1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <linux/platform_data/edma.h>
35 
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38 
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT		0x00
41 #define PARM_SRC		0x04
42 #define PARM_A_B_CNT		0x08
43 #define PARM_DST		0x0c
44 #define PARM_SRC_DST_BIDX	0x10
45 #define PARM_LINK_BCNTRLD	0x14
46 #define PARM_SRC_DST_CIDX	0x18
47 #define PARM_CCNT		0x1c
48 
49 #define PARM_SIZE		0x20
50 
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER			0x00	/* 64 bits */
53 #define SH_ECR			0x08	/* 64 bits */
54 #define SH_ESR			0x10	/* 64 bits */
55 #define SH_CER			0x18	/* 64 bits */
56 #define SH_EER			0x20	/* 64 bits */
57 #define SH_EECR			0x28	/* 64 bits */
58 #define SH_EESR			0x30	/* 64 bits */
59 #define SH_SER			0x38	/* 64 bits */
60 #define SH_SECR			0x40	/* 64 bits */
61 #define SH_IER			0x50	/* 64 bits */
62 #define SH_IECR			0x58	/* 64 bits */
63 #define SH_IESR			0x60	/* 64 bits */
64 #define SH_IPR			0x68	/* 64 bits */
65 #define SH_ICR			0x70	/* 64 bits */
66 #define SH_IEVAL		0x78
67 #define SH_QER			0x80
68 #define SH_QEER			0x84
69 #define SH_QEECR		0x88
70 #define SH_QEESR		0x8c
71 #define SH_QSER			0x90
72 #define SH_QSECR		0x94
73 #define SH_SIZE			0x200
74 
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV		0x0000
77 #define EDMA_CCCFG		0x0004
78 #define EDMA_QCHMAP		0x0200	/* 8 registers */
79 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM		0x0260
81 #define EDMA_QUETCMAP		0x0280
82 #define EDMA_QUEPRI		0x0284
83 #define EDMA_EMR		0x0300	/* 64 bits */
84 #define EDMA_EMCR		0x0308	/* 64 bits */
85 #define EDMA_QEMR		0x0310
86 #define EDMA_QEMCR		0x0314
87 #define EDMA_CCERR		0x0318
88 #define EDMA_CCERRCLR		0x031c
89 #define EDMA_EEVAL		0x0320
90 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
91 #define EDMA_QRAE		0x0380	/* 4 registers */
92 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
93 #define EDMA_QSTAT		0x0600	/* 2 registers */
94 #define EDMA_QWMTHRA		0x0620
95 #define EDMA_QWMTHRB		0x0624
96 #define EDMA_CCSTAT		0x0640
97 
98 #define EDMA_M			0x1000	/* global channel registers */
99 #define EDMA_ECR		0x1008
100 #define EDMA_ECRH		0x100C
101 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
102 #define EDMA_PARM		0x4000	/* PaRAM entries */
103 
104 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
105 
106 #define EDMA_DCHMAP		0x0100  /* 64 registers */
107 
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST		BIT(24)
115 
116 /*
117  * Max of 20 segments per channel to conserve PaRAM slots
118  * Also note that MAX_NR_SG should be atleast the no.of periods
119  * that are required for ASoC, otherwise DMA prep calls will
120  * fail. Today davinci-pcm is the only user of this driver and
121  * requires atleast 17 slots, so we setup the default to 20.
122  */
123 #define MAX_NR_SG		20
124 #define EDMA_MAX_SLOTS		MAX_NR_SG
125 #define EDMA_DESCRIPTORS	16
126 
127 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
128 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
129 #define EDMA_CONT_PARAMS_ANY		 1001
130 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
131 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
132 
133 /* PaRAM slots are laid out like this */
134 struct edmacc_param {
135 	u32 opt;
136 	u32 src;
137 	u32 a_b_cnt;
138 	u32 dst;
139 	u32 src_dst_bidx;
140 	u32 link_bcntrld;
141 	u32 src_dst_cidx;
142 	u32 ccnt;
143 } __packed;
144 
145 /* fields in edmacc_param.opt */
146 #define SAM		BIT(0)
147 #define DAM		BIT(1)
148 #define SYNCDIM		BIT(2)
149 #define STATIC		BIT(3)
150 #define EDMA_FWID	(0x07 << 8)
151 #define TCCMODE		BIT(11)
152 #define EDMA_TCC(t)	((t) << 12)
153 #define TCINTEN		BIT(20)
154 #define ITCINTEN	BIT(21)
155 #define TCCHEN		BIT(22)
156 #define ITCCHEN		BIT(23)
157 
158 struct edma_pset {
159 	u32				len;
160 	dma_addr_t			addr;
161 	struct edmacc_param		param;
162 };
163 
164 struct edma_desc {
165 	struct virt_dma_desc		vdesc;
166 	struct list_head		node;
167 	enum dma_transfer_direction	direction;
168 	int				cyclic;
169 	int				absync;
170 	int				pset_nr;
171 	struct edma_chan		*echan;
172 	int				processed;
173 
174 	/*
175 	 * The following 4 elements are used for residue accounting.
176 	 *
177 	 * - processed_stat: the number of SG elements we have traversed
178 	 * so far to cover accounting. This is updated directly to processed
179 	 * during edma_callback and is always <= processed, because processed
180 	 * refers to the number of pending transfer (programmed to EDMA
181 	 * controller), where as processed_stat tracks number of transfers
182 	 * accounted for so far.
183 	 *
184 	 * - residue: The amount of bytes we have left to transfer for this desc
185 	 *
186 	 * - residue_stat: The residue in bytes of data we have covered
187 	 * so far for accounting. This is updated directly to residue
188 	 * during callbacks to keep it current.
189 	 *
190 	 * - sg_len: Tracks the length of the current intermediate transfer,
191 	 * this is required to update the residue during intermediate transfer
192 	 * completion callback.
193 	 */
194 	int				processed_stat;
195 	u32				sg_len;
196 	u32				residue;
197 	u32				residue_stat;
198 
199 	struct edma_pset		pset[0];
200 };
201 
202 struct edma_cc;
203 
204 struct edma_tc {
205 	struct device_node		*node;
206 	u16				id;
207 };
208 
209 struct edma_chan {
210 	struct virt_dma_chan		vchan;
211 	struct list_head		node;
212 	struct edma_desc		*edesc;
213 	struct edma_cc			*ecc;
214 	struct edma_tc			*tc;
215 	int				ch_num;
216 	bool				alloced;
217 	bool				hw_triggered;
218 	int				slot[EDMA_MAX_SLOTS];
219 	int				missed;
220 	struct dma_slave_config		cfg;
221 };
222 
223 struct edma_cc {
224 	struct device			*dev;
225 	struct edma_soc_info		*info;
226 	void __iomem			*base;
227 	int				id;
228 	bool				legacy_mode;
229 
230 	/* eDMA3 resource information */
231 	unsigned			num_channels;
232 	unsigned			num_qchannels;
233 	unsigned			num_region;
234 	unsigned			num_slots;
235 	unsigned			num_tc;
236 	bool				chmap_exist;
237 	enum dma_event_q		default_queue;
238 
239 	/*
240 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
241 	 * in use by Linux or if it is allocated to be used by DSP.
