_skb(skb);
640 }
641 
pch_can_rx_normal(struct net_device * ndev,u32 obj_num,int quota)642 static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
643 {
644 	u32 reg;
645 	canid_t id;
646 	int rcv_pkts = 0;
647 	struct sk_buff *skb;
648 	struct can_frame *cf;
649 	struct pch_can_priv *priv = netdev_priv(ndev);
650 	struct net_device_stats *stats = &(priv->ndev->stats);
651 	int i;
652 	u32 id2;
653 	u16 data_reg;
654 
655 	do {
656 		/* Reading the message object from the Message RAM */
657 		iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
658 		pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
659 
660 		/* Reading the MCONT register. */
661 		reg = ioread32(&priv->regs->ifregs[0].mcont);
662 
663 		if (reg & PCH_IF_MCONT_EOB)
664 			break;
665 
666 		/* If MsgLost bit set. */
667 		if (reg & PCH_IF_MCONT_MSGLOST) {
668 			pch_can_rx_msg_lost(ndev, obj_num);
669 			rcv_pkts++;
670 			quota--;
671 			obj_num++;
672 			continue;
673 		} else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
674 			obj_num++;
675 			continue;
676 		}
677 
678 		skb = alloc_can_skb(priv->ndev, &cf);
679 		if (!skb) {
680 			netdev_err(ndev, "alloc_can_skb Failed\n");
681 			return rcv_pkts;
682 		}
683 
684 		/* Get Received data */
685 		id2 = ioread32(&priv->regs->ifregs[0].id2);
686 		if (id2 & PCH_ID2_XTD) {
687 			id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
688 			id |= (((id2) & 0x1fff) << 16);
689 			cf->can_id = id | CAN_EFF_FLAG;
690 		} else {
691 			id = (id2 >> 2) & CAN_SFF_MASK;
692 			cf->can_id = id;
693 		}
694 
695 		if (id2 & PCH_ID2_DIR)
696 			cf->can_id |= CAN_RTR_FLAG;
697 
698 		cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
699 						    ifregs[0].mcont)) & 0xF);
700 
701 		for (i = 0; i < cf->can_dlc; i += 2) {
702 			data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
703 			cf->data[i] = data_reg;
704 			cf->data[i + 1] = data_reg >> 8;
705 		}
706 
707 		netif_receive_skb(skb);
708 		rcv_pkts++;
709 		stats->rx_packets++;
710 		quota--;
711 		stats->rx_bytes += cf->can_dlc;
712 
713 		pch_fifo_thresh(priv, obj_num);
714 		obj_num++;
715 	} while (quota > 0);
716 
717 	return rcv_pkts;
718 }
719 
pch_can_tx_complete(struct net_device * ndev,u32 int_stat)720 static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
721 {
722 	struct pch_can_priv *priv = netdev_priv(ndev);
723 	struct net_device_stats *stats = &(priv->ndev->stats);
724 	u32 dlc;
725 
726 	can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
727 	iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
728 		  &priv->regs->ifregs[1].cmask);
729 	pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
730 	dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
731 			  PCH_IF_MCONT_DLC);
732 	stats->tx_bytes += dlc;
733 	stats->tx_packets++;
734 	if (int_stat == PCH_TX_OBJ_END)
735 		netif_wake_queue(ndev);
736 }
737 
pch_can_poll(struct napi_struct * napi,int quota)738 static int pch_can_poll(struct napi_struct *napi, int quota)
739 {
740 	struct net_device *ndev = napi->dev;
741 	struct pch_can_priv *priv = netdev_priv(ndev);
742 	u32 int_stat;
743 	u32 reg_stat;
744 	int quota_save = quota;
745 
746 	int_stat = pch_can_int_pending(priv);
747 	if (!int_stat)
748 		goto end;
749 
750 	if (int_stat == PCH_STATUS_INT) {
751 		reg_stat = ioread32(&priv->regs->stat);
752 
753 		if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
754 		   ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
755 			pch_can_error(ndev, reg_stat);
756 			quota--;
757 		}
758 
759 		if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
760 			pch_can_bit_clear(&priv->regs->stat,
761 					  reg_stat & (PCH_TX_OK | PCH_RX_OK));
762 
763 		int_stat = pch_can_int_pending(priv);
764 	}
765 
766 	if (quota == 0)
767 		goto end;
768 
769 	if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
770 		quota -= pch_can_rx_normal(ndev, int_stat, quota);
771 	} else if ((int_stat >= PCH_TX_OBJ_START) &&
