1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	struct list_head	worklist;	/* L: list of pending works */
152 	int			nr_workers;	/* L: total number of workers */
153 
154 	/* nr_idle includes the ones off idle_list for rebinding */
155 	int			nr_idle;	/* L: currently idle ones */
156 
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct timer_list	idle_timer;	/* L: worker idle timeout */
159 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
160 
161 	/* a workers is either on busy_hash or idle_list, or the manager */
162 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
163 						/* L: hash of busy workers */
164 
165 	/* see manage_workers() for details on the two manager mutexes */
166 	struct mutex		manager_arb;	/* manager arbitration */
167 	struct worker		*manager;	/* L: purely informational */
168 	struct mutex		attach_mutex;	/* attach/detach exclusion */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	struct lockdep_map	lockdep_map;
263 #endif
264 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265 
266 	/*
267 	 * Destruction of workqueue_struct is sched-RCU protected to allow
268 	 * walking the workqueues list without grabbing wq_pool_mutex.
269 	 * This is used to dump all workqueues from sysrq.
270 	 */
271 	struct rcu_head		rcu;
272 
273 	/* hot fields used during command issue, aligned to cacheline */
274 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277 };
278 
279 static struct kmem_cache *pwq_cache;
280 
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 					/* possible CPUs of each node */
283 
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286 
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290 
291 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
292 
293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295 
296 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298 
299 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
300 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
301 
302 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
303 
304 /* the per-cpu worker pools */
305 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
306 				     cpu_worker_pools);
307 
308 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
309 
310 /* PL: hash of all unbound pools keyed by pool->attrs */
311 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
312 
313 /* I: attributes used when instantiating standard unbound pools on demand */
314 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
315 
316 /* I: attributes used when instantiating ordered pools on demand */
317 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
318 
319 struct workqueue_struct *system_wq __read_mostly;
320 EXPORT_SYMBOL(system_wq);
321 struct workqueue_struct *system_highpri_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_highpri_wq);
323 struct workqueue_struct *system_long_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_long_wq);
325 struct workqueue_struct *system_unbound_wq __read_mostly;
326 EXPORT_SYMBOL_GPL(system_unbound_wq);
327 struct workqueue_struct *system_freezable_wq __read_mostly;
328 EXPORT_SYMBOL_GPL(system_freezable_wq);
329 struct workqueue_struct *system_power_efficient_wq __read_mostly;
330 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
331 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
332 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
333 
334 static int worker_thread(void *__worker);
335 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
336 
337 #define CREATE_TRACE_POINTS
338 #include <trace/events/workqueue.h>
339 
340 #define assert_rcu_or_pool_mutex()					\
341 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
342 			 !lockdep_is_held(&wq_pool_mutex),		\
343 			 "sched RCU or wq_pool_mutex should be held")
344 
345 #define assert_rcu_or_wq_mutex(wq)					\
346 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
347 			 !lockdep_is_held(&wq->mutex),			\
348 			 "sched RCU or wq->mutex should be held")
349 
350 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
351 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
352 			 !lockdep_is_held(&wq->mutex) &&		\
353 			 !lockdep_is_held(&wq_pool_mutex),		\
354 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
355 
356 #define for_each_cpu_worker_pool(pool, cpu)				\
357 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
358 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
359 	     (pool)++)
360 
361 /**
362  * for_each_pool - iterate through all worker_pools in the system
363  * @pool: iteration cursor
364  * @pi: integer used for iteration
365  *
366  * This must be called either with wq_pool_mutex held or sched RCU read
367  * locked.  If the pool needs to be used beyond the locking in effect, the
368  * caller is responsible for guaranteeing that the pool stays online.
369  *
370  * The if/else clause exists only for the lockdep assertion and can be
371  * ignored.
372  */
373 #define for_each_pool(pool, pi)						\
374 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
375 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
376 		else
377 
378 /**
379  * for_each_pool_worker - iterate through all workers of a worker_pool
380  * @worker: iteration cursor
381  * @pool: worker_pool to iterate workers of
382  *
383  * This must be called with @pool->attach_mutex.
384  *
385  * The if/else clause exists only for the lockdep assertion and can be
386  * ignored.
387  */
388 #define for_each_pool_worker(worker, pool)				\
389 	list_for_each_entry((worker), &(pool)->workers, node)		\
390 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
391 		else
392 
393 /**
394  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
395  * @pwq: iteration cursor
396  * @wq: the target workqueue
397  *
398  * This must be called either with wq->mutex held or sched RCU read locked.
399  * If the pwq needs to be used beyond the locking in effect, the caller is
400  * responsible for guaranteeing that the pwq stays online.
401  *
402  * The if/else clause exists only for the lockdep assertion and can be
403  * ignored.
404  */
405 #define for_each_pwq(pwq, wq)						\
406 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
407 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
408 		else
409 
410 #ifdef CONFIG_DEBUG_OBJECTS_WORK
411 
412 static struct debug_obj_descr work_debug_descr;
413 
work_debug_hint(void * addr)414 static void *work_debug_hint(void *addr)
415 {
416 	return ((struct work_struct *) addr)->func;
417 }
418 
419 /*
420  * fixup_init is called when:
421  * - an active object is initialized
422  */
work_fixup_init(void * addr,enum debug_obj_state state)423 static int work_fixup_init(void *addr, enum debug_obj_state state)
424 {
425 	struct work_struct *work = addr;
426 
427 	switch (state) {
428 	case ODEBUG_STATE_ACTIVE:
429 		cancel_work_sync(work);
430 		debug_object_init(work, &work_debug_descr);
431 		return 1;
432 	default:
433 		return 0;
434 	}
435 }
436 
437 /*
438  * fixup_activate is called when:
439  * - an active object is activated
440  * - an unknown object is activated (might be a statically initialized object)
441  */
work_fixup_activate(void * addr,enum debug_obj_state state)442 static int work_fixup_activate(void *addr, enum debug_obj_state state)
443 {
444 	struct work_struct *work = addr;
445 
446 	switch (state) {
447 
448 	case ODEBUG_STATE_NOTAVAILABLE:
449 		/*
450 		 * This is not really a fixup. The work struct was
451 		 * statically initialized. We just make sure that it
452 		 * is tracked in the object tracker.
453 		 */
454 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
455 			debug_object_init(work, &work_debug_descr);
456 			debug_object_activate(work, &work_debug_descr);
457 			return 0;
458 		}
459 		WARN_ON_ONCE(1);
460 		return 0;
461 
462 	case ODEBUG_STATE_ACTIVE:
463 		WARN_ON(1);
464 
465 	default:
466 		return 0;
467 	}
468 }
469 
470 /*
471  * fixup_free is called when:
472  * - an active object is freed
473  */
work_fixup_free(void * addr,enum debug_obj_state state)474 static int work_fixup_free(void *addr, enum debug_obj_state state)
475 {
476 	struct work_struct *work = addr;
477 
478 	switch (state) {
479 	case ODEBUG_STATE_ACTIVE:
480 		cancel_work_sync(work);
481 		debug_object_free(work, &work_debug_descr);
482 		return 1;
483 	default:
484 		return 0;
485 	}
486 }
487 
488 static struct debug_obj_descr work_debug_descr = {
489 	.name		= "work_struct",
490 	.debug_hint	= work_debug_hint,
491 	.fixup_init	= work_fixup_init,
492 	.fixup_activate	= work_fixup_activate,
493 	.fixup_free	= work_fixup_free,
494 };
495 
debug_work_activate(struct work_struct * work)496 static inline void debug_work_activate(struct work_struct *work)
497 {
498 	debug_object_activate(work, &work_debug_descr);
499 }
500 
debug_work_deactivate(struct work_struct * work)501 static inline void debug_work_deactivate(struct work_struct *work)
502 {
503 	debug_object_deactivate(work, &work_debug_descr);
504 }
505 
__init_work(struct work_struct * work,int onstack)506 void __init_work(struct work_struct *work, int onstack)
507 {
508 	if (onstack)
509 		debug_object_init_on_stack(work, &work_debug_descr);
510 	else
511 		debug_object_init(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(__init_work);
514 
destroy_work_on_stack(struct work_struct * work)515 void destroy_work_on_stack(struct work_struct *work)
516 {
517 	debug_object_free(work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
520 
destroy_delayed_work_on_stack(struct delayed_work * work)521 void destroy_delayed_work_on_stack(struct delayed_work *work)
522 {
523 	destroy_timer_on_stack(&work->timer);
524 	debug_object_free(&work->work, &work_debug_descr);
525 }
526 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
527 
528 #else
debug_work_activate(struct work_struct * work)529 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)530 static inline void debug_work_deactivate(struct work_struct *work) { }
531 #endif
532 
533 /**
534  * worker_pool_assign_id - allocate ID and assing it to @pool
535  * @pool: the pool pointer of interest
536  *
537  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
538  * successfully, -errno on failure.
539  */
worker_pool_assign_id(struct worker_pool * pool)540 static int worker_pool_assign_id(struct worker_pool *pool)
541 {
542 	int ret;
543 
544 	lockdep_assert_held(&wq_pool_mutex);
545 
546 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
547 			GFP_KERNEL);
548 	if (ret >= 0) {
549 		pool->id = ret;
550 		return 0;
551 	}
552 	return ret;
553 }
554 
555 /**
556  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
557  * @wq: the target workqueue
558  * @node: the node ID
559  *
560  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
561  * read locked.
562  * If the pwq needs to be used beyond the locking in effect, the caller is
563  * responsible for guaranteeing that the pwq stays online.
564  *
565  * Return: The unbound pool_workqueue for @node.
566  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)567 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
568 						  int node)
569 {
570 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
571 
572 	/*
573 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
574 	 * delayed item is pending.  The plan is to keep CPU -> NODE
575 	 * mapping valid and stable across CPU on/offlines.  Once that
576 	 * happens, this workaround can be removed.
577 	 */
578 	if (unlikely(node == NUMA_NO_NODE))
579 		return wq->dfl_pwq;
580 
581 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
582 }
583 
work_color_to_flags(int color)584 static unsigned int work_color_to_flags(int color)
585 {
586 	return color << WORK_STRUCT_COLOR_SHIFT;
587 }
588 
get_work_color(struct work_struct * work)589 static int get_work_color(struct work_struct *work)
590 {
591 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
592 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
593 }
594 
work_next_color(int color)595 static int work_next_color(int color)
596 {
597 	return (color + 1) % WORK_NR_COLORS;
598 }
599 
600 /*
601  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
602  * contain the pointer to the queued pwq.  Once execution starts, the flag
603  * is cleared and the high bits contain OFFQ flags and pool ID.
604  *
605  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
606  * and clear_work_data() can be used to set the pwq, pool or clear
607  * work->data.  These functions should only be called while the work is
608  * owned - ie. while the PENDING bit is set.
609  *
610  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
611  * corresponding to a work.  Pool is available once the work has been
612  * queued anywhere after initialization until it is sync canceled.  pwq is
613  * available only while the work item is queued.
614  *
615  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
616  * canceled.  While being canceled, a work item may have its PENDING set
617  * but stay off timer and worklist for arbitrarily long and nobody should
618  * try to steal the PENDING bit.
619  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)620 static inline void set_work_data(struct work_struct *work, unsigned long data,
621 				 unsigned long flags)
622 {
623 	WARN_ON_ONCE(!work_pending(work));
624 	atomic_long_set(&work->data, data | flags | work_static(work));
625 }
626 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)627 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
628 			 unsigned long extra_flags)
629 {
630 	set_work_data(work, (unsigned long)pwq,
631 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
632 }
633 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_keep_pending(struct work_struct *work,
635 					   int pool_id)
636 {
637 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
638 		      WORK_STRUCT_PENDING);
639 }
640 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)641 static void set_work_pool_and_clear_pending(struct work_struct *work,
642 					    int pool_id)
643 {
644 	/*
645 	 * The following wmb is paired with the implied mb in
646 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
647 	 * here are visible to and precede any updates by the next PENDING
648 	 * owner.
649 	 */
650 	smp_wmb();
651 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
652 	/*
653 	 * The following mb guarantees that previous clear of a PENDING bit
654 	 * will not be reordered with any speculative LOADS or STORES from
655 	 * work->current_func, which is executed afterwards.  This possible
656 	 * reordering can lead to a missed execution on attempt to qeueue
657 	 * the same @work.  E.g. consider this case:
658 	 *
659 	 *   CPU#0                         CPU#1
660 	 *   ----------------------------  --------------------------------
661 	 *
662 	 * 1  STORE event_indicated
663 	 * 2  queue_work_on() {
664 	 * 3    test_and_set_bit(PENDING)
665 	 * 4 }                             set_..._and_clear_pending() {
666 	 * 5                                 set_work_data() # clear bit
667 	 * 6                                 smp_mb()
668 	 * 7                               work->current_func() {
669 	 * 8				      LOAD event_indicated
670 	 *				   }
671 	 *
672 	 * Without an explicit full barrier speculative LOAD on line 8 can
673 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
674 	 * CPU#0 observes the PENDING bit is still set and new execution of
675 	 * a @work is not queued in a hope, that CPU#1 will eventually
676 	 * finish the queued @work.  Meanwhile CPU#1 does not see
677 	 * event_indicated is set, because speculative LOAD was executed
678 	 * before actual STORE.
679 	 */
680 	smp_mb();
681 }
682 
clear_work_data(struct work_struct * work)683 static void clear_work_data(struct work_struct *work)
684 {
685 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
686 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
687 }
688 
get_work_pwq(struct work_struct * work)689 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
690 {
691 	unsigned long data = atomic_long_read(&work->data);
692 
693 	if (data & WORK_STRUCT_PWQ)
694 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
695 	else
696 		return NULL;
697 }
698 
699 /**
700  * get_work_pool - return the worker_pool a given work was associated with
701  * @work: the work item of interest
702  *
703  * Pools are created and destroyed under wq_pool_mutex, and allows read
704  * access under sched-RCU read lock.  As such, this function should be
705  * called under wq_pool_mutex or with preemption disabled.
706  *
707  * All fields of the returned pool are accessible as long as the above
708  * mentioned locking is in effect.  If the returned pool needs to be used
709  * beyond the critical section, the caller is responsible for ensuring the
710  * returned pool is and stays online.
711  *
712  * Return: The worker_pool @work was last associated with.  %NULL if none.
713  */
get_work_pool(struct work_struct * work)714 static struct worker_pool *get_work_pool(struct work_struct *work)
715 {
716 	unsigned long data = atomic_long_read(&work->data);
717 	int pool_id;
718 
719 	assert_rcu_or_pool_mutex();
720 
721 	if (data & WORK_STRUCT_PWQ)
722 		return ((struct pool_workqueue *)
723 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
724 
725 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
726 	if (pool_id == WORK_OFFQ_POOL_NONE)
727 		return NULL;
728 
729 	return idr_find(&worker_pool_idr, pool_id);
730 }
731 
732 /**
733  * get_work_pool_id - return the worker pool ID a given work is associated with
734  * @work: the work item of interest
735  *
736  * Return: The worker_pool ID @work was last associated with.
737  * %WORK_OFFQ_POOL_NONE if none.
738  */
get_work_pool_id(struct work_struct * work)739 static int get_work_pool_id(struct work_struct *work)
740 {
741 	unsigned long data = atomic_long_read(&work->data);
742 
743 	if (data & WORK_STRUCT_PWQ)
744 		return ((struct pool_workqueue *)
745 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
746 
747 	return data >> WORK_OFFQ_POOL_SHIFT;
748 }
749 
mark_work_canceling(struct work_struct * work)750 static void mark_work_canceling(struct work_struct *work)
751 {
752 	unsigned long pool_id = get_work_pool_id(work);
753 
754 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
755 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
756 }
757 
work_is_canceling(struct work_struct * work)758 static bool work_is_canceling(struct work_struct *work)
759 {
760 	unsigned long data = atomic_long_read(&work->data);
761 
762 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
763 }
764 
765 /*
766  * Policy functions.  These define the policies on how the global worker
767  * pools are managed.  Unless noted otherwise, these functions assume that
768  * they're being called with pool->lock held.
769  */
770 
__need_more_worker(struct worker_pool * pool)771 static bool __need_more_worker(struct worker_pool *pool)
772 {
773 	return !atomic_read(&pool->nr_running);
774 }
775 
776 /*
777  * Need to wake up a worker?  Called from anything but currently
778  * running workers.
779  *
780  * Note that, because unbound workers never contribute to nr_running, this
781  * function will always return %true for unbound pools as long as the
782  * worklist isn't empty.
783  */
need_more_worker(struct worker_pool * pool)784 static bool need_more_worker(struct worker_pool *pool)
785 {
786 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
787 }
788 
789 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)790 static bool may_start_working(struct worker_pool *pool)
791 {
792 	return pool->nr_idle;
793 }
794 
795 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)796 static bool keep_working(struct worker_pool *pool)
797 {
798 	return !list_empty(&pool->worklist) &&
799 		atomic_read(&pool->nr_running) <= 1;
800 }
801 
802 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)803 static bool need_to_create_worker(struct worker_pool *pool)
804 {
805 	return need_more_worker(pool) && !may_start_working(pool);
806 }
807 
808 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)809 static bool too_many_workers(struct worker_pool *pool)
810 {
811 	bool managing = mutex_is_locked(&pool->manager_arb);
812 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
813 	int nr_busy = pool->nr_workers - nr_idle;
814 
815 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
816 }
817 
818 /*
819  * Wake up functions.
820  */
821 
822 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)823 static struct worker *first_idle_worker(struct worker_pool *pool)
824 {
825 	if (unlikely(list_empty(&pool->idle_list)))
826 		return NULL;
827 
828 	return list_first_entry(&pool->idle_list, struct worker, entry);
829 }
830 
831 /**
832  * wake_up_worker - wake up an idle worker
833  * @pool: worker pool to wake worker from
834  *
835  * Wake up the first idle worker of @pool.
836  *
837  * CONTEXT:
838  * spin_lock_irq(pool->lock).
839  */
wake_up_worker(struct worker_pool * pool)840 static void wake_up_worker(struct worker_pool *pool)
841 {
842 	struct worker *worker = first_idle_worker(pool);
843 
844 	if (likely(worker))
845 		wake_up_process(worker->task);
846 }
847 
848 /**
849  * wq_worker_waking_up - a worker is waking up
850  * @task: task waking up
851  * @cpu: CPU @task is waking up to
852  *
853  * This function is called during try_to_wake_up() when a worker is
854  * being awoken.
855  *
856  * CONTEXT:
857  * spin_lock_irq(rq->lock)
858  */
wq_worker_waking_up(struct task_struct * task,int cpu)859 void wq_worker_waking_up(struct task_struct *task, int cpu)
860 {
861 	struct worker *worker = kthread_data(task);
862 
863 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
864 		WARN_ON_ONCE(worker->pool->cpu != cpu);
865 		atomic_inc(&worker->pool->nr_running);
866 	}
867 }
868 
869 /**
870  * wq_worker_sleeping - a worker is going to sleep
871  * @task: task going to sleep
872  * @cpu: CPU in question, must be the current CPU number
873  *
874  * This function is called during schedule() when a busy worker is
875  * going to sleep.  Worker on the same cpu can be woken up by
876  * returning pointer to its task.
877  *
878  * CONTEXT:
879  * spin_lock_irq(rq->lock)
880  *
881  * Return:
882  * Worker task on @cpu to wake up, %NULL if none.
883  */
wq_worker_sleeping(struct task_struct * task,int cpu)884 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
885 {
886 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
887 	struct worker_pool *pool;
888 
889 	/*
890 	 * Rescuers, which may not have all the fields set up like normal
891 	 * workers, also reach here, let's not access anything before
892 	 * checking NOT_RUNNING.
893 	 */
894 	if (worker->flags & WORKER_NOT_RUNNING)
895 		return NULL;
896 
897 	pool = worker->pool;
898 
899 	/* this can only happen on the local cpu */
900 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
901 		return NULL;
902 
903 	/*
904 	 * The counterpart of the following dec_and_test, implied mb,
905 	 * worklist not empty test sequence is in insert_work().
906 	 * Please read comment there.
907 	 *
908 	 * NOT_RUNNING is clear.  This means that we're bound to and
909 	 * running on the local cpu w/ rq lock held and preemption
910 	 * disabled, which in turn means that none else could be
911 	 * manipulating idle_list, so dereferencing idle_list without pool
912 	 * lock is safe.