242 	 */
243 	unsigned long *slot_inuse;
244 
245 	struct dma_device		dma_slave;
246 	struct dma_device		*dma_memcpy;
247 	struct edma_chan		*slave_chans;
248 	struct edma_tc			*tc_list;
249 	int				dummy_slot;
250 };
251 
252 /* dummy param set used to (re)initialize parameter RAM slots */
253 static const struct edmacc_param dummy_paramset = {
254 	.link_bcntrld = 0xffff,
255 	.ccnt = 1,
256 };
257 
258 #define EDMA_BINDING_LEGACY	0
259 #define EDMA_BINDING_TPCC	1
260 static const struct of_device_id edma_of_ids[] = {
261 	{
262 		.compatible = "ti,edma3",
263 		.data = (void *)EDMA_BINDING_LEGACY,
264 	},
265 	{
266 		.compatible = "ti,edma3-tpcc",
267 		.data = (void *)EDMA_BINDING_TPCC,
268 	},
269 	{}
270 };
271 
272 static const struct of_device_id edma_tptc_of_ids[] = {
273 	{ .compatible = "ti,edma3-tptc", },
274 	{}
275 };
276 
edma_read(struct edma_cc * ecc,int offset)277 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
278 {
279 	return (unsigned int)__raw_readl(ecc->base + offset);
280 }
281 
edma_write(struct edma_cc * ecc,int offset,int val)282 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
283 {
284 	__raw_writel(val, ecc->base + offset);
285 }
286 
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)287 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
288 			       unsigned or)
289 {
290 	unsigned val = edma_read(ecc, offset);
291 
292 	val &= and;
293 	val |= or;
294 	edma_write(ecc, offset, val);
295 }
296 
edma_and(struct edma_cc * ecc,int offset,unsigned and)297 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
298 {
299 	unsigned val = edma_read(ecc, offset);
300 
301 	val &= and;
302 	edma_write(ecc, offset, val);
303 }
304 
edma_or(struct edma_cc * ecc,int offset,unsigned or)305 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
306 {
307 	unsigned val = edma_read(ecc, offset);
308 
309 	val |= or;
310 	edma_write(ecc, offset, val);
311 }
312 
edma_read_array(struct edma_cc * ecc,int offset,int i)313 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
314 					   int i)
315 {
316 	return edma_read(ecc, offset + (i << 2));
317 }
318 
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)319 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
320 				    unsigned val)
321 {
322 	edma_write(ecc, offset + (i << 2), val);
323 }
324 
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)325 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
326 				     unsigned and, unsigned or)
327 {
328 	edma_modify(ecc, offset + (i << 2), and, or);
329 }
330 
edma_or_array(struct edma_cc * ecc,int offset,int i,unsigned or)331 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
332 				 unsigned or)
333 {
334 	edma_or(ecc, offset + (i << 2), or);
335 }
336 
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)337 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
338 				  unsigned or)
339 {
340 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
341 }
342 
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)343 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
344 				     int j, unsigned val)
345 {
346 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
347 }
348 
edma_shadow0_read(struct edma_cc * ecc,int offset)349 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
350 {
351 	return edma_read(ecc, EDMA_SHADOW0 + offset);
352 }
353 
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)354 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
355 						   int offset, int i)
356 {
357 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
358 }
359 
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)360 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
361 				      unsigned val)
362 {
363 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
364 }
365 
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)366 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
367 					    int i, unsigned val)
368 {
369 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
370 }
371 
edma_param_read(struct edma_cc * ecc,int offset,int param_no)372 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
373 					   int param_no)
374 {
375 	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
376 }
377 
edma_param_write(struct edma_cc * ecc,int offset,int param_no,unsigned val)378 static inline void edma_param_write(struct edma_cc *ecc, int offset,
379 				    int param_no, unsigned val)
380 {
381 	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
382 }
383 
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)384 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
385 				     int param_no, unsigned and, unsigned or)
386 {
387 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
388 }
389 
edma_param_and(struct edma_cc * ecc,int offset,int param_no,unsigned and)390 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
391 				  unsigned and)
392 {
393 	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
394 }
395 
edma_param_or(struct edma_cc * ecc,int offset,int param_no,unsigned or)396 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
397 				 unsigned or)
398 {
399 	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
400 }
401 
set_bits(int offset,int len,unsigned long * p)402 static inline void set_bits(int offset, int len, unsigned long *p)
403 {
404 	for (; len > 0; len--)
405 		set_bit(offset + (len - 1), p);
406 }
407 
clear_bits(int offset,int len,unsigned long * p)408 static inline void clear_bits(int offset, int len, unsigned long *p)
409 {
410 	for (; len > 0; len--)
411 		clear_bit(offset + (len - 1), p);
412 }
413 
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)414 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
415 					  int priority)
416 {
417 	int bit = queue_no * 4;
418 
419 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
420 }
421 
edma_set_chmap(struct edma_chan * echan,int slot)422 static void edma_set_chmap(struct edma_chan *echan, int slot)
423 {
424 	struct edma_cc *ecc = echan->ecc;
425 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
426 
427 	if (ecc->chmap_exist) {
428 		slot = EDMA_CHAN_SLOT(slot);
429 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
430 	}
431 }
432 
edma_setup_interrupt(struct edma_chan * echan,bool enable)433 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434 {
435 	struct edma_cc *ecc = echan->ecc;
436 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
437 
438 	if (enable) {
439 		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
440 					 BIT(channel & 0x1f));
441 		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
442 					 BIT(channel & 0x1f));
443 	} else {
444 		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
445 					 BIT(channel & 0x1f));
446 	}
447 }
448 
449 /*
450  * paRAM slot management functions
451  */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)452 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
453 			    const struct edmacc_param *param)
454 {
455 	slot = EDMA_CHAN_SLOT(slot);
456 	if (slot >= ecc->num_slots)
457 		return;
458 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
459 }
460 
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)461 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
462 			   struct edmacc_param *param)
463 {
464 	slot = EDMA_CHAN_SLOT(slot);
465 	if (slot >= ecc->num_slots)
466 		return;
467 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
468 }
469 
470 /**
471  * edma_alloc_slot - allocate DMA parameter RAM
472  * @ecc: pointer to edma_cc struct
473  * @slot: specific slot to allocate; negative for "any unused slot"
474  *
475  * This allocates a parameter RAM slot, initializing it to hold a
476  * dummy transfer.  Slots allocated using this routine have not been
477  * mapped to a hardware DMA channel, and will normally be used by
478  * linking to them from a slot associated with a DMA channel.
479  *
480  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
481  * slots may be allocated on behalf of DSP firmware.
482  *
483  * Returns the number of the slot, else negative errno.
484  */
edma_alloc_slot(struct edma_cc * ecc,int slot)485 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
486 {
487 	if (slot > 0) {
488 		slot = EDMA_CHAN_SLOT(slot);
489 		/* Requesting entry paRAM slot for a HW triggered channel. */
490 		if (ecc->chmap_exist && slot < ecc->num_channels)
491 			slot = EDMA_SLOT_ANY;
492 	}
493 
494 	if (slot < 0) {
495 		if (ecc->chmap_exist)
496 			slot = 0;
497 		else
498 			slot = ecc->num_channels;
499 		for (;;) {
500 			slot = find_next_zero_bit(ecc->slot_inuse,
501 						  ecc->num_slots,
502 						  slot);
503 			if (slot == ecc->num_slots)
504 				return -ENOMEM;
505 			if (!test_and_set_bit(slot, ecc->slot_inuse))
506 				break;
507 		}
508 	} else if (slot >= ecc->num_slots) {
509 		return -EINVAL;
510 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511 		return -EBUSY;
512 	}
513 
514 	edma_write_slot(ecc, slot, &dummy_paramset);
515 
516 	return EDMA_CTLR_CHAN(ecc->id, slot);
517 }
518 
edma_free_slot(struct edma_cc * ecc,unsigned slot)519 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
520 {
521 	slot = EDMA_CHAN_SLOT(slot);
522 	if (slot >= ecc->num_slots)
523 		return;
524 
525 	edma_write_slot(ecc, slot, &dummy_paramset);
526 	clear_bit(slot, ecc->slot_inuse);
527 }
528 
529 /**
530  * edma_link - link one parameter RAM slot to another
531  * @ecc: pointer to edma_cc struct
532  * @from: parameter RAM slot originating the link
533  * @to: parameter RAM slot which is the link target
534  *
535  * The originating slot should not be part of any active DMA transfer.
536  */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)537 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
538 {
539 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
540 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
541 
542 	from = EDMA_CHAN_SLOT(from);
543 	to = EDMA_CHAN_SLOT(to);
544 	if (from >= ecc->num_slots || to >= ecc->num_slots)
545 		return;
546 
547 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
548 			  PARM_OFFSET(to));
549 }
550 
551 /**
552  * edma_get_position - returns the current transfer point
553  * @ecc: pointer to edma_cc struct
554  * @slot: parameter RAM slot being examined
555  * @dst:  true selects the dest position, false the source
556  *
557  * Returns the position of the current active slot
558  */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)559 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
560 				    bool dst)
561 {
562 	u32 offs;
563 
564 	slot = EDMA_CHAN_SLOT(slot);
565 	offs = PARM_OFFSET(slot);
566 	offs += dst ? PARM_DST : PARM_SRC;
567 
568 	return edma_read(ecc, offs);
569 }
570 
571 /*
572  * Channels with event associations will be triggered by their hardware
573  * events, and channels without such associations will be triggered by
574  * software.  (At this writing there is no interface for using software
575  * triggers except with channels that don't support hardware triggers.)
576  */
edma_start(struct edma_chan * echan)577 static void edma_start(struct edma_chan *echan)
578 {
579 	struct edma_cc *ecc = echan->ecc;
580 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
581 	int j = (channel >> 5);
582 	unsigned int mask = BIT(channel & 0x1f);
583 
584 	if (!echan->hw_triggered) {
585 		/* EDMA channels without event association */
586 		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
587 			edma_shadow0_read_array(ecc, SH_ESR, j));
588 		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
589 	} else {
590 		/* EDMA channel with event association */
591 		dev_dbg(ecc->dev, "ER%d %08x\n", j,
592 			edma_shadow0_read_array(ecc, SH_ER, j));
593 		/* Clear any pending event or error */
594 		edma_write_array(ecc, EDMA_ECR, j, mask);
595 		edma_write_array(ecc, EDMA_EMCR, j, mask);
596 		/* Clear any SER */
597 		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
598 		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599 		dev_dbg(ecc->dev, "EER%d %08x\n", j,
600 			edma_shadow0_read_array(ecc, SH_EER, j));
601 	}
602 }
603 
edma_stop(struct edma_chan * echan)604 static void edma_stop(struct edma_chan *echan)
605 {
606 	struct edma_cc *ecc = echan->ecc;
607 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
608 	int j = (channel >> 5);
609 	unsigned int mask = BIT(channel & 0x1f);
610 
611 	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
612 	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
613 	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
614 	edma_write_array(ecc, EDMA_EMCR, j, mask);
615 
616 	/* clear possibly pending completion interrupt */
617 	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618 
619 	dev_dbg(ecc->dev, "EER%d %08x\n", j,
620 		edma_shadow0_read_array(ecc, SH_EER, j));
621 
622 	/* REVISIT:  consider guarding against inappropriate event
623 	 * chaining by overwriting with dummy_paramset.
