1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * This file is licensed under the terms of the GNU General Public
9  * License version 2. This program is licensed "as is" without any
10  * warranty of any kind, whether express or implied.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/phy.h>
29 #include <linux/clk.h>
30 #include <linux/hrtimer.h>
31 #include <linux/ktime.h>
32 #include <uapi/linux/ppp_defs.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 
36 /* RX Fifo Registers */
37 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
38 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
39 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
40 #define MVPP2_RX_FIFO_INIT_REG			0x64
41 
42 /* RX DMA Top Registers */
43 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
44 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
45 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
46 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
47 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
48 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
49 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
50 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
51 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
52 #define     MVPP2_RXQ_POOL_SHORT_MASK		0x700000
53 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
54 #define     MVPP2_RXQ_POOL_LONG_MASK		0x7000000
55 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
56 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
57 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
58 
59 /* Parser Registers */
60 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
61 #define     MVPP2_PRS_PORT_LU_MAX		0xf
62 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
63 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
64 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
65 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
66 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
67 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
68 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
69 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
70 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
71 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
72 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
73 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
74 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
75 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
76 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
77 
78 /* Classifier Registers */
79 #define MVPP2_CLS_MODE_REG			0x1800
80 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
81 #define MVPP2_CLS_PORT_WAY_REG			0x1810
82 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
83 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
84 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
85 #define MVPP2_CLS_LKP_TBL_REG			0x1818
86 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
87 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
88 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
89 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
90 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
91 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
92 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
93 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
94 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
95 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
96 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
97 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
98 
99 /* Descriptor Manager Top Registers */
100 #define MVPP2_RXQ_NUM_REG			0x2040
101 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
102 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
103 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
104 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
105 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
106 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
107 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
108 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
109 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
110 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
111 #define MVPP2_RXQ_THRESH_REG			0x204c
112 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
113 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
114 #define MVPP2_RXQ_INDEX_REG			0x2050
115 #define MVPP2_TXQ_NUM_REG			0x2080
116 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
117 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
118 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
119 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
120 #define MVPP2_TXQ_THRESH_REG			0x2094
121 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
122 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
123 #define MVPP2_TXQ_INDEX_REG			0x2098
124 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
125 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
126 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
127 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
128 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
129 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
130 #define MVPP2_TXQ_PENDING_REG			0x20a0
131 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
132 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