772 		   (int_stat <= PCH_TX_OBJ_END)) {
773 		/* Handle transmission interrupt */
774 		pch_can_tx_complete(ndev, int_stat);
775 	}
776 
777 end:
778 	napi_complete(napi);
779 	pch_can_set_int_enables(priv, PCH_CAN_ALL);
780 
781 	return quota_save - quota;
782 }
783 
pch_set_bittiming(struct net_device * ndev)784 static int pch_set_bittiming(struct net_device *ndev)
785 {
786 	struct pch_can_priv *priv = netdev_priv(ndev);
787 	const struct can_bittiming *bt = &priv->can.bittiming;
788 	u32 canbit;
789 	u32 bepe;
790 
791 	/* Setting the CCE bit for accessing the Can Timing register. */
792 	pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
793 
794 	canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
795 	canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
796 	canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
797 	canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
798 	bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
799 	iowrite32(canbit, &priv->regs->bitt);
800 	iowrite32(bepe, &priv->regs->brpe);
801 	pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
802 
803 	return 0;
804 }
805 
pch_can_start(struct net_device * ndev)806 static void pch_can_start(struct net_device *ndev)
807 {
808 	struct pch_can_priv *priv = netdev_priv(ndev);
809 
810 	if (priv->can.state != CAN_STATE_STOPPED)
811 		pch_can_reset(priv);
812 
813 	pch_set_bittiming(ndev);
814 	pch_can_set_optmode(priv);
815 
816 	pch_can_set_tx_all(priv, 1);
817 	pch_can_set_rx_all(priv, 1);
818 
819 	/* Setting the CAN to run mode. */
820 	pch_can_set_run_mode(priv, PCH_CAN_RUN);
821 
822 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
823 
824 	return;
825 }
826 
pch_can_do_set_mode(struct net_device * ndev,enum can_mode mode)827 static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
828 {
829 	int ret = 0;
830 
831 	switch (mode) {
832 	case CAN_MODE_START:
833 		pch_can_start(ndev);
834 		netif_wake_queue(ndev);
835 		break;
836 	default:
837 		ret = -EOPNOTSUPP;
838 		break;
839 	}
840 
841 	return ret;
842 }
843 
pch_can_open(struct net_device * ndev)844 static int pch_can_open(struct net_device *ndev)
845 {
846 	struct pch_can_priv *priv = netdev_priv(ndev);
847 	int retval;
848 
849 	/* Regstering the interrupt. */
850 	retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
851 			     ndev->name, ndev);
852 	if (retval) {
853 		netdev_err(ndev, "request_irq failed.\n");
854 		goto req_irq_err;
855 	}
856 
857 	/* Open common can device */
858 	retval = open_candev(ndev);
859 	if (retval) {
860 		netdev_err(ndev, "open_candev() failed %d\n", retval);
861 		goto err_open_candev;
862 	}
863 
864 	pch_can_init(priv);
865 	pch_can_start(ndev);
866 	napi_enable(&priv->napi);
867 	netif_start_queue(ndev);
868 
869 	return 0;
870 
871 err_open_candev:
872 	free_irq(priv->dev->irq, ndev);
873 req_irq_err:
874 	pch_can_release(priv);
875 
876 	return retval;
877 }
878 
pch_close(struct net_device * ndev)879 static int pch_close(struct net_device *ndev)
880 {
881 	struct pch_can_priv *priv = netdev_priv(ndev);
882 
883 	netif_stop_queue(ndev);
884 	napi_disable(&priv->napi);
885 	pch_can_release(priv);
886 	free_irq(priv->dev->irq, ndev);
887 	close_candev(ndev);
888 	priv->can.state = CAN_STATE_STOPPED;
889 	return 0;
890 }
891 
pch_xmit(struct sk_buff * skb,struct net_device * ndev)892 static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
893 {
894 	struct pch_can_priv *priv = netdev_priv(ndev);
895 	struct can_frame *cf = (struct can_frame *)skb->data;
896 	int tx_obj_no;
897 	int i;
898 	u32 id2;
899 
900 	if (can_dropped_invalid_skb(ndev, skb))
901 		return NETDEV_TX_OK;
902 
903 	tx_obj_no = priv->tx_obj;
904 	if (priv->tx_obj == PCH_TX_OBJ_END) {
905 		if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
906 			netif_stop_queue(ndev);
907 
908 		priv->tx_obj = PCH_TX_OBJ_START;
909 	} else {
910 		priv->tx_obj++;
911 	}