624 	 */
625 }
626 
627 /*
628  * Temporarily disable EDMA hardware events on the specified channel,
629  * preventing them from triggering new transfers
630  */
edma_pause(struct edma_chan * echan)631 static void edma_pause(struct edma_chan *echan)
632 {
633 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
634 	unsigned int mask = BIT(channel & 0x1f);
635 
636 	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 }
638 
639 /* Re-enable EDMA hardware events on the specified channel.  */
edma_resume(struct edma_chan * echan)640 static void edma_resume(struct edma_chan *echan)
641 {
642 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 	unsigned int mask = BIT(channel & 0x1f);
644 
645 	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 }
647 
edma_trigger_channel(struct edma_chan * echan)648 static void edma_trigger_channel(struct edma_chan *echan)
649 {
650 	struct edma_cc *ecc = echan->ecc;
651 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 	unsigned int mask = BIT(channel & 0x1f);
653 
654 	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
655 
656 	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
657 		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 }
659 
edma_clean_channel(struct edma_chan * echan)660 static void edma_clean_channel(struct edma_chan *echan)
661 {
662 	struct edma_cc *ecc = echan->ecc;
663 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 	int j = (channel >> 5);
665 	unsigned int mask = BIT(channel & 0x1f);
666 
667 	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
668 	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
669 	/* Clear the corresponding EMR bits */
670 	edma_write_array(ecc, EDMA_EMCR, j, mask);
671 	/* Clear any SER */
672 	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
673 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 }
675 
676 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)677 static void edma_assign_channel_eventq(struct edma_chan *echan,
678 				       enum dma_event_q eventq_no)
679 {
680 	struct edma_cc *ecc = echan->ecc;
681 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
682 	int bit = (channel & 0x7) * 4;
683 
684 	/* default to low priority queue */
685 	if (eventq_no == EVENTQ_DEFAULT)
686 		eventq_no = ecc->default_queue;
687 	if (eventq_no >= ecc->num_tc)
688 		return;
689 
690 	eventq_no &= 7;
691 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
692 			  eventq_no << bit);
693 }
694 
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)695 static int edma_alloc_channel(struct edma_chan *echan,
696 			      enum dma_event_q eventq_no)
697 {
698 	struct edma_cc *ecc = echan->ecc;
699 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
700 
701 	/* ensure access through shadow region 0 */
702 	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
703 
704 	/* ensure no events are pending */
705 	edma_stop(echan);
706 
707 	edma_setup_interrupt(echan, true);
708 
709 	edma_assign_channel_eventq(echan, eventq_no);
710 
711 	return 0;
712 }
713 
edma_free_channel(struct edma_chan * echan)714 static void edma_free_channel(struct edma_chan *echan)
715 {
716 	/* ensure no events are pending */
717 	edma_stop(echan);
718 	/* REVISIT should probably take out of shadow region 0 */
719 	edma_setup_interrupt(echan, false);
720 }
721 
to_edma_cc(struct dma_device * d)722 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
723 {
724 	return container_of(d, struct edma_cc, dma_slave);
725 }
726 
to_edma_chan(struct dma_chan * c)727 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
728 {
729 	return container_of(c, struct edma_chan, vchan.chan);
730 }
731 
to_edma_desc(struct dma_async_tx_descriptor * tx)732 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 {
734 	return container_of(tx, struct edma_desc, vdesc.tx);
735 }
736 
edma_desc_free(struct virt_dma_desc * vdesc)737 static void edma_desc_free(struct virt_dma_desc *vdesc)
738 {
739 	kfree(container_of(vdesc, struct edma_desc, vdesc));
740 }
741 
742 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)743 static void edma_execute(struct edma_chan *echan)
744 {
745 	struct edma_cc *ecc = echan->ecc;
746 	struct virt_dma_desc *vdesc;
747 	struct edma_desc *edesc;
748 	struct device *dev = echan->vchan.chan.device->dev;
749 	int i, j, left, nslots;
750 
751 	if (!echan->edesc) {
752 		/* Setup is needed for the first transfer */
753 		vdesc = vchan_next_desc(&echan->vchan);
754 		if (!vdesc)
755 			return;
756 		list_del(&vdesc->node);
757 		echan->edesc = to_edma_desc(&vdesc->tx);
758 	}
759 
760 	edesc = echan->edesc;
761 
762 	/* Find out how many left */
763 	left = edesc->pset_nr - edesc->processed;
764 	nslots = min(MAX_NR_SG, left);
765 	edesc->sg_len = 0;
766 
767 	/* Write descriptor PaRAM set(s) */
768 	for (i = 0; i < nslots; i++) {
769 		j = i + edesc->processed;
770 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771 		edesc->sg_len += edesc->pset[j].len;
772 		dev_vdbg(dev,
773 			 "\n pset[%d]:\n"
774 			 "  chnum\t%d\n"
775 			 "  slot\t%d\n"
776 			 "  opt\t%08x\n"
777 			 "  src\t%08x\n"
778 			 "  dst\t%08x\n"
779 			 "  abcnt\t%08x\n"
780 			 "  ccnt\t%08x\n"
781 			 "  bidx\t%08x\n"
782 			 "  cidx\t%08x\n"
783 			 "  lkrld\t%08x\n",
784 			 j, echan->ch_num, echan->slot[i],
785 			 edesc->pset[j].param.opt,
786 			 edesc->pset[j].param.src,
787 			 edesc->pset[j].param.dst,
788 			 edesc->pset[j].param.a_b_cnt,
789 			 edesc->pset[j].param.ccnt,
790 			 edesc->pset[j].param.src_dst_bidx,
791 			 edesc->pset[j].param.src_dst_cidx,
792 			 edesc->pset[j].param.link_bcntrld);
793 		/* Link to the previous slot if not the last set */
794 		if (i != (nslots - 1))
795 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796 	}
797 
798 	edesc->processed += nslots;
799 
800 	/*
801 	 * If this is either the last set in a set of SG-list transactions
802 	 * then setup a link to the dummy slot, this results in all future
803 	 * events being absorbed and that's OK because we're done
804 	 */
805 	if (edesc->processed == edesc->pset_nr) {
806 		if (edesc->cyclic)
807 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808 		else
809 			edma_link(ecc, echan->slot[nslots - 1],
810 				  echan->ecc->dummy_slot);
811 	}
812 
813 	if (echan->missed) {
814 		/*
815 		 * This happens due to setup times between intermediate
816 		 * transfers in long SG lists which have to be broken up into
817 		 * transfers of MAX_NR_SG
818 		 */
819 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820 		edma_clean_channel(echan);
821 		edma_stop(echan);
822 		edma_start(echan);
823 		edma_trigger_channel(echan);
824 		echan->missed = 0;
825 	} else if (edesc->processed <= MAX_NR_SG) {
826 		dev_dbg(dev, "first transfer starting on channel %d\n",
827 			echan->ch_num);
828 		edma_start(echan);
829 	} else {
830 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
831 			echan->ch_num, edesc->processed);
832 		edma_resume(echan);
833 	}
834 }
835 
edma_terminate_all(struct dma_chan * chan)836 static int edma_terminate_all(struct dma_chan *chan)
837 {
838 	struct edma_chan *echan = to_edma_chan(chan);
839 	unsigned long flags;
840 	LIST_HEAD(head);
841 
842 	spin_lock_irqsave(&echan->vchan.lock, flags);
843 
844 	/*
845 	 * Stop DMA activity: we assume the callback will not be called
846 	 * after edma_dma() returns (even if it does, it will see
847 	 * echan->edesc is NULL and exit.)
848 	 */
849 	if (echan->edesc) {
850 		edma_stop(echan);
851 		/* Move the cyclic channel back to default queue */
852 		if (!echan->tc && echan->edesc->cyclic)
853 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854 		/*
855 		 * free the running request descriptor
856 		 * since it is not in any of the vdesc lists
857 		 */
858 		edma_desc_free(&echan->edesc->vdesc);
859 		echan->edesc = NULL;
860 	}
861 
862 	vchan_get_all_descriptors(&echan->vchan, &head);
863 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
864 	vchan_dma_desc_free_list(&echan->vchan, &head);
865 
866 	return 0;
867 }
868 
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)869 static int edma_slave_config(struct dma_chan *chan,
870 	struct dma_slave_config *cfg)
871 {
872 	struct edma_chan *echan = to_edma_chan(chan);
873 
874 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
875 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
876 		return -EINVAL;
877 
878 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
879 
880 	return 0;
881 }
882 
edma_dma_pause(struct dma_chan * chan)883 static int edma_dma_pause(struct dma_chan *chan)
884 {
885 	struct edma_chan *echan = to_edma_chan(chan);
886 
887 	if (!echan->edesc)
888 		return -EINVAL;
889 
890 	edma_pause(echan);
891 	return 0;
892 }
893 
edma_dma_resume(struct dma_chan * chan)894 static int edma_dma_resume(struct dma_chan *chan)
895 {
896 	struct edma_chan *echan = to_edma_chan(chan);
897 
898 	edma_resume(echan);
899 	return 0;
900 }
901 
902 /*
903  * A PaRAM set configuration abstraction used by other modes
904  * @chan: Channel who's PaRAM set we're configuring
905  * @pset: PaRAM set to initialize and setup.
906  * @src_addr: Source address of the DMA
907  * @dst_addr: Destination address of the DMA
908  * @burst: In units of dev_width, how much to send
909  * @dev_width: How much is the dev_width
910  * @dma_length: Total length of the DMA transfer
911  * @direction: Direction of the transfer
912  */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)913 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
914 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
915 			    unsigned int acnt, unsigned int dma_length,
916 			    enum dma_transfer_direction direction)
917 {
918 	struct edma_chan *echan = to_edma_chan(chan);
919 	struct device *dev = chan->device->dev;
920 	struct edmacc_param *param = &epset->param;
921 	int bcnt, ccnt, cidx;
922 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
923 	int absync;
924 
925 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
926 	if (!burst)
927 		burst = 1;
928 	/*
929 	 * If the maxburst is equal to the fifo width, use
930 	 * A-synced transfers. This allows for large contiguous
931 	 * buffer transfers using only one PaRAM set.
932 	 */
933 	if (burst == 1) {
934 		/*
935 		 * For the A-sync case, bcnt and ccnt are the remainder
936 		 * and quotient respectively of the division of:
937 		 * (dma_length / acnt) by (SZ_64K -1). This is so
938 		 * that in case bcnt over flows, we have ccnt to use.
939 		 * Note: In A-sync tranfer only, bcntrld is used, but it
940 		 * only applies for sg_dma_len(sg) >= SZ_64K.
941 		 * In this case, the best way adopted is- bccnt for the
942 		 * first frame will be the remainder below. Then for
943 		 * every successive frame, bcnt will be SZ_64K-1. This
944 		 * is assured as bcntrld = 0xffff in end of function.
945 		 */
946 		absync = false;
947 		ccnt = dma_length / acnt / (SZ_64K - 1);
948 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
949 		/*
950 		 * If bcnt is non-zero, we have a remainder and hence an
951 		 * extra frame to transfer, so increment ccnt.