133 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
134 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
135 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
136 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
137 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
138 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
139 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
140 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
141 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
142 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
143 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
144 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
145 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
146 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
147 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
148 
149 /* MBUS bridge registers */
150 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
151 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
152 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
153 #define MVPP2_BASE_ADDR_ENABLE			0x4060
154 
155 /* Interrupt Cause and Mask registers */
156 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
157 #define MVPP2_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
158 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
159 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
160 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
161 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
162 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
163 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
164 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
165 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
166 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
167 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
168 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
169 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
170 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
171 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
172 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
173 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
174 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
175 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
176 
177 /* Buffer Manager registers */
178 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
179 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
180 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
181 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
182 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
183 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
184 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
185 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
186 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
187 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
188 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
189 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
190 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
191 #define     MVPP2_BM_START_MASK			BIT(0)
192 #define     MVPP2_BM_STOP_MASK			BIT(1)
193 #define     MVPP2_BM_STATE_MASK			BIT(4)
194 #define     MVPP2_BM_LOW_THRESH_OFFS		8
195 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
196 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
197 						MVPP2_BM_LOW_THRESH_OFFS)
198 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
199 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
200 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
201 						MVPP2_BM_HIGH_THRESH_OFFS)
202 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
203 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
204 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
205 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
206 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
207 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
208 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
209 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
210 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
211 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
212 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
213 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
214 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
215 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
216 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
217 #define MVPP2_BM_MC_RLS_REG			0x64c4
218 #define     MVPP2_BM_MC_ID_MASK			0xfff
219 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
220 
221 /* TX Scheduler registers */
222 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
223 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
224 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
225 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
226 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
227 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
228 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
229 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
230 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
231 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
232 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
233 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
234 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
235 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
