1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10 
11 #define DEBUG
12 
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26 
27 #define CAFE_NAND_CTRL1		0x00
28 #define CAFE_NAND_CTRL2		0x04
29 #define CAFE_NAND_CTRL3		0x08
30 #define CAFE_NAND_STATUS	0x0c
31 #define CAFE_NAND_IRQ		0x10
32 #define CAFE_NAND_IRQ_MASK	0x14
33 #define CAFE_NAND_DATA_LEN	0x18
34 #define CAFE_NAND_ADDR1		0x1c
35 #define CAFE_NAND_ADDR2		0x20
36 #define CAFE_NAND_TIMING1	0x24
37 #define CAFE_NAND_TIMING2	0x28
38 #define CAFE_NAND_TIMING3	0x2c
39 #define CAFE_NAND_NONMEM	0x30
40 #define CAFE_NAND_ECC_RESULT	0x3C
41 #define CAFE_NAND_DMA_CTRL	0x40
42 #define CAFE_NAND_DMA_ADDR0	0x44
43 #define CAFE_NAND_DMA_ADDR1	0x48
44 #define CAFE_NAND_ECC_SYN01	0x50
45 #define CAFE_NAND_ECC_SYN23	0x54
46 #define CAFE_NAND_ECC_SYN45	0x58
47 #define CAFE_NAND_ECC_SYN67	0x5c
48 #define CAFE_NAND_READ_DATA	0x1000
49 #define CAFE_NAND_WRITE_DATA	0x2000
50 
51 #define CAFE_GLOBAL_CTRL	0x3004
52 #define CAFE_GLOBAL_IRQ		0x3008
53 #define CAFE_GLOBAL_IRQ_MASK	0x300c
54 #define CAFE_NAND_RESET		0x3034
55 
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT	(1<<19)
58 
59 struct cafe_priv {
60 	struct nand_chip nand;
61 	struct pci_dev *pdev;
62 	void __iomem *mmio;
63 	struct rs_control *rs;
64 	uint32_t ctl1;
65 	uint32_t ctl2;
66 	int datalen;
67 	int nr_data;
68 	int data_pos;
69 	int page_addr;
70 	dma_addr_t dmaaddr;
71 	unsigned char *dmabuf;
72 };
73 
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76 
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79 
80 static int debug = 0;
81 module_param(debug, int, 0644);
82 
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85 
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88 
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92 
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97 
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
101 
cafe_device_ready(struct mtd_info * mtd)102 static int cafe_device_ready(struct mtd_info *mtd)
103 {
104 	struct cafe_priv *cafe = mtd->priv;
105 	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
106 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107 
108 	cafe_writel(cafe, irqs, NAND_IRQ);
109 
110 	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111 		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
112 		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113 
114 	return result;
115 }
116 
117 
cafe_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)118 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119 {
120 	struct cafe_priv *cafe = mtd->priv;
121 
122 	if (usedma)
123 		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
124 	else
125 		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126 
127 	cafe->datalen += len;
128 
129 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
130 		len, cafe->datalen);
131 }
132 
cafe_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)133 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134 {
135 	struct cafe_priv *cafe = mtd->priv;
136 
137 	if (usedma)
138 		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
139 	else
140 		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141 
142 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
143 		  len, cafe->datalen);
144 	cafe->datalen += len;
145 }
146 
cafe_read_byte(struct mtd_info * mtd)147 static uint8_t cafe_read_byte(struct mtd_info *mtd)
148 {
149 	struct cafe_priv *cafe = mtd->priv;
150 	uint8_t d;
151 
152 	cafe_read_buf(mtd, &d, 1);
153 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154 
155 	return d;
156 }
157 
cafe_nand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)158 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
159 			      int column, int page_addr)
160 {
161 	struct cafe_priv *cafe = mtd->priv;
162 	int adrbytes = 0;
163 	uint32_t ctl1;
164 	uint32_t doneint = 0x80000000;
165 
166 	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
167 		command, column, page_addr);
168 
169 	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
170 		/* Second half of a command we already calculated */
171 		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
172 		ctl1 = cafe->ctl1;
173 		cafe->ctl2 &= ~(1<<30);
174 		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
175 			  cafe->ctl1, cafe->nr_data);
176 		goto do_command;
177 	}
178 	/* Reset ECC engine */
179 	cafe_writel(cafe, 0, NAND_CTRL2);
180 