952 		 */
953 		if (bcnt)
954 			ccnt++;
955 		else
956 			bcnt = SZ_64K - 1;
957 		cidx = acnt;
958 	} else {
959 		/*
960 		 * If maxburst is greater than the fifo address_width,
961 		 * use AB-synced transfers where A count is the fifo
962 		 * address_width and B count is the maxburst. In this
963 		 * case, we are limited to transfers of C count frames
964 		 * of (address_width * maxburst) where C count is limited
965 		 * to SZ_64K-1. This places an upper bound on the length
966 		 * of an SG segment that can be handled.
967 		 */
968 		absync = true;
969 		bcnt = burst;
970 		ccnt = dma_length / (acnt * bcnt);
971 		if (ccnt > (SZ_64K - 1)) {
972 			dev_err(dev, "Exceeded max SG segment size\n");
973 			return -EINVAL;
974 		}
975 		cidx = acnt * bcnt;
976 	}
977 
978 	epset->len = dma_length;
979 
980 	if (direction == DMA_MEM_TO_DEV) {
981 		src_bidx = acnt;
982 		src_cidx = cidx;
983 		dst_bidx = 0;
984 		dst_cidx = 0;
985 		epset->addr = src_addr;
986 	} else if (direction == DMA_DEV_TO_MEM)  {
987 		src_bidx = 0;
988 		src_cidx = 0;
989 		dst_bidx = acnt;
990 		dst_cidx = cidx;
991 		epset->addr = dst_addr;
992 	} else if (direction == DMA_MEM_TO_MEM)  {
993 		src_bidx = acnt;
994 		src_cidx = cidx;
995 		dst_bidx = acnt;
996 		dst_cidx = cidx;
997 	} else {
998 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
999 		return -EINVAL;
1000 	}
1001 
1002 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1003 	/* Configure A or AB synchronized transfers */
1004 	if (absync)
1005 		param->opt |= SYNCDIM;
1006 
1007 	param->src = src_addr;
1008 	param->dst = dst_addr;
1009 
1010 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1011 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1012 
1013 	param->a_b_cnt = bcnt << 16 | acnt;
1014 	param->ccnt = ccnt;
1015 	/*
1016 	 * Only time when (bcntrld) auto reload is required is for
1017 	 * A-sync case, and in this case, a requirement of reload value
1018 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1019 	 * and then later will be populated by edma_execute.
1020 	 */
1021 	param->link_bcntrld = 0xffffffff;
1022 	return absync;
1023 }
1024 
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1025 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1026 	struct dma_chan *chan, struct scatterlist *sgl,
1027 	unsigned int sg_len, enum dma_transfer_direction direction,
1028 	unsigned long tx_flags, void *context)
1029 {
1030 	struct edma_chan *echan = to_edma_chan(chan);
1031 	struct device *dev = chan->device->dev;
1032 	struct edma_desc *edesc;
1033 	dma_addr_t src_addr = 0, dst_addr = 0;
1034 	enum dma_slave_buswidth dev_width;
1035 	u32 burst;
1036 	struct scatterlist *sg;
1037 	int i, nslots, ret;
1038 
1039 	if (unlikely(!echan || !sgl || !sg_len))
1040 		return NULL;
1041 
1042 	if (direction == DMA_DEV_TO_MEM) {
1043 		src_addr = echan->cfg.src_addr;
1044 		dev_width = echan->cfg.src_addr_width;
1045 		burst = echan->cfg.src_maxburst;
1046 	} else if (direction == DMA_MEM_TO_DEV) {
1047 		dst_addr = echan->cfg.dst_addr;
1048 		dev_width = echan->cfg.dst_addr_width;
1049 		burst = echan->cfg.dst_maxburst;
1050 	} else {
1051 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1052 		return NULL;
1053 	}
1054 
1055 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1056 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1057 		return NULL;
1058 	}
1059 
1060 	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1061 			GFP_ATOMIC);
1062 	if (!edesc) {
1063 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1064 		return NULL;
1065 	}
1066 
1067 	edesc->pset_nr = sg_len;
1068 	edesc->residue = 0;
1069 	edesc->direction = direction;
1070 	edesc->echan = echan;
1071 
1072 	/* Allocate a PaRAM slot, if needed */
1073 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1074 
1075 	for (i = 0; i < nslots; i++) {
1076 		if (echan->slot[i] < 0) {
1077 			echan->slot[i] =
1078 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1079 			if (echan->slot[i] < 0) {
1080 				kfree(edesc);
1081 				dev_err(dev, "%s: Failed to allocate slot\n",
1082 					__func__);
1083 				return NULL;
1084 			}
1085 		}
1086 	}
1087 
1088 	/* Configure PaRAM sets for each SG */
1089 	for_each_sg(sgl, sg, sg_len, i) {
1090 		/* Get address for each SG */
1091 		if (direction == DMA_DEV_TO_MEM)
1092 			dst_addr = sg_dma_address(sg);
1093 		else
1094 			src_addr = sg_dma_address(sg);
1095 
1096 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1097 				       dst_addr, burst, dev_width,
1098 				       sg_dma_len(sg), direction);
1099 		if (ret < 0) {
1100 			kfree(edesc);
1101 			return NULL;
1102 		}
1103 
1104 		edesc->absync = ret;
1105 		edesc->residue += sg_dma_len(sg);
1106 
1107 		/* If this is the last in a current SG set of transactions,
1108 		   enable interrupts so that next set is processed */
1109 		if (!((i+1) % MAX_NR_SG))
1110 			edesc->pset[i].param.opt |= TCINTEN;
1111 
1112 		/* If this is the last set, enable completion interrupt flag */
1113 		if (i == sg_len - 1)
1114 			edesc->pset[i].param.opt |= TCINTEN;
1115 	}
1116 	edesc->residue_stat = edesc->residue;
1117 
1118 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1119 }
1120 
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1121 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1122 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1123 	size_t len, unsigned long tx_flags)
1124 {
1125 	int ret, nslots;
1126 	struct edma_desc *edesc;
1127 	struct device *dev = chan->device->dev;
1128 	struct edma_chan *echan = to_edma_chan(chan);
1129 	unsigned int width, pset_len;
1130 
1131 	if (unlikely(!echan || !len))
1132 		return NULL;
1133 
1134 	if (len < SZ_64K) {
1135 		/*
1136 		 * Transfer size less than 64K can be handled with one paRAM
1137 		 * slot and with one burst.
1138 		 * ACNT = length
1139 		 */
1140 		width = len;
1141 		pset_len = len;
1142 		nslots = 1;
1143 	} else {
1144 		/*
1145 		 * Transfer size bigger than 64K will be handled with maximum of
1146 		 * two paRAM slots.
1147 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1148 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1149 		 * slot2: the remaining amount of data after slot1.
1150 		 *	  ACNT = full_length - length1, length2 = ACNT
1151 		 *
1152 		 * When the full_length is multibple of 32767 one slot can be
1153 		 * used to complete the transfer.
1154 		 */
1155 		width = SZ_32K - 1;
1156 		pset_len = rounddown(len, width);
1157 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1158 		if (unlikely(pset_len == len))
1159 			nslots = 1;
1160 		else
1161 			nslots = 2;
1162 	}
1163 
1164 	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1165 			GFP_ATOMIC);
1166 	if (!edesc) {
1167 		dev_dbg(dev, "Failed to allocate a descriptor\n");
1168 		return NULL;
1169 	}
1170 
1171 	edesc->pset_nr = nslots;
1172 	edesc->residue = edesc->residue_stat = len;
1173 	edesc->direction = DMA_MEM_TO_MEM;
1174 	edesc->echan = echan;
1175 
1176 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1177 			       width, pset_len, DMA_MEM_TO_MEM);
1178 	if (ret < 0) {
1179 		kfree(edesc);
1180 		return NULL;
1181 	}
1182 
1183 	edesc->absync = ret;
1184 
1185 	edesc->pset[0].param.opt |= ITCCHEN;
1186 	if (nslots == 1) {
1187 		/* Enable transfer complete interrupt */
1188 		edesc->pset[0].param.opt |= TCINTEN;
1189 	} else {
1190 		/* Enable transfer complete chaining for the first slot */
1191 		edesc->pset[0].param.opt |= TCCHEN;
1192 
1193 		if (echan->slot[1] < 0) {
1194 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1195 							 EDMA_SLOT_ANY);
1196 			if (echan->slot[1] < 0) {
1197 				kfree(edesc);
1198 				dev_err(dev, "%s: Failed to allocate slot\n",
1199 					__func__);
1200 				return NULL;
1201 			}
1202 		}
1203 		dest += pset_len;
1204 		src += pset_len;
1205 		pset_len = width = len % (SZ_32K - 1);
1206 
1207 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1208 				       width, pset_len, DMA_MEM_TO_MEM);
1209 		if (ret < 0) {
1210 			kfree(edesc);
1211 			return NULL;
1212 		}
1213 
1214 		edesc->pset[1].param.opt |= ITCCHEN;
1215 		edesc->pset[1].param.opt |= TCINTEN;
1216 	}
1217 
1218 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219 }
1220 
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1221 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1222 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1223 	size_t period_len, enum dma_transfer_direction direction,
1224 	unsigned long tx_flags)
1225 {
1226 	struct edma_chan *echan = to_edma_chan(chan);
1227 	struct device *dev = chan->device->dev;
1228 	struct edma_desc *edesc;
1229 	dma_addr_t src_addr, dst_addr;
1230 	enum dma_slave_buswidth dev_width;
1231 	u32 burst;
1232 	int i, ret, nslots;
1233 
1234 	if (unlikely(!echan || !buf_len || !period_len))
1235 		return NULL;
1236 
1237 	if (direction == DMA_DEV_TO_MEM) {
1238 		src_addr = echan->cfg.src_addr;
1239 		dst_addr = buf_addr;
1240 		dev_width = echan->cfg.src_addr_width;
1241 		burst = echan->cfg.src_maxburst;
1242 	} else if (direction == DMA_MEM_TO_DEV) {
1243 		src_addr = buf_addr;
1244 		dst_addr = echan->cfg.dst_addr;
1245 		dev_width = echan->cfg.dst_addr_width;
1246 		burst = echan->cfg.dst_maxburst;
1247 	} else {
1248 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1249 		return NULL;
1250 	}
1251 
1252 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1253 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1254 		return NULL;
1255 	}
1256 
1257 	if (unlikely(buf_len % period_len)) {
1258 		dev_err(dev, "Period should be multiple of Buffer length\n");
1259 		return NULL;
1260 	}
1261 
1262 	nslots = (buf_len / period_len) + 1;
1263 
1264 	/*
1265 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1266 	 * by cases where the number of periods is more than the maximum
1267 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1268 	 * such as Slave SGs, such delays are tolerable and synchronized,
1269 	 * but the synchronization is difficult to achieve with Cyclic and
1270 	 * cannot be guaranteed, so we error out early.