236 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
237 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
238 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
239 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
240 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
241 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
242 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
243 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
244 
245 /* TX general registers */
246 #define MVPP2_TX_SNOOP_REG			0x8800
247 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
248 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
249 
250 /* LMS registers */
251 #define MVPP2_SRC_ADDR_MIDDLE			0x24
252 #define MVPP2_SRC_ADDR_HIGH			0x28
253 #define MVPP2_PHY_AN_CFG0_REG			0x34
254 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
255 #define MVPP2_MIB_COUNTERS_BASE(port)		(0x1000 + ((port) >> 1) * \
256 						0x400 + (port) * 0x400)
257 #define     MVPP2_MIB_LATE_COLLISION		0x7c
258 #define MVPP2_ISR_SUM_MASK_REG			0x220c
259 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
260 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT		0x27
261 
262 /* Per-port registers */
263 #define MVPP2_GMAC_CTRL_0_REG			0x0
264 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
265 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
266 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
267 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
268 #define MVPP2_GMAC_CTRL_1_REG			0x4
269 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
270 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
271 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
272 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
273 #define      MVPP2_GMAC_SA_LOW_OFFS		7
274 #define MVPP2_GMAC_CTRL_2_REG			0x8
275 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
276 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
277 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
278 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
279 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
280 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
281 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
282 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
283 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
284 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
285 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
286 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
287 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
288 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
289 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
290 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
291 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
292 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
293 
294 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
295 
296 /* Descriptor ring Macros */
297 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
298 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
299 
300 /* Various constants */
301 
302 /* Coalescing */
303 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
304 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
305 #define MVPP2_RX_COAL_PKTS		32
306 #define MVPP2_RX_COAL_USEC		100
307 
308 /* The two bytes Marvell header. Either contains a special value used
309  * by Marvell switches when a specific hardware mode is enabled (not
310  * supported by this driver) or is filled automatically by zeroes on
311  * the RX side. Those two bytes being at the front of the Ethernet
312  * header, they allow to have the IP header aligned on a 4 bytes
313  * boundary automatically: the hardware skips those two bytes on its
314  * own.
315  */
316 #define MVPP2_MH_SIZE			2
317 #define MVPP2_ETH_TYPE_LEN		2
318 #define MVPP2_PPPOE_HDR_SIZE		8
319 #define MVPP2_VLAN_TAG_LEN		4
320 
321 /* Lbtd 802.3 type */
322 #define MVPP2_IP_LBDT_TYPE		0xfffa
323 
324 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
325 #define MVPP2_TX_CSUM_MAX_SIZE		9800
326 
327 /* Timeout constants */
328 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
329 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
330 
331 #define MVPP2_TX_MTU_MAX		0x7ffff
332 
333 /* Maximum number of T-CONTs of PON port */
334 #define MVPP2_MAX_TCONT			16
335 
336 /* Maximum number of supported ports */
337 #define MVPP2_MAX_PORTS			4
338 
339 /* Maximum number of TXQs used by single port */
340 #define MVPP2_MAX_TXQ			8
341 
342 /* Maximum number of RXQs used by single port */
343 #define MVPP2_MAX_RXQ			8
344 
345 /* Dfault number of RXQs in use */
346 #define MVPP2_DEFAULT_RXQ		4
347 
348 /* Total number of RXQs available to all ports */
349 #define MVPP2_RXQ_TOTAL_NUM		(MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
350 
351 /* Max number of Rx descriptors */
352 #define MVPP2_MAX_RXD			128
353 
354 /* Max number of Tx descriptors */
355 #define MVPP2_MAX_TXD			1024
356 
357 /* Amount of Tx descriptors that can be reserved at once by CPU */
358 #define MVPP2_CPU_DESC_CHUNK		64
359 
360 /* Max number of Tx descriptors in each aggregated queue */
361 #define MVPP2_AGGR_TXQ_SIZE		256
362 
363 /* Descriptor aligned size */
364 #define MVPP2_DESC_ALIGNED_SIZE		32
365 
366 /* Descriptor alignment mask */
367 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
368 
369 /* RX FIFO constants */
370 #define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