913 	 */
914 	if (atomic_dec_and_test(&pool->nr_running) &&
915 	    !list_empty(&pool->worklist))
916 		to_wakeup = first_idle_worker(pool);
917 	return to_wakeup ? to_wakeup->task : NULL;
918 }
919 
920 /**
921  * worker_set_flags - set worker flags and adjust nr_running accordingly
922  * @worker: self
923  * @flags: flags to set
924  *
925  * Set @flags in @worker->flags and adjust nr_running accordingly.
926  *
927  * CONTEXT:
928  * spin_lock_irq(pool->lock)
929  */
worker_set_flags(struct worker * worker,unsigned int flags)930 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
931 {
932 	struct worker_pool *pool = worker->pool;
933 
934 	WARN_ON_ONCE(worker->task != current);
935 
936 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
937 	if ((flags & WORKER_NOT_RUNNING) &&
938 	    !(worker->flags & WORKER_NOT_RUNNING)) {
939 		atomic_dec(&pool->nr_running);
940 	}
941 
942 	worker->flags |= flags;
943 }
944 
945 /**
946  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
947  * @worker: self
948  * @flags: flags to clear
949  *
950  * Clear @flags in @worker->flags and adjust nr_running accordingly.
951  *
952  * CONTEXT:
953  * spin_lock_irq(pool->lock)
954  */
worker_clr_flags(struct worker * worker,unsigned int flags)955 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
956 {
957 	struct worker_pool *pool = worker->pool;
958 	unsigned int oflags = worker->flags;
959 
960 	WARN_ON_ONCE(worker->task != current);
961 
962 	worker->flags &= ~flags;
963 
964 	/*
965 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
966 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
967 	 * of multiple flags, not a single flag.
968 	 */
969 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
970 		if (!(worker->flags & WORKER_NOT_RUNNING))
971 			atomic_inc(&pool->nr_running);
972 }
973 
974 /**
975  * find_worker_executing_work - find worker which is executing a work
976  * @pool: pool of interest
977  * @work: work to find worker for
978  *
979  * Find a worker which is executing @work on @pool by searching
980  * @pool->busy_hash which is keyed by the address of @work.  For a worker
981  * to match, its current execution should match the address of @work and
982  * its work function.  This is to avoid unwanted dependency between
983  * unrelated work executions through a work item being recycled while still
984  * being executed.
985  *
986  * This is a bit tricky.  A work item may be freed once its execution
987  * starts and nothing prevents the freed area from being recycled for
988  * another work item.  If the same work item address ends up being reused
989  * before the original execution finishes, workqueue will identify the
990  * recycled work item as currently executing and make it wait until the
991  * current execution finishes, introducing an unwanted dependency.
992  *
993  * This function checks the work item address and work function to avoid
994  * false positives.  Note that this isn't complete as one may construct a
995  * work function which can introduce dependency onto itself through a
996  * recycled work item.  Well, if somebody wants to shoot oneself in the
997  * foot that badly, there's only so much we can do, and if such deadlock
998  * actually occurs, it should be easy to locate the culprit work function.
999  *
1000  * CONTEXT:
1001  * spin_lock_irq(pool->lock).
1002  *
1003  * Return:
1004  * Pointer to worker which is executing @work if found, %NULL
1005  * otherwise.
1006  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1007 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1008 						 struct work_struct *work)
1009 {
1010 	struct worker *worker;
1011 
1012 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1013 			       (unsigned long)work)
1014 		if (worker->current_work == work &&
1015 		    worker->current_func == work->func)
1016 			return worker;
1017 
1018 	return NULL;
1019 }
1020 
1021 /**
1022  * move_linked_works - move linked works to a list
1023  * @work: start of series of works to be scheduled
1024  * @head: target list to append @work to
1025  * @nextp: out parameter for nested worklist walking
1026  *
1027  * Schedule linked works starting from @work to @head.  Work series to
1028  * be scheduled starts at @work and includes any consecutive work with
1029  * WORK_STRUCT_LINKED set in its predecessor.
1030  *
1031  * If @nextp is not NULL, it's updated to point to the next work of
1032  * the last scheduled work.  This allows move_linked_works() to be
1033  * nested inside outer list_for_each_entry_safe().
1034  *
1035  * CONTEXT:
1036  * spin_lock_irq(pool->lock).
1037  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1038 static void move_linked_works(struct work_struct *work, struct list_head *head,
1039 			      struct work_struct **nextp)
1040 {
1041 	struct work_struct *n;
1042 
1043 	/*
1044 	 * Linked worklist will always end before the end of the list,
1045 	 * use NULL for list head.
1046 	 */
1047 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1048 		list_move_tail(&work->entry, head);
1049 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1050 			break;
1051 	}
1052 
1053 	/*
1054 	 * If we're already inside safe list traversal and have moved
1055 	 * multiple works to the scheduled queue, the next position
1056 	 * needs to be updated.
1057 	 */
1058 	if (nextp)
1059 		*nextp = n;
1060 }
1061 
1062 /**
1063  * get_pwq - get an extra reference on the specified pool_workqueue
1064  * @pwq: pool_workqueue to get
1065  *
1066  * Obtain an extra reference on @pwq.  The caller should guarantee that
1067  * @pwq has positive refcnt and be holding the matching pool->lock.
1068  */
get_pwq(struct pool_workqueue * pwq)1069 static void get_pwq(struct pool_workqueue *pwq)
1070 {
1071 	lockdep_assert_held(&pwq->pool->lock);
1072 	WARN_ON_ONCE(pwq->refcnt <= 0);
1073 	pwq->refcnt++;
1074 }
1075 
1076 /**
1077  * put_pwq - put a pool_workqueue reference
1078  * @pwq: pool_workqueue to put
1079  *
1080  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1081  * destruction.  The caller should be holding the matching pool->lock.
1082  */
put_pwq(struct pool_workqueue * pwq)1083 static void put_pwq(struct pool_workqueue *pwq)
1084 {
1085 	lockdep_assert_held(&pwq->pool->lock);
1086 	if (likely(--pwq->refcnt))
1087 		return;
1088 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1089 		return;
1090 	/*
1091 	 * @pwq can't be released under pool->lock, bounce to
1092 	 * pwq_unbound_release_workfn().  This never recurses on the same
1093 	 * pool->lock as this path is taken only for unbound workqueues and
1094 	 * the release work item is scheduled on a per-cpu workqueue.  To
1095 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1096 	 * subclass of 1 in get_unbound_pool().
1097 	 */
1098 	schedule_work(&pwq->unbound_release_work);
1099 }
1100 
1101 /**
1102  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1103  * @pwq: pool_workqueue to put (can be %NULL)
1104  *
1105  * put_pwq() with locking.  This function also allows %NULL @pwq.
1106  */
put_pwq_unlocked(struct pool_workqueue * pwq)1107 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1108 {
1109 	if (pwq) {
1110 		/*
1111 		 * As both pwqs and pools are sched-RCU protected, the
1112 		 * following lock operations are safe.
1113 		 */
1114 		spin_lock_irq(&pwq->pool->lock);
1115 		put_pwq(pwq);
1116 		spin_unlock_irq(&pwq->pool->lock);
1117 	}
1118 }
1119 
pwq_activate_delayed_work(struct work_struct * work)1120 static void pwq_activate_delayed_work(struct work_struct *work)
1121 {
1122 	struct pool_workqueue *pwq = get_work_pwq(work);
1123 
1124 	trace_workqueue_activate_work(work);
1125 	move_linked_works(work, &pwq->pool->worklist, NULL);
1126 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1127 	pwq->nr_active++;
1128 }
1129 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1130 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1131 {
1132 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1133 						    struct work_struct, entry);
1134 
1135 	pwq_activate_delayed_work(work);
1136 }
1137 
1138 /**
1139  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1140  * @pwq: pwq of interest
1141  * @color: color of work which left the queue
1142  *
1143  * A work either has completed or is removed from pending queue,
1144  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1145  *
1146  * CONTEXT:
1147  * spin_lock_irq(pool->lock).
1148  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1149 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1150 {
1151 	/* uncolored work items don't participate in flushing or nr_active */
1152 	if (color == WORK_NO_COLOR)
1153 		goto out_put;
1154 
1155 	pwq->nr_in_flight[color]--;
1156 
1157 	pwq->nr_active--;
1158 	if (!list_empty(&pwq->delayed_works)) {
1159 		/* one down, submit a delayed one */
1160 		if (pwq->nr_active < pwq->max_active)
1161 			pwq_activate_first_delayed(pwq);
1162 	}
1163 
1164 	/* is flush in progress and are we at the flushing tip? */
1165 	if (likely(pwq->flush_color != color))
1166 		goto out_put;
1167 
1168 	/* are there still in-flight works? */
1169 	if (pwq->nr_in_flight[color])
1170 		goto out_put;
1171 
1172 	/* this pwq is done, clear flush_color */
1173 	pwq->flush_color = -1;
1174 
1175 	/*
1176 	 * If this was the last pwq, wake up the first flusher.  It
1177 	 * will handle the rest.
1178 	 */
1179 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1180 		complete(&pwq->wq->first_flusher->done);
1181 out_put:
1182 	put_pwq(pwq);
1183 }
1184 
1185 /**
1186  * try_to_grab_pending - steal work item from worklist and disable irq
1187  * @work: work item to steal
1188  * @is_dwork: @work is a delayed_work
1189  * @flags: place to store irq state
1190  *
1191  * Try to grab PENDING bit of @work.  This function can handle @work in any
1192  * stable state - idle, on timer or on worklist.
1193  *
1194  * Return:
1195  *  1		if @work was pending and we successfully stole PENDING
1196  *  0		if @work was idle and we claimed PENDING
1197  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1198  *  -ENOENT	if someone else is canceling @work, this state may persist
1199  *		for arbitrarily long
1200  *
1201  * Note:
1202  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1203  * interrupted while holding PENDING and @work off queue, irq must be
1204  * disabled on entry.  This, combined with delayed_work->timer being
1205  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1206  *
1207  * On successful return, >= 0, irq is disabled and the caller is
1208  * responsible for releasing it using local_irq_restore(*@flags).
1209  *
1210  * This function is safe to call from any context including IRQ handler.
1211  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1212 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1213 			       unsigned long *flags)
1214 {
1215 	struct worker_pool *pool;
1216 	struct pool_workqueue *pwq;
1217 
1218 	local_irq_save(*flags);
1219 
1220 	/* try to steal the timer if it exists */
1221 	if (is_dwork) {
1222 		struct delayed_work *dwork = to_delayed_work(work);
1223 
1224 		/*
1225 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1226 		 * guaranteed that the timer is not queued anywhere and not
1227 		 * running on the local CPU.
1228 		 */
1229 		if (likely(del_timer(&dwork->timer)))
1230 			return 1;
1231 	}
1232 
1233 	/* try to claim PENDING the normal way */
1234 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1235 		return 0;
1236 
1237 	/*
1238 	 * The queueing is in progress, or it is already queued. Try to
1239 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1240 	 */
1241 	pool = get_work_pool(work);
1242 	if (!pool)
1243 		goto fail;
1244 
1245 	spin_lock(&pool->lock);
1246 	/*
1247 	 * work->data is guaranteed to point to pwq only while the work
1248 	 * item is queued on pwq->wq, and both updating work->data to point
1249 	 * to pwq on queueing and to pool on dequeueing are done under
1250 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1251 	 * points to pwq which is associated with a locked pool, the work
1252 	 * item is currently queued on that pool.
1253 	 */
1254 	pwq = get_work_pwq(work);
1255 	if (pwq && pwq->pool == pool) {
1256 		debug_work_deactivate(work);
1257 
1258 		/*
1259 		 * A delayed work item cannot be grabbed directly because
1260 		 * it might have linked NO_COLOR work items which, if left
1261 		 * on the delayed_list, will confuse pwq->nr_active
1262 		 * management later on and cause stall.  Make sure the work
1263 		 * item is activated before grabbing.
1264 		 */
1265 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1266 			pwq_activate_delayed_work(work);
1267 
1268 		list_del_init(&work->entry);
1269 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1270 
1271 		/* work->data points to pwq iff queued, point to pool */
1272 		set_work_pool_and_keep_pending(work, pool->id);
1273 
1274 		spin_unlock(&pool->lock);
1275 		return 1;
1276 	}
1277 	spin_unlock(&pool->lock);
1278 fail:
1279 	local_irq_restore(*flags);
1280 	if (work_is_canceling(work))
1281 		return -ENOENT;
1282 	cpu_relax();
1283 	return -EAGAIN;
1284 }
1285 
1286 /**
1287  * insert_work - insert a work into a pool
1288  * @pwq: pwq @work belongs to
1289  * @work: work to insert
1290  * @head: insertion point
1291  * @extra_flags: extra WORK_STRUCT_* flags to set
1292  *
1293  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1294  * work_struct flags.
1295  *
1296  * CONTEXT:
1297  * spin_lock_irq(pool->lock).
1298  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1299 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1300 			struct list_head *head, unsigned int extra_flags)
1301 {
1302 	struct worker_pool *pool = pwq->pool;
1303 
1304 	/* we own @work, set data and link */
1305 	set_work_pwq(work, pwq, extra_flags);
1306 	list_add_tail(&work->entry, head);
1307 	get_pwq(pwq);
1308 
1309 	/*
1310 	 * Ensure either wq_worker_sleeping() sees the above
1311 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1312 	 * around lazily while there are works to be processed.
1313 	 */
1314 	smp_mb();
1315 
1316 	if (__need_more_worker(pool))
1317 		wake_up_worker(pool);
1318 }
1319 
1320 /*
1321  * Test whether @work is being queued from another work executing on the
1322  * same workqueue.
1323  */
is_chained_work(struct workqueue_struct * wq)1324 static bool is_chained_work(struct workqueue_struct *wq)
1325 {
1326 	struct worker *worker;
1327 
1328 	worker = current_wq_worker();
1329 	/*
1330 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1331 	 * I'm @worker, it's safe to dereference it without locking.
1332 	 */
1333 	return worker && worker->current_pwq->wq == wq;
1334 }
1335 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1336 static void __queue_work(int cpu, struct workqueue_struct *wq,
1337 			 struct work_struct *work)
1338 {
1339 	struct pool_workqueue *pwq;
1340 	struct worker_pool *last_pool;
1341 	struct list_head *worklist;
1342 	unsigned int work_flags;
1343 	unsigned int req_cpu = cpu;
1344 
1345 	/*
1346 	 * While a work item is PENDING && off queue, a task trying to
1347 	 * steal the PENDING will busy-loop waiting for it to either get
1348 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1349 	 * happen with IRQ disabled.
1350 	 */
1351 	WARN_ON_ONCE(!irqs_disabled());
1352 
1353 	debug_work_activate(work);
1354 
1355 	/* if draining, only works from the same workqueue are allowed */
1356 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1357 	    WARN_ON_ONCE(!is_chained_work(wq)))
1358 		return;
1359 retry:
1360 	if (req_cpu == WORK_CPU_UNBOUND)
1361 		cpu = raw_smp_processor_id();
1362 
1363 	/* pwq which will be used unless @work is executing elsewhere */
1364 	if (!(wq->flags & WQ_UNBOUND))
1365 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1366 	else
1367 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1368 
1369 	/*
1370 	 * If @work was previously on a different pool, it might still be
1371 	 * running there, in which case the work needs to be queued on that
1372 	 * pool to guarantee non-reentrancy.
1373 	 */
1374 	last_pool = get_work_pool(work);
1375 	if (last_pool && last_pool != pwq->pool) {
1376 		struct worker *worker;
1377 
1378 		spin_lock(&last_pool->lock);
1379 
1380 		worker = find_worker_executing_work(last_pool, work);
1381 
1382 		if (worker && worker->current_pwq->wq == wq) {
1383 			pwq = worker->current_pwq;
1384 		} else {
1385 			/* meh... not running there, queue here */
1386 			spin_unlock(&last_pool->lock);
1387 			spin_lock(&pwq->pool->lock);
1388 		}
1389 	} else {
1390 		spin_lock(&pwq->pool->lock);
1391 	}
1392 
1393 	/*
1394 	 * pwq is determined and locked.  For unbound pools, we could have
1395 	 * raced with pwq release and it could already be dead.  If its
1396 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1397 	 * without another pwq replacing it in the numa_pwq_tbl or while
1398 	 * work items are executing on it, so the retrying is guaranteed to
1399 	 * make forward-progress.
1400 	 */
1401 	if (unlikely(!pwq->refcnt)) {
1402 		if (wq->flags & WQ_UNBOUND) {
1403 			spin_unlock(&pwq->pool->lock);
1404 			cpu_relax();
1405 			goto retry;
1406 		}
1407 		/* oops */
1408 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1409 			  wq->name, cpu);
1410 	}
1411 
1412 	/* pwq determined, queue */
1413 	trace_workqueue_queue_work(req_cpu, pwq, work);
1414 
1415 	if (WARN_ON(!list_empty(&work->entry))) {
1416 		spin_unlock(&pwq->pool->lock);
1417 		return;
1418 	}
1419 
1420 	pwq->nr_in_flight[pwq->work_color]++;
1421 	work_flags = work_color_to_flags(pwq->work_color);
1422 
1423 	if (likely(pwq->nr_active < pwq->max_active)) {
1424 		trace_workqueue_activate_work(work);
1425 		pwq->nr_active++;
1426 		worklist = &pwq->pool->worklist;
1427 	} else {
1428 		work_flags |= WORK_STRUCT_DELAYED;
1429 		worklist = &pwq->delayed_works;
1430 	}
1431 
1432 	insert_work(pwq, work, worklist, work_flags);
1433 
1434 	spin_unlock(&pwq->pool->lock);
1435 }
1436 
1437 /**
1438  * queue_work_on - queue work on specific cpu
1439  * @cpu: CPU number to execute work on
1440  * @wq: workqueue to use
1441  * @work: work to queue
1442  *
1443  * We queue the work to a specific CPU, the caller must ensure it
1444  * can't go away.
1445  *
1446  * Return: %false if @work was already on a queue, %true otherwise.
1447  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1448 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1449 		   struct work_struct *work)
1450 {
1451 	bool ret = false;
1452 	unsigned long flags;
1453 
1454 	local_irq_save(flags);
1455 
1456 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1457 		__queue_work(cpu, wq, work);
1458 		ret = true;
1459 	}
1460 
1461 	local_irq_restore(flags);
1462 	return ret;
1463 }
1464 EXPORT_SYMBOL(queue_work_on);
1465 
delayed_work_timer_fn(unsigned long __data)1466 void delayed_work_timer_fn(unsigned long __data)
1467 {
1468 	struct delayed_work *dwork = (struct delayed_work *)__data;
1469 
1470 	/* should have been called from irqsafe timer with irq already off */
1471 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1472 }
1473 EXPORT_SYMBOL(delayed_work_timer_fn);
1474 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1475 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1476 				struct delayed_work *dwork, unsigned long delay)
1477 {
1478 	struct timer_list *timer = &dwork->timer;
1479 	struct work_struct *work = &dwork->work;
1480 
1481 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1482 		     timer->data != (unsigned long)dwork);
1483 	WARN_ON_ONCE(timer_pending(timer));
1484 	WARN_ON_ONCE(!list_empty(&work->entry));
1485 
1486 	/*
1487 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1488 	 * both optimization and correctness.  The earliest @timer can
1489 	 * expire is on the closest next tick and delayed_work users depend
1490 	 * on that there's no such delay when @delay is 0.
1491 	 */
1492 	if (!delay) {
1493 		__queue_work(cpu, wq, &dwork->work);
1494 		return;
1495 	}
1496 
1497 	timer_stats_timer_set_start_info(&dwork->timer);
1498 
1499 	dwork->wq = wq;
1500 	dwork->cpu = cpu;
1501 	timer->expires = jiffies + delay;
1502 
1503 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1504 		add_timer_on(timer, cpu);
1505 	else
1506 		add_timer(timer);
1507 }
1508 
1509 /**
1510  * queue_delayed_work_on - queue work on specific CPU after delay
1511  * @cpu: CPU number to execute work on
1512  * @wq: workqueue to use
1513  * @dwork: work to queue
1514  * @delay: number of jiffies to wait before queueing
1515  *
1516  * Return: %false if @work was already on a queue, %true otherwise.  If
1517  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1518  * execution.