1271 	 */
1272 	if (nslots > MAX_NR_SG)
1273 		return NULL;
1274 
1275 	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1276 			GFP_ATOMIC);
1277 	if (!edesc) {
1278 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1279 		return NULL;
1280 	}
1281 
1282 	edesc->cyclic = 1;
1283 	edesc->pset_nr = nslots;
1284 	edesc->residue = edesc->residue_stat = buf_len;
1285 	edesc->direction = direction;
1286 	edesc->echan = echan;
1287 
1288 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1289 		__func__, echan->ch_num, nslots, period_len, buf_len);
1290 
1291 	for (i = 0; i < nslots; i++) {
1292 		/* Allocate a PaRAM slot, if needed */
1293 		if (echan->slot[i] < 0) {
1294 			echan->slot[i] =
1295 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1296 			if (echan->slot[i] < 0) {
1297 				kfree(edesc);
1298 				dev_err(dev, "%s: Failed to allocate slot\n",
1299 					__func__);
1300 				return NULL;
1301 			}
1302 		}
1303 
1304 		if (i == nslots - 1) {
1305 			memcpy(&edesc->pset[i], &edesc->pset[0],
1306 			       sizeof(edesc->pset[0]));
1307 			break;
1308 		}
1309 
1310 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1311 				       dst_addr, burst, dev_width, period_len,
1312 				       direction);
1313 		if (ret < 0) {
1314 			kfree(edesc);
1315 			return NULL;
1316 		}
1317 
1318 		if (direction == DMA_DEV_TO_MEM)
1319 			dst_addr += period_len;
1320 		else
1321 			src_addr += period_len;
1322 
1323 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1324 		dev_vdbg(dev,
1325 			"\n pset[%d]:\n"
1326 			"  chnum\t%d\n"
1327 			"  slot\t%d\n"
1328 			"  opt\t%08x\n"
1329 			"  src\t%08x\n"
1330 			"  dst\t%08x\n"
1331 			"  abcnt\t%08x\n"
1332 			"  ccnt\t%08x\n"
1333 			"  bidx\t%08x\n"
1334 			"  cidx\t%08x\n"
1335 			"  lkrld\t%08x\n",
1336 			i, echan->ch_num, echan->slot[i],
1337 			edesc->pset[i].param.opt,
1338 			edesc->pset[i].param.src,
1339 			edesc->pset[i].param.dst,
1340 			edesc->pset[i].param.a_b_cnt,
1341 			edesc->pset[i].param.ccnt,
1342 			edesc->pset[i].param.src_dst_bidx,
1343 			edesc->pset[i].param.src_dst_cidx,
1344 			edesc->pset[i].param.link_bcntrld);
1345 
1346 		edesc->absync = ret;
1347 
1348 		/*
1349 		 * Enable period interrupt only if it is requested
1350 		 */
1351 		if (tx_flags & DMA_PREP_INTERRUPT)
1352 			edesc->pset[i].param.opt |= TCINTEN;
1353 	}
1354 
1355 	/* Place the cyclic channel to highest priority queue */
1356 	if (!echan->tc)
1357 		edma_assign_channel_eventq(echan, EVENTQ_0);
1358 
1359 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1360 }
1361 
edma_completion_handler(struct edma_chan * echan)1362 static void edma_completion_handler(struct edma_chan *echan)
1363 {
1364 	struct device *dev = echan->vchan.chan.device->dev;
1365 	struct edma_desc *edesc = echan->edesc;
1366 
1367 	if (!edesc)
1368 		return;
1369 
1370 	spin_lock(&echan->vchan.lock);
1371 	if (edesc->cyclic) {
1372 		vchan_cyclic_callback(&edesc->vdesc);
1373 		spin_unlock(&echan->vchan.lock);
1374 		return;
1375 	} else if (edesc->processed == edesc->pset_nr) {
1376 		edesc->residue = 0;
1377 		edma_stop(echan);
1378 		vchan_cookie_complete(&edesc->vdesc);
1379 		echan->edesc = NULL;
1380 
1381 		dev_dbg(dev, "Transfer completed on channel %d\n",
1382 			echan->ch_num);
1383 	} else {
1384 		dev_dbg(dev, "Sub transfer completed on channel %d\n",
1385 			echan->ch_num);
1386 
1387 		edma_pause(echan);
1388 
1389 		/* Update statistics for tx_status */
1390 		edesc->residue -= edesc->sg_len;
1391 		edesc->residue_stat = edesc->residue;
1392 		edesc->processed_stat = edesc->processed;
1393 	}
1394 	edma_execute(echan);
1395 
1396 	spin_unlock(&echan->vchan.lock);
1397 }
1398 
1399 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1400 static irqreturn_t dma_irq_handler(int irq, void *data)
1401 {
1402 	struct edma_cc *ecc = data;
1403 	int ctlr;
1404 	u32 sh_ier;
1405 	u32 sh_ipr;
1406 	u32 bank;
1407 
1408 	ctlr = ecc->id;
1409 	if (ctlr < 0)
1410 		return IRQ_NONE;
1411 
1412 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1413 
1414 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1415 	if (!sh_ipr) {
1416 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1417 		if (!sh_ipr)
1418 			return IRQ_NONE;
1419 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1420 		bank = 1;
1421 	} else {
1422 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1423 		bank = 0;
1424 	}
1425 
1426 	do {
1427 		u32 slot;
1428 		u32 channel;
1429 
1430 		slot = __ffs(sh_ipr);
1431 		sh_ipr &= ~(BIT(slot));
1432 
1433 		if (sh_ier & BIT(slot)) {
1434 			channel = (bank << 5) | slot;
1435 			/* Clear the corresponding IPR bits */
1436 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1437 			edma_completion_handler(&ecc->slave_chans[channel]);
1438 		}
1439 	} while (sh_ipr);
1440 
1441 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1442 	return IRQ_HANDLED;
1443 }
1444 
edma_error_handler(struct edma_chan * echan)1445 static void edma_error_handler(struct edma_chan *echan)
1446 {
1447 	struct edma_cc *ecc = echan->ecc;
1448 	struct device *dev = echan->vchan.chan.device->dev;
1449 	struct edmacc_param p;
1450 
1451 	if (!echan->edesc)
1452 		return;
1453 
1454 	spin_lock(&echan->vchan.lock);
1455 
1456 	edma_read_slot(ecc, echan->slot[0], &p);
1457 	/*
1458 	 * Issue later based on missed flag which will be sure
1459 	 * to happen as:
1460 	 * (1) we finished transmitting an intermediate slot and
1461 	 *     edma_execute is coming up.
1462 	 * (2) or we finished current transfer and issue will
1463 	 *     call edma_execute.
1464 	 *
1465 	 * Important note: issuing can be dangerous here and
1466 	 * lead to some nasty recursion when we are in a NULL
1467 	 * slot. So we avoid doing so and set the missed flag.
1468 	 */
1469 	if (p.a_b_cnt == 0 && p.ccnt == 0) {
1470 		dev_dbg(dev, "Error on null slot, setting miss\n");
1471 		echan->missed = 1;
1472 	} else {
1473 		/*
1474 		 * The slot is already programmed but the event got
1475 		 * missed, so its safe to issue it here.