371 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
372 #define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80
373 
374 /* RX buffer constants */
375 #define MVPP2_SKB_SHINFO_SIZE \
376 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
377 
378 #define MVPP2_RX_PKT_SIZE(mtu) \
379 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
380 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
381 
382 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
383 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
384 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
385 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
386 
387 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
388 
389 /* IPv6 max L3 address size */
390 #define MVPP2_MAX_L3_ADDR_SIZE		16
391 
392 /* Port flags */
393 #define MVPP2_F_LOOPBACK		BIT(0)
394 
395 /* Marvell tag types */
396 enum mvpp2_tag_type {
397 	MVPP2_TAG_TYPE_NONE = 0,
398 	MVPP2_TAG_TYPE_MH   = 1,
399 	MVPP2_TAG_TYPE_DSA  = 2,
400 	MVPP2_TAG_TYPE_EDSA = 3,
401 	MVPP2_TAG_TYPE_VLAN = 4,
402 	MVPP2_TAG_TYPE_LAST = 5
403 };
404 
405 /* Parser constants */
406 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
407 #define MVPP2_PRS_TCAM_WORDS		6
408 #define MVPP2_PRS_SRAM_WORDS		4
409 #define MVPP2_PRS_FLOW_ID_SIZE		64
410 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
411 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
412 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
413 #define MVPP2_PRS_IPV4_HEAD		0x40
414 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
415 #define MVPP2_PRS_IPV4_MC		0xe0
416 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
417 #define MVPP2_PRS_IPV4_BC_MASK		0xff
418 #define MVPP2_PRS_IPV4_IHL		0x5
419 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
420 #define MVPP2_PRS_IPV6_MC		0xff
421 #define MVPP2_PRS_IPV6_MC_MASK		0xff
422 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
423 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
424 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
425 #define MVPP2_PRS_DBL_VLANS_MAX		100
426 
427 /* Tcam structure:
428  * - lookup ID - 4 bits
429  * - port ID - 1 byte
430  * - additional information - 1 byte
431  * - header data - 8 bytes
432  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
433  */
434 #define MVPP2_PRS_AI_BITS			8
435 #define MVPP2_PRS_PORT_MASK			0xff
436 #define MVPP2_PRS_LU_MASK			0xf
437 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
438 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
439 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
440 					      (((offs) * 2) - ((offs) % 2)  + 2)
441 #define MVPP2_PRS_TCAM_AI_BYTE			16
442 #define MVPP2_PRS_TCAM_PORT_BYTE		17
443 #define MVPP2_PRS_TCAM_LU_BYTE			20
444 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
445 #define MVPP2_PRS_TCAM_INV_WORD			5
446 /* Tcam entries ID */
447 #define MVPP2_PE_DROP_ALL		0
448 #define MVPP2_PE_FIRST_FREE_TID		1
449 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
450 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
451 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
452 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
453 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
454 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
455 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
456 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
457 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
458 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
459 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
460 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
461 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
462 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
463 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
464 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
465 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
466 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
467 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
468 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
469 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
470 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
471 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
472 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
473 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
474 
475 /* Sram structure
476  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
477  */
478 #define MVPP2_PRS_SRAM_RI_OFFS			0
479 #define MVPP2_PRS_SRAM_RI_WORD			0
480 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
481 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
482 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
483 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
484 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
485 #define MVPP2_PRS_SRAM_UDF_OFFS			73
486 #define MVPP2_PRS_SRAM_UDF_BITS			8
487 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
488 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
489 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
490 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
491 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
492 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
493 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
494 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
495 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