181 	/* Emulate NAND_CMD_READOOB on large-page chips */
182 	if (mtd->writesize > 512 &&
183 	    command == NAND_CMD_READOOB) {
184 		column += mtd->writesize;
185 		command = NAND_CMD_READ0;
186 	}
187 
188 	/* FIXME: Do we need to send read command before sending data
189 	   for small-page chips, to position the buffer correctly? */
190 
191 	if (column != -1) {
192 		cafe_writel(cafe, column, NAND_ADDR1);
193 		adrbytes = 2;
194 		if (page_addr != -1)
195 			goto write_adr2;
196 	} else if (page_addr != -1) {
197 		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198 		page_addr >>= 16;
199 	write_adr2:
200 		cafe_writel(cafe, page_addr, NAND_ADDR2);
201 		adrbytes += 2;
202 		if (mtd->size > mtd->writesize << 16)
203 			adrbytes++;
204 	}
205 
206 	cafe->data_pos = cafe->datalen = 0;
207 
208 	/* Set command valid bit, mask in the chip select bit  */
209 	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210 
211 	/* Set RD or WR bits as appropriate */
212 	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213 		ctl1 |= (1<<26); /* rd */
214 		/* Always 5 bytes, for now */
215 		cafe->datalen = 4;
216 		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
217 		adrbytes = 1;
218 	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219 		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220 		ctl1 |= 1<<26; /* rd */
221 		/* For now, assume just read to end of page */
222 		cafe->datalen = mtd->writesize + mtd->oobsize - column;
223 	} else if (command == NAND_CMD_SEQIN)
224 		ctl1 |= 1<<25; /* wr */
225 
226 	/* Set number of address bytes */
227 	if (adrbytes)
228 		ctl1 |= ((adrbytes-1)|8) << 27;
229 
230 	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231 		/* Ignore the first command of a pair; the hardware
232 		   deals with them both at once, later */
233 		cafe->ctl1 = ctl1;
234 		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235 			  cafe->ctl1, cafe->datalen);
236 		return;
237 	}
238 	/* RNDOUT and READ0 commands need a following byte */
239 	if (command == NAND_CMD_RNDOUT)
240 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241 	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243 
244  do_command:
245 	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246 		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247 
248 	/* NB: The datasheet lies -- we really should be subtracting 1 here */
249 	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250 	cafe_writel(cafe, 0x90000000, NAND_IRQ);
251 	if (usedma && (ctl1 & (3<<25))) {
252 		uint32_t dmactl = 0xc0000000 + cafe->datalen;
253 		/* If WR or RD bits set, set up DMA */
254 		if (ctl1 & (1<<26)) {
255 			/* It's a read */
256 			dmactl |= (1<<29);
257 			/* ... so it's done when the DMA is done, not just
258 			   the command. */
259 			doneint = 0x10000000;
260 		}
261 		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262 	}
263 	cafe->datalen = 0;
264 
265 	if (unlikely(regdebug)) {
266 		int i;
267 		printk("About to write command %08x to register 0\n", ctl1);
268 		for (i=4; i< 0x5c; i+=4)
269 			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270 	}
271 
272 	cafe_writel(cafe, ctl1, NAND_CTRL1);
273 	/* Apply this short delay always to ensure that we do wait tWB in
274 	 * any case on any machine. */
275 	ndelay(100);
276 
277 	if (1) {
278 		int c;
279 		uint32_t irqs;
280 
281 		for (c = 500000; c != 0; c--) {
282 			irqs = cafe_readl(cafe, NAND_IRQ);
283 			if (irqs & doneint)
284 				break;
285 			udelay(1);
286 			if (!(c % 100000))
287 				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288 			cpu_relax();
289 		}
290 		cafe_writel(cafe, doneint, NAND_IRQ);
291 		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292 			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293 	}
294 
295 	WARN_ON(cafe->ctl2 & (1<<30));
296 
297 	switch (command) {
298 
299 	case NAND_CMD_CACHEDPROG:
300 	case NAND_CMD_PAGEPROG:
301 	case NAND_CMD_ERASE1:
302 	case NAND_CMD_ERASE2:
303 	case NAND_CMD_SEQIN:
304 	case NAND_CMD_RNDIN:
305 	case NAND_CMD_STATUS:
306 	case NAND_CMD_RNDOUT:
307 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
308 		return;
309 	}
310 	nand_wait_ready(mtd);
311 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
312 }
313 
cafe_select_chip(struct mtd_info * mtd,int chipnr)314 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
315 {
316 	struct cafe_priv *cafe = mtd->priv;
317 