1476 		 */
1477 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1478 		edma_clean_channel(echan);
1479 		edma_stop(echan);
1480 		edma_start(echan);
1481 		edma_trigger_channel(echan);
1482 	}
1483 	spin_unlock(&echan->vchan.lock);
1484 }
1485 
edma_error_pending(struct edma_cc * ecc)1486 static inline bool edma_error_pending(struct edma_cc *ecc)
1487 {
1488 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1489 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1490 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1491 		return true;
1492 
1493 	return false;
1494 }
1495 
1496 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1497 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1498 {
1499 	struct edma_cc *ecc = data;
1500 	int i, j;
1501 	int ctlr;
1502 	unsigned int cnt = 0;
1503 	unsigned int val;
1504 
1505 	ctlr = ecc->id;
1506 	if (ctlr < 0)
1507 		return IRQ_NONE;
1508 
1509 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1510 
1511 	if (!edma_error_pending(ecc))
1512 		return IRQ_NONE;
1513 
1514 	while (1) {
1515 		/* Event missed register(s) */
1516 		for (j = 0; j < 2; j++) {
1517 			unsigned long emr;
1518 
1519 			val = edma_read_array(ecc, EDMA_EMR, j);
1520 			if (!val)
1521 				continue;
1522 
1523 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1524 			emr = val;
1525 			for (i = find_next_bit(&emr, 32, 0); i < 32;
1526 			     i = find_next_bit(&emr, 32, i + 1)) {
1527 				int k = (j << 5) + i;
1528 
1529 				/* Clear the corresponding EMR bits */
1530 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1531 				/* Clear any SER */
1532 				edma_shadow0_write_array(ecc, SH_SECR, j,
1533 							 BIT(i));
1534 				edma_error_handler(&ecc->slave_chans[k]);
1535 			}
1536 		}
1537 
1538 		val = edma_read(ecc, EDMA_QEMR);
1539 		if (val) {
1540 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1541 			/* Not reported, just clear the interrupt reason. */
1542 			edma_write(ecc, EDMA_QEMCR, val);
1543 			edma_shadow0_write(ecc, SH_QSECR, val);
1544 		}
1545 
1546 		val = edma_read(ecc, EDMA_CCERR);
1547 		if (val) {
1548 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1549 			/* Not reported, just clear the interrupt reason. */
1550 			edma_write(ecc, EDMA_CCERRCLR, val);
1551 		}
1552 
1553 		if (!edma_error_pending(ecc))
1554 			break;
1555 		cnt++;
1556 		if (cnt > 10)
1557 			break;
1558 	}
1559 	edma_write(ecc, EDMA_EEVAL, 1);
1560 	return IRQ_HANDLED;
1561 }
1562 
edma_tc_set_pm_state(struct edma_tc * tc,bool enable)1563 static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1564 {
1565 	struct platform_device *tc_pdev;
1566 	int ret;
1567 
1568 	if (!IS_ENABLED(CONFIG_OF) || !tc)
1569 		return;
1570 
1571 	tc_pdev = of_find_device_by_node(tc->node);
1572 	if (!tc_pdev) {
1573 		pr_err("%s: TPTC device is not found\n", __func__);
1574 		return;
1575 	}
1576 	if (!pm_runtime_enabled(&tc_pdev->dev))
1577 		pm_runtime_enable(&tc_pdev->dev);
1578 
1579 	if (enable)
1580 		ret = pm_runtime_get_sync(&tc_pdev->dev);
1581 	else
1582 		ret = pm_runtime_put_sync(&tc_pdev->dev);
1583 
1584 	if (ret < 0)
1585 		pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1586 		       enable ? "get" : "put", dev_name(&tc_pdev->dev));
1587 }
1588 
1589 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1590 static int edma_alloc_chan_resources(struct dma_chan *chan)
1591 {
1592 	struct edma_chan *echan = to_edma_chan(chan);
1593 	struct edma_cc *ecc = echan->ecc;
1594 	struct device *dev = ecc->dev;
1595 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1596 	int ret;
1597 
1598 	if (echan->tc) {
1599 		eventq_no = echan->tc->id;
1600 	} else if (ecc->tc_list) {
1601 		/* memcpy channel */
1602 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1603 		eventq_no = echan->tc->id;
1604 	}
1605 
1606 	ret = edma_alloc_channel(echan, eventq_no);
1607 	if (ret)
1608 		return ret;
1609 
1610 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1611 	if (echan->slot[0] < 0) {
1612 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1613 			EDMA_CHAN_SLOT(echan->ch_num));
1614 		goto err_slot;
1615 	}
1616 
1617 	/* Set up channel -> slot mapping for the entry slot */
1618 	edma_set_chmap(echan, echan->slot[0]);
1619 	echan->alloced = true;
1620 
1621 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1622 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1623 		echan->hw_triggered ? "HW" : "SW");
1624 
1625 	edma_tc_set_pm_state(echan->tc, true);
1626 
1627 	return 0;
1628 
1629 err_slot:
1630 	edma_free_channel(echan);
1631 	return ret;
1632 }
1633 
1634 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1635 static void edma_free_chan_resources(struct dma_chan *chan)
1636 {
1637 	struct edma_chan *echan = to_edma_chan(chan);
1638 	struct device *dev = echan->ecc->dev;
1639 	int i;
1640 
1641 	/* Terminate transfers */
1642 	edma_stop(echan);
1643 
1644 	vchan_free_chan_resources(&echan->vchan);
1645 
1646 	/* Free EDMA PaRAM slots */
1647 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1648 		if (echan->slot[i] >= 0) {
1649 			edma_free_slot(echan->ecc, echan->slot[i]);
1650 			echan->slot[i] = -1;
1651 		}
1652 	}
1653 
1654 	/* Set entry slot to the dummy slot */
1655 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1656 
1657 	/* Free EDMA channel */
1658 	if (echan->alloced) {
1659 		edma_free_channel(echan);
1660 		echan->alloced = false;
1661 	}
1662 
1663 	edma_tc_set_pm_state(echan->tc, false);
1664 	echan->tc = NULL;
1665 	echan->hw_triggered = false;
1666 
1667 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1668 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1669 }
1670 
1671 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1672 static void edma_issue_pending(struct dma_chan *chan)
1673 {
1674 	struct edma_chan *echan = to_edma_chan(chan);
1675 	unsigned long flags;
1676 
1677 	spin_lock_irqsave(&echan->vchan.lock, flags);
1678 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1679 		edma_execute(echan);
1680 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1681 }
1682 
edma_residue(struct edma_desc * edesc)1683 static u32 edma_residue(struct edma_desc *edesc)
1684 {
1685 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1686 	struct edma_pset *pset = edesc->pset;
1687 	dma_addr_t done, pos;
1688 	int i;
1689 
1690 	/*
1691 	 * We always read the dst/src position from the first RamPar
1692 	 * pset. That's the one which is active now.
1693 	 */
1694 	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1695 
1696 	/*
1697 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1698 	 *
1699 	 * We never update edesc->residue in the cyclic case, so we
1700 	 * can tell the remaining room to the end of the circular
1701 	 * buffer.
1702 	 */
1703 	if (edesc->cyclic) {
1704 		done = pos - pset->addr;
1705 		edesc->residue_stat = edesc->residue - done;
1706 		return edesc->residue_stat;
1707 	}
1708 
1709 	/*
1710 	 * For SG operation we catch up with the last processed
1711 	 * status.
1712 	 */
1713 	pset += edesc->processed_stat;
1714 
1715 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1716 		/*
1717 		 * If we are inside this pset address range, we know
1718 		 * this is the active one. Get the current delta and
1719 		 * stop walking the psets.
1720 		 */
1721 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1722 			return edesc->residue_stat - (pos - pset->addr);
1723 
1724 		/* Otherwise mark it done and update residue_stat. */
1725 		edesc->processed_stat++;
1726 		edesc->residue_stat -= pset->len;
1727 	}
1728 	return edesc->residue_stat;
1729 }
1730 
1731 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1732 static enum dma_status edma_tx_status(struct dma_chan *chan,
1733 				      dma_cookie_t cookie,
1734 				      struct dma_tx_state *txstate)
1735 {
1736 	struct edma_chan *echan = to_edma_chan(chan);
1737 	struct virt_dma_desc *vdesc;
1738 	enum dma_status ret;
1739 	unsigned long flags;
1740 
1741 	ret = dma_cookie_status(chan, cookie, txstate);
1742 	if (ret == DMA_COMPLETE || !txstate)
1743 		return ret;
1744 
1745 	spin_lock_irqsave(&echan->vchan.lock, flags);
1746 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1747 		txstate->residue = edma_residue(echan->edesc);
1748 	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1749 		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1750 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1751 
1752 	return ret;
1753 }
1754 
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1755 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1756 {
1757 	if (!memcpy_channels)
1758 		return false;
1759 	while (*memcpy_channels != -1) {
1760 		if (*memcpy_channels == ch_num)
1761 			return true;
1762 		memcpy_channels++;
1763 	}
1764 	return false;
1765 }
1766 
1767 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1768 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1769 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1770 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1771 
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1772 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1773 {
1774 	struct dma_device *s_ddev = &ecc->dma_slave;
1775 	struct dma_device *m_ddev = NULL;
1776 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1777 	int i, j;
1778 
1779 	dma_cap_zero(s_ddev->cap_mask);
1780 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1781 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1782 	if (ecc->legacy_mode && !memcpy_channels) {
1783 		dev_warn(ecc->dev,
1784 			 "Legacy memcpy is enabled, things might not work\n");
1785 
1786 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1787 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1788 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1789 	}
1790 
1791 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1792 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1793 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1794 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1795 	s_ddev->device_issue_pending = edma_issue_pending;
1796 	s_ddev->device_tx_status = edma_tx_status;
1797 	s_ddev->device_config = edma_slave_config;
1798 	s_ddev->device_pause = edma_dma_pause;
1799 	s_ddev->device_resume = edma_dma_resume;
1800 	s_ddev->device_terminate_all = edma_terminate_all;
1801 
1802 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1803 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1804 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1805 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1806 
1807 	s_ddev->dev = ecc->dev;
1808 	INIT_LIST_HEAD(&s_ddev->channels);
1809 
1810 	if (memcpy_channels) {
1811 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1812 		ecc->dma_memcpy = m_ddev;
1813 
1814 		dma_cap_zero(m_ddev->cap_mask);
1815 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1816 
1817 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1818 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1819 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1820 		m_ddev->device_issue_pending = edma_issue_pending;
1821 		m_ddev->device_tx_status = edma_tx_status;
1822 		m_ddev->device_config = edma_slave_config;
1823 		m_ddev->device_pause = edma_dma_pause;
1824 		m_ddev->device_resume = edma_dma_resume;
1825 		m_ddev->device_terminate_all = edma_terminate_all;
1826 
1827 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1828 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1829 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1830 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1831 
1832 		m_ddev->dev = ecc->dev;
1833 		INIT_LIST_HEAD(&m_ddev->channels);
1834 	} else if (!ecc->legacy_mode) {
1835 		dev_info(ecc->dev, "memcpy is disabled\n");
1836 	}
1837 
1838 	for (i = 0; i < ecc->num_channels; i++) {
1839 		struct edma_chan *echan = &ecc->slave_chans[i];
1840 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1841 		echan->ecc = ecc;
1842 		echan->vchan.desc_free = edma_desc_free;
1843 
1844 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1845 			vchan_init(&echan->vchan, m_ddev);
1846 		else
1847 			vchan_init(&echan->vchan, s_ddev);
1848 
1849 		INIT_LIST_HEAD(&echan->node);
1850 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
1851 			echan->slot[j] = -1;
1852 	}
1853 }
1854 
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)1855 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1856 			      struct edma_cc *ecc)
1857 {
1858 	int i;
1859 	u32 value, cccfg;
1860 	s8 (*queue_priority_map)[2];
1861 
1862 	/* Decode the eDMA3 configuration from CCCFG register */
1863 	cccfg = edma_read(ecc, EDMA_CCCFG);
1864 
1865 	value = GET_NUM_REGN(cccfg);
1866 	ecc->num_region = BIT(value);
1867 
1868 	value = GET_NUM_DMACH(cccfg);
1869 	ecc->num_channels = BIT(value + 1);
1870 
1871 	value = GET_NUM_QDMACH(cccfg);
1872 	ecc->num_qchannels = value * 2;
1873 
1874 	value = GET_NUM_PAENTRY(cccfg);
1875 	ecc->num_slots = BIT(value + 4);
1876 
1877 	value = GET_NUM_EVQUE(cccfg);
1878 	ecc->num_tc = value + 1;
1879 
1880 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1881 
1882 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1883 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1884 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1885 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1886 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1887 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1888 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1889 
1890 	/* Nothing need to be done if queue priority is provided */
1891 	if (pdata->queue_priority_mapping)
1892 		return 0;
1893 
1894 	/*
1895 	 * Configure TC/queue priority as follows:
1896 	 * Q0 - priority 0
1897 	 * Q1 - priority 1
1898 	 * Q2 - priority 2
1899 	 * ...