1519  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1520 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1521 			   struct delayed_work *dwork, unsigned long delay)
1522 {
1523 	struct work_struct *work = &dwork->work;
1524 	bool ret = false;
1525 	unsigned long flags;
1526 
1527 	/* read the comment in __queue_work() */
1528 	local_irq_save(flags);
1529 
1530 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1531 		__queue_delayed_work(cpu, wq, dwork, delay);
1532 		ret = true;
1533 	}
1534 
1535 	local_irq_restore(flags);
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL(queue_delayed_work_on);
1539 
1540 /**
1541  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1542  * @cpu: CPU number to execute work on
1543  * @wq: workqueue to use
1544  * @dwork: work to queue
1545  * @delay: number of jiffies to wait before queueing
1546  *
1547  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1548  * modify @dwork's timer so that it expires after @delay.  If @delay is
1549  * zero, @work is guaranteed to be scheduled immediately regardless of its
1550  * current state.
1551  *
1552  * Return: %false if @dwork was idle and queued, %true if @dwork was
1553  * pending and its timer was modified.
1554  *
1555  * This function is safe to call from any context including IRQ handler.
1556  * See try_to_grab_pending() for details.
1557  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1558 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1559 			 struct delayed_work *dwork, unsigned long delay)
1560 {
1561 	unsigned long flags;
1562 	int ret;
1563 
1564 	do {
1565 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1566 	} while (unlikely(ret == -EAGAIN));
1567 
1568 	if (likely(ret >= 0)) {
1569 		__queue_delayed_work(cpu, wq, dwork, delay);
1570 		local_irq_restore(flags);
1571 	}
1572 
1573 	/* -ENOENT from try_to_grab_pending() becomes %true */
1574 	return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1577 
1578 /**
1579  * worker_enter_idle - enter idle state
1580  * @worker: worker which is entering idle state
1581  *
1582  * @worker is entering idle state.  Update stats and idle timer if
1583  * necessary.
1584  *
1585  * LOCKING:
1586  * spin_lock_irq(pool->lock).
1587  */
worker_enter_idle(struct worker * worker)1588 static void worker_enter_idle(struct worker *worker)
1589 {
1590 	struct worker_pool *pool = worker->pool;
1591 
1592 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1593 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1594 			 (worker->hentry.next || worker->hentry.pprev)))
1595 		return;
1596 
1597 	/* can't use worker_set_flags(), also called from create_worker() */
1598 	worker->flags |= WORKER_IDLE;
1599 	pool->nr_idle++;
1600 	worker->last_active = jiffies;
1601 
1602 	/* idle_list is LIFO */
1603 	list_add(&worker->entry, &pool->idle_list);
1604 
1605 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1606 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1607 
1608 	/*
1609 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1610 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1611 	 * nr_running, the warning may trigger spuriously.  Check iff
1612 	 * unbind is not in progress.
1613 	 */
1614 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1615 		     pool->nr_workers == pool->nr_idle &&
1616 		     atomic_read(&pool->nr_running));
1617 }
1618 
1619 /**
1620  * worker_leave_idle - leave idle state
1621  * @worker: worker which is leaving idle state
1622  *
1623  * @worker is leaving idle state.  Update stats.
1624  *
1625  * LOCKING:
1626  * spin_lock_irq(pool->lock).
1627  */
worker_leave_idle(struct worker * worker)1628 static void worker_leave_idle(struct worker *worker)
1629 {
1630 	struct worker_pool *pool = worker->pool;
1631 
1632 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1633 		return;
1634 	worker_clr_flags(worker, WORKER_IDLE);
1635 	pool->nr_idle--;
1636 	list_del_init(&worker->entry);
1637 }
1638 
alloc_worker(int node)1639 static struct worker *alloc_worker(int node)
1640 {
1641 	struct worker *worker;
1642 
1643 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1644 	if (worker) {
1645 		INIT_LIST_HEAD(&worker->entry);
1646 		INIT_LIST_HEAD(&worker->scheduled);
1647 		INIT_LIST_HEAD(&worker->node);
1648 		/* on creation a worker is in !idle && prep state */
1649 		worker->flags = WORKER_PREP;
1650 	}
1651 	return worker;
1652 }
1653 
1654 /**
1655  * worker_attach_to_pool() - attach a worker to a pool
1656  * @worker: worker to be attached
1657  * @pool: the target pool
1658  *
1659  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1660  * cpu-binding of @worker are kept coordinated with the pool across
1661  * cpu-[un]hotplugs.
1662  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1663 static void worker_attach_to_pool(struct worker *worker,
1664 				   struct worker_pool *pool)
1665 {
1666 	mutex_lock(&pool->attach_mutex);
1667 
1668 	/*
1669 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1670 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1671 	 */
1672 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1673 
1674 	/*
1675 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1676 	 * stable across this function.  See the comments above the
1677 	 * flag definition for details.
1678 	 */
1679 	if (pool->flags & POOL_DISASSOCIATED)
1680 		worker->flags |= WORKER_UNBOUND;
1681 
1682 	list_add_tail(&worker->node, &pool->workers);
1683 
1684 	mutex_unlock(&pool->attach_mutex);
1685 }
1686 
1687 /**
1688  * worker_detach_from_pool() - detach a worker from its pool
1689  * @worker: worker which is attached to its pool
1690  * @pool: the pool @worker is attached to
1691  *
1692  * Undo the attaching which had been done in worker_attach_to_pool().  The
1693  * caller worker shouldn't access to the pool after detached except it has
1694  * other reference to the pool.
1695  */
worker_detach_from_pool(struct worker * worker,struct worker_pool * pool)1696 static void worker_detach_from_pool(struct worker *worker,
1697 				    struct worker_pool *pool)
1698 {
1699 	struct completion *detach_completion = NULL;
1700 
1701 	mutex_lock(&pool->attach_mutex);
1702 	list_del(&worker->node);
1703 	if (list_empty(&pool->workers))
1704 		detach_completion = pool->detach_completion;
1705 	mutex_unlock(&pool->attach_mutex);
1706 
1707 	/* clear leftover flags without pool->lock after it is detached */
1708 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1709 
1710 	if (detach_completion)
1711 		complete(detach_completion);
1712 }
1713 
1714 /**
1715  * create_worker - create a new workqueue worker
1716  * @pool: pool the new worker will belong to
1717  *
1718  * Create and start a new worker which is attached to @pool.
1719  *
1720  * CONTEXT:
1721  * Might sleep.  Does GFP_KERNEL allocations.
1722  *
1723  * Return:
1724  * Pointer to the newly created worker.
1725  */
create_worker(struct worker_pool * pool)1726 static struct worker *create_worker(struct worker_pool *pool)
1727 {
1728 	struct worker *worker = NULL;
1729 	int id = -1;
1730 	char id_buf[16];
1731 
1732 	/* ID is needed to determine kthread name */
1733 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1734 	if (id < 0)
1735 		goto fail;
1736 
1737 	worker = alloc_worker(pool->node);
1738 	if (!worker)
1739 		goto fail;
1740 
1741 	worker->pool = pool;
1742 	worker->id = id;
1743 
1744 	if (pool->cpu >= 0)
1745 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1746 			 pool->attrs->nice < 0  ? "H" : "");
1747 	else
1748 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1749 
1750 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1751 					      "kworker/%s", id_buf);
1752 	if (IS_ERR(worker->task))
1753 		goto fail;
1754 
1755 	set_user_nice(worker->task, pool->attrs->nice);
1756 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1757 
1758 	/* successful, attach the worker to the pool */
1759 	worker_attach_to_pool(worker, pool);
1760 
1761 	/* start the newly created worker */
1762 	spin_lock_irq(&pool->lock);
1763 	worker->pool->nr_workers++;
1764 	worker_enter_idle(worker);
1765 	wake_up_process(worker->task);
1766 	spin_unlock_irq(&pool->lock);
1767 
1768 	return worker;
1769 
1770 fail:
1771 	if (id >= 0)
1772 		ida_simple_remove(&pool->worker_ida, id);
1773 	kfree(worker);
1774 	return NULL;
1775 }
1776 
1777 /**
1778  * destroy_worker - destroy a workqueue worker
1779  * @worker: worker to be destroyed
1780  *
1781  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1782  * be idle.
1783  *
1784  * CONTEXT:
1785  * spin_lock_irq(pool->lock).
1786  */
destroy_worker(struct worker * worker)1787 static void destroy_worker(struct worker *worker)
1788 {
1789 	struct worker_pool *pool = worker->pool;
1790 
1791 	lockdep_assert_held(&pool->lock);
1792 
1793 	/* sanity check frenzy */
1794 	if (WARN_ON(worker->current_work) ||
1795 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1796 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1797 		return;
1798 
1799 	pool->nr_workers--;
1800 	pool->nr_idle--;
1801 
1802 	list_del_init(&worker->entry);
1803 	worker->flags |= WORKER_DIE;
1804 	wake_up_process(worker->task);
1805 }
1806 
idle_worker_timeout(unsigned long __pool)1807 static void idle_worker_timeout(unsigned long __pool)
1808 {
1809 	struct worker_pool *pool = (void *)__pool;
1810 
1811 	spin_lock_irq(&pool->lock);
1812 
1813 	while (too_many_workers(pool)) {
1814 		struct worker *worker;
1815 		unsigned long expires;
1816 
1817 		/* idle_list is kept in LIFO order, check the last one */
1818 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1819 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1820 
1821 		if (time_before(jiffies, expires)) {
1822 			mod_timer(&pool->idle_timer, expires);
1823 			break;
1824 		}
1825 
1826 		destroy_worker(worker);
1827 	}
1828 
1829 	spin_unlock_irq(&pool->lock);
1830 }
1831 
send_mayday(struct work_struct * work)1832 static void send_mayday(struct work_struct *work)
1833 {
1834 	struct pool_workqueue *pwq = get_work_pwq(work);
1835 	struct workqueue_struct *wq = pwq->wq;
1836 
1837 	lockdep_assert_held(&wq_mayday_lock);
1838 
1839 	if (!wq->rescuer)
1840 		return;
1841 
1842 	/* mayday mayday mayday */
1843 	if (list_empty(&pwq->mayday_node)) {
1844 		/*
1845 		 * If @pwq is for an unbound wq, its base ref may be put at
1846 		 * any time due to an attribute change.  Pin @pwq until the
1847 		 * rescuer is done with it.
1848 		 */
1849 		get_pwq(pwq);
1850 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1851 		wake_up_process(wq->rescuer->task);
1852 	}
1853 }
1854 
pool_mayday_timeout(unsigned long __pool)1855 static void pool_mayday_timeout(unsigned long __pool)
1856 {
1857 	struct worker_pool *pool = (void *)__pool;
1858 	struct work_struct *work;
1859 
1860 	spin_lock_irq(&pool->lock);
1861 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1862 
1863 	if (need_to_create_worker(pool)) {
1864 		/*
1865 		 * We've been trying to create a new worker but
1866 		 * haven't been successful.  We might be hitting an
1867 		 * allocation deadlock.  Send distress signals to
1868 		 * rescuers.
1869 		 */
1870 		list_for_each_entry(work, &pool->worklist, entry)
1871 			send_mayday(work);
1872 	}
1873 
1874 	spin_unlock(&wq_mayday_lock);
1875 	spin_unlock_irq(&pool->lock);
1876 
1877 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1878 }
1879 
1880 /**
1881  * maybe_create_worker - create a new worker if necessary
1882  * @pool: pool to create a new worker for
1883  *
1884  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1885  * have at least one idle worker on return from this function.  If
1886  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1887  * sent to all rescuers with works scheduled on @pool to resolve
1888  * possible allocation deadlock.
1889  *
1890  * On return, need_to_create_worker() is guaranteed to be %false and
1891  * may_start_working() %true.
1892  *
1893  * LOCKING:
1894  * spin_lock_irq(pool->lock) which may be released and regrabbed
1895  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1896  * manager.
1897  */
maybe_create_worker(struct worker_pool * pool)1898 static void maybe_create_worker(struct worker_pool *pool)
1899 __releases(&pool->lock)
1900 __acquires(&pool->lock)
1901 {
1902 restart:
1903 	spin_unlock_irq(&pool->lock);
1904 
1905 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1906 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1907 
1908 	while (true) {
1909 		if (create_worker(pool) || !need_to_create_worker(pool))
1910 			break;
1911 
1912 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1913 
1914 		if (!need_to_create_worker(pool))
1915 			break;
1916 	}
1917 
1918 	del_timer_sync(&pool->mayday_timer);
1919 	spin_lock_irq(&pool->lock);
1920 	/*
1921 	 * This is necessary even after a new worker was just successfully
1922 	 * created as @pool->lock was dropped and the new worker might have
1923 	 * already become busy.
1924 	 */
1925 	if (need_to_create_worker(pool))
1926 		goto restart;
1927 }
1928 
1929 /**
1930  * manage_workers - manage worker pool
1931  * @worker: self
1932  *
1933  * Assume the manager role and manage the worker pool @worker belongs
1934  * to.  At any given time, there can be only zero or one manager per
1935  * pool.  The exclusion is handled automatically by this function.
1936  *
1937  * The caller can safely start processing works on false return.  On
1938  * true return, it's guaranteed that need_to_create_worker() is false
1939  * and may_start_working() is true.
1940  *
1941  * CONTEXT:
1942  * spin_lock_irq(pool->lock) which may be released and regrabbed
1943  * multiple times.  Does GFP_KERNEL allocations.
1944  *
1945  * Return:
1946  * %false if the pool doesn't need management and the caller can safely
1947  * start processing works, %true if management function was performed and
1948  * the conditions that the caller verified before calling the function may
1949  * no longer be true.
1950  */
manage_workers(struct worker * worker)1951 static bool manage_workers(struct worker *worker)
1952 {
1953 	struct worker_pool *pool = worker->pool;
1954 
1955 	/*
1956 	 * Anyone who successfully grabs manager_arb wins the arbitration
1957 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1958 	 * failure while holding pool->lock reliably indicates that someone
1959 	 * else is managing the pool and the worker which failed trylock
1960 	 * can proceed to executing work items.  This means that anyone
1961 	 * grabbing manager_arb is responsible for actually performing
1962 	 * manager duties.  If manager_arb is grabbed and released without
1963 	 * actual management, the pool may stall indefinitely.
1964 	 */
1965 	if (!mutex_trylock(&pool->manager_arb))
1966 		return false;
1967 	pool->manager = worker;
1968 
1969 	maybe_create_worker(pool);
1970 
1971 	pool->manager = NULL;
1972 	mutex_unlock(&pool->manager_arb);
1973 	return true;
1974 }
1975 
1976 /**
1977  * process_one_work - process single work
1978  * @worker: self
1979  * @work: work to process
1980  *
1981  * Process @work.  This function contains all the logics necessary to
1982  * process a single work including synchronization against and
1983  * interaction with other workers on the same cpu, queueing and
1984  * flushing.  As long as context requirement is met, any worker can
1985  * call this function to process a work.
1986  *
1987  * CONTEXT:
1988  * spin_lock_irq(pool->lock) which is released and regrabbed.
1989  */
process_one_work(struct worker * worker,struct work_struct * work)1990 static void process_one_work(struct worker *worker, struct work_struct *work)
1991 __releases(&pool->lock)
1992 __acquires(&pool->lock)
1993 {
1994 	struct pool_workqueue *pwq = get_work_pwq(work);
1995 	struct worker_pool *pool = worker->pool;
1996 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1997 	int work_color;
1998 	struct worker *collision;
1999 #ifdef CONFIG_LOCKDEP
2000 	/*
2001 	 * It is permissible to free the struct work_struct from
2002 	 * inside the function that is called from it, this we need to
2003 	 * take into account for lockdep too.  To avoid bogus "held
2004 	 * lock freed" warnings as well as problems when looking into
2005 	 * work->lockdep_map, make a copy and use that here.
2006 	 */
2007 	struct lockdep_map lockdep_map;
2008 
2009 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2010 #endif
2011 	/* ensure we're on the correct CPU */
2012 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2013 		     raw_smp_processor_id() != pool->cpu);
2014 
2015 	/*
2016 	 * A single work shouldn't be executed concurrently by
2017 	 * multiple workers on a single cpu.  Check whether anyone is
2018 	 * already processing the work.  If so, defer the work to the
2019 	 * currently executing one.
2020 	 */
2021 	collision = find_worker_executing_work(pool, work);
2022 	if (unlikely(collision)) {
2023 		move_linked_works(work, &collision->scheduled, NULL);
2024 		return;
2025 	}
2026 
2027 	/* claim and dequeue */
2028 	debug_work_deactivate(work);
2029 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2030 	worker->current_work = work;
2031 	worker->current_func = work->func;
2032 	worker->current_pwq = pwq;
2033 	work_color = get_work_color(work);
2034 
2035 	list_del_init(&work->entry);
2036 
2037 	/*
2038 	 * CPU intensive works don't participate in concurrency management.
2039 	 * They're the scheduler's responsibility.  This takes @worker out
2040 	 * of concurrency management and the next code block will chain
2041 	 * execution of the pending work items.
2042 	 */
2043 	if (unlikely(cpu_intensive))
2044 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2045 
2046 	/*
2047 	 * Wake up another worker if necessary.  The condition is always
2048 	 * false for normal per-cpu workers since nr_running would always
2049 	 * be >= 1 at this point.  This is used to chain execution of the
2050 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2051 	 * UNBOUND and CPU_INTENSIVE ones.
2052 	 */
2053 	if (need_more_worker(pool))
2054 		wake_up_worker(pool);
2055 
2056 	/*
2057 	 * Record the last pool and clear PENDING which should be the last
2058 	 * update to @work.  Also, do this inside @pool->lock so that
2059 	 * PENDING and queued state changes happen together while IRQ is
2060 	 * disabled.
2061 	 */
2062 	set_work_pool_and_clear_pending(work, pool->id);
2063 
2064 	spin_unlock_irq(&pool->lock);
2065 
2066 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2067 	lock_map_acquire(&lockdep_map);
2068 	trace_workqueue_execute_start(work);
2069 	worker->current_func(work);
2070 	/*
2071 	 * While we must be careful to not use "work" after this, the trace
2072 	 * point will only record its address.
2073 	 */
2074 	trace_workqueue_execute_end(work);
2075 	lock_map_release(&lockdep_map);
2076 	lock_map_release(&pwq->wq->lockdep_map);
2077 
2078 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2079 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2080 		       "     last function: %pf\n",
2081 		       current->comm, preempt_count(), task_pid_nr(current),
2082 		       worker->current_func);
2083 		debug_show_held_locks(current);
2084 		dump_stack();
2085 	}
2086 
2087 	/*
2088 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2089 	 * kernels, where a requeueing work item waiting for something to
2090 	 * happen could deadlock with stop_machine as such work item could
2091 	 * indefinitely requeue itself while all other CPUs are trapped in
2092 	 * stop_machine. At the same time, report a quiescent RCU state so
2093 	 * the same condition doesn't freeze RCU.
2094 	 */
2095 	cond_resched_rcu_qs();
2096 
2097 	spin_lock_irq(&pool->lock);
2098 
2099 	/* clear cpu intensive status */
2100 	if (unlikely(cpu_intensive))
2101 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2102 
2103 	/* we're done with it, release */
2104 	hash_del(&worker->hentry);
2105 	worker->current_work = NULL;
2106 	worker->current_func = NULL;
2107 	worker->current_pwq = NULL;
2108 	worker->desc_valid = false;
2109 	pwq_dec_nr_in_flight(pwq, work_color);
2110 }
2111 
2112 /**
2113  * process_scheduled_works - process scheduled works
2114  * @worker: self
2115  *
2116  * Process all scheduled works.  Please note that the scheduled list
2117  * may change while processing a work, so this function repeatedly
2118  * fetches a work from the top and executes it.
2119  *
2120  * CONTEXT:
2121  * spin_lock_irq(pool->lock) which may be released and regrabbed
2122  * multiple times.
2123  */
process_scheduled_works(struct worker * worker)2124 static void process_scheduled_works(struct worker *worker)
2125 {
2126 	while (!list_empty(&worker->scheduled)) {
2127 		struct work_struct *work = list_first_entry(&worker->scheduled,
2128 						struct work_struct, entry);
2129 		process_one_work(worker, work);
2130 	}
2131 }
2132 
2133 /**
2134  * worker_thread - the worker thread function
2135  * @__worker: self
2136  *
2137  * The worker thread function.  All workers belong to a worker_pool -
2138  * either a per-cpu one or dynamic unbound one.  These workers process all
2139  * work items regardless of their specific target workqueue.  The only
2140  * exception is work items which belong to workqueues with a rescuer which
2141  * will be explained in rescuer_thread().