318 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
319 
320 	/* Mask the appropriate bit into the stored value of ctl1
321 	   which will be used by cafe_nand_cmdfunc() */
322 	if (chipnr)
323 		cafe->ctl1 |= CTRL1_CHIPSELECT;
324 	else
325 		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
326 }
327 
cafe_nand_interrupt(int irq,void * id)328 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
329 {
330 	struct mtd_info *mtd = id;
331 	struct cafe_priv *cafe = mtd->priv;
332 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
333 	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
334 	if (!irqs)
335 		return IRQ_NONE;
336 
337 	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
338 	return IRQ_HANDLED;
339 }
340 
cafe_nand_bug(struct mtd_info * mtd)341 static void cafe_nand_bug(struct mtd_info *mtd)
342 {
343 	BUG();
344 }
345 
cafe_nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)346 static int cafe_nand_write_oob(struct mtd_info *mtd,
347 			       struct nand_chip *chip, int page)
348 {
349 	int status = 0;
350 
351 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
352 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
353 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
354 	status = chip->waitfunc(mtd, chip);
355 
356 	return status & NAND_STATUS_FAIL ? -EIO : 0;
357 }
358 
359 /* Don't use -- use nand_read_oob_std for now */
cafe_nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)360 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
361 			      int page)
362 {
363 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
364 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
365 	return 0;
366 }
367 /**
368  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
369  * @mtd:	mtd info structure
370  * @chip:	nand chip info structure
371  * @buf:	buffer to store read data
372  * @oob_required:	caller expects OOB data read to chip->oob_poi
373  *
374  * The hw generator calculates the error syndrome automatically. Therefore
375  * we need a special oob layout and handling.
376  */
cafe_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)377 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
378 			       uint8_t *buf, int oob_required, int page)
379 {
380 	struct cafe_priv *cafe = mtd->priv;
381 	unsigned int max_bitflips = 0;
382 
383 	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
384 		     cafe_readl(cafe, NAND_ECC_RESULT),
385 		     cafe_readl(cafe, NAND_ECC_SYN01));
386 
387 	chip->read_buf(mtd, buf, mtd->writesize);
388 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
389 
390 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
391 		unsigned short syn[8], pat[4];
392 		int pos[4];
393 		u8 *oob = chip->oob_poi;
394 		int i, n;
395 
396 		for (i=0; i<8; i+=2) {
397 			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
398 			syn[i] = cafe->rs->index_of[tmp & 0xfff];
399 			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
400 		}
401 
402 		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
403 		                pat);
404 
405 		for (i = 0; i < n; i++) {
406 			int p = pos[i];
407 
408 			/* The 12-bit symbols are mapped to bytes here */
409 
410 			if (p > 1374) {
411 				/* out of range */
412 				n = -1374;
413 			} else if (p == 0) {
414 				/* high four bits do not correspond to data */
415 				if (pat[i] > 0xff)
416 					n = -2048;
417 				else
418 					buf[0] ^= pat[i];
419 			} else if (p == 1365) {
420 				buf[2047] ^= pat[i] >> 4;
421 				oob[0] ^= pat[i] << 4;
422 			} else if (p > 1365) {
423 				if ((p & 1) == 1) {
424 					oob[3*p/2 - 2048] ^= pat[i] >> 4;
425 					oob[3*p/2 - 2047] ^= pat[i] << 4;
426 				} else {
427 					oob[3*p/2 - 2049] ^= pat[i] >> 8;
428 					oob[3*p/2 - 2048] ^= pat[i];
429 				}
430 			} else if ((p & 1) == 1) {
431 				buf[3*p/2] ^= pat[i] >> 4;
432 				buf[3*p/2 + 1] ^= pat[i] << 4;
433 			} else {
434 				buf[3*p/2 - 1] ^= pat[i] >> 8;
435 				buf[3*p/2] ^= pat[i];
436 			}
437 		}
438 
439 		if (n < 0) {
440 			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
441 				cafe_readl(cafe, NAND_ADDR2) * 2048);
442 			for (i = 0; i < 0x5c; i += 4)
443 				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
444 			mtd->ecc_stats.failed++;
445 		} else {
446 			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
447 			mtd->ecc_stats.corrected += n;
448 			max_bitflips = max_t(unsigned int, max_bitflips, n);
449 		}
450 	}
451 