912 
913 	/* Setting the CMASK register. */
914 	pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
915 
916 	/* If ID extended is set. */
917 	if (cf->can_id & CAN_EFF_FLAG) {
918 		iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
919 		id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
920 	} else {
921 		iowrite32(0, &priv->regs->ifregs[1].id1);
922 		id2 = (cf->can_id & CAN_SFF_MASK) << 2;
923 	}
924 
925 	id2 |= PCH_ID_MSGVAL;
926 
927 	/* If remote frame has to be transmitted.. */
928 	if (!(cf->can_id & CAN_RTR_FLAG))
929 		id2 |= PCH_ID2_DIR;
930 
931 	iowrite32(id2, &priv->regs->ifregs[1].id2);
932 
933 	/* Copy data to register */
934 	for (i = 0; i < cf->can_dlc; i += 2) {
935 		iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
936 			  &priv->regs->ifregs[1].data[i / 2]);
937 	}
938 
939 	can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
940 
941 	/* Set the size of the data. Update if2_mcont */
942 	iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
943 		  PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
944 
945 	pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
946 
947 	return NETDEV_TX_OK;
948 }
949 
950 static const struct net_device_ops pch_can_netdev_ops = {
951 	.ndo_open		= pch_can_open,
952 	.ndo_stop		= pch_close,
953 	.ndo_start_xmit		= pch_xmit,
954 	.ndo_change_mtu		= can_change_mtu,
955 };
956 
pch_can_remove(struct pci_dev * pdev)957 static void pch_can_remove(struct pci_dev *pdev)
958 {
959 	struct net_device *ndev = pci_get_drvdata(pdev);
960 	struct pch_can_priv *priv = netdev_priv(ndev);
961 
962 	unregister_candev(priv->ndev);
963 	if (priv->use_msi)
964 		pci_disable_msi(priv->dev);
965 	pci_release_regions(pdev);
966 	pci_disable_device(pdev);
967 	pch_can_reset(priv);
968 	pci_iounmap(pdev, priv->regs);
969 	free_candev(priv->ndev);
970 }
971 
972 #ifdef CONFIG_PM
pch_can_set_int_custom(struct pch_can_priv * priv)973 static void pch_can_set_int_custom(struct pch_can_priv *priv)
974 {
975 	/* Clearing the IE, SIE and EIE bits of Can control register. */
976 	pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
977 
978 	/* Appropriately setting them. */
979 	pch_can_bit_set(&priv->regs->cont,
980 			((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
981 }
982 
983 /* This function retrieves interrupt enabled for the CAN device. */
pch_can_get_int_enables(struct pch_can_priv * priv)984 static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
985 {
986 	/* Obtaining the status of IE, SIE and EIE interrupt bits. */
987 	return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
988 }
989 
pch_can_get_rxtx_ir(struct pch_can_priv * priv,u32 buff_num,enum pch_ifreg dir)990 static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
991 			       enum pch_ifreg dir)
992 {
993 	u32 ie, enable;
994 
995 	if (dir)
996 		ie = PCH_IF_MCONT_RXIE;
997 	else
998 		ie = PCH_IF_MCONT_TXIE;
999 
1000 	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
1001 	pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
1002 
1003 	if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
1004 			((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
1005 		enable = 1;
1006 	else
1007 		enable = 0;
1008 
1009 	return enable;
1010 }
1011 
pch_can_set_rx_buffer_link(struct pch_can_priv * priv,u32 buffer_num,int set)1012 static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
1013 				       u32 buffer_num, int set)
1014 {
1015 	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
1016 	pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1017 	iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
1018 		  &priv->regs->ifregs[0].cmask);
1019 	if (set)
1020 		pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
1021 				  PCH_IF_MCONT_EOB);
1022 	else
1023 		pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
1024 
1025 	pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1026 }
1027 