496 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
497 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
498 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
499 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
500 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
501 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
502 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
503 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
504 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
505 #define MVPP2_PRS_SRAM_AI_OFFS			90
506 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
507 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
508 #define MVPP2_PRS_SRAM_AI_MASK			0xff
509 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
510 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
511 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
512 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
513 
514 /* Sram result info bits assignment */
515 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
516 #define MVPP2_PRS_RI_DSA_MASK			0x2
517 #define MVPP2_PRS_RI_VLAN_MASK			0xc
518 #define MVPP2_PRS_RI_VLAN_NONE			~(BIT(2) | BIT(3))
519 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
520 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
521 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
522 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
523 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
524 #define MVPP2_PRS_RI_L2_CAST_MASK		0x600
525 #define MVPP2_PRS_RI_L2_UCAST			~(BIT(9) | BIT(10))
526 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
527 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
528 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
529 #define MVPP2_PRS_RI_L3_PROTO_MASK		0x7000
530 #define MVPP2_PRS_RI_L3_UN			~(BIT(12) | BIT(13) | BIT(14))
531 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
532 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
533 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
534 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
535 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
536 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
537 #define MVPP2_PRS_RI_L3_ADDR_MASK		0x18000
538 #define MVPP2_PRS_RI_L3_UCAST			~(BIT(15) | BIT(16))
539 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
540 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
541 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
542 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
543 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
544 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
545 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
546 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
547 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
548 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
549 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
550 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
551 
552 /* Sram additional info bits assignment */
553 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
554 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
555 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
556 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
557 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
558 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
559 #define MVPP2_PRS_SINGLE_VLAN_AI		0
560 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
561 
562 /* DSA/EDSA type */
563 #define MVPP2_PRS_TAGGED		true
564 #define MVPP2_PRS_UNTAGGED		false
565 #define MVPP2_PRS_EDSA			true
566 #define MVPP2_PRS_DSA			false
567 
568 /* MAC entries, shadow udf */
569 enum mvpp2_prs_udf {
570 	MVPP2_PRS_UDF_MAC_DEF,
571 	MVPP2_PRS_UDF_MAC_RANGE,
572 	MVPP2_PRS_UDF_L2_DEF,
573 	MVPP2_PRS_UDF_L2_DEF_COPY,
574 	MVPP2_PRS_UDF_L2_USER,
575 };
576 
577 /* Lookup ID */
578 enum mvpp2_prs_lookup {
579 	MVPP2_PRS_LU_MH,
580 	MVPP2_PRS_LU_MAC,
581 	MVPP2_PRS_LU_DSA,
582 	MVPP2_PRS_LU_VLAN,
583 	MVPP2_PRS_LU_L2,
584 	MVPP2_PRS_LU_PPPOE,
585 	MVPP2_PRS_LU_IP4,
586 	MVPP2_PRS_LU_IP6,
587 	MVPP2_PRS_LU_FLOWS,
588 	MVPP2_PRS_LU_LAST,
589 };
590 
591 /* L3 cast enum */
592 enum mvpp2_prs_l3_cast {
593 	MVPP2_PRS_L3_UNI_CAST,
594 	MVPP2_PRS_L3_MULTI_CAST,
595 	MVPP2_PRS_L3_BROAD_CAST
596 };
597 
598 /* Classifier constants */
599 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
600 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
601 #define MVPP2_CLS_LKP_TBL_SIZE		64
602 
603 /* BM constants */
604 #define MVPP2_BM_POOLS_NUM		8
605 #define MVPP2_BM_LONG_BUF_NUM		1024
606 #define MVPP2_BM_SHORT_BUF_NUM		2048
607 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
608 #define MVPP2_BM_POOL_PTR_ALIGN		128
609 #define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
610 #define MVPP2_BM_SWF_SHORT_POOL		3
611 
612 /* BM cookie (32 bits) definition */
613 #define MVPP2_BM_COOKIE_POOL_OFFS	8
614 #define MVPP2_BM_COOKIE_CPU_OFFS	24
615 
616 /* BM short pool packet size
617  * These value assure that for SWF the total number
618  * of bytes allocated for each buffer will be 512
619  */
620 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
621 
622 enum mvpp2_bm_type {
623 	MVPP2_BM_FREE,
624 	MVPP2_BM_SWF_LONG,
625 	MVPP2_BM_SWF_SHORT
626 };
627 
628 /* Definitions */
629 
630 /* Shared Packet Processor resources */
631 struct mvpp2 {
632 	/* Shared registers' base addresses */
633 	void __iomem *base;
634 	void __iomem *lms_base;
635 