452 	return max_bitflips;
453 }
454 
455 static struct nand_ecclayout cafe_oobinfo_2048 = {
456 	.eccbytes = 14,
457 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
458 	.oobfree = {{14, 50}}
459 };
460 
461 /* Ick. The BBT code really ought to be able to work this bit out
462    for itself from the above, at least for the 2KiB case */
463 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
464 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
465 
466 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
467 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
468 
469 
470 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
471 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
472 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
473 	.offs =	14,
474 	.len = 4,
475 	.veroffs = 18,
476 	.maxblocks = 4,
477 	.pattern = cafe_bbt_pattern_2048
478 };
479 
480 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
481 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
482 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
483 	.offs =	14,
484 	.len = 4,
485 	.veroffs = 18,
486 	.maxblocks = 4,
487 	.pattern = cafe_mirror_pattern_2048
488 };
489 
490 static struct nand_ecclayout cafe_oobinfo_512 = {
491 	.eccbytes = 14,
492 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
493 	.oobfree = {{14, 2}}
494 };
495 
496 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
497 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
498 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
499 	.offs =	14,
500 	.len = 1,
501 	.veroffs = 15,
502 	.maxblocks = 4,
503 	.pattern = cafe_bbt_pattern_512
504 };
505 
506 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
507 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
508 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
509 	.offs =	14,
510 	.len = 1,
511 	.veroffs = 15,
512 	.maxblocks = 4,
513 	.pattern = cafe_mirror_pattern_512
514 };
515 
516 
cafe_nand_write_page_lowlevel(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)517 static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
518 					  struct nand_chip *chip,
519 					  const uint8_t *buf, int oob_required,
520 					  int page)
521 {
522 	struct cafe_priv *cafe = mtd->priv;
523 
524 	chip->write_buf(mtd, buf, mtd->writesize);
525 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
526 
527 	/* Set up ECC autogeneration */
528 	cafe->ctl2 |= (1<<30);
529 
530 	return 0;
531 }
532 
cafe_nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)533 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
534 {
535 	return 0;
536 }
537 
538 /* F_2[X]/(X**6+X+1)  */
gf64_mul(u8 a,u8 b)539 static unsigned short gf64_mul(u8 a, u8 b)
540 {
541 	u8 c;
542 	unsigned int i;
543 
544 	c = 0;
545 	for (i = 0; i < 6; i++) {
546 		if (a & 1)
547 			c ^= b;
548 		a >>= 1;
549 		b <<= 1;
550 		if ((b & 0x40) != 0)
551 			b ^= 0x43;
552 	}
553 
554 	return c;
555 }
556 
557 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
gf4096_mul(u16 a,u16 b)558 static u16 gf4096_mul(u16 a, u16 b)
559 {
560 	u8 ah, al, bh, bl, ch, cl;
561 
562 	ah = a >> 6;
563 	al = a & 0x3f;
564 	bh = b >> 6;
565 	bl = b & 0x3f;
566 
567 	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
568 	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
569 
570 	return (ch << 6) ^ cl;
571 }
572 
cafe_mul(int x)573 static int cafe_mul(int x)
574 {
575 	if (x == 0)
576 		return 1;
577 	return gf4096_mul(x, 0xe01);
578 }
579 
cafe_nand_probe(struct pci_dev * pdev,const struct pci_device_id * ent)580 static int cafe_nand_probe(struct pci_dev *pdev,
581 				     const struct pci_device_id *ent)
582 {
583 	struct mtd_info *mtd;
584 	struct cafe_priv *cafe;
585 	uint32_t ctrl;
586 	int err = 0;
587 	int old_dma;
588 	struct nand_buffers *nbuf;
589 
590 	/* Very old versions shared the same PCI ident for all three
591 	   functions on the chip. Verify the class too... */
592 	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
593 		return -ENODEV;
594 
595 	err = pci_enable_device(pdev);
596 	if (err)
597 		return err;
598 
599 	pci_set_master(pdev);
600 
601 	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
602 	if (!mtd)
603 		return  -ENOMEM;
604 	cafe = (void *)(&mtd[1]);
605 
606 	mtd->dev.parent = &pdev->dev;
607 	mtd->priv = cafe;
608 
609 	cafe->pdev = pdev;
610 	cafe->mmio = pci_iomap(pdev, 0, 0);
611 	if (!cafe->mmio) {
612 		dev_warn(&pdev->dev, "failed to iomap\n");