pch_can_get_rx_buffer_link(struct pch_can_priv * priv,u32 buffer_num)1028 static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
1029 {
1030 	u32 link;
1031 
1032 	iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
1033 	pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
1034 
1035 	if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
1036 		link = 0;
1037 	else
1038 		link = 1;
1039 	return link;
1040 }
1041 
pch_can_get_buffer_status(struct pch_can_priv * priv)1042 static int pch_can_get_buffer_status(struct pch_can_priv *priv)
1043 {
1044 	return (ioread32(&priv->regs->treq1) & 0xffff) |
1045 	       (ioread32(&priv->regs->treq2) << 16);
1046 }
1047 
pch_can_suspend(struct pci_dev * pdev,pm_message_t state)1048 static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
1049 {
1050 	int i;
1051 	int retval;
1052 	u32 buf_stat;	/* Variable for reading the transmit buffer status. */
1053 	int counter = PCH_COUNTER_LIMIT;
1054 
1055 	struct net_device *dev = pci_get_drvdata(pdev);
1056 	struct pch_can_priv *priv = netdev_priv(dev);
1057 
1058 	/* Stop the CAN controller */
1059 	pch_can_set_run_mode(priv, PCH_CAN_STOP);
1060 
1061 	/* Indicate that we are aboutto/in suspend */
1062 	priv->can.state = CAN_STATE_STOPPED;
1063 
1064 	/* Waiting for all transmission to complete. */
1065 	while (counter) {
1066 		buf_stat = pch_can_get_buffer_status(priv);
1067 		if (!buf_stat)
1068 			break;
1069 		counter--;
1070 		udelay(1);
1071 	}
1072 	if (!counter)
1073 		dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
1074 
1075 	/* Save interrupt configuration and then disable them */
1076 	priv->int_enables = pch_can_get_int_enables(priv);
1077 	pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1078 
1079 	/* Save Tx buffer enable state */
1080 	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1081 		priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
1082 							     PCH_TX_IFREG);
1083 
1084 	/* Disable all Transmit buffers */
1085 	pch_can_set_tx_all(priv, 0);
1086 
1087 	/* Save Rx buffer enable state */
1088 	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1089 		priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
1090 							     PCH_RX_IFREG);
1091 		priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
1092 	}
1093 
1094 	/* Disable all Receive buffers */
1095 	pch_can_set_rx_all(priv, 0);
1096 	retval = pci_save_state(pdev);
1097 	if (retval) {
1098 		dev_err(&pdev->dev, "pci_save_state failed.\n");
1099 	} else {
1100 		pci_enable_wake(pdev, PCI_D3hot, 0);
1101 		pci_disable_device(pdev);
1102 		pci_set_power_state(pdev, pci_choose_state(pdev, state));
1103 	}
1104 
1105 	return retval;
1106 }
1107 
pch_can_resume(struct pci_dev * pdev)1108 static int pch_can_resume(struct pci_dev *pdev)
1109 {
1110 	int i;
1111 	int retval;
1112 	struct net_device *dev = pci_get_drvdata(pdev);
1113 	struct pch_can_priv *priv = netdev_priv(dev);
1114 
1115 	pci_set_power_state(pdev, PCI_D0);
1116 	pci_restore_state(pdev);
1117 	retval = pci_enable_device(pdev);
1118 	if (retval) {
1119 		dev_err(&pdev->dev, "pci_enable_device failed.\n");
1120 		return retval;
1121 	}
1122 
1123 	pci_enable_wake(pdev, PCI_D3hot, 0);
1124 
1125 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1126 
1127 	/* Disabling all interrupts. */
1128 	pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
1129 
1130 	/* Setting the CAN device in Stop Mode. */
1131 	pch_can_set_run_mode(priv, PCH_CAN_STOP);
1132 
1133 	/* Configuring the transmit and receive buffers. */
1134 	pch_can_config_rx_tx_buffers(priv);
1135 
1136 	/* Restore the CAN state */
1137 	pch_set_bittiming(dev);
1138 
1139 	/* Listen/Active */
1140 	pch_can_set_optmode(priv);
1141 
1142 	/* Enabling the transmit buffer. */
1143 	for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
1144 		pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
1145 
1146 	/* Configuring the receive buffer and enabling them. */