2142  *
2143  * Return: 0
2144  */
worker_thread(void * __worker)2145 static int worker_thread(void *__worker)
2146 {
2147 	struct worker *worker = __worker;
2148 	struct worker_pool *pool = worker->pool;
2149 
2150 	/* tell the scheduler that this is a workqueue worker */
2151 	worker->task->flags |= PF_WQ_WORKER;
2152 woke_up:
2153 	spin_lock_irq(&pool->lock);
2154 
2155 	/* am I supposed to die? */
2156 	if (unlikely(worker->flags & WORKER_DIE)) {
2157 		spin_unlock_irq(&pool->lock);
2158 		WARN_ON_ONCE(!list_empty(&worker->entry));
2159 		worker->task->flags &= ~PF_WQ_WORKER;
2160 
2161 		set_task_comm(worker->task, "kworker/dying");
2162 		ida_simple_remove(&pool->worker_ida, worker->id);
2163 		worker_detach_from_pool(worker, pool);
2164 		kfree(worker);
2165 		return 0;
2166 	}
2167 
2168 	worker_leave_idle(worker);
2169 recheck:
2170 	/* no more worker necessary? */
2171 	if (!need_more_worker(pool))
2172 		goto sleep;
2173 
2174 	/* do we need to manage? */
2175 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2176 		goto recheck;
2177 
2178 	/*
2179 	 * ->scheduled list can only be filled while a worker is
2180 	 * preparing to process a work or actually processing it.
2181 	 * Make sure nobody diddled with it while I was sleeping.
2182 	 */
2183 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2184 
2185 	/*
2186 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2187 	 * worker or that someone else has already assumed the manager
2188 	 * role.  This is where @worker starts participating in concurrency
2189 	 * management if applicable and concurrency management is restored
2190 	 * after being rebound.  See rebind_workers() for details.
2191 	 */
2192 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2193 
2194 	do {
2195 		struct work_struct *work =
2196 			list_first_entry(&pool->worklist,
2197 					 struct work_struct, entry);
2198 
2199 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2200 			/* optimization path, not strictly necessary */
2201 			process_one_work(worker, work);
2202 			if (unlikely(!list_empty(&worker->scheduled)))
2203 				process_scheduled_works(worker);
2204 		} else {
2205 			move_linked_works(work, &worker->scheduled, NULL);
2206 			process_scheduled_works(worker);
2207 		}
2208 	} while (keep_working(pool));
2209 
2210 	worker_set_flags(worker, WORKER_PREP);
2211 sleep:
2212 	/*
2213 	 * pool->lock is held and there's no work to process and no need to
2214 	 * manage, sleep.  Workers are woken up only while holding
2215 	 * pool->lock or from local cpu, so setting the current state
2216 	 * before releasing pool->lock is enough to prevent losing any
2217 	 * event.
2218 	 */
2219 	worker_enter_idle(worker);
2220 	__set_current_state(TASK_INTERRUPTIBLE);
2221 	spin_unlock_irq(&pool->lock);
2222 	schedule();
2223 	goto woke_up;
2224 }
2225 
2226 /**
2227  * rescuer_thread - the rescuer thread function
2228  * @__rescuer: self
2229  *
2230  * Workqueue rescuer thread function.  There's one rescuer for each
2231  * workqueue which has WQ_MEM_RECLAIM set.
2232  *
2233  * Regular work processing on a pool may block trying to create a new
2234  * worker which uses GFP_KERNEL allocation which has slight chance of
2235  * developing into deadlock if some works currently on the same queue
2236  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2237  * the problem rescuer solves.
2238  *
2239  * When such condition is possible, the pool summons rescuers of all
2240  * workqueues which have works queued on the pool and let them process
2241  * those works so that forward progress can be guaranteed.
2242  *
2243  * This should happen rarely.
2244  *
2245  * Return: 0
2246  */
rescuer_thread(void * __rescuer)2247 static int rescuer_thread(void *__rescuer)
2248 {
2249 	struct worker *rescuer = __rescuer;
2250 	struct workqueue_struct *wq = rescuer->rescue_wq;
2251 	struct list_head *scheduled = &rescuer->scheduled;
2252 	bool should_stop;
2253 
2254 	set_user_nice(current, RESCUER_NICE_LEVEL);
2255 
2256 	/*
2257 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2258 	 * doesn't participate in concurrency management.
2259 	 */
2260 	rescuer->task->flags |= PF_WQ_WORKER;
2261 repeat:
2262 	set_current_state(TASK_INTERRUPTIBLE);
2263 
2264 	/*
2265 	 * By the time the rescuer is requested to stop, the workqueue
2266 	 * shouldn't have any work pending, but @wq->maydays may still have
2267 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2268 	 * all the work items before the rescuer got to them.  Go through
2269 	 * @wq->maydays processing before acting on should_stop so that the
2270 	 * list is always empty on exit.
2271 	 */
2272 	should_stop = kthread_should_stop();
2273 
2274 	/* see whether any pwq is asking for help */
2275 	spin_lock_irq(&wq_mayday_lock);
2276 
2277 	while (!list_empty(&wq->maydays)) {
2278 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2279 					struct pool_workqueue, mayday_node);
2280 		struct worker_pool *pool = pwq->pool;
2281 		struct work_struct *work, *n;
2282 
2283 		__set_current_state(TASK_RUNNING);
2284 		list_del_init(&pwq->mayday_node);
2285 
2286 		spin_unlock_irq(&wq_mayday_lock);
2287 
2288 		worker_attach_to_pool(rescuer, pool);
2289 
2290 		spin_lock_irq(&pool->lock);
2291 		rescuer->pool = pool;
2292 
2293 		/*
2294 		 * Slurp in all works issued via this workqueue and
2295 		 * process'em.
2296 		 */
2297 		WARN_ON_ONCE(!list_empty(scheduled));
2298 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2299 			if (get_work_pwq(work) == pwq)
2300 				move_linked_works(work, scheduled, &n);
2301 
2302 		if (!list_empty(scheduled)) {
2303 			process_scheduled_works(rescuer);
2304 
2305 			/*
2306 			 * The above execution of rescued work items could
2307 			 * have created more to rescue through
2308 			 * pwq_activate_first_delayed() or chained
2309 			 * queueing.  Let's put @pwq back on mayday list so
2310 			 * that such back-to-back work items, which may be
2311 			 * being used to relieve memory pressure, don't
2312 			 * incur MAYDAY_INTERVAL delay inbetween.
2313 			 */
2314 			if (need_to_create_worker(pool)) {
2315 				spin_lock(&wq_mayday_lock);
2316 				get_pwq(pwq);
2317 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2318 				spin_unlock(&wq_mayday_lock);
2319 			}
2320 		}
2321 
2322 		/*
2323 		 * Put the reference grabbed by send_mayday().  @pool won't
2324 		 * go away while we're still attached to it.
2325 		 */
2326 		put_pwq(pwq);
2327 
2328 		/*
2329 		 * Leave this pool.  If need_more_worker() is %true, notify a
2330 		 * regular worker; otherwise, we end up with 0 concurrency
2331 		 * and stalling the execution.
2332 		 */
2333 		if (need_more_worker(pool))
2334 			wake_up_worker(pool);
2335 
2336 		rescuer->pool = NULL;
2337 		spin_unlock_irq(&pool->lock);
2338 
2339 		worker_detach_from_pool(rescuer, pool);
2340 
2341 		spin_lock_irq(&wq_mayday_lock);
2342 	}
2343 
2344 	spin_unlock_irq(&wq_mayday_lock);
2345 
2346 	if (should_stop) {
2347 		__set_current_state(TASK_RUNNING);
2348 		rescuer->task->flags &= ~PF_WQ_WORKER;
2349 		return 0;
2350 	}
2351 
2352 	/* rescuers should never participate in concurrency management */
2353 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2354 	schedule();
2355 	goto repeat;
2356 }
2357 
2358 struct wq_barrier {
2359 	struct work_struct	work;
2360 	struct completion	done;
2361 	struct task_struct	*task;	/* purely informational */
2362 };
2363 
wq_barrier_func(struct work_struct * work)2364 static void wq_barrier_func(struct work_struct *work)
2365 {
2366 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2367 	complete(&barr->done);
2368 }
2369 
2370 /**
2371  * insert_wq_barrier - insert a barrier work
2372  * @pwq: pwq to insert barrier into
2373  * @barr: wq_barrier to insert
2374  * @target: target work to attach @barr to
2375  * @worker: worker currently executing @target, NULL if @target is not executing
2376  *
2377  * @barr is linked to @target such that @barr is completed only after
2378  * @target finishes execution.  Please note that the ordering
2379  * guarantee is observed only with respect to @target and on the local
2380  * cpu.
2381  *
2382  * Currently, a queued barrier can't be canceled.  This is because
2383  * try_to_grab_pending() can't determine whether the work to be
2384  * grabbed is at the head of the queue and thus can't clear LINKED
2385  * flag of the previous work while there must be a valid next work
2386  * after a work with LINKED flag set.
2387  *
2388  * Note that when @worker is non-NULL, @target may be modified
2389  * underneath us, so we can't reliably determine pwq from @target.
2390  *
2391  * CONTEXT:
2392  * spin_lock_irq(pool->lock).
2393  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2394 static void insert_wq_barrier(struct pool_workqueue *pwq,
2395 			      struct wq_barrier *barr,
2396 			      struct work_struct *target, struct worker *worker)
2397 {
2398 	struct list_head *head;
2399 	unsigned int linked = 0;
2400 
2401 	/*
2402 	 * debugobject calls are safe here even with pool->lock locked
2403 	 * as we know for sure that this will not trigger any of the
2404 	 * checks and call back into the fixup functions where we
2405 	 * might deadlock.
2406 	 */
2407 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2408 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2409 	init_completion(&barr->done);
2410 	barr->task = current;
2411 
2412 	/*
2413 	 * If @target is currently being executed, schedule the
2414 	 * barrier to the worker; otherwise, put it after @target.
2415 	 */
2416 	if (worker)
2417 		head = worker->scheduled.next;
2418 	else {
2419 		unsigned long *bits = work_data_bits(target);
2420 
2421 		head = target->entry.next;
2422 		/* there can already be other linked works, inherit and set */
2423 		linked = *bits & WORK_STRUCT_LINKED;
2424 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2425 	}
2426 
2427 	debug_work_activate(&barr->work);
2428 	insert_work(pwq, &barr->work, head,
2429 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2430 }
2431 
2432 /**
2433  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2434  * @wq: workqueue being flushed
2435  * @flush_color: new flush color, < 0 for no-op
2436  * @work_color: new work color, < 0 for no-op
2437  *
2438  * Prepare pwqs for workqueue flushing.
2439  *
2440  * If @flush_color is non-negative, flush_color on all pwqs should be
2441  * -1.  If no pwq has in-flight commands at the specified color, all
2442  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2443  * has in flight commands, its pwq->flush_color is set to
2444  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2445  * wakeup logic is armed and %true is returned.
2446  *
2447  * The caller should have initialized @wq->first_flusher prior to
2448  * calling this function with non-negative @flush_color.  If
2449  * @flush_color is negative, no flush color update is done and %false
2450  * is returned.
2451  *
2452  * If @work_color is non-negative, all pwqs should have the same
2453  * work_color which is previous to @work_color and all will be
2454  * advanced to @work_color.
2455  *
2456  * CONTEXT:
2457  * mutex_lock(wq->mutex).
2458  *
2459  * Return:
2460  * %true if @flush_color >= 0 and there's something to flush.  %false
2461  * otherwise.
2462  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2463 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2464 				      int flush_color, int work_color)
2465 {
2466 	bool wait = false;
2467 	struct pool_workqueue *pwq;
2468 
2469 	if (flush_color >= 0) {
2470 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2471 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2472 	}
2473 
2474 	for_each_pwq(pwq, wq) {
2475 		struct worker_pool *pool = pwq->pool;
2476 
2477 		spin_lock_irq(&pool->lock);
2478 
2479 		if (flush_color >= 0) {
2480 			WARN_ON_ONCE(pwq->flush_color != -1);
2481 
2482 			if (pwq->nr_in_flight[flush_color]) {
2483 				pwq->flush_color = flush_color;
2484 				atomic_inc(&wq->nr_pwqs_to_flush);
2485 				wait = true;
2486 			}
2487 		}
2488 
2489 		if (work_color >= 0) {
2490 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2491 			pwq->work_color = work_color;
2492 		}
2493 
2494 		spin_unlock_irq(&pool->lock);
2495 	}
2496 
2497 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2498 		complete(&wq->first_flusher->done);
2499 
2500 	return wait;
2501 }
2502 
2503 /**
2504  * flush_workqueue - ensure that any scheduled work has run to completion.
2505  * @wq: workqueue to flush
2506  *
2507  * This function sleeps until all work items which were queued on entry
2508  * have finished execution, but it is not livelocked by new incoming ones.
2509  */
flush_workqueue(struct workqueue_struct * wq)2510 void flush_workqueue(struct workqueue_struct *wq)
2511 {
2512 	struct wq_flusher this_flusher = {
2513 		.list = LIST_HEAD_INIT(this_flusher.list),
2514 		.flush_color = -1,
2515 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2516 	};
2517 	int next_color;
2518 
2519 	lock_map_acquire(&wq->lockdep_map);
2520 	lock_map_release(&wq->lockdep_map);
2521 
2522 	mutex_lock(&wq->mutex);
2523 
2524 	/*
2525 	 * Start-to-wait phase
2526 	 */
2527 	next_color = work_next_color(wq->work_color);
2528 
2529 	if (next_color != wq->flush_color) {
2530 		/*
2531 		 * Color space is not full.  The current work_color
2532 		 * becomes our flush_color and work_color is advanced
2533 		 * by one.
2534 		 */
2535 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2536 		this_flusher.flush_color = wq->work_color;
2537 		wq->work_color = next_color;
2538 
2539 		if (!wq->first_flusher) {
2540 			/* no flush in progress, become the first flusher */
2541 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2542 
2543 			wq->first_flusher = &this_flusher;
2544 
2545 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2546 						       wq->work_color)) {
2547 				/* nothing to flush, done */
2548 				wq->flush_color = next_color;
2549 				wq->first_flusher = NULL;
2550 				goto out_unlock;
2551 			}
2552 		} else {
2553 			/* wait in queue */
2554 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2555 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2556 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2557 		}
2558 	} else {
2559 		/*
2560 		 * Oops, color space is full, wait on overflow queue.
2561 		 * The next flush completion will assign us
2562 		 * flush_color and transfer to flusher_queue.
2563 		 */
2564 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2565 	}
2566 
2567 	mutex_unlock(&wq->mutex);
2568 
2569 	wait_for_completion(&this_flusher.done);
2570 
2571 	/*
2572 	 * Wake-up-and-cascade phase
2573 	 *
2574 	 * First flushers are responsible for cascading flushes and
2575 	 * handling overflow.  Non-first flushers can simply return.
2576 	 */
2577 	if (wq->first_flusher != &this_flusher)
2578 		return;
2579 
2580 	mutex_lock(&wq->mutex);
2581 
2582 	/* we might have raced, check again with mutex held */
2583 	if (wq->first_flusher != &this_flusher)
2584 		goto out_unlock;
2585 
2586 	wq->first_flusher = NULL;
2587 
2588 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2589 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2590 
2591 	while (true) {
2592 		struct wq_flusher *next, *tmp;
2593 
2594 		/* complete all the flushers sharing the current flush color */
2595 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2596 			if (next->flush_color != wq->flush_color)
2597 				break;
2598 			list_del_init(&next->list);
2599 			complete(&next->done);
2600 		}
2601 
2602 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2603 			     wq->flush_color != work_next_color(wq->work_color));
2604 
2605 		/* this flush_color is finished, advance by one */
2606 		wq->flush_color = work_next_color(wq->flush_color);
2607 
2608 		/* one color has been freed, handle overflow queue */
2609 		if (!list_empty(&wq->flusher_overflow)) {
2610 			/*
2611 			 * Assign the same color to all overflowed
2612 			 * flushers, advance work_color and append to
2613 			 * flusher_queue.  This is the start-to-wait
2614 			 * phase for these overflowed flushers.
2615 			 */
2616 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2617 				tmp->flush_color = wq->work_color;
2618 
2619 			wq->work_color = work_next_color(wq->work_color);
2620 
2621 			list_splice_tail_init(&wq->flusher_overflow,
2622 					      &wq->flusher_queue);
2623 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2624 		}
2625 
2626 		if (list_empty(&wq->flusher_queue)) {
2627 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2628 			break;
2629 		}
2630 
2631 		/*
2632 		 * Need to flush more colors.  Make the next flusher
2633 		 * the new first flusher and arm pwqs.
2634 		 */
2635 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2636 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2637 
2638 		list_del_init(&next->list);
2639 		wq->first_flusher = next;
2640 
2641 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2642 			break;
2643 
2644 		/*
2645 		 * Meh... this color is already done, clear first
2646 		 * flusher and repeat cascading.
2647 		 */
2648 		wq->first_flusher = NULL;
2649 	}
2650 
2651 out_unlock:
2652 	mutex_unlock(&wq->mutex);
2653 }
2654 EXPORT_SYMBOL(flush_workqueue);
2655 
2656 /**
2657  * drain_workqueue - drain a workqueue
2658  * @wq: workqueue to drain
2659  *
2660  * Wait until the workqueue becomes empty.  While draining is in progress,
2661  * only chain queueing is allowed.  IOW, only currently pending or running
2662  * work items on @wq can queue further work items on it.  @wq is flushed
2663  * repeatedly until it becomes empty.  The number of flushing is determined
2664  * by the depth of chaining and should be relatively short.  Whine if it
2665  * takes too long.
2666  */
drain_workqueue(struct workqueue_struct * wq)2667 void drain_workqueue(struct workqueue_struct *wq)
2668 {
2669 	unsigned int flush_cnt = 0;
2670 	struct pool_workqueue *pwq;
2671 
2672 	/*
2673 	 * __queue_work() needs to test whether there are drainers, is much
2674 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2675 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2676 	 */
2677 	mutex_lock(&wq->mutex);
2678 	if (!wq->nr_drainers++)
2679 		wq->flags |= __WQ_DRAINING;
2680 	mutex_unlock(&wq->mutex);
2681 reflush:
2682 	flush_workqueue(wq);
2683 
2684 	mutex_lock(&wq->mutex);
2685 
2686 	for_each_pwq(pwq, wq) {
2687 		bool drained;
2688 
2689 		spin_lock_irq(&pwq->pool->lock);
2690 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2691 		spin_unlock_irq(&pwq->pool->lock);
2692 
2693 		if (drained)
2694 			continue;
2695 
2696 		if (++flush_cnt == 10 ||
2697 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2698 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2699 				wq->name, flush_cnt);
2700 
2701 		mutex_unlock(&wq->mutex);
2702 		goto reflush;
2703 	}
2704 
2705 	if (!--wq->nr_drainers)
2706 		wq->flags &= ~__WQ_DRAINING;
2707 	mutex_unlock(&wq->mutex);
2708 }
2709 EXPORT_SYMBOL_GPL(drain_workqueue);
2710 
start_flush_work(struct work_struct * work,struct wq_barrier * barr)2711 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2712 {
2713 	struct worker *worker = NULL;
2714 	struct worker_pool *pool;
2715 	struct pool_workqueue *pwq;
2716 
2717 	might_sleep();
2718 
2719 	local_irq_disable();
2720 	pool = get_work_pool(work);
2721 	if (!pool) {
2722 		local_irq_enable();
2723 		return false;
2724 	}
2725 
2726 	spin_lock(&pool->lock);
2727 	/* see the comment in try_to_grab_pending() with the same code */
2728 	pwq = get_work_pwq(work);
2729 	if (pwq) {
2730 		if (unlikely(pwq->pool != pool))
2731 			goto already_gone;
2732 	} else {
2733 		worker = find_worker_executing_work(pool, work);
2734 		if (!worker)
2735 			goto already_gone;
2736 		pwq = worker->current_pwq;
2737 	}
2738 
2739 	insert_wq_barrier(pwq, barr, work, worker);
2740 	spin_unlock_irq(&pool->lock);
2741 
2742 	/*
2743 	 * If @max_active is 1 or rescuer is in use, flushing another work
2744 	 * item on the same workqueue may lead to deadlock.  Make sure the
2745 	 * flusher is not running on the same workqueue by verifying write
2746 	 * access.
2747 	 */
2748 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2749 		lock_map_acquire(&pwq->wq->lockdep_map);
2750 	else
2751 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2752 	lock_map_release(&pwq->wq->lockdep_map);
2753 
2754 	return true;
2755 already_gone:
2756 	spin_unlock_irq(&pool->lock);
2757 	return false;
2758 }
2759 
2760 /**
2761  * flush_work - wait for a work to finish executing the last queueing instance
2762  * @work: the work to flush
2763  *
2764  * Wait until @work has finished execution.  @work is guaranteed to be idle
2765  * on return if it hasn't been requeued since flush started.