1900 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
1901 	 * priority. So Q0 is the highest priority queue and the last queue has
1902 	 * the lowest priority.
1903 	 */
1904 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1905 					  GFP_KERNEL);
1906 	if (!queue_priority_map)
1907 		return -ENOMEM;
1908 
1909 	for (i = 0; i < ecc->num_tc; i++) {
1910 		queue_priority_map[i][0] = i;
1911 		queue_priority_map[i][1] = i;
1912 	}
1913 	queue_priority_map[i][0] = -1;
1914 	queue_priority_map[i][1] = -1;
1915 
1916 	pdata->queue_priority_mapping = queue_priority_map;
1917 	/* Default queue has the lowest priority */
1918 	pdata->default_queue = i - 1;
1919 
1920 	return 0;
1921 }
1922 
1923 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)1924 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1925 			       size_t sz)
1926 {
1927 	const char pname[] = "ti,edma-xbar-event-map";
1928 	struct resource res;
1929 	void __iomem *xbar;
1930 	s16 (*xbar_chans)[2];
1931 	size_t nelm = sz / sizeof(s16);
1932 	u32 shift, offset, mux;
1933 	int ret, i;
1934 
1935 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1936 	if (!xbar_chans)
1937 		return -ENOMEM;
1938 
1939 	ret = of_address_to_resource(dev->of_node, 1, &res);
1940 	if (ret)
1941 		return -ENOMEM;
1942 
1943 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
1944 	if (!xbar)
1945 		return -ENOMEM;
1946 
1947 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1948 					 nelm);
1949 	if (ret)
1950 		return -EIO;
1951 
1952 	/* Invalidate last entry for the other user of this mess */
1953 	nelm >>= 1;
1954 	xbar_chans[nelm][0] = -1;
1955 	xbar_chans[nelm][1] = -1;
1956 
1957 	for (i = 0; i < nelm; i++) {
1958 		shift = (xbar_chans[i][1] & 0x03) << 3;
1959 		offset = xbar_chans[i][1] & 0xfffffffc;
1960 		mux = readl(xbar + offset);
1961 		mux &= ~(0xff << shift);
1962 		mux |= xbar_chans[i][0] << shift;
1963 		writel(mux, (xbar + offset));
1964 	}
1965 
1966 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1967 	return 0;
1968 }
1969 
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)1970 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1971 						     bool legacy_mode)
1972 {
1973 	struct edma_soc_info *info;
1974 	struct property *prop;
1975 	size_t sz;
1976 	int ret;
1977 
1978 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1979 	if (!info)
1980 		return ERR_PTR(-ENOMEM);
1981 
1982 	if (legacy_mode) {
1983 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
1984 					&sz);
1985 		if (prop) {
1986 			ret = edma_xbar_event_map(dev, info, sz);
1987 			if (ret)
1988 				return ERR_PTR(ret);
1989 		}
1990 		return info;
1991 	}
1992 
1993 	/* Get the list of channels allocated to be used for memcpy */
1994 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
1995 	if (prop) {
1996 		const char pname[] = "ti,edma-memcpy-channels";
1997 		size_t nelm = sz / sizeof(s32);
1998 		s32 *memcpy_ch;
1999 
2000 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2001 					 GFP_KERNEL);
2002 		if (!memcpy_ch)
2003 			return ERR_PTR(-ENOMEM);
2004 
2005 		ret = of_property_read_u32_array(dev->of_node, pname,
2006 						 (u32 *)memcpy_ch, nelm);
2007 		if (ret)
2008 			return ERR_PTR(ret);
2009 
2010 		memcpy_ch[nelm] = -1;
2011 		info->memcpy_channels = memcpy_ch;
2012 	}
2013 
2014 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2015 				&sz);
2016 	if (prop) {
2017 		const char pname[] = "ti,edma-reserved-slot-ranges";
2018 		u32 (*tmp)[2];
2019 		s16 (*rsv_slots)[2];
2020 		size_t nelm = sz / sizeof(*tmp);
2021 		struct edma_rsv_info *rsv_info;
2022 		int i;
2023 
2024 		if (!nelm)
2025 			return info;
2026 
2027 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2028 		if (!tmp)
2029 			return ERR_PTR(-ENOMEM);
2030 
2031 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2032 		if (!rsv_info) {
2033 			kfree(tmp);
2034 			return ERR_PTR(-ENOMEM);
2035 		}
2036 
2037 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2038 					 GFP_KERNEL);
2039 		if (!rsv_slots) {
2040 			kfree(tmp);
2041 			return ERR_PTR(-ENOMEM);
2042 		}
2043 
2044 		ret = of_property_read_u32_array(dev->of_node, pname,
2045 						 (u32 *)tmp, nelm * 2);
2046 		if (ret) {
2047 			kfree(tmp);
2048 			return ERR_PTR(ret);
2049 		}
2050 
2051 		for (i = 0; i < nelm; i++) {
2052 			rsv_slots[i][0] = tmp[i][0];
2053 			rsv_slots[i][1] = tmp[i][1];
2054 		}
2055 		rsv_slots[nelm][0] = -1;
2056 		rsv_slots[nelm][1] = -1;
2057 
2058 		info->rsv = rsv_info;
2059 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2060 
2061 		kfree(tmp);
2062 	}
2063 
2064 	return info;
2065 }
2066 
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2067 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2068 				      struct of_dma *ofdma)
2069 {
2070 	struct edma_cc *ecc = ofdma->of_dma_data;
2071 	struct dma_chan *chan = NULL;
2072 	struct edma_chan *echan;
2073 	int i;
2074 
2075 	if (!ecc || dma_spec->args_count < 1)
2076 		return NULL;
2077 
2078 	for (i = 0; i < ecc->num_channels; i++) {
2079 		echan = &ecc->slave_chans[i];
2080 		if (echan->ch_num == dma_spec->args[0]) {
2081 			chan = &echan->vchan.chan;
2082 			break;
2083 		}
2084 	}
2085 
2086 	if (!chan)
2087 		return NULL;
2088 
2089 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2090 		goto out;
2091 
2092 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2093 	    dma_spec->args[1] < echan->ecc->num_tc) {
2094 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2095 		goto out;
2096 	}
2097 
2098 	return NULL;
2099 out:
2100 	/* The channel is going to be used as HW synchronized */
2101 	echan->hw_triggered = true;
2102 	return dma_get_slave_channel(chan);
2103 }
2104 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2105 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2106 						     bool legacy_mode)
2107 {
2108 	return ERR_PTR(-EINVAL);
2109 }
2110 
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2111 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2112 				      struct of_dma *ofdma)
2113 {
2114 	return NULL;
2115 }
2116 #endif
2117 
edma_probe(struct platform_device * pdev)2118 static int edma_probe(struct platform_device *pdev)
2119 {
2120 	struct edma_soc_info	*info = pdev->dev.platform_data;
2121 	s8			(*queue_priority_mapping)[2];
2122 	int			i, off, ln;
2123 	const s16		(*rsv_slots)[2];
2124 	const s16		(*xbar_chans)[2];
2125 	int			irq;
2126 	char			*irq_name;
2127 	struct resource		*mem;
2128 	struct device_node	*node = pdev->dev.of_node;
2129 	struct device		*dev = &pdev->dev;
2130 	struct edma_cc		*ecc;
2131 	bool			legacy_mode = true;
2132 	int ret;
2133 
2134 	if (node) {
2135 		const struct of_device_id *match;
2136 
2137 		match = of_match_node(edma_of_ids, node);
2138 		if (match && (u32)match->data == EDMA_BINDING_TPCC)
2139 			legacy_mode = false;
2140 
2141 		info = edma_setup_info_from_dt(dev, legacy_mode);
2142 		if (IS_ERR(info)) {
2143 			dev_err(dev, "failed to get DT data\n");
2144 			return PTR_ERR(info);
2145 		}
2146 	}
2147 
2148 	if (!info)
2149 		return -ENODEV;
2150 
2151 	pm_runtime_enable(dev);
2152 	ret = pm_runtime_get_sync(dev);
2153 	if (ret < 0) {
2154 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2155 		return ret;
2156 	}
2157 
2158 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2159 	if (ret)
2160 		return ret;
2161 
2162 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2163 	if (!ecc) {
2164 		dev_err(dev, "Can't allocate controller\n");
2165 		return -ENOMEM;
2166 	}
2167 
2168 	ecc->dev = dev;
2169 	ecc->id = pdev->id;
2170 	ecc->legacy_mode = legacy_mode;
2171 	/* When booting with DT the pdev->id is -1 */
2172 	if (ecc->id < 0)
2173 		ecc->id = 0;
2174 
2175 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2176 	if (!mem) {
2177 		dev_dbg(dev, "mem resource not found, using index 0\n");
2178 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2179 		if (!mem) {
2180 			dev_err(dev, "no mem resource?\n");
2181 			return -ENODEV;
2182 		}
2183 	}
2184 	ecc->base = devm_ioremap_resource(dev, mem);
2185 	if (IS_ERR(ecc->base))
2186 		return PTR_ERR(ecc->base);
2187 
2188 	platform_set_drvdata(pdev, ecc);
2189 
2190 	/* Get eDMA3 configuration from IP */
2191 	ret = edma_setup_from_hw(dev, info, ecc);
2192 	if (ret)
2193 		return ret;
2194 