636 	/* Common clocks */
637 	struct clk *pp_clk;
638 	struct clk *gop_clk;
639 
640 	/* List of pointers to port structures */
641 	struct mvpp2_port **port_list;
642 
643 	/* Aggregated TXQs */
644 	struct mvpp2_tx_queue *aggr_txqs;
645 
646 	/* BM pools */
647 	struct mvpp2_bm_pool *bm_pools;
648 
649 	/* PRS shadow table */
650 	struct mvpp2_prs_shadow *prs_shadow;
651 	/* PRS auxiliary table for double vlan entries control */
652 	bool *prs_double_vlans;
653 
654 	/* Tclk value */
655 	u32 tclk;
656 };
657 
658 struct mvpp2_pcpu_stats {
659 	struct	u64_stats_sync syncp;
660 	u64	rx_packets;
661 	u64	rx_bytes;
662 	u64	tx_packets;
663 	u64	tx_bytes;
664 };
665 
666 /* Per-CPU port control */
667 struct mvpp2_port_pcpu {
668 	struct hrtimer tx_done_timer;
669 	bool timer_scheduled;
670 	/* Tasklet for egress finalization */
671 	struct tasklet_struct tx_done_tasklet;
672 };
673 
674 struct mvpp2_port {
675 	u8 id;
676 
677 	int irq;
678 
679 	struct mvpp2 *priv;
680 
681 	/* Per-port registers' base address */
682 	void __iomem *base;
683 
684 	struct mvpp2_rx_queue **rxqs;
685 	struct mvpp2_tx_queue **txqs;
686 	struct net_device *dev;
687 
688 	int pkt_size;
689 
690 	u32 pending_cause_rx;
691 	struct napi_struct napi;
692 
693 	/* Per-CPU port control */
694 	struct mvpp2_port_pcpu __percpu *pcpu;
695 
696 	/* Flags */
697 	unsigned long flags;
698 
699 	u16 tx_ring_size;
700 	u16 rx_ring_size;
701 	struct mvpp2_pcpu_stats __percpu *stats;
702 
703 	struct phy_device *phy_dev;
704 	phy_interface_t phy_interface;
705 	struct device_node *phy_node;
706 	unsigned int link;
707 	unsigned int duplex;
708 	unsigned int speed;
709 
710 	struct mvpp2_bm_pool *pool_long;
711 	struct mvpp2_bm_pool *pool_short;
712 
713 	/* Index of first port's physical RXQ */
714 	u8 first_rxq;
715 };
716 
717 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
718  * layout of the transmit and reception DMA descriptors, and their
719  * layout is therefore defined by the hardware design
720  */
721 
722 #define MVPP2_TXD_L3_OFF_SHIFT		0
723 #define MVPP2_TXD_IP_HLEN_SHIFT		8
724 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
725 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
726 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
727 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
728 #define MVPP2_TXD_L4_UDP		BIT(24)
729 #define MVPP2_TXD_L3_IP6		BIT(26)
730 #define MVPP2_TXD_L_DESC		BIT(28)
731 #define MVPP2_TXD_F_DESC		BIT(29)
732 
733 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
734 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
735 #define MVPP2_RXD_ERR_CRC		0x0
736 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
737 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
738 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
739 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
740 #define MVPP2_RXD_HWF_SYNC		BIT(21)
741 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
742 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
743 #define MVPP2_RXD_L4_TCP		BIT(25)
744 #define MVPP2_RXD_L4_UDP		BIT(26)
745 #define MVPP2_RXD_L3_IP4		BIT(28)
746 #define MVPP2_RXD_L3_IP6		BIT(30)
747 #define MVPP2_RXD_BUF_HDR		BIT(31)
748 
749 struct mvpp2_tx_desc {
750 	u32 command;		/* Options used by HW for packet transmitting.*/
751 	u8  packet_offset;	/* the offset from the buffer beginning	*/
752 	u8  phys_txq;		/* destination queue ID			*/
753 	u16 data_size;		/* data size of transmitted packet in bytes */
754 	u32 buf_phys_addr;	/* physical addr of transmitted buffer	*/
755 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
756 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
757 	u32 reserved2;		/* reserved (for future use)		*/
758 };
759 
760 struct mvpp2_rx_desc {
761 	u32 status;		/* info about received packet		*/
762 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
763 	u16 data_size;		/* size of received packet in bytes	*/
764 	u32 buf_phys_addr;	/* physical address of the buffer	*/
765 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
766 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
767 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
768 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
769 	u8  reserved5;
770 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
771 	u32 reserved7;		/* flow_id (for future use, PnC) */
772 	u32 reserved8;
773 };
774 
775 /* Per-CPU Tx queue control */
776 struct mvpp2_txq_pcpu {
777 	int cpu;
778 
779 	/* Number of Tx DMA descriptors in the descriptor ring */
780 	int size;
781 
782 	/* Number of currently used Tx DMA descriptor in the
783 	 * descriptor ring
784 	 */
785 	int count;
786 
787 	/* Number of Tx DMA descriptors reserved for each CPU */
788 	int reserved_num;
789 
790 	/* Array of transmitted skb */
791 	struct sk_buff **tx_skb;
792 
793 	/* Array of transmitted buffers' physical addresses */
794 	dma_addr_t *tx_buffs;
795 
796 	/* Index of last TX DMA descriptor that was inserted */
797 	int txq_put_index;
798 
799 	/* Index of the TX DMA descriptor to be cleaned up */
800 	int txq_get_index;
801 };
802 
803 struct mvpp2_tx_queue {
804 	/* Physical number of this Tx queue */
805 	u8 id;
806 
807 	/* Logical number of this Tx queue */
808 	u8 log_id;
809 
810 	/* Number of Tx DMA descriptors in the descriptor ring */
811 	int size;
812 
813 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
814 	int count;
815 
816 	/* Per-CPU control of physical Tx queues */
817 	struct mvpp2_txq_pcpu __percpu *pcpu;