2766  *
2767  * Return:
2768  * %true if flush_work() waited for the work to finish execution,
2769  * %false if it was already idle.
2770  */
flush_work(struct work_struct * work)2771 bool flush_work(struct work_struct *work)
2772 {
2773 	struct wq_barrier barr;
2774 
2775 	lock_map_acquire(&work->lockdep_map);
2776 	lock_map_release(&work->lockdep_map);
2777 
2778 	if (start_flush_work(work, &barr)) {
2779 		wait_for_completion(&barr.done);
2780 		destroy_work_on_stack(&barr.work);
2781 		return true;
2782 	} else {
2783 		return false;
2784 	}
2785 }
2786 EXPORT_SYMBOL_GPL(flush_work);
2787 
2788 struct cwt_wait {
2789 	wait_queue_t		wait;
2790 	struct work_struct	*work;
2791 };
2792 
cwt_wakefn(wait_queue_t * wait,unsigned mode,int sync,void * key)2793 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2794 {
2795 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2796 
2797 	if (cwait->work != key)
2798 		return 0;
2799 	return autoremove_wake_function(wait, mode, sync, key);
2800 }
2801 
__cancel_work_timer(struct work_struct * work,bool is_dwork)2802 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2803 {
2804 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2805 	unsigned long flags;
2806 	int ret;
2807 
2808 	do {
2809 		ret = try_to_grab_pending(work, is_dwork, &flags);
2810 		/*
2811 		 * If someone else is already canceling, wait for it to
2812 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2813 		 * because we may get scheduled between @work's completion
2814 		 * and the other canceling task resuming and clearing
2815 		 * CANCELING - flush_work() will return false immediately
2816 		 * as @work is no longer busy, try_to_grab_pending() will
2817 		 * return -ENOENT as @work is still being canceled and the
2818 		 * other canceling task won't be able to clear CANCELING as
2819 		 * we're hogging the CPU.
2820 		 *
2821 		 * Let's wait for completion using a waitqueue.  As this
2822 		 * may lead to the thundering herd problem, use a custom
2823 		 * wake function which matches @work along with exclusive
2824 		 * wait and wakeup.
2825 		 */
2826 		if (unlikely(ret == -ENOENT)) {
2827 			struct cwt_wait cwait;
2828 
2829 			init_wait(&cwait.wait);
2830 			cwait.wait.func = cwt_wakefn;
2831 			cwait.work = work;
2832 
2833 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2834 						  TASK_UNINTERRUPTIBLE);
2835 			if (work_is_canceling(work))
2836 				schedule();
2837 			finish_wait(&cancel_waitq, &cwait.wait);
2838 		}
2839 	} while (unlikely(ret < 0));
2840 
2841 	/* tell other tasks trying to grab @work to back off */
2842 	mark_work_canceling(work);
2843 	local_irq_restore(flags);
2844 
2845 	flush_work(work);
2846 	clear_work_data(work);
2847 
2848 	/*
2849 	 * Paired with prepare_to_wait() above so that either
2850 	 * waitqueue_active() is visible here or !work_is_canceling() is
2851 	 * visible there.
2852 	 */
2853 	smp_mb();
2854 	if (waitqueue_active(&cancel_waitq))
2855 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2856 
2857 	return ret;
2858 }
2859 
2860 /**
2861  * cancel_work_sync - cancel a work and wait for it to finish
2862  * @work: the work to cancel
2863  *
2864  * Cancel @work and wait for its execution to finish.  This function
2865  * can be used even if the work re-queues itself or migrates to
2866  * another workqueue.  On return from this function, @work is
2867  * guaranteed to be not pending or executing on any CPU.
2868  *
2869  * cancel_work_sync(&delayed_work->work) must not be used for
2870  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2871  *
2872  * The caller must ensure that the workqueue on which @work was last
2873  * queued can't be destroyed before this function returns.
2874  *
2875  * Return:
2876  * %true if @work was pending, %false otherwise.
2877  */
cancel_work_sync(struct work_struct * work)2878 bool cancel_work_sync(struct work_struct *work)
2879 {
2880 	return __cancel_work_timer(work, false);
2881 }
2882 EXPORT_SYMBOL_GPL(cancel_work_sync);
2883 
2884 /**
2885  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2886  * @dwork: the delayed work to flush
2887  *
2888  * Delayed timer is cancelled and the pending work is queued for
2889  * immediate execution.  Like flush_work(), this function only
2890  * considers the last queueing instance of @dwork.
2891  *
2892  * Return:
2893  * %true if flush_work() waited for the work to finish execution,
2894  * %false if it was already idle.
2895  */
flush_delayed_work(struct delayed_work * dwork)2896 bool flush_delayed_work(struct delayed_work *dwork)
2897 {
2898 	local_irq_disable();
2899 	if (del_timer_sync(&dwork->timer))
2900 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2901 	local_irq_enable();
2902 	return flush_work(&dwork->work);
2903 }
2904 EXPORT_SYMBOL(flush_delayed_work);
2905 
2906 /**
2907  * cancel_delayed_work - cancel a delayed work
2908  * @dwork: delayed_work to cancel
2909  *
2910  * Kill off a pending delayed_work.
2911  *
2912  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2913  * pending.
2914  *
2915  * Note:
2916  * The work callback function may still be running on return, unless
2917  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2918  * use cancel_delayed_work_sync() to wait on it.
2919  *
2920  * This function is safe to call from any context including IRQ handler.
2921  */
cancel_delayed_work(struct delayed_work * dwork)2922 bool cancel_delayed_work(struct delayed_work *dwork)
2923 {
2924 	unsigned long flags;
2925 	int ret;
2926 
2927 	do {
2928 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2929 	} while (unlikely(ret == -EAGAIN));
2930 
2931 	if (unlikely(ret < 0))
2932 		return false;
2933 
2934 	set_work_pool_and_clear_pending(&dwork->work,
2935 					get_work_pool_id(&dwork->work));
2936 	local_irq_restore(flags);
2937 	return ret;
2938 }
2939 EXPORT_SYMBOL(cancel_delayed_work);
2940 
2941 /**
2942  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2943  * @dwork: the delayed work cancel
2944  *
2945  * This is cancel_work_sync() for delayed works.
2946  *
2947  * Return:
2948  * %true if @dwork was pending, %false otherwise.
2949  */
cancel_delayed_work_sync(struct delayed_work * dwork)2950 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2951 {
2952 	return __cancel_work_timer(&dwork->work, true);
2953 }
2954 EXPORT_SYMBOL(cancel_delayed_work_sync);
2955 
2956 /**
2957  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2958  * @func: the function to call
2959  *
2960  * schedule_on_each_cpu() executes @func on each online CPU using the
2961  * system workqueue and blocks until all CPUs have completed.
2962  * schedule_on_each_cpu() is very slow.
2963  *
2964  * Return:
2965  * 0 on success, -errno on failure.
2966  */
schedule_on_each_cpu(work_func_t func)2967 int schedule_on_each_cpu(work_func_t func)
2968 {
2969 	int cpu;
2970 	struct work_struct __percpu *works;
2971 
2972 	works = alloc_percpu(struct work_struct);
2973 	if (!works)
2974 		return -ENOMEM;
2975 
2976 	get_online_cpus();
2977 
2978 	for_each_online_cpu(cpu) {
2979 		struct work_struct *work = per_cpu_ptr(works, cpu);
2980 
2981 		INIT_WORK(work, func);
2982 		schedule_work_on(cpu, work);
2983 	}
2984 
2985 	for_each_online_cpu(cpu)
2986 		flush_work(per_cpu_ptr(works, cpu));
2987 
2988 	put_online_cpus();
2989 	free_percpu(works);
2990 	return 0;
2991 }
2992 
2993 /**
2994  * execute_in_process_context - reliably execute the routine with user context
2995  * @fn:		the function to execute
2996  * @ew:		guaranteed storage for the execute work structure (must
2997  *		be available when the work executes)
2998  *
2999  * Executes the function immediately if process context is available,
3000  * otherwise schedules the function for delayed execution.
3001  *
3002  * Return:	0 - function was executed
3003  *		1 - function was scheduled for execution
3004  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3005 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3006 {
3007 	if (!in_interrupt()) {
3008 		fn(&ew->work);
3009 		return 0;
3010 	}
3011 
3012 	INIT_WORK(&ew->work, fn);
3013 	schedule_work(&ew->work);
3014 
3015 	return 1;
3016 }
3017 EXPORT_SYMBOL_GPL(execute_in_process_context);
3018 
3019 /**
3020  * free_workqueue_attrs - free a workqueue_attrs
3021  * @attrs: workqueue_attrs to free
3022  *
3023  * Undo alloc_workqueue_attrs().
3024  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3025 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3026 {
3027 	if (attrs) {
3028 		free_cpumask_var(attrs->cpumask);
3029 		kfree(attrs);
3030 	}
3031 }
3032 
3033 /**
3034  * alloc_workqueue_attrs - allocate a workqueue_attrs
3035  * @gfp_mask: allocation mask to use
3036  *
3037  * Allocate a new workqueue_attrs, initialize with default settings and
3038  * return it.
3039  *
3040  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3041  */
alloc_workqueue_attrs(gfp_t gfp_mask)3042 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3043 {
3044 	struct workqueue_attrs *attrs;
3045 
3046 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3047 	if (!attrs)
3048 		goto fail;
3049 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3050 		goto fail;
3051 
3052 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3053 	return attrs;
3054 fail:
3055 	free_workqueue_attrs(attrs);
3056 	return NULL;
3057 }
3058 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3059 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3060 				 const struct workqueue_attrs *from)
3061 {
3062 	to->nice = from->nice;
3063 	cpumask_copy(to->cpumask, from->cpumask);
3064 	/*
3065 	 * Unlike hash and equality test, this function doesn't ignore
3066 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3067 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3068 	 */
3069 	to->no_numa = from->no_numa;
3070 }
3071 
3072 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3073 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3074 {
3075 	u32 hash = 0;
3076 
3077 	hash = jhash_1word(attrs->nice, hash);
3078 	hash = jhash(cpumask_bits(attrs->cpumask),
3079 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3080 	return hash;
3081 }
3082 
3083 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3084 static bool wqattrs_equal(const struct workqueue_attrs *a,
3085 			  const struct workqueue_attrs *b)
3086 {
3087 	if (a->nice != b->nice)
3088 		return false;
3089 	if (!cpumask_equal(a->cpumask, b->cpumask))
3090 		return false;
3091 	return true;
3092 }
3093 
3094 /**
3095  * init_worker_pool - initialize a newly zalloc'd worker_pool
3096  * @pool: worker_pool to initialize
3097  *
3098  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3099  *
3100  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3101  * inside @pool proper are initialized and put_unbound_pool() can be called
3102  * on @pool safely to release it.
3103  */
init_worker_pool(struct worker_pool * pool)3104 static int init_worker_pool(struct worker_pool *pool)
3105 {
3106 	spin_lock_init(&pool->lock);
3107 	pool->id = -1;
3108 	pool->cpu = -1;
3109 	pool->node = NUMA_NO_NODE;
3110 	pool->flags |= POOL_DISASSOCIATED;
3111 	INIT_LIST_HEAD(&pool->worklist);
3112 	INIT_LIST_HEAD(&pool->idle_list);
3113 	hash_init(pool->busy_hash);
3114 
3115 	init_timer_deferrable(&pool->idle_timer);
3116 	pool->idle_timer.function = idle_worker_timeout;
3117 	pool->idle_timer.data = (unsigned long)pool;
3118 
3119 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3120 		    (unsigned long)pool);
3121 
3122 	mutex_init(&pool->manager_arb);
3123 	mutex_init(&pool->attach_mutex);
3124 	INIT_LIST_HEAD(&pool->workers);
3125 
3126 	ida_init(&pool->worker_ida);
3127 	INIT_HLIST_NODE(&pool->hash_node);
3128 	pool->refcnt = 1;
3129 
3130 	/* shouldn't fail above this point */
3131 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3132 	if (!pool->attrs)
3133 		return -ENOMEM;
3134 	return 0;
3135 }
3136 
rcu_free_wq(struct rcu_head * rcu)3137 static void rcu_free_wq(struct rcu_head *rcu)
3138 {
3139 	struct workqueue_struct *wq =
3140 		container_of(rcu, struct workqueue_struct, rcu);
3141 
3142 	if (!(wq->flags & WQ_UNBOUND))
3143 		free_percpu(wq->cpu_pwqs);
3144 	else
3145 		free_workqueue_attrs(wq->unbound_attrs);
3146 
3147 	kfree(wq->rescuer);
3148 	kfree(wq);
3149 }
3150 
rcu_free_pool(struct rcu_head * rcu)3151 static void rcu_free_pool(struct rcu_head *rcu)
3152 {
3153 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3154 
3155 	ida_destroy(&pool->worker_ida);
3156 	free_workqueue_attrs(pool->attrs);
3157 	kfree(pool);
3158 }
3159 
3160 /**
3161  * put_unbound_pool - put a worker_pool
3162  * @pool: worker_pool to put
3163  *
3164  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3165  * safe manner.  get_unbound_pool() calls this function on its failure path
3166  * and this function should be able to release pools which went through,
3167  * successfully or not, init_worker_pool().
3168  *
3169  * Should be called with wq_pool_mutex held.
3170  */
put_unbound_pool(struct worker_pool * pool)3171 static void put_unbound_pool(struct worker_pool *pool)
3172 {
3173 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3174 	struct worker *worker;
3175 
3176 	lockdep_assert_held(&wq_pool_mutex);
3177 
3178 	if (--pool->refcnt)
3179 		return;
3180 
3181 	/* sanity checks */
3182 	if (WARN_ON(!(pool->cpu < 0)) ||
3183 	    WARN_ON(!list_empty(&pool->worklist)))
3184 		return;
3185 
3186 	/* release id and unhash */
3187 	if (pool->id >= 0)
3188 		idr_remove(&worker_pool_idr, pool->id);
3189 	hash_del(&pool->hash_node);
3190 
3191 	/*
3192 	 * Become the manager and destroy all workers.  Grabbing
3193 	 * manager_arb prevents @pool's workers from blocking on
3194 	 * attach_mutex.
3195 	 */
3196 	mutex_lock(&pool->manager_arb);
3197 
3198 	spin_lock_irq(&pool->lock);
3199 	while ((worker = first_idle_worker(pool)))
3200 		destroy_worker(worker);
3201 	WARN_ON(pool->nr_workers || pool->nr_idle);
3202 	spin_unlock_irq(&pool->lock);
3203 
3204 	mutex_lock(&pool->attach_mutex);
3205 	if (!list_empty(&pool->workers))
3206 		pool->detach_completion = &detach_completion;
3207 	mutex_unlock(&pool->attach_mutex);
3208 
3209 	if (pool->detach_completion)
3210 		wait_for_completion(pool->detach_completion);
3211 
3212 	mutex_unlock(&pool->manager_arb);
3213 
3214 	/* shut down the timers */
3215 	del_timer_sync(&pool->idle_timer);
3216 	del_timer_sync(&pool->mayday_timer);
3217 
3218 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3219 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3220 }
3221 
3222 /**
3223  * get_unbound_pool - get a worker_pool with the specified attributes
3224  * @attrs: the attributes of the worker_pool to get
3225  *
3226  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3227  * reference count and return it.  If there already is a matching
3228  * worker_pool, it will be used; otherwise, this function attempts to
3229  * create a new one.
3230  *
3231  * Should be called with wq_pool_mutex held.
3232  *
3233  * Return: On success, a worker_pool with the same attributes as @attrs.
3234  * On failure, %NULL.
3235  */
get_unbound_pool(const struct workqueue_attrs * attrs)3236 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3237 {
3238 	u32 hash = wqattrs_hash(attrs);
3239 	struct worker_pool *pool;
3240 	int node;
3241 	int target_node = NUMA_NO_NODE;
3242 
3243 	lockdep_assert_held(&wq_pool_mutex);
3244 
3245 	/* do we already have a matching pool? */
3246 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3247 		if (wqattrs_equal(pool->attrs, attrs)) {
3248 			pool->refcnt++;
3249 			return pool;
3250 		}
3251 	}
3252 
3253 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3254 	if (wq_numa_enabled) {
3255 		for_each_node(node) {
3256 			if (cpumask_subset(attrs->cpumask,
3257 					   wq_numa_possible_cpumask[node])) {
3258 				target_node = node;
3259 				break;
3260 			}
3261 		}
3262 	}
3263 
3264 	/* nope, create a new one */
3265 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3266 	if (!pool || init_worker_pool(pool) < 0)
3267 		goto fail;
3268 
3269 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3270 	copy_workqueue_attrs(pool->attrs, attrs);
3271 	pool->node = target_node;
3272 
3273 	/*
3274 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3275 	 * 'struct workqueue_attrs' comments for detail.
3276 	 */
3277 	pool->attrs->no_numa = false;
3278 
3279 	if (worker_pool_assign_id(pool) < 0)
3280 		goto fail;
3281 
3282 	/* create and start the initial worker */
3283 	if (!create_worker(pool))
3284 		goto fail;
3285 
3286 	/* install */
3287 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3288 
3289 	return pool;
3290 fail:
3291 	if (pool)
3292 		put_unbound_pool(pool);
3293 	return NULL;
3294 }
3295 
rcu_free_pwq(struct rcu_head * rcu)3296 static void rcu_free_pwq(struct rcu_head *rcu)
3297 {
3298 	kmem_cache_free(pwq_cache,
3299 			container_of(rcu, struct pool_workqueue, rcu));
3300 }
3301 
3302 /*
3303  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3304  * and needs to be destroyed.
3305  */
pwq_unbound_release_workfn(struct work_struct * work)3306 static void pwq_unbound_release_workfn(struct work_struct *work)
3307 {
3308 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3309 						  unbound_release_work);
3310 	struct workqueue_struct *wq = pwq->wq;
3311 	struct worker_pool *pool = pwq->pool;
3312 	bool is_last;
3313 
3314 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3315 		return;
3316 
3317 	mutex_lock(&wq->mutex);
3318 	list_del_rcu(&pwq->pwqs_node);
3319 	is_last = list_empty(&wq->pwqs);
3320 	mutex_unlock(&wq->mutex);
3321 
3322 	mutex_lock(&wq_pool_mutex);
3323 	put_unbound_pool(pool);
3324 	mutex_unlock(&wq_pool_mutex);
3325 
3326 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3327 
3328 	/*
3329 	 * If we're the last pwq going away, @wq is already dead and no one
3330 	 * is gonna access it anymore.  Schedule RCU free.
3331 	 */
3332 	if (is_last)
3333 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3334 }
3335 
3336 /**
3337  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3338  * @pwq: target pool_workqueue
3339  *
3340  * If @pwq isn't freezing, set @pwq->max_active to the associated
3341  * workqueue's saved_max_active and activate delayed work items
3342  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3343  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3344 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3345 {
3346 	struct workqueue_struct *wq = pwq->wq;
3347 	bool freezable = wq->flags & WQ_FREEZABLE;
3348 
3349 	/* for @wq->saved_max_active */
3350 	lockdep_assert_held(&wq->mutex);
3351 
3352 	/* fast exit for non-freezable wqs */
3353 	if (!freezable && pwq->max_active == wq->saved_max_active)
3354 		return;
3355 
3356 	spin_lock_irq(&pwq->pool->lock);
3357 
3358 	/*
3359 	 * During [un]freezing, the caller is responsible for ensuring that
3360 	 * this function is called at least once after @workqueue_freezing
3361 	 * is updated and visible.
3362 	 */
3363 	if (!freezable || !workqueue_freezing) {
3364 		pwq->max_active = wq->saved_max_active;
3365 
3366 		while (!list_empty(&pwq->delayed_works) &&
3367 		       pwq->nr_active < pwq->max_active)
3368 			pwq_activate_first_delayed(pwq);
3369 
3370 		/*
3371 		 * Need to kick a worker after thawed or an unbound wq's
3372 		 * max_active is bumped.  It's a slow path.  Do it always.