2195 	/* Allocate memory based on the information we got from the IP */
2196 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2197 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2198 	if (!ecc->slave_chans)
2199 		return -ENOMEM;
2200 
2201 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2202 				       sizeof(unsigned long), GFP_KERNEL);
2203 	if (!ecc->slot_inuse)
2204 		return -ENOMEM;
2205 
2206 	ecc->default_queue = info->default_queue;
2207 
2208 	for (i = 0; i < ecc->num_slots; i++)
2209 		edma_write_slot(ecc, i, &dummy_paramset);
2210 
2211 	if (info->rsv) {
2212 		/* Set the reserved slots in inuse list */
2213 		rsv_slots = info->rsv->rsv_slots;
2214 		if (rsv_slots) {
2215 			for (i = 0; rsv_slots[i][0] != -1; i++) {
2216 				off = rsv_slots[i][0];
2217 				ln = rsv_slots[i][1];
2218 				set_bits(off, ln, ecc->slot_inuse);
2219 			}
2220 		}
2221 	}
2222 
2223 	/* Clear the xbar mapped channels in unused list */
2224 	xbar_chans = info->xbar_chans;
2225 	if (xbar_chans) {
2226 		for (i = 0; xbar_chans[i][1] != -1; i++) {
2227 			off = xbar_chans[i][1];
2228 		}
2229 	}
2230 
2231 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2232 	if (irq < 0 && node)
2233 		irq = irq_of_parse_and_map(node, 0);
2234 
2235 	if (irq >= 0) {
2236 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2237 					  dev_name(dev));
2238 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2239 				       ecc);
2240 		if (ret) {
2241 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2242 			return ret;
2243 		}
2244 	}
2245 
2246 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2247 	if (irq < 0 && node)
2248 		irq = irq_of_parse_and_map(node, 2);
2249 
2250 	if (irq >= 0) {
2251 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2252 					  dev_name(dev));
2253 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2254 				       ecc);
2255 		if (ret) {
2256 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2257 			return ret;
2258 		}
2259 	}
2260 
2261 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2262 	if (ecc->dummy_slot < 0) {
2263 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2264 		return ecc->dummy_slot;
2265 	}
2266 
2267 	queue_priority_mapping = info->queue_priority_mapping;
2268 
2269 	if (!ecc->legacy_mode) {
2270 		int lowest_priority = 0;
2271 		struct of_phandle_args tc_args;
2272 
2273 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2274 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2275 		if (!ecc->tc_list)
2276 			return -ENOMEM;
2277 
2278 		for (i = 0;; i++) {
2279 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2280 							       1, i, &tc_args);
2281 			if (ret || i == ecc->num_tc)
2282 				break;
2283 
2284 			ecc->tc_list[i].node = tc_args.np;
2285 			ecc->tc_list[i].id = i;
2286 			queue_priority_mapping[i][1] = tc_args.args[0];
2287 			if (queue_priority_mapping[i][1] > lowest_priority) {
2288 				lowest_priority = queue_priority_mapping[i][1];
2289 				info->default_queue = i;
2290 			}
2291 		}
2292 	}
2293 
2294 	/* Event queue priority mapping */
2295 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2296 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2297 					      queue_priority_mapping[i][1]);
2298 
2299 	for (i = 0; i < ecc->num_region; i++) {
2300 		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2301 		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2302 		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2303 	}
2304 	ecc->info = info;
2305 
2306 	/* Init the dma device and channels */
2307 	edma_dma_init(ecc, legacy_mode);
2308 
2309 	for (i = 0; i < ecc->num_channels; i++) {
2310 		/* Assign all channels to the default queue */
2311 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2312 					   info->default_queue);
2313 		/* Set entry slot to the dummy slot */
2314 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2315 	}
2316 
2317 	ret = dma_async_device_register(&ecc->dma_slave);
2318 	if (ret) {
2319 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2320 		goto err_reg1;
2321 	}
2322 
2323 	if (ecc->dma_memcpy) {
2324 		ret = dma_async_device_register(ecc->dma_memcpy);
2325 		if (ret) {
2326 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2327 				ret);
2328 			dma_async_device_unregister(&ecc->dma_slave);
2329 			goto err_reg1;
2330 		}
2331 	}
2332 
2333 	if (node)
2334 		of_dma_controller_register(node, of_edma_xlate, ecc);
2335 
2336 	dev_info(dev, "TI EDMA DMA engine driver\n");
2337 
2338 	return 0;
2339 
2340 err_reg1:
2341 	edma_free_slot(ecc, ecc->dummy_slot);
2342 	return ret;
2343 }
2344 
edma_remove(struct platform_device * pdev)2345 static int edma_remove(struct platform_device *pdev)
2346 {
2347 	struct device *dev = &pdev->dev;
2348 	struct edma_cc *ecc = dev_get_drvdata(dev);
2349 
2350 	if (dev->of_node)
2351 		of_dma_controller_free(dev->of_node);
2352 	dma_async_device_unregister(&ecc->dma_slave);
2353 	if (ecc->dma_memcpy)
2354 		dma_async_device_unregister(ecc->dma_memcpy);
2355 	edma_free_slot(ecc, ecc->dummy_slot);
2356 
2357 	return 0;
2358 }
2359 
2360 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2361 static int edma_pm_suspend(struct device *dev)
2362 {
2363 	struct edma_cc *ecc = dev_get_drvdata(dev);
2364 	struct edma_chan *echan = ecc->slave_chans;
2365 	int i;
2366 
2367 	for (i = 0; i < ecc->num_channels; i++) {
2368 		if (echan[i].alloced) {
2369 			edma_setup_interrupt(&echan[i], false);
2370 			edma_tc_set_pm_state(echan[i].tc, false);
2371 		}
2372 	}
2373 
2374 	return 0;
2375 }
2376 
edma_pm_resume(struct device * dev)2377 static int edma_pm_resume(struct device *dev)
2378 {
2379 	struct edma_cc *ecc = dev_get_drvdata(dev);
2380 	struct edma_chan *echan = ecc->slave_chans;
2381 	int i;
2382 	s8 (*queue_priority_mapping)[2];
2383 
2384 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2385 
2386 	/* Event queue priority mapping */
2387 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2388 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2389 					      queue_priority_mapping[i][1]);
2390 
2391 	for (i = 0; i < ecc->num_channels; i++) {
2392 		if (echan[i].alloced) {
2393 			/* ensure access through shadow region 0 */
2394 			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2395 				       BIT(i & 0x1f));
2396 
2397 			edma_setup_interrupt(&echan[i], true);
2398 
2399 			/* Set up channel -> slot mapping for the entry slot */
2400 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2401 
2402 			edma_tc_set_pm_state(echan[i].tc, true);
2403 		}
2404 	}
2405 
2406 	return 0;
2407 }
2408 #endif
2409 
2410 static const struct dev_pm_ops edma_pm_ops = {
2411 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2412 };
2413 
2414 static struct platform_driver edma_driver = {
2415 	.probe		= edma_probe,
2416 	.remove		= edma_remove,
2417 	.driver = {
2418 		.name	= "edma",
2419 		.pm	= &edma_pm_ops,
2420 		.of_match_table = edma_of_ids,
2421 	},
2422 };
2423 
2424 static struct platform_driver edma_tptc_driver = {
2425 	.driver = {
2426 		.name	= "edma3-tptc",
2427 		.of_match_table = edma_tptc_of_ids,
2428 	},
2429 };
2430 
edma_filter_fn(struct dma_chan * chan,void * param)2431 bool edma_filter_fn(struct dma_chan *chan, void *param)
2432 {
2433 	bool match = false;
2434 
2435 	if (chan->device->dev->driver == &edma_driver.driver) {
2436 		struct edma_chan *echan = to_edma_chan(chan);
2437 		unsigned ch_req = *(unsigned *)param;
2438 		if (ch_req == echan->ch_num) {
2439 			/* The channel is going to be used as HW synchronized */
2440 			echan->hw_triggered = true;
2441 			match = true;
2442 		}
2443 	}
2444 	return match;
2445 }
2446 EXPORT_SYMBOL(edma_filter_fn);
2447 
edma_init(void)2448 static int edma_init(void)
2449 {
2450 	int ret;
2451 
2452 	ret = platform_driver_register(&edma_tptc_driver);
2453 	if (ret)
2454 		return ret;
2455 
2456 	return platform_driver_register(&edma_driver);
2457 }
2458 subsys_initcall(edma_init);
2459 
edma_exit(void)2460 static void __exit edma_exit(void)
2461 {
2462 	platform_driver_unregister(&edma_driver);
2463 	platform_driver_unregister(&edma_tptc_driver);
2464 }
2465 module_exit(edma_exit);
2466 
2467 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2468 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2469 MODULE_LICENSE("GPL v2");
2470