818 
819 	/* Array of transmitted skb */
820 	struct sk_buff **tx_skb;
821 
822 	u32 done_pkts_coal;
823 
824 	/* Virtual address of thex Tx DMA descriptors array */
825 	struct mvpp2_tx_desc *descs;
826 
827 	/* DMA address of the Tx DMA descriptors array */
828 	dma_addr_t descs_phys;
829 
830 	/* Index of the last Tx DMA descriptor */
831 	int last_desc;
832 
833 	/* Index of the next Tx DMA descriptor to process */
834 	int next_desc_to_proc;
835 };
836 
837 struct mvpp2_rx_queue {
838 	/* RX queue number, in the range 0-31 for physical RXQs */
839 	u8 id;
840 
841 	/* Num of rx descriptors in the rx descriptor ring */
842 	int size;
843 
844 	u32 pkts_coal;
845 	u32 time_coal;
846 
847 	/* Virtual address of the RX DMA descriptors array */
848 	struct mvpp2_rx_desc *descs;
849 
850 	/* DMA address of the RX DMA descriptors array */
851 	dma_addr_t descs_phys;
852 
853 	/* Index of the last RX DMA descriptor */
854 	int last_desc;
855 
856 	/* Index of the next RX DMA descriptor to process */
857 	int next_desc_to_proc;
858 
859 	/* ID of port to which physical RXQ is mapped */
860 	int port;
861 
862 	/* Port's logic RXQ number to which physical RXQ is mapped */
863 	int logic_rxq;
864 };
865 
866 union mvpp2_prs_tcam_entry {
867 	u32 word[MVPP2_PRS_TCAM_WORDS];
868 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
869 };
870 
871 union mvpp2_prs_sram_entry {
872 	u32 word[MVPP2_PRS_SRAM_WORDS];
873 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
874 };
875 
876 struct mvpp2_prs_entry {
877 	u32 index;
878 	union mvpp2_prs_tcam_entry tcam;
879 	union mvpp2_prs_sram_entry sram;
880 };
881 
882 struct mvpp2_prs_shadow {
883 	bool valid;
884 	bool finish;
885 
886 	/* Lookup ID */
887 	int lu;
888 
889 	/* User defined offset */
890 	int udf;
891 
892 	/* Result info */
893 	u32 ri;
894 	u32 ri_mask;
895 };
896 
897 struct mvpp2_cls_flow_entry {
898 	u32 index;
899 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
900 };
901 
902 struct mvpp2_cls_lookup_entry {
903 	u32 lkpid;
904 	u32 way;
905 	u32 data;
906 };
907 
908 struct mvpp2_bm_pool {
909 	/* Pool number in the range 0-7 */
910 	int id;
911 	enum mvpp2_bm_type type;
912 
913 	/* Buffer Pointers Pool External (BPPE) size */
914 	int size;
915 	/* Number of buffers for this pool */
916 	int buf_num;
917 	/* Pool buffer size */
918 	int buf_size;
919 	/* Packet size */
920 	int pkt_size;
921 
922 	/* BPPE virtual base address */
923 	u32 *virt_addr;
924 	/* BPPE physical base address */
925 	dma_addr_t phys_addr;
926 
927 	/* Ports using BM pool */
928 	u32 port_map;
929 
930 	/* Occupied buffers indicator */
931 	atomic_t in_use;
932 	int in_use_thresh;
933 };
934 
935 struct mvpp2_buff_hdr {
936 	u32 next_buff_phys_addr;
937 	u32 next_buff_virt_addr;
938 	u16 byte_count;
939 	u16 info;
940 	u8  reserved1;		/* bm_qset (for future use, BM)		*/
941 };
942 
943 /* Buffer header info bits */
944 #define MVPP2_B_HDR_INFO_MC_ID_MASK	0xfff
945 #define MVPP2_B_HDR_INFO_MC_ID(info)	((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
946 #define MVPP2_B_HDR_INFO_LAST_OFFS	12
947 #define MVPP2_B_HDR_INFO_LAST_MASK	BIT(12)
948 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
949 	   ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
950 
951 /* Static declaractions */
952 
953 /* Number of RXQs used by single port */
954 static int rxq_number = MVPP2_DEFAULT_RXQ;
955 /* Number of TXQs used by single port */
956 static int txq_number = MVPP2_MAX_TXQ;
957 
958 #define MVPP2_DRIVER_NAME "mvpp2"
959 #define MVPP2_DRIVER_VERSION "1.0"
960 
961 /* Utility/helper methods */
962 
mvpp2_write(struct mvpp2 * priv,u32 offset,u32 data)963 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
964 {
965 	writel(data, priv->base + offset);
966 }
967 
mvpp2_read(struct mvpp2 * priv,u32 offset)968 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
969 {
970 	return readl(priv->base + offset);
971 }
972 
mvpp2_txq_inc_get(struct mvpp2_txq_pcpu * txq_pcpu)973 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
974 {
975 	txq_pcpu->txq_get_index++;
976 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
977 		txq_pcpu->txq_get_index = 0;
978 }
979 
mvpp2_txq_inc_put(struct mvpp2_txq_pcpu * txq_pcpu,struct sk_buff * skb,struct mvpp2_tx_desc * tx_desc)980 static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
981 			      struct sk_buff *skb,
982 			      struct mvpp2_tx_desc *tx_desc)
983 {
984 	txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
985 	if (skb)
986 		txq_pcpu->tx_buffs[txq_pcpu->txq_put_index] =
987 							 tx_desc->buf_phys_addr;
988 	txq_pcpu->txq_put_index++;
989 	if (txq_pcpu->txq_put_index == txq_pcpu->size)
990 		txq_pcpu->txq_put_index = 0;
991 }
992 
993 /* Get number of physical egress port */
mvpp2_egress_port(struct mvpp2_port * port)994 static inline int mvpp2_egress_port(struct mvpp2_port *port)
995 {
996 	return MVPP2_MAX_TCONT + port->id;
997 }
998 
999 /* Get number of physical TXQ */
mvpp2_txq_phys(int port,int txq)1000 static inline int mvpp2_txq_phys(int port, int txq)
1001 {
1002 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1003 }
1004 
1005 /* Parser configuration routines */
1006 
1007 /* Update parser tcam and sram hw entries */
mvpp2_prs_hw_write(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1008 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1009 {
1010 	int i;
1011 
1012 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1013 		return -EINVAL;
1014 
1015 	/* Clear entry invalidation bit */