3373 		 */
3374 		wake_up_worker(pwq->pool);
3375 	} else {
3376 		pwq->max_active = 0;
3377 	}
3378 
3379 	spin_unlock_irq(&pwq->pool->lock);
3380 }
3381 
3382 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3383 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3384 		     struct worker_pool *pool)
3385 {
3386 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3387 
3388 	memset(pwq, 0, sizeof(*pwq));
3389 
3390 	pwq->pool = pool;
3391 	pwq->wq = wq;
3392 	pwq->flush_color = -1;
3393 	pwq->refcnt = 1;
3394 	INIT_LIST_HEAD(&pwq->delayed_works);
3395 	INIT_LIST_HEAD(&pwq->pwqs_node);
3396 	INIT_LIST_HEAD(&pwq->mayday_node);
3397 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3398 }
3399 
3400 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3401 static void link_pwq(struct pool_workqueue *pwq)
3402 {
3403 	struct workqueue_struct *wq = pwq->wq;
3404 
3405 	lockdep_assert_held(&wq->mutex);
3406 
3407 	/* may be called multiple times, ignore if already linked */
3408 	if (!list_empty(&pwq->pwqs_node))
3409 		return;
3410 
3411 	/* set the matching work_color */
3412 	pwq->work_color = wq->work_color;
3413 
3414 	/* sync max_active to the current setting */
3415 	pwq_adjust_max_active(pwq);
3416 
3417 	/* link in @pwq */
3418 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3419 }
3420 
3421 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3422 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3423 					const struct workqueue_attrs *attrs)
3424 {
3425 	struct worker_pool *pool;
3426 	struct pool_workqueue *pwq;
3427 
3428 	lockdep_assert_held(&wq_pool_mutex);
3429 
3430 	pool = get_unbound_pool(attrs);
3431 	if (!pool)
3432 		return NULL;
3433 
3434 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3435 	if (!pwq) {
3436 		put_unbound_pool(pool);
3437 		return NULL;
3438 	}
3439 
3440 	init_pwq(pwq, wq, pool);
3441 	return pwq;
3442 }
3443 
3444 /**
3445  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3446  * @attrs: the wq_attrs of the default pwq of the target workqueue
3447  * @node: the target NUMA node
3448  * @cpu_going_down: if >= 0, the CPU to consider as offline
3449  * @cpumask: outarg, the resulting cpumask
3450  *
3451  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3452  * @cpu_going_down is >= 0, that cpu is considered offline during
3453  * calculation.  The result is stored in @cpumask.
3454  *
3455  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3456  * enabled and @node has online CPUs requested by @attrs, the returned
3457  * cpumask is the intersection of the possible CPUs of @node and
3458  * @attrs->cpumask.
3459  *
3460  * The caller is responsible for ensuring that the cpumask of @node stays
3461  * stable.
3462  *
3463  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3464  * %false if equal.
3465  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3466 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3467 				 int cpu_going_down, cpumask_t *cpumask)
3468 {
3469 	if (!wq_numa_enabled || attrs->no_numa)
3470 		goto use_dfl;
3471 
3472 	/* does @node have any online CPUs @attrs wants? */
3473 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3474 	if (cpu_going_down >= 0)
3475 		cpumask_clear_cpu(cpu_going_down, cpumask);
3476 
3477 	if (cpumask_empty(cpumask))
3478 		goto use_dfl;
3479 
3480 	/* yeap, return possible CPUs in @node that @attrs wants */
3481 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3482 	return !cpumask_equal(cpumask, attrs->cpumask);
3483 
3484 use_dfl:
3485 	cpumask_copy(cpumask, attrs->cpumask);
3486 	return false;
3487 }
3488 
3489 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3490 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3491 						   int node,
3492 						   struct pool_workqueue *pwq)
3493 {
3494 	struct pool_workqueue *old_pwq;
3495 
3496 	lockdep_assert_held(&wq_pool_mutex);
3497 	lockdep_assert_held(&wq->mutex);
3498 
3499 	/* link_pwq() can handle duplicate calls */
3500 	link_pwq(pwq);
3501 
3502 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3503 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3504 	return old_pwq;
3505 }
3506 
3507 /* context to store the prepared attrs & pwqs before applying */
3508 struct apply_wqattrs_ctx {
3509 	struct workqueue_struct	*wq;		/* target workqueue */
3510 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3511 	struct list_head	list;		/* queued for batching commit */
3512 	struct pool_workqueue	*dfl_pwq;
3513 	struct pool_workqueue	*pwq_tbl[];
3514 };
3515 
3516 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3517 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3518 {
3519 	if (ctx) {
3520 		int node;
3521 
3522 		for_each_node(node)
3523 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3524 		put_pwq_unlocked(ctx->dfl_pwq);
3525 
3526 		free_workqueue_attrs(ctx->attrs);
3527 
3528 		kfree(ctx);
3529 	}
3530 }
3531 
3532 /* allocate the attrs and pwqs for later installation */
3533 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3534 apply_wqattrs_prepare(struct workqueue_struct *wq,
3535 		      const struct workqueue_attrs *attrs)
3536 {
3537 	struct apply_wqattrs_ctx *ctx;
3538 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3539 	int node;
3540 
3541 	lockdep_assert_held(&wq_pool_mutex);
3542 
3543 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3544 		      GFP_KERNEL);
3545 
3546 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3547 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3548 	if (!ctx || !new_attrs || !tmp_attrs)
3549 		goto out_free;
3550 
3551 	/*
3552 	 * Calculate the attrs of the default pwq.
3553 	 * If the user configured cpumask doesn't overlap with the
3554 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3555 	 */
3556 	copy_workqueue_attrs(new_attrs, attrs);
3557 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3558 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3559 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3560 
3561 	/*
3562 	 * We may create multiple pwqs with differing cpumasks.  Make a
3563 	 * copy of @new_attrs which will be modified and used to obtain
3564 	 * pools.
3565 	 */
3566 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3567 
3568 	/*
3569 	 * If something goes wrong during CPU up/down, we'll fall back to
3570 	 * the default pwq covering whole @attrs->cpumask.  Always create
3571 	 * it even if we don't use it immediately.
3572 	 */
3573 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3574 	if (!ctx->dfl_pwq)
3575 		goto out_free;
3576 
3577 	for_each_node(node) {
3578 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3579 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3580 			if (!ctx->pwq_tbl[node])
3581 				goto out_free;
3582 		} else {
3583 			ctx->dfl_pwq->refcnt++;
3584 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3585 		}
3586 	}
3587 
3588 	/* save the user configured attrs and sanitize it. */
3589 	copy_workqueue_attrs(new_attrs, attrs);
3590 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3591 	ctx->attrs = new_attrs;
3592 
3593 	ctx->wq = wq;
3594 	free_workqueue_attrs(tmp_attrs);
3595 	return ctx;
3596 
3597 out_free:
3598 	free_workqueue_attrs(tmp_attrs);
3599 	free_workqueue_attrs(new_attrs);
3600 	apply_wqattrs_cleanup(ctx);
3601 	return NULL;
3602 }
3603 
3604 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3605 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3606 {
3607 	int node;
3608 
3609 	/* all pwqs have been created successfully, let's install'em */
3610 	mutex_lock(&ctx->wq->mutex);
3611 
3612 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3613 
3614 	/* save the previous pwq and install the new one */
3615 	for_each_node(node)
3616 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3617 							  ctx->pwq_tbl[node]);
3618 
3619 	/* @dfl_pwq might not have been used, ensure it's linked */
3620 	link_pwq(ctx->dfl_pwq);
3621 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3622 
3623 	mutex_unlock(&ctx->wq->mutex);
3624 }
3625 
apply_wqattrs_lock(void)3626 static void apply_wqattrs_lock(void)
3627 {
3628 	/* CPUs should stay stable across pwq creations and installations */
3629 	get_online_cpus();
3630 	mutex_lock(&wq_pool_mutex);
3631 }
3632 
apply_wqattrs_unlock(void)3633 static void apply_wqattrs_unlock(void)
3634 {
3635 	mutex_unlock(&wq_pool_mutex);
3636 	put_online_cpus();
3637 }
3638 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3639 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3640 					const struct workqueue_attrs *attrs)
3641 {
3642 	struct apply_wqattrs_ctx *ctx;
3643 	int ret = -ENOMEM;
3644 
3645 	/* only unbound workqueues can change attributes */
3646 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3647 		return -EINVAL;
3648 
3649 	/* creating multiple pwqs breaks ordering guarantee */
3650 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3651 		return -EINVAL;
3652 
3653 	ctx = apply_wqattrs_prepare(wq, attrs);
3654 
3655 	/* the ctx has been prepared successfully, let's commit it */
3656 	if (ctx) {
3657 		apply_wqattrs_commit(ctx);
3658 		ret = 0;
3659 	}
3660 
3661 	apply_wqattrs_cleanup(ctx);
3662 
3663 	return ret;
3664 }
3665 
3666 /**
3667  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3668  * @wq: the target workqueue
3669  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3670  *
3671  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3672  * machines, this function maps a separate pwq to each NUMA node with
3673  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3674  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3675  * items finish.  Note that a work item which repeatedly requeues itself
3676  * back-to-back will stay on its current pwq.
3677  *
3678  * Performs GFP_KERNEL allocations.
3679  *
3680  * Return: 0 on success and -errno on failure.
3681  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3682 int apply_workqueue_attrs(struct workqueue_struct *wq,
3683 			  const struct workqueue_attrs *attrs)
3684 {
3685 	int ret;
3686 
3687 	apply_wqattrs_lock();
3688 	ret = apply_workqueue_attrs_locked(wq, attrs);
3689 	apply_wqattrs_unlock();
3690 
3691 	return ret;
3692 }
3693 
3694 /**
3695  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3696  * @wq: the target workqueue
3697  * @cpu: the CPU coming up or going down
3698  * @online: whether @cpu is coming up or going down
3699  *
3700  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3701  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3702  * @wq accordingly.
3703  *
3704  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3705  * falls back to @wq->dfl_pwq which may not be optimal but is always
3706  * correct.
3707  *
3708  * Note that when the last allowed CPU of a NUMA node goes offline for a
3709  * workqueue with a cpumask spanning multiple nodes, the workers which were
3710  * already executing the work items for the workqueue will lose their CPU
3711  * affinity and may execute on any CPU.  This is similar to how per-cpu
3712  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3713  * affinity, it's the user's responsibility to flush the work item from
3714  * CPU_DOWN_PREPARE.
3715  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)3716 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3717 				   bool online)
3718 {
3719 	int node = cpu_to_node(cpu);
3720 	int cpu_off = online ? -1 : cpu;
3721 	struct pool_workqueue *old_pwq = NULL, *pwq;
3722 	struct workqueue_attrs *target_attrs;
3723 	cpumask_t *cpumask;
3724 
3725 	lockdep_assert_held(&wq_pool_mutex);
3726 
3727 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3728 	    wq->unbound_attrs->no_numa)
3729 		return;
3730 
3731 	/*
3732 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3733 	 * Let's use a preallocated one.  The following buf is protected by
3734 	 * CPU hotplug exclusion.
3735 	 */
3736 	target_attrs = wq_update_unbound_numa_attrs_buf;
3737 	cpumask = target_attrs->cpumask;
3738 
3739 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3740 	pwq = unbound_pwq_by_node(wq, node);
3741 
3742 	/*
3743 	 * Let's determine what needs to be done.  If the target cpumask is
3744 	 * different from the default pwq's, we need to compare it to @pwq's
3745 	 * and create a new one if they don't match.  If the target cpumask
3746 	 * equals the default pwq's, the default pwq should be used.
3747 	 */
3748 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3749 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3750 			return;
3751 	} else {
3752 		goto use_dfl_pwq;
3753 	}
3754 
3755 	/* create a new pwq */
3756 	pwq = alloc_unbound_pwq(wq, target_attrs);
3757 	if (!pwq) {
3758 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3759 			wq->name);
3760 		goto use_dfl_pwq;
3761 	}
3762 
3763 	/* Install the new pwq. */
3764 	mutex_lock(&wq->mutex);
3765 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3766 	goto out_unlock;
3767 
3768 use_dfl_pwq:
3769 	mutex_lock(&wq->mutex);
3770 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3771 	get_pwq(wq->dfl_pwq);
3772 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3773 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3774 out_unlock:
3775 	mutex_unlock(&wq->mutex);
3776 	put_pwq_unlocked(old_pwq);
3777 }
3778 
alloc_and_link_pwqs(struct workqueue_struct * wq)3779 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3780 {
3781 	bool highpri = wq->flags & WQ_HIGHPRI;
3782 	int cpu, ret;
3783 
3784 	if (!(wq->flags & WQ_UNBOUND)) {
3785 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3786 		if (!wq->cpu_pwqs)
3787 			return -ENOMEM;
3788 
3789 		for_each_possible_cpu(cpu) {
3790 			struct pool_workqueue *pwq =
3791 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3792 			struct worker_pool *cpu_pools =
3793 				per_cpu(cpu_worker_pools, cpu);
3794 
3795 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3796 
3797 			mutex_lock(&wq->mutex);
3798 			link_pwq(pwq);
3799 			mutex_unlock(&wq->mutex);
3800 		}
3801 		return 0;
3802 	} else if (wq->flags & __WQ_ORDERED) {
3803 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3804 		/* there should only be single pwq for ordering guarantee */
3805 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3806 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3807 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3808 		return ret;
3809 	} else {
3810 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3811 	}
3812 }
3813 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)3814 static int wq_clamp_max_active(int max_active, unsigned int flags,
3815 			       const char *name)
3816 {
3817 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3818 
3819 	if (max_active < 1 || max_active > lim)
3820 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3821 			max_active, name, 1, lim);
3822 
3823 	return clamp_val(max_active, 1, lim);
3824 }
3825 
__alloc_workqueue_key(const char * fmt,unsigned int flags,int max_active,struct lock_class_key * key,const char * lock_name,...)3826 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3827 					       unsigned int flags,
3828 					       int max_active,
3829 					       struct lock_class_key *key,
3830 					       const char *lock_name, ...)
3831 {
3832 	size_t tbl_size = 0;
3833 	va_list args;
3834 	struct workqueue_struct *wq;
3835 	struct pool_workqueue *pwq;
3836 
3837 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3838 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3839 		flags |= WQ_UNBOUND;
3840 
3841 	/* allocate wq and format name */
3842 	if (flags & WQ_UNBOUND)
3843 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3844 
3845 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3846 	if (!wq)
3847 		return NULL;
3848 
3849 	if (flags & WQ_UNBOUND) {
3850 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3851 		if (!wq->unbound_attrs)
3852 			goto err_free_wq;
3853 	}
3854 
3855 	va_start(args, lock_name);
3856 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3857 	va_end(args);
3858 
3859 	max_active = max_active ?: WQ_DFL_ACTIVE;
3860 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3861 
3862 	/* init wq */
3863 	wq->flags = flags;
3864 	wq->saved_max_active = max_active;
3865 	mutex_init(&wq->mutex);
3866 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3867 	INIT_LIST_HEAD(&wq->pwqs);
3868 	INIT_LIST_HEAD(&wq->flusher_queue);
3869 	INIT_LIST_HEAD(&wq->flusher_overflow);
3870 	INIT_LIST_HEAD(&wq->maydays);
3871 
3872 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3873 	INIT_LIST_HEAD(&wq->list);
3874 
3875 	if (alloc_and_link_pwqs(wq) < 0)
3876 		goto err_free_wq;
3877 
3878 	/*
3879 	 * Workqueues which may be used during memory reclaim should
3880 	 * have a rescuer to guarantee forward progress.
3881 	 */
3882 	if (flags & WQ_MEM_RECLAIM) {
3883 		struct worker *rescuer;
3884 
3885 		rescuer = alloc_worker(NUMA_NO_NODE);
3886 		if (!rescuer)
3887 			goto err_destroy;
3888 
3889 		rescuer->rescue_wq = wq;
3890 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3891 					       wq->name);
3892 		if (IS_ERR(rescuer->task)) {
3893 			kfree(rescuer);
3894 			goto err_destroy;
3895 		}
3896 
3897 		wq->rescuer = rescuer;
3898 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3899 		wake_up_process(rescuer->task);
3900 	}
3901 
3902 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3903 		goto err_destroy;
3904 
3905 	/*
3906 	 * wq_pool_mutex protects global freeze state and workqueues list.
3907 	 * Grab it, adjust max_active and add the new @wq to workqueues
3908 	 * list.
3909 	 */
3910 	mutex_lock(&wq_pool_mutex);
3911 
3912 	mutex_lock(&wq->mutex);
3913 	for_each_pwq(pwq, wq)
3914 		pwq_adjust_max_active(pwq);
3915 	mutex_unlock(&wq->mutex);
3916 
3917 	list_add_tail_rcu(&wq->list, &workqueues);
3918 
3919 	mutex_unlock(&wq_pool_mutex);
3920 
3921 	return wq;
3922 
3923 err_free_wq:
3924 	free_workqueue_attrs(wq->unbound_attrs);
3925 	kfree(wq);
3926 	return NULL;
3927 err_destroy:
3928 	destroy_workqueue(wq);
3929 	return NULL;
3930 }
3931 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3932 
3933 /**
3934  * destroy_workqueue - safely terminate a workqueue
3935  * @wq: target workqueue
3936  *
3937  * Safely destroy a workqueue. All work currently pending will be done first.
3938  */
destroy_workqueue(struct workqueue_struct * wq)3939 void destroy_workqueue(struct workqueue_struct *wq)
3940 {
3941 	struct pool_workqueue *pwq;
3942 	int node;
3943 
3944 	/* drain it before proceeding with destruction */
3945 	drain_workqueue(wq);
3946 
3947 	/* sanity checks */
3948 	mutex_lock(&wq->mutex);
3949 	for_each_pwq(pwq, wq) {
3950 		int i;
3951 
3952 		for (i = 0; i < WORK_NR_COLORS; i++) {
3953 			if (WARN_ON(pwq->nr_in_flight[i])) {
3954 				mutex_unlock(&wq->mutex);
3955 				return;
3956 			}
3957 		}
3958 
3959 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
3960 		    WARN_ON(pwq->nr_active) ||
3961 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3962 			mutex_unlock(&wq->mutex);
3963 			return;
3964 		}
3965 	}
3966 	mutex_unlock(&wq->mutex);
3967 
3968 	/*
3969 	 * wq list is used to freeze wq, remove from list after
3970 	 * flushing is complete in case freeze races us.
3971 	 */
3972 	mutex_lock(&wq_pool_mutex);
3973 	list_del_rcu(&wq->list);
3974 	mutex_unlock(&wq_pool_mutex);
3975 
3976 	workqueue_sysfs_unregister(wq);
3977 
3978 	if (wq->rescuer)
3979 		kthread_stop(wq->rescuer->task);
3980 
3981 	if (!(wq->flags & WQ_UNBOUND)) {
3982 		/*
3983 		 * The base ref is never dropped on per-cpu pwqs.  Directly
3984 		 * schedule RCU free.
3985 		 */
3986 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3987 	} else {
3988 		/*
3989 		 * We're the sole accessor of @wq at this point.  Directly
3990 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3991 		 * @wq will be freed when the last pwq is released.
3992 		 */
3993 		for_each_node(node) {
3994 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3995 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3996 			put_pwq_unlocked(pwq);
3997 		}
3998 
3999 		/*
4000 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4001 		 * put.  Don't access it afterwards.
4002 		 */
4003 		pwq = wq->dfl_pwq;
4004 		wq->dfl_pwq = NULL;
4005 		put_pwq_unlocked(pwq);
4006 	}
4007 }
4008 EXPORT_SYMBOL_GPL(destroy_workqueue);
4009 
4010 /**
4011  * workqueue_set_max_active - adjust max_active of a workqueue
4012  * @wq: target workqueue
4013  * @max_active: new max_active value.
4014  *
4015  * Set max_active of @wq to @max_active.
4016  *
4017  * CONTEXT:
4018  * Don't call from IRQ context.
4019  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4020 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4021 {
4022 	struct pool_workqueue *pwq;
4023 
4024 	/* disallow meddling with max_active for ordered workqueues */
4025 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4026 		return;
4027 
4028 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4029 
4030 	mutex_lock(&wq->mutex);
4031 
4032 	wq->saved_max_active = max_active;
4033 
4034 	for_each_pwq(pwq, wq)
4035 		pwq_adjust_max_active(pwq);
4036 
4037 	mutex_unlock(&wq->mutex);
4038 }
4039 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4040 
4041 /**
4042  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4043  *
4044  * Determine whether %current is a workqueue rescuer.  Can be used from
4045  * work functions to determine whether it's being run off the rescuer task.