613 		err = -ENOMEM;
614 		goto out_free_mtd;
615 	}
616 
617 	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
618 	if (!cafe->rs) {
619 		err = -ENOMEM;
620 		goto out_ior;
621 	}
622 
623 	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
624 	cafe->nand.dev_ready = cafe_device_ready;
625 	cafe->nand.read_byte = cafe_read_byte;
626 	cafe->nand.read_buf = cafe_read_buf;
627 	cafe->nand.write_buf = cafe_write_buf;
628 	cafe->nand.select_chip = cafe_select_chip;
629 
630 	cafe->nand.chip_delay = 0;
631 
632 	/* Enable the following for a flash based bad block table */
633 	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
634 	cafe->nand.options = NAND_OWN_BUFFERS;
635 
636 	if (skipbbt) {
637 		cafe->nand.options |= NAND_SKIP_BBTSCAN;
638 		cafe->nand.block_bad = cafe_nand_block_bad;
639 	}
640 
641 	if (numtimings && numtimings != 3) {
642 		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
643 	}
644 
645 	if (numtimings == 3) {
646 		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
647 			     timing[0], timing[1], timing[2]);
648 	} else {
649 		timing[0] = cafe_readl(cafe, NAND_TIMING1);
650 		timing[1] = cafe_readl(cafe, NAND_TIMING2);
651 		timing[2] = cafe_readl(cafe, NAND_TIMING3);
652 
653 		if (timing[0] | timing[1] | timing[2]) {
654 			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
655 				     timing[0], timing[1], timing[2]);
656 		} else {
657 			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
658 			timing[0] = timing[1] = timing[2] = 0xffffffff;
659 		}
660 	}
661 
662 	/* Start off by resetting the NAND controller completely */
663 	cafe_writel(cafe, 1, NAND_RESET);
664 	cafe_writel(cafe, 0, NAND_RESET);
665 
666 	cafe_writel(cafe, timing[0], NAND_TIMING1);
667 	cafe_writel(cafe, timing[1], NAND_TIMING2);
668 	cafe_writel(cafe, timing[2], NAND_TIMING3);
669 
670 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
671 	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
672 			  "CAFE NAND", mtd);
673 	if (err) {
674 		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
675 		goto out_ior;
676 	}
677 
678 	/* Disable master reset, enable NAND clock */
679 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
680 	ctrl &= 0xffffeff0;
681 	ctrl |= 0x00007000;
682 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
683 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
684 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
685 
686 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
687 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
688 
689 	/* Enable NAND IRQ in global IRQ mask register */
690 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
691 	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
692 		cafe_readl(cafe, GLOBAL_CTRL),
693 		cafe_readl(cafe, GLOBAL_IRQ_MASK));
694 
695 	/* Do not use the DMA for the nand_scan_ident() */
696 	old_dma = usedma;
697 	usedma = 0;
698 
699 	/* Scan to find existence of the device */
700 	if (nand_scan_ident(mtd, 2, NULL)) {
701 		err = -ENXIO;
702 		goto out_irq;
703 	}
704 
705 	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
706 				2112 + sizeof(struct nand_buffers) +
707 				mtd->writesize + mtd->oobsize,
708 				&cafe->dmaaddr, GFP_KERNEL);
709 	if (!cafe->dmabuf) {
710 		err = -ENOMEM;
711 		goto out_irq;
712 	}
713 	cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
714 
715 	/* Set up DMA address */
716 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
717 	if (sizeof(cafe->dmaaddr) > 4)
718 		/* Shift in two parts to shut the compiler up */
719 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
720 	else
721 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
722 
723 	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
724 		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
725 
726 	/* this driver does not need the @ecccalc and @ecccode */
727 	nbuf->ecccalc = NULL;
728 	nbuf->ecccode = NULL;
729 	nbuf->databuf = (uint8_t *)(nbuf + 1);
730 
731 	/* Restore the DMA flag */
732 	usedma = old_dma;
733 
734 	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
735 	if (mtd->writesize == 2048)
736 		cafe->ctl2 |= 1<<29; /* 2KiB page size */
737 
738 	/* Set up ECC according to the type of chip we found */
739 	if (mtd->writesize == 2048) {
740 		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
741 		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