1147 	for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
1148 		/* Restore buffer link */
1149 		pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
1150 
1151 		/* Restore buffer enables */
1152 		pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
1153 	}
1154 
1155 	/* Enable CAN Interrupts */
1156 	pch_can_set_int_custom(priv);
1157 
1158 	/* Restore Run Mode */
1159 	pch_can_set_run_mode(priv, PCH_CAN_RUN);
1160 
1161 	return retval;
1162 }
1163 #else
1164 #define pch_can_suspend NULL
1165 #define pch_can_resume NULL
1166 #endif
1167 
pch_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1168 static int pch_can_get_berr_counter(const struct net_device *dev,
1169 				    struct can_berr_counter *bec)
1170 {
1171 	struct pch_can_priv *priv = netdev_priv(dev);
1172 	u32 errc = ioread32(&priv->regs->errc);
1173 
1174 	bec->txerr = errc & PCH_TEC;
1175 	bec->rxerr = (errc & PCH_REC) >> 8;
1176 
1177 	return 0;
1178 }
1179 
pch_can_probe(struct pci_dev * pdev,const struct pci_device_id * id)1180 static int pch_can_probe(struct pci_dev *pdev,
1181 				   const struct pci_device_id *id)
1182 {
1183 	struct net_device *ndev;
1184 	struct pch_can_priv *priv;
1185 	int rc;
1186 	void __iomem *addr;
1187 
1188 	rc = pci_enable_device(pdev);
1189 	if (rc) {
1190 		dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
1191 		goto probe_exit_endev;
1192 	}
1193 
1194 	rc = pci_request_regions(pdev, KBUILD_MODNAME);
1195 	if (rc) {
1196 		dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
1197 		goto probe_exit_pcireq;
1198 	}
1199 
1200 	addr = pci_iomap(pdev, 1, 0);
1201 	if (!addr) {
1202 		rc = -EIO;
1203 		dev_err(&pdev->dev, "Failed pci_iomap\n");
1204 		goto probe_exit_ipmap;
1205 	}
1206 
1207 	ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
1208 	if (!ndev) {
1209 		rc = -ENOMEM;
1210 		dev_err(&pdev->dev, "Failed alloc_candev\n");
1211 		goto probe_exit_alloc_candev;
1212 	}
1213 
1214 	priv = netdev_priv(ndev);
1215 	priv->ndev = ndev;
1216 	priv->regs = addr;
1217 	priv->dev = pdev;
1218 	priv->can.bittiming_const = &pch_can_bittiming_const;
1219 	priv->can.do_set_mode = pch_can_do_set_mode;
1220 	priv->can.do_get_berr_counter = pch_can_get_berr_counter;
1221 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
1222 				       CAN_CTRLMODE_LOOPBACK;
1223 	priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
1224 
1225 	ndev->irq = pdev->irq;
1226 	ndev->flags |= IFF_ECHO;
1227 
1228 	pci_set_drvdata(pdev, ndev);
1229 	SET_NETDEV_DEV(ndev, &pdev->dev);
1230 	ndev->netdev_ops = &pch_can_netdev_ops;
1231 	priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
1232 
1233 	netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
1234 
1235 	rc = pci_enable_msi(priv->dev);
1236 	if (rc) {
1237 		netdev_err(ndev, "PCH CAN opened without MSI\n");
1238 		priv->use_msi = 0;
1239 	} else {
1240 		netdev_err(ndev, "PCH CAN opened with MSI\n");
1241 		pci_set_master(pdev);
1242 		priv->use_msi = 1;
1243 	}
1244 
1245 	rc = register_candev(ndev);
1246 	if (rc) {
1247 		dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
1248 		goto probe_exit_reg_candev;
1249 	}
1250 
1251 	return 0;
1252 
1253 probe_exit_reg_candev:
1254 	if (priv->use_msi)
1255 		pci_disable_msi(priv->dev);
1256 	free_candev(ndev);
1257 probe_exit_alloc_candev:
1258 	pci_iounmap(pdev, addr);
1259 probe_exit_ipmap:
1260 	pci_release_regions(pdev);
1261 probe_exit_pcireq:
1262 	pci_disable_device(pdev);
1263 probe_exit_endev:
1264 	return rc;
1265 }
1266 
1267 static struct pci_driver pch_can_pci_driver = {
1268 	.name = "pch_can",
1269 	.id_table = pch_pci_tbl,
1270 	.probe = pch_can_probe,
1271 	.remove = pch_can_remove,
1272 	.suspend = pch_can_suspend,
1273 	.resume = pch_can_resume,
1274 };
1275 
1276 module_pci_driver(pch_can_pci_driver);
1277 
1278 MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
1279 MODULE_LICENSE("GPL v2");
1280 MODULE_VERSION("0.94");
1281