4046  *
4047  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4048  */
current_is_workqueue_rescuer(void)4049 bool current_is_workqueue_rescuer(void)
4050 {
4051 	struct worker *worker = current_wq_worker();
4052 
4053 	return worker && worker->rescue_wq;
4054 }
4055 
4056 /**
4057  * workqueue_congested - test whether a workqueue is congested
4058  * @cpu: CPU in question
4059  * @wq: target workqueue
4060  *
4061  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4062  * no synchronization around this function and the test result is
4063  * unreliable and only useful as advisory hints or for debugging.
4064  *
4065  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4066  * Note that both per-cpu and unbound workqueues may be associated with
4067  * multiple pool_workqueues which have separate congested states.  A
4068  * workqueue being congested on one CPU doesn't mean the workqueue is also
4069  * contested on other CPUs / NUMA nodes.
4070  *
4071  * Return:
4072  * %true if congested, %false otherwise.
4073  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4074 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4075 {
4076 	struct pool_workqueue *pwq;
4077 	bool ret;
4078 
4079 	rcu_read_lock_sched();
4080 
4081 	if (cpu == WORK_CPU_UNBOUND)
4082 		cpu = smp_processor_id();
4083 
4084 	if (!(wq->flags & WQ_UNBOUND))
4085 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4086 	else
4087 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4088 
4089 	ret = !list_empty(&pwq->delayed_works);
4090 	rcu_read_unlock_sched();
4091 
4092 	return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(workqueue_congested);
4095 
4096 /**
4097  * work_busy - test whether a work is currently pending or running
4098  * @work: the work to be tested
4099  *
4100  * Test whether @work is currently pending or running.  There is no
4101  * synchronization around this function and the test result is
4102  * unreliable and only useful as advisory hints or for debugging.
4103  *
4104  * Return:
4105  * OR'd bitmask of WORK_BUSY_* bits.
4106  */
work_busy(struct work_struct * work)4107 unsigned int work_busy(struct work_struct *work)
4108 {
4109 	struct worker_pool *pool;
4110 	unsigned long flags;
4111 	unsigned int ret = 0;
4112 
4113 	if (work_pending(work))
4114 		ret |= WORK_BUSY_PENDING;
4115 
4116 	local_irq_save(flags);
4117 	pool = get_work_pool(work);
4118 	if (pool) {
4119 		spin_lock(&pool->lock);
4120 		if (find_worker_executing_work(pool, work))
4121 			ret |= WORK_BUSY_RUNNING;
4122 		spin_unlock(&pool->lock);
4123 	}
4124 	local_irq_restore(flags);
4125 
4126 	return ret;
4127 }
4128 EXPORT_SYMBOL_GPL(work_busy);
4129 
4130 /**
4131  * set_worker_desc - set description for the current work item
4132  * @fmt: printf-style format string
4133  * @...: arguments for the format string
4134  *
4135  * This function can be called by a running work function to describe what
4136  * the work item is about.  If the worker task gets dumped, this
4137  * information will be printed out together to help debugging.  The
4138  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4139  */
set_worker_desc(const char * fmt,...)4140 void set_worker_desc(const char *fmt, ...)
4141 {
4142 	struct worker *worker = current_wq_worker();
4143 	va_list args;
4144 
4145 	if (worker) {
4146 		va_start(args, fmt);
4147 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4148 		va_end(args);
4149 		worker->desc_valid = true;
4150 	}
4151 }
4152 
4153 /**
4154  * print_worker_info - print out worker information and description
4155  * @log_lvl: the log level to use when printing
4156  * @task: target task
4157  *
4158  * If @task is a worker and currently executing a work item, print out the
4159  * name of the workqueue being serviced and worker description set with
4160  * set_worker_desc() by the currently executing work item.
4161  *
4162  * This function can be safely called on any task as long as the
4163  * task_struct itself is accessible.  While safe, this function isn't
4164  * synchronized and may print out mixups or garbages of limited length.
4165  */
print_worker_info(const char * log_lvl,struct task_struct * task)4166 void print_worker_info(const char *log_lvl, struct task_struct *task)
4167 {
4168 	work_func_t *fn = NULL;
4169 	char name[WQ_NAME_LEN] = { };
4170 	char desc[WORKER_DESC_LEN] = { };
4171 	struct pool_workqueue *pwq = NULL;
4172 	struct workqueue_struct *wq = NULL;
4173 	bool desc_valid = false;
4174 	struct worker *worker;
4175 
4176 	if (!(task->flags & PF_WQ_WORKER))
4177 		return;
4178 
4179 	/*
4180 	 * This function is called without any synchronization and @task
4181 	 * could be in any state.  Be careful with dereferences.
4182 	 */
4183 	worker = probe_kthread_data(task);
4184 
4185 	/*
4186 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4187 	 * the original last '\0' in case the original contains garbage.
4188 	 */
4189 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4190 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4191 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4192 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4193 
4194 	/* copy worker description */
4195 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4196 	if (desc_valid)
4197 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4198 
4199 	if (fn || name[0] || desc[0]) {
4200 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4201 		if (desc[0])
4202 			pr_cont(" (%s)", desc);
4203 		pr_cont("\n");
4204 	}
4205 }
4206 
pr_cont_pool_info(struct worker_pool * pool)4207 static void pr_cont_pool_info(struct worker_pool *pool)
4208 {
4209 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4210 	if (pool->node != NUMA_NO_NODE)
4211 		pr_cont(" node=%d", pool->node);
4212 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4213 }
4214 
pr_cont_work(bool comma,struct work_struct * work)4215 static void pr_cont_work(bool comma, struct work_struct *work)
4216 {
4217 	if (work->func == wq_barrier_func) {
4218 		struct wq_barrier *barr;
4219 
4220 		barr = container_of(work, struct wq_barrier, work);
4221 
4222 		pr_cont("%s BAR(%d)", comma ? "," : "",
4223 			task_pid_nr(barr->task));
4224 	} else {
4225 		pr_cont("%s %pf", comma ? "," : "", work->func);
4226 	}
4227 }
4228 
show_pwq(struct pool_workqueue * pwq)4229 static void show_pwq(struct pool_workqueue *pwq)
4230 {
4231 	struct worker_pool *pool = pwq->pool;
4232 	struct work_struct *work;
4233 	struct worker *worker;
4234 	bool has_in_flight = false, has_pending = false;
4235 	int bkt;
4236 
4237 	pr_info("  pwq %d:", pool->id);
4238 	pr_cont_pool_info(pool);
4239 
4240 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4241 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4242 
4243 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4244 		if (worker->current_pwq == pwq) {
4245 			has_in_flight = true;
4246 			break;
4247 		}
4248 	}
4249 	if (has_in_flight) {
4250 		bool comma = false;
4251 
4252 		pr_info("    in-flight:");
4253 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4254 			if (worker->current_pwq != pwq)
4255 				continue;
4256 
4257 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4258 				task_pid_nr(worker->task),
4259 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4260 				worker->current_func);
4261 			list_for_each_entry(work, &worker->scheduled, entry)
4262 				pr_cont_work(false, work);
4263 			comma = true;
4264 		}
4265 		pr_cont("\n");
4266 	}
4267 
4268 	list_for_each_entry(work, &pool->worklist, entry) {
4269 		if (get_work_pwq(work) == pwq) {
4270 			has_pending = true;
4271 			break;
4272 		}
4273 	}
4274 	if (has_pending) {
4275 		bool comma = false;
4276 
4277 		pr_info("    pending:");
4278 		list_for_each_entry(work, &pool->worklist, entry) {
4279 			if (get_work_pwq(work) != pwq)
4280 				continue;
4281 
4282 			pr_cont_work(comma, work);
4283 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4284 		}
4285 		pr_cont("\n");
4286 	}
4287 
4288 	if (!list_empty(&pwq->delayed_works)) {
4289 		bool comma = false;
4290 
4291 		pr_info("    delayed:");
4292 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4293 			pr_cont_work(comma, work);
4294 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4295 		}
4296 		pr_cont("\n");
4297 	}
4298 }
4299 
4300 /**
4301  * show_workqueue_state - dump workqueue state
4302  *
4303  * Called from a sysrq handler and prints out all busy workqueues and
4304  * pools.
4305  */
show_workqueue_state(void)4306 void show_workqueue_state(void)
4307 {
4308 	struct workqueue_struct *wq;
4309 	struct worker_pool *pool;
4310 	unsigned long flags;
4311 	int pi;
4312 
4313 	rcu_read_lock_sched();
4314 
4315 	pr_info("Showing busy workqueues and worker pools:\n");
4316 
4317 	list_for_each_entry_rcu(wq, &workqueues, list) {
4318 		struct pool_workqueue *pwq;
4319 		bool idle = true;
4320 
4321 		for_each_pwq(pwq, wq) {
4322 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4323 				idle = false;
4324 				break;
4325 			}
4326 		}
4327 		if (idle)
4328 			continue;
4329 
4330 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4331 
4332 		for_each_pwq(pwq, wq) {
4333 			spin_lock_irqsave(&pwq->pool->lock, flags);
4334 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4335 				show_pwq(pwq);
4336 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4337 		}
4338 	}
4339 
4340 	for_each_pool(pool, pi) {
4341 		struct worker *worker;
4342 		bool first = true;
4343 
4344 		spin_lock_irqsave(&pool->lock, flags);
4345 		if (pool->nr_workers == pool->nr_idle)
4346 			goto next_pool;
4347 
4348 		pr_info("pool %d:", pool->id);
4349 		pr_cont_pool_info(pool);
4350 		pr_cont(" workers=%d", pool->nr_workers);
4351 		if (pool->manager)
4352 			pr_cont(" manager: %d",
4353 				task_pid_nr(pool->manager->task));
4354 		list_for_each_entry(worker, &pool->idle_list, entry) {
4355 			pr_cont(" %s%d", first ? "idle: " : "",
4356 				task_pid_nr(worker->task));
4357 			first = false;
4358 		}
4359 		pr_cont("\n");
4360 	next_pool:
4361 		spin_unlock_irqrestore(&pool->lock, flags);
4362 	}
4363 
4364 	rcu_read_unlock_sched();
4365 }
4366 
4367 /*
4368  * CPU hotplug.
4369  *
4370  * There are two challenges in supporting CPU hotplug.  Firstly, there
4371  * are a lot of assumptions on strong associations among work, pwq and
4372  * pool which make migrating pending and scheduled works very
4373  * difficult to implement without impacting hot paths.  Secondly,
4374  * worker pools serve mix of short, long and very long running works making
4375  * blocked draining impractical.
4376  *
4377  * This is solved by allowing the pools to be disassociated from the CPU
4378  * running as an unbound one and allowing it to be reattached later if the
4379  * cpu comes back online.
4380  */
4381 
wq_unbind_fn(struct work_struct * work)4382 static void wq_unbind_fn(struct work_struct *work)
4383 {
4384 	int cpu = smp_processor_id();
4385 	struct worker_pool *pool;
4386 	struct worker *worker;
4387 
4388 	for_each_cpu_worker_pool(pool, cpu) {
4389 		mutex_lock(&pool->attach_mutex);
4390 		spin_lock_irq(&pool->lock);
4391 
4392 		/*
4393 		 * We've blocked all attach/detach operations. Make all workers
4394 		 * unbound and set DISASSOCIATED.  Before this, all workers
4395 		 * except for the ones which are still executing works from
4396 		 * before the last CPU down must be on the cpu.  After
4397 		 * this, they may become diasporas.
4398 		 */
4399 		for_each_pool_worker(worker, pool)
4400 			worker->flags |= WORKER_UNBOUND;
4401 
4402 		pool->flags |= POOL_DISASSOCIATED;
4403 
4404 		spin_unlock_irq(&pool->lock);
4405 		mutex_unlock(&pool->attach_mutex);
4406 
4407 		/*
4408 		 * Call schedule() so that we cross rq->lock and thus can
4409 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4410 		 * This is necessary as scheduler callbacks may be invoked
4411 		 * from other cpus.
4412 		 */
4413 		schedule();
4414 
4415 		/*
4416 		 * Sched callbacks are disabled now.  Zap nr_running.
4417 		 * After this, nr_running stays zero and need_more_worker()
4418 		 * and keep_working() are always true as long as the
4419 		 * worklist is not empty.  This pool now behaves as an
4420 		 * unbound (in terms of concurrency management) pool which
4421 		 * are served by workers tied to the pool.
4422 		 */
4423 		atomic_set(&pool->nr_running, 0);
4424 
4425 		/*
4426 		 * With concurrency management just turned off, a busy
4427 		 * worker blocking could lead to lengthy stalls.  Kick off
4428 		 * unbound chain execution of currently pending work items.
4429 		 */
4430 		spin_lock_irq(&pool->lock);
4431 		wake_up_worker(pool);
4432 		spin_unlock_irq(&pool->lock);
4433 	}
4434 }
4435 
4436 /**
4437  * rebind_workers - rebind all workers of a pool to the associated CPU
4438  * @pool: pool of interest
4439  *
4440  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4441  */
rebind_workers(struct worker_pool * pool)4442 static void rebind_workers(struct worker_pool *pool)
4443 {
4444 	struct worker *worker;
4445 
4446 	lockdep_assert_held(&pool->attach_mutex);
4447 
4448 	/*
4449 	 * Restore CPU affinity of all workers.  As all idle workers should
4450 	 * be on the run-queue of the associated CPU before any local
4451 	 * wake-ups for concurrency management happen, restore CPU affinity
4452 	 * of all workers first and then clear UNBOUND.  As we're called
4453 	 * from CPU_ONLINE, the following shouldn't fail.
4454 	 */
4455 	for_each_pool_worker(worker, pool)
4456 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4457 						  pool->attrs->cpumask) < 0);
4458 
4459 	spin_lock_irq(&pool->lock);
4460 
4461 	/*
4462 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4463 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4464 	 * being reworked and this can go away in time.
4465 	 */
4466 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4467 		spin_unlock_irq(&pool->lock);
4468 		return;
4469 	}
4470 
4471 	pool->flags &= ~POOL_DISASSOCIATED;
4472 
4473 	for_each_pool_worker(worker, pool) {
4474 		unsigned int worker_flags = worker->flags;
4475 
4476 		/*
4477 		 * A bound idle worker should actually be on the runqueue
4478 		 * of the associated CPU for local wake-ups targeting it to
4479 		 * work.  Kick all idle workers so that they migrate to the
4480 		 * associated CPU.  Doing this in the same loop as
4481 		 * replacing UNBOUND with REBOUND is safe as no worker will
4482 		 * be bound before @pool->lock is released.
4483 		 */
4484 		if (worker_flags & WORKER_IDLE)
4485 			wake_up_process(worker->task);
4486 
4487 		/*
4488 		 * We want to clear UNBOUND but can't directly call
4489 		 * worker_clr_flags() or adjust nr_running.  Atomically
4490 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4491 		 * @worker will clear REBOUND using worker_clr_flags() when
4492 		 * it initiates the next execution cycle thus restoring
4493 		 * concurrency management.  Note that when or whether
4494 		 * @worker clears REBOUND doesn't affect correctness.
4495 		 *
4496 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4497 		 * tested without holding any lock in
4498 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4499 		 * fail incorrectly leading to premature concurrency
4500 		 * management operations.
4501 		 */
4502 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4503 		worker_flags |= WORKER_REBOUND;
4504 		worker_flags &= ~WORKER_UNBOUND;
4505 		ACCESS_ONCE(worker->flags) = worker_flags;
4506 	}
4507 
4508 	spin_unlock_irq(&pool->lock);
4509 }
4510 
4511 /**
4512  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4513  * @pool: unbound pool of interest
4514  * @cpu: the CPU which is coming up
4515  *
4516  * An unbound pool may end up with a cpumask which doesn't have any online
4517  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4518  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4519  * online CPU before, cpus_allowed of all its workers should be restored.
4520  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)4521 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4522 {
4523 	static cpumask_t cpumask;
4524 	struct worker *worker;
4525 
4526 	lockdep_assert_held(&pool->attach_mutex);
4527 
4528 	/* is @cpu allowed for @pool? */
4529 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4530 		return;
4531 
4532 	/* is @cpu the only online CPU? */
4533 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4534 	if (cpumask_weight(&cpumask) != 1)
4535 		return;
4536 
4537 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4538 	for_each_pool_worker(worker, pool)
4539 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4540 						  pool->attrs->cpumask) < 0);
4541 }
4542 
4543 /*
4544  * Workqueues should be brought up before normal priority CPU notifiers.
4545  * This will be registered high priority CPU notifier.
4546  */
workqueue_cpu_up_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)4547 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4548 					       unsigned long action,
4549 					       void *hcpu)
4550 {
4551 	int cpu = (unsigned long)hcpu;
4552 	struct worker_pool *pool;
4553 	struct workqueue_struct *wq;
4554 	int pi;
4555 
4556 	switch (action & ~CPU_TASKS_FROZEN) {
4557 	case CPU_UP_PREPARE:
4558 		for_each_cpu_worker_pool(pool, cpu) {
4559 			if (pool->nr_workers)
4560 				continue;
4561 			if (!create_worker(pool))
4562 				return NOTIFY_BAD;
4563 		}
4564 		break;
4565 
4566 	case CPU_DOWN_FAILED:
4567 	case CPU_ONLINE:
4568 		mutex_lock(&wq_pool_mutex);
4569 
4570 		for_each_pool(pool, pi) {
4571 			mutex_lock(&pool->attach_mutex);
4572 
4573 			if (pool->cpu == cpu)
4574 				rebind_workers(pool);
4575 			else if (pool->cpu < 0)
4576 				restore_unbound_workers_cpumask(pool, cpu);
4577 
4578 			mutex_unlock(&pool->attach_mutex);
4579 		}
4580 
4581 		/* update NUMA affinity of unbound workqueues */
4582 		list_for_each_entry(wq, &workqueues, list)
4583 			wq_update_unbound_numa(wq, cpu, true);
4584 
4585 		mutex_unlock(&wq_pool_mutex);
4586 		break;
4587 	}
4588 	return NOTIFY_OK;
4589 }
4590 
4591 /*
4592  * Workqueues should be brought down after normal priority CPU notifiers.
4593  * This will be registered as low priority CPU notifier.
4594  */
workqueue_cpu_down_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)4595 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4596 						 unsigned long action,
4597 						 void *hcpu)
4598 {
4599 	int cpu = (unsigned long)hcpu;
4600 	struct work_struct unbind_work;
4601 	struct workqueue_struct *wq;
4602 
4603 	switch (action & ~CPU_TASKS_FROZEN) {
4604 	case CPU_DOWN_PREPARE:
4605 		/* unbinding per-cpu workers should happen on the local CPU */
4606 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4607 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4608 
4609 		/* update NUMA affinity of unbound workqueues */
4610 		mutex_lock(&wq_pool_mutex);
4611 		list_for_each_entry(wq, &workqueues, list)
4612 			wq_update_unbound_numa(wq, cpu, false);
4613 		mutex_unlock(&wq_pool_mutex);
4614 
4615 		/* wait for per-cpu unbinding to finish */
4616 		flush_work(&unbind_work);
4617 		destroy_work_on_stack(&unbind_work);
4618 		break;
4619 	}
4620 	return NOTIFY_OK;
4621 }
4622 
4623 #ifdef CONFIG_SMP
4624 
4625 struct work_for_cpu {
4626 	struct work_struct work;
4627 	long (*fn)(void *);
4628 	void *arg;
4629 	long ret;
4630 };
4631 
work_for_cpu_fn(struct work_struct * work)4632 static void work_for_cpu_fn(struct work_struct *work)
4633 {
4634 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4635 
4636 	wfc->ret = wfc->fn(wfc->arg);
4637 }
4638 
4639 /**
4640  * work_on_cpu - run a function in user context on a particular cpu
4641  * @cpu: the cpu to run on
4642  * @fn: the function to run
4643  * @arg: the function arg
4644  *
4645  * It is up to the caller to ensure that the cpu doesn't go offline.
4646  * The caller must not hold any locks which would prevent @fn from completing.
4647  *
4648  * Return: The value @fn returns.
4649  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)4650 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4651 {
4652 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4653 
4654 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4655 	schedule_work_on(cpu, &wfc.work);
4656 	flush_work(&wfc.work);
4657 	destroy_work_on_stack(&wfc.work);
4658 	return wfc.ret;
4659 }
4660 EXPORT_SYMBOL_GPL(work_on_cpu);
4661 #endif /* CONFIG_SMP */
4662 
4663 #ifdef CONFIG_FREEZER
4664 
4665 /**
4666  * freeze_workqueues_begin - begin freezing workqueues
4667  *
4668  * Start freezing workqueues.  After this function returns, all freezable
4669  * workqueues will queue new works to their delayed_works list instead of
4670  * pool->worklist.