742 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
743 	} else if (mtd->writesize == 512) {
744 		cafe->nand.ecc.layout = &cafe_oobinfo_512;
745 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
746 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
747 	} else {
748 		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
749 		       mtd->writesize);
750 		goto out_free_dma;
751 	}
752 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
753 	cafe->nand.ecc.size = mtd->writesize;
754 	cafe->nand.ecc.bytes = 14;
755 	cafe->nand.ecc.strength = 4;
756 	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
757 	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
758 	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
759 	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
760 	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
761 	cafe->nand.ecc.read_page = cafe_nand_read_page;
762 	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
763 
764 	err = nand_scan_tail(mtd);
765 	if (err)
766 		goto out_free_dma;
767 
768 	pci_set_drvdata(pdev, mtd);
769 
770 	mtd->name = "cafe_nand";
771 	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
772 
773 	goto out;
774 
775  out_free_dma:
776 	dma_free_coherent(&cafe->pdev->dev,
777 			2112 + sizeof(struct nand_buffers) +
778 			mtd->writesize + mtd->oobsize,
779 			cafe->dmabuf, cafe->dmaaddr);
780  out_irq:
781 	/* Disable NAND IRQ in global IRQ mask register */
782 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
783 	free_irq(pdev->irq, mtd);
784  out_ior:
785 	pci_iounmap(pdev, cafe->mmio);
786  out_free_mtd:
787 	kfree(mtd);
788  out:
789 	return err;
790 }
791 
cafe_nand_remove(struct pci_dev * pdev)792 static void cafe_nand_remove(struct pci_dev *pdev)
793 {
794 	struct mtd_info *mtd = pci_get_drvdata(pdev);
795 	struct cafe_priv *cafe = mtd->priv;
796 
797 	/* Disable NAND IRQ in global IRQ mask register */
798 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
799 	free_irq(pdev->irq, mtd);
800 	nand_release(mtd);
801 	free_rs(cafe->rs);
802 	pci_iounmap(pdev, cafe->mmio);
803 	dma_free_coherent(&cafe->pdev->dev,
804 			2112 + sizeof(struct nand_buffers) +
805 			mtd->writesize + mtd->oobsize,
806 			cafe->dmabuf, cafe->dmaaddr);
807 	kfree(mtd);
808 }
809 
810 static const struct pci_device_id cafe_nand_tbl[] = {
811 	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
812 	  PCI_ANY_ID, PCI_ANY_ID },
813 	{ }
814 };
815 
816 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
817 
cafe_nand_resume(struct pci_dev * pdev)818 static int cafe_nand_resume(struct pci_dev *pdev)
819 {
820 	uint32_t ctrl;
821 	struct mtd_info *mtd = pci_get_drvdata(pdev);
822 	struct cafe_priv *cafe = mtd->priv;
823 
824        /* Start off by resetting the NAND controller completely */
825 	cafe_writel(cafe, 1, NAND_RESET);
826 	cafe_writel(cafe, 0, NAND_RESET);
827 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
828 
829 	/* Restore timing configuration */
830 	cafe_writel(cafe, timing[0], NAND_TIMING1);
831 	cafe_writel(cafe, timing[1], NAND_TIMING2);
832 	cafe_writel(cafe, timing[2], NAND_TIMING3);
833 
834         /* Disable master reset, enable NAND clock */
835 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
836 	ctrl &= 0xffffeff0;
837 	ctrl |= 0x00007000;
838 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
839 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
840 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
841 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
842 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
843 
844 	/* Set up DMA address */
845 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
846 	if (sizeof(cafe->dmaaddr) > 4)
847 	/* Shift in two parts to shut the compiler up */
848 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
849 	else
850 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
851 
852 	/* Enable NAND IRQ in global IRQ mask register */
853 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
854 	return 0;
855 }
856 
857 static struct pci_driver cafe_nand_pci_driver = {
858 	.name = "CAFÉ NAND",
859 	.id_table = cafe_nand_tbl,
860 	.probe = cafe_nand_probe,
861 	.remove = cafe_nand_remove,
862 	.resume = cafe_nand_resume,
863 };
864 
865 module_pci_driver(cafe_nand_pci_driver);
866 
867 MODULE_LICENSE("GPL");
868 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
869 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
870