4671  *
4672  * CONTEXT:
4673  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4674  */
freeze_workqueues_begin(void)4675 void freeze_workqueues_begin(void)
4676 {
4677 	struct workqueue_struct *wq;
4678 	struct pool_workqueue *pwq;
4679 
4680 	mutex_lock(&wq_pool_mutex);
4681 
4682 	WARN_ON_ONCE(workqueue_freezing);
4683 	workqueue_freezing = true;
4684 
4685 	list_for_each_entry(wq, &workqueues, list) {
4686 		mutex_lock(&wq->mutex);
4687 		for_each_pwq(pwq, wq)
4688 			pwq_adjust_max_active(pwq);
4689 		mutex_unlock(&wq->mutex);
4690 	}
4691 
4692 	mutex_unlock(&wq_pool_mutex);
4693 }
4694 
4695 /**
4696  * freeze_workqueues_busy - are freezable workqueues still busy?
4697  *
4698  * Check whether freezing is complete.  This function must be called
4699  * between freeze_workqueues_begin() and thaw_workqueues().
4700  *
4701  * CONTEXT:
4702  * Grabs and releases wq_pool_mutex.
4703  *
4704  * Return:
4705  * %true if some freezable workqueues are still busy.  %false if freezing
4706  * is complete.
4707  */
freeze_workqueues_busy(void)4708 bool freeze_workqueues_busy(void)
4709 {
4710 	bool busy = false;
4711 	struct workqueue_struct *wq;
4712 	struct pool_workqueue *pwq;
4713 
4714 	mutex_lock(&wq_pool_mutex);
4715 
4716 	WARN_ON_ONCE(!workqueue_freezing);
4717 
4718 	list_for_each_entry(wq, &workqueues, list) {
4719 		if (!(wq->flags & WQ_FREEZABLE))
4720 			continue;
4721 		/*
4722 		 * nr_active is monotonically decreasing.  It's safe
4723 		 * to peek without lock.
4724 		 */
4725 		rcu_read_lock_sched();
4726 		for_each_pwq(pwq, wq) {
4727 			WARN_ON_ONCE(pwq->nr_active < 0);
4728 			if (pwq->nr_active) {
4729 				busy = true;
4730 				rcu_read_unlock_sched();
4731 				goto out_unlock;
4732 			}
4733 		}
4734 		rcu_read_unlock_sched();
4735 	}
4736 out_unlock:
4737 	mutex_unlock(&wq_pool_mutex);
4738 	return busy;
4739 }
4740 
4741 /**
4742  * thaw_workqueues - thaw workqueues
4743  *
4744  * Thaw workqueues.  Normal queueing is restored and all collected
4745  * frozen works are transferred to their respective pool worklists.
4746  *
4747  * CONTEXT:
4748  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4749  */
thaw_workqueues(void)4750 void thaw_workqueues(void)
4751 {
4752 	struct workqueue_struct *wq;
4753 	struct pool_workqueue *pwq;
4754 
4755 	mutex_lock(&wq_pool_mutex);
4756 
4757 	if (!workqueue_freezing)
4758 		goto out_unlock;
4759 
4760 	workqueue_freezing = false;
4761 
4762 	/* restore max_active and repopulate worklist */
4763 	list_for_each_entry(wq, &workqueues, list) {
4764 		mutex_lock(&wq->mutex);
4765 		for_each_pwq(pwq, wq)
4766 			pwq_adjust_max_active(pwq);
4767 		mutex_unlock(&wq->mutex);
4768 	}
4769 
4770 out_unlock:
4771 	mutex_unlock(&wq_pool_mutex);
4772 }
4773 #endif /* CONFIG_FREEZER */
4774 
workqueue_apply_unbound_cpumask(void)4775 static int workqueue_apply_unbound_cpumask(void)
4776 {
4777 	LIST_HEAD(ctxs);
4778 	int ret = 0;
4779 	struct workqueue_struct *wq;
4780 	struct apply_wqattrs_ctx *ctx, *n;
4781 
4782 	lockdep_assert_held(&wq_pool_mutex);
4783 
4784 	list_for_each_entry(wq, &workqueues, list) {
4785 		if (!(wq->flags & WQ_UNBOUND))
4786 			continue;
4787 		/* creating multiple pwqs breaks ordering guarantee */
4788 		if (wq->flags & __WQ_ORDERED)
4789 			continue;
4790 
4791 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4792 		if (!ctx) {
4793 			ret = -ENOMEM;
4794 			break;
4795 		}
4796 
4797 		list_add_tail(&ctx->list, &ctxs);
4798 	}
4799 
4800 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4801 		if (!ret)
4802 			apply_wqattrs_commit(ctx);
4803 		apply_wqattrs_cleanup(ctx);
4804 	}
4805 
4806 	return ret;
4807 }
4808 
4809 /**
4810  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4811  *  @cpumask: the cpumask to set
4812  *
4813  *  The low-level workqueues cpumask is a global cpumask that limits
4814  *  the affinity of all unbound workqueues.  This function check the @cpumask
4815  *  and apply it to all unbound workqueues and updates all pwqs of them.
4816  *
4817  *  Retun:	0	- Success
4818  *  		-EINVAL	- Invalid @cpumask
4819  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4820  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)4821 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4822 {
4823 	int ret = -EINVAL;
4824 	cpumask_var_t saved_cpumask;
4825 
4826 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4827 		return -ENOMEM;
4828 
4829 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4830 	if (!cpumask_empty(cpumask)) {
4831 		apply_wqattrs_lock();
4832 
4833 		/* save the old wq_unbound_cpumask. */
4834 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4835 
4836 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4837 		cpumask_copy(wq_unbound_cpumask, cpumask);
4838 		ret = workqueue_apply_unbound_cpumask();
4839 
4840 		/* restore the wq_unbound_cpumask when failed. */
4841 		if (ret < 0)
4842 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4843 
4844 		apply_wqattrs_unlock();
4845 	}
4846 
4847 	free_cpumask_var(saved_cpumask);
4848 	return ret;
4849 }
4850 
4851 #ifdef CONFIG_SYSFS
4852 /*
4853  * Workqueues with WQ_SYSFS flag set is visible to userland via
4854  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4855  * following attributes.
4856  *
4857  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4858  *  max_active	RW int	: maximum number of in-flight work items
4859  *
4860  * Unbound workqueues have the following extra attributes.
4861  *
4862  *  id		RO int	: the associated pool ID
4863  *  nice	RW int	: nice value of the workers
4864  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4865  */
4866 struct wq_device {
4867 	struct workqueue_struct		*wq;
4868 	struct device			dev;
4869 };
4870 
dev_to_wq(struct device * dev)4871 static struct workqueue_struct *dev_to_wq(struct device *dev)
4872 {
4873 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4874 
4875 	return wq_dev->wq;
4876 }
4877 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)4878 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4879 			    char *buf)
4880 {
4881 	struct workqueue_struct *wq = dev_to_wq(dev);
4882 
4883 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4884 }
4885 static DEVICE_ATTR_RO(per_cpu);
4886 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)4887 static ssize_t max_active_show(struct device *dev,
4888 			       struct device_attribute *attr, char *buf)
4889 {
4890 	struct workqueue_struct *wq = dev_to_wq(dev);
4891 
4892 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4893 }
4894 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4895 static ssize_t max_active_store(struct device *dev,
4896 				struct device_attribute *attr, const char *buf,
4897 				size_t count)
4898 {
4899 	struct workqueue_struct *wq = dev_to_wq(dev);
4900 	int val;
4901 
4902 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4903 		return -EINVAL;
4904 
4905 	workqueue_set_max_active(wq, val);
4906 	return count;
4907 }
4908 static DEVICE_ATTR_RW(max_active);
4909 
4910 static struct attribute *wq_sysfs_attrs[] = {
4911 	&dev_attr_per_cpu.attr,
4912 	&dev_attr_max_active.attr,
4913 	NULL,
4914 };
4915 ATTRIBUTE_GROUPS(wq_sysfs);
4916 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)4917 static ssize_t wq_pool_ids_show(struct device *dev,
4918 				struct device_attribute *attr, char *buf)
4919 {
4920 	struct workqueue_struct *wq = dev_to_wq(dev);
4921 	const char *delim = "";
4922 	int node, written = 0;
4923 
4924 	rcu_read_lock_sched();
4925 	for_each_node(node) {
4926 		written += scnprintf(buf + written, PAGE_SIZE - written,
4927 				     "%s%d:%d", delim, node,
4928 				     unbound_pwq_by_node(wq, node)->pool->id);
4929 		delim = " ";
4930 	}
4931 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4932 	rcu_read_unlock_sched();
4933 
4934 	return written;
4935 }
4936 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)4937 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4938 			    char *buf)
4939 {
4940 	struct workqueue_struct *wq = dev_to_wq(dev);
4941 	int written;
4942 
4943 	mutex_lock(&wq->mutex);
4944 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4945 	mutex_unlock(&wq->mutex);
4946 
4947 	return written;
4948 }
4949 
4950 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)4951 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4952 {
4953 	struct workqueue_attrs *attrs;
4954 
4955 	lockdep_assert_held(&wq_pool_mutex);
4956 
4957 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
4958 	if (!attrs)
4959 		return NULL;
4960 
4961 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
4962 	return attrs;
4963 }
4964 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4965 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4966 			     const char *buf, size_t count)
4967 {
4968 	struct workqueue_struct *wq = dev_to_wq(dev);
4969 	struct workqueue_attrs *attrs;
4970 	int ret = -ENOMEM;
4971 
4972 	apply_wqattrs_lock();
4973 
4974 	attrs = wq_sysfs_prep_attrs(wq);
4975 	if (!attrs)
4976 		goto out_unlock;
4977 
4978 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4979 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4980 		ret = apply_workqueue_attrs_locked(wq, attrs);
4981 	else
4982 		ret = -EINVAL;
4983 
4984 out_unlock:
4985 	apply_wqattrs_unlock();
4986 	free_workqueue_attrs(attrs);
4987 	return ret ?: count;
4988 }
4989 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)4990 static ssize_t wq_cpumask_show(struct device *dev,
4991 			       struct device_attribute *attr, char *buf)
4992 {
4993 	struct workqueue_struct *wq = dev_to_wq(dev);
4994 	int written;
4995 
4996 	mutex_lock(&wq->mutex);
4997 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4998 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
4999 	mutex_unlock(&wq->mutex);
5000 	return written;
5001 }
5002 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5003 static ssize_t wq_cpumask_store(struct device *dev,
5004 				struct device_attribute *attr,
5005 				const char *buf, size_t count)
5006 {
5007 	struct workqueue_struct *wq = dev_to_wq(dev);
5008 	struct workqueue_attrs *attrs;
5009 	int ret = -ENOMEM;
5010 
5011 	apply_wqattrs_lock();
5012 
5013 	attrs = wq_sysfs_prep_attrs(wq);
5014 	if (!attrs)
5015 		goto out_unlock;
5016 
5017 	ret = cpumask_parse(buf, attrs->cpumask);
5018 	if (!ret)
5019 		ret = apply_workqueue_attrs_locked(wq, attrs);
5020 
5021 out_unlock:
5022 	apply_wqattrs_unlock();
5023 	free_workqueue_attrs(attrs);
5024 	return ret ?: count;
5025 }
5026 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5027 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5028 			    char *buf)
5029 {
5030 	struct workqueue_struct *wq = dev_to_wq(dev);
5031 	int written;
5032 
5033 	mutex_lock(&wq->mutex);
5034 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5035 			    !wq->unbound_attrs->no_numa);
5036 	mutex_unlock(&wq->mutex);
5037 
5038 	return written;
5039 }
5040 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5041 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5042 			     const char *buf, size_t count)
5043 {
5044 	struct workqueue_struct *wq = dev_to_wq(dev);
5045 	struct workqueue_attrs *attrs;
5046 	int v, ret = -ENOMEM;
5047 
5048 	apply_wqattrs_lock();
5049 
5050 	attrs = wq_sysfs_prep_attrs(wq);
5051 	if (!attrs)
5052 		goto out_unlock;
5053 
5054 	ret = -EINVAL;
5055 	if (sscanf(buf, "%d", &v) == 1) {
5056 		attrs->no_numa = !v;
5057 		ret = apply_workqueue_attrs_locked(wq, attrs);
5058 	}
5059 
5060 out_unlock:
5061 	apply_wqattrs_unlock();
5062 	free_workqueue_attrs(attrs);
5063 	return ret ?: count;
5064 }
5065 
5066 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5067 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5068 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5069 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5070 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5071 	__ATTR_NULL,
5072 };
5073 
5074 static struct bus_type wq_subsys = {
5075 	.name				= "workqueue",
5076 	.dev_groups			= wq_sysfs_groups,
5077 };
5078 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5079 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5080 		struct device_attribute *attr, char *buf)
5081 {
5082 	int written;
5083 
5084 	mutex_lock(&wq_pool_mutex);
5085 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5086 			    cpumask_pr_args(wq_unbound_cpumask));
5087 	mutex_unlock(&wq_pool_mutex);
5088 
5089 	return written;
5090 }
5091 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5092 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5093 		struct device_attribute *attr, const char *buf, size_t count)
5094 {
5095 	cpumask_var_t cpumask;
5096 	int ret;
5097 
5098 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5099 		return -ENOMEM;
5100 
5101 	ret = cpumask_parse(buf, cpumask);
5102 	if (!ret)
5103 		ret = workqueue_set_unbound_cpumask(cpumask);
5104 
5105 	free_cpumask_var(cpumask);
5106 	return ret ? ret : count;
5107 }
5108 
5109 static struct device_attribute wq_sysfs_cpumask_attr =
5110 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5111 	       wq_unbound_cpumask_store);
5112 
wq_sysfs_init(void)5113 static int __init wq_sysfs_init(void)
5114 {
5115 	int err;
5116 
5117 	err = subsys_virtual_register(&wq_subsys, NULL);
5118 	if (err)
5119 		return err;
5120 
5121 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5122 }
5123 core_initcall(wq_sysfs_init);
5124 
wq_device_release(struct device * dev)5125 static void wq_device_release(struct device *dev)
5126 {
5127 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5128 
5129 	kfree(wq_dev);
5130 }
5131 
5132 /**
5133  * workqueue_sysfs_register - make a workqueue visible in sysfs
5134  * @wq: the workqueue to register
5135  *
5136  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5137  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5138  * which is the preferred method.
5139  *
5140  * Workqueue user should use this function directly iff it wants to apply
5141  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5142  * apply_workqueue_attrs() may race against userland updating the
5143  * attributes.
5144  *
5145  * Return: 0 on success, -errno on failure.
5146  */
workqueue_sysfs_register(struct workqueue_struct * wq)5147 int workqueue_sysfs_register(struct workqueue_struct *wq)
5148 {
5149 	struct wq_device *wq_dev;
5150 	int ret;
5151 
5152 	/*
5153 	 * Adjusting max_active or creating new pwqs by applying
5154 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5155 	 * workqueues.
5156 	 */
5157 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5158 		return -EINVAL;
5159 
5160 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5161 	if (!wq_dev)
5162 		return -ENOMEM;
5163 
5164 	wq_dev->wq = wq;
5165 	wq_dev->dev.bus = &wq_subsys;
5166 	wq_dev->dev.init_name = wq->name;
5167 	wq_dev->dev.release = wq_device_release;
5168 
5169 	/*
5170 	 * unbound_attrs are created separately.  Suppress uevent until
5171 	 * everything is ready.
5172 	 */
5173 	dev_set_uevent_suppress(&wq_dev->dev, true);
5174 
5175 	ret = device_register(&wq_dev->dev);
5176 	if (ret) {
5177 		kfree(wq_dev);
5178 		wq->wq_dev = NULL;
5179 		return ret;
5180 	}
5181 
5182 	if (wq->flags & WQ_UNBOUND) {
5183 		struct device_attribute *attr;
5184 
5185 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5186 			ret = device_create_file(&wq_dev->dev, attr);
5187 			if (ret) {
5188 				device_unregister(&wq_dev->dev);
5189 				wq->wq_dev = NULL;
5190 				return ret;
5191 			}
5192 		}
5193 	}
5194 
5195 	dev_set_uevent_suppress(&wq_dev->dev, false);
5196 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5197 	return 0;
5198 }
5199 
5200 /**
5201  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5202  * @wq: the workqueue to unregister
5203  *
5204  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5205  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5206 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5207 {
5208 	struct wq_device *wq_dev = wq->wq_dev;
5209 
5210 	if (!wq->wq_dev)
5211 		return;
5212 
5213 	wq->wq_dev = NULL;
5214 	device_unregister(&wq_dev->dev);
5215 }
5216 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5217 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5218 #endif	/* CONFIG_SYSFS */
5219 
wq_numa_init(void)5220 static void __init wq_numa_init(void)
5221 {
5222 	cpumask_var_t *tbl;
5223 	int node, cpu;
5224 
5225 	if (num_possible_nodes() <= 1)
5226 		return;
5227 
5228 	if (wq_disable_numa) {
5229 		pr_info("workqueue: NUMA affinity support disabled\n");
5230 		return;
5231 	}
5232 
5233 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5234 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5235 
5236 	/*
5237 	 * We want masks of possible CPUs of each node which isn't readily
5238 	 * available.  Build one from cpu_to_node() which should have been
5239 	 * fully initialized by now.
5240 	 */
5241 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5242 	BUG_ON(!tbl);
5243 
5244 	for_each_node(node)
5245 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5246 				node_online(node) ? node : NUMA_NO_NODE));
5247 
5248 	for_each_possible_cpu(cpu) {
5249 		node = cpu_to_node(cpu);
5250 		if (WARN_ON(node == NUMA_NO_NODE)) {
5251 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5252 			/* happens iff arch is bonkers, let's just proceed */
5253 			return;
5254 		}
5255 		cpumask_set_cpu(cpu, tbl[node]);
5256 	}
5257 
5258 	wq_numa_possible_cpumask = tbl;
5259 	wq_numa_enabled = true;
5260 }
5261 
init_workqueues(void)5262 static int __init init_workqueues(void)
5263 {
5264 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5265 	int i, cpu;
5266 
5267 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5268 
5269 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5270 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5271 
5272 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5273 
5274 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5275 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5276 
5277 	wq_numa_init();
5278 
5279 	/* initialize CPU pools */
5280 	for_each_possible_cpu(cpu) {
5281 		struct worker_pool *pool;
5282 
5283 		i = 0;
5284 		for_each_cpu_worker_pool(pool, cpu) {
5285 			BUG_ON(init_worker_pool(pool));
5286 			pool->cpu = cpu;
5287 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5288 			pool->attrs->nice = std_nice[i++];
5289 			pool->node = cpu_to_node(cpu);
5290 
5291 			/* alloc pool ID */
5292 			mutex_lock(&wq_pool_mutex);
5293 			BUG_ON(worker_pool_assign_id(pool));
5294 			mutex_unlock(&wq_pool_mutex);
5295 		}
5296 	}
5297 
5298 	/* create the initial worker */
5299 	for_each_online_cpu(cpu) {
5300 		struct worker_pool *pool;
5301 
5302 		for_each_cpu_worker_pool(pool, cpu) {
5303 			pool->flags &= ~POOL_DISASSOCIATED;
5304 			BUG_ON(!create_worker(pool));
5305 		}
5306 	}
5307 
5308 	/* create default unbound and ordered wq attrs */
5309 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5310 		struct workqueue_attrs *attrs;
5311 
5312 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5313 		attrs->nice = std_nice[i];
5314 		unbound_std_wq_attrs[i] = attrs;
5315 
5316 		/*
5317 		 * An ordered wq should have only one pwq as ordering is
5318 		 * guaranteed by max_active which is enforced by pwqs.
5319 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5320 		 */
5321 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5322 		attrs->nice = std_nice[i];
5323 		attrs->no_numa = true;
5324 		ordered_wq_attrs[i] = attrs;
5325 	}
5326 
5327 	system_wq = alloc_workqueue("events", 0, 0);
5328 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5329 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5330 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5331 					    WQ_UNBOUND_MAX_ACTIVE);
5332 	system_freezable_wq = alloc_workqueue("events_freezable",
5333 					      WQ_FREEZABLE, 0);
5334 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5335 					      WQ_POWER_EFFICIENT, 0);
5336 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5337 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5338 					      0);
5339 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5340 	       !system_unbound_wq || !system_freezable_wq ||
5341 	       !system_power_efficient_wq ||
5342 	       !system_freezable_power_efficient_wq);
5343 	return 0;
5344 }
5345 early_initcall(init_workqueues);
5346