1016 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1017 
1018 	/* Write tcam index - indirect access */
1019 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1020 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1021 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1022 
1023 	/* Write sram index - indirect access */
1024 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1025 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1026 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1027 
1028 	return 0;
1029 }
1030 
1031 /* Read tcam entry from hw */
mvpp2_prs_hw_read(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1032 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1033 {
1034 	int i;
1035 
1036 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1037 		return -EINVAL;
1038 
1039 	/* Write tcam index - indirect access */
1040 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1041 
1042 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1043 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1044 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1045 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1046 
1047 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1048 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1049 
1050 	/* Write sram index - indirect access */
1051 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1052 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1053 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1054 
1055 	return 0;
1056 }
1057 
1058 /* Invalidate tcam hw entry */
mvpp2_prs_hw_inv(struct mvpp2 * priv,int index)1059 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1060 {
1061 	/* Write index - indirect access */
1062 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1063 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1064 		    MVPP2_PRS_TCAM_INV_MASK);
1065 }
1066 
1067 /* Enable shadow table entry and set its lookup ID */
mvpp2_prs_shadow_set(struct mvpp2 * priv,int index,int lu)1068 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1069 {
1070 	priv->prs_shadow[index].valid = true;
1071 	priv->prs_shadow[index].lu = lu;
1072 }
1073 
1074 /* Update ri fields in shadow table entry */
mvpp2_prs_shadow_ri_set(struct mvpp2 * priv,int index,unsigned int ri,unsigned int ri_mask)1075 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1076 				    unsigned int ri, unsigned int ri_mask)
1077 {
1078 	priv->prs_shadow[index].ri_mask = ri_mask;
1079 	priv->prs_shadow[index].ri = ri;
1080 }
1081 
1082 /* Update lookup field in tcam sw entry */
mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1083 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1084 {
1085 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1086 
1087 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1088 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1089 }
1090 
1091 /* Update mask for single port in tcam sw entry */
mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry * pe,unsigned int port,bool add)1092 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1093 				    unsigned int port, bool add)
1094 {
1095 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1096 
1097 	if (add)
1098 		pe->tcam.byte[enable_off] &= ~(1 << port);
1099 	else
1100 		pe->tcam.byte[enable_off] |= 1 << port;
1101 }
1102 
1103 /* Update port map in tcam sw entry */
mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry * pe,unsigned int ports)1104 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1105 					unsigned int ports)
1106 {
1107 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1108 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1109 
1110 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1111 	pe->tcam.byte[enable_off] &= ~port_mask;
1112 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1113 }
1114 
1115 /* Obtain port map from tcam sw entry */
mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry * pe)1116 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1117 {
1118 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1119 
1120 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1121 }
1122 
1123 /* Set byte of data and its enable bits in tcam sw entry */
mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char byte,unsigned char enable)1124 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1125 					 unsigned int offs, unsigned char byte,
1126 					 unsigned char enable)
1127 {
1128 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1129 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1130 }
1131 
1132 /* Get byte of data and its enable bits from tcam sw entry */
mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char * byte,unsigned char * enable)1133 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1134 					 unsigned int offs, unsigned char *byte,
1135 					 unsigned char *enable)
1136 {
1137 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1138 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1139 }
1140 
1141 /* Compare tcam data bytes with a pattern */
mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry * pe,int offs,u16 data)1142 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1143 				    u16 data)
1144 {
1145 	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1146 	u16 tcam_data;
1147 
1148 	tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1149 	if (tcam_data != data)
1150 		return false;
1151 	return true;
1152 }
1153 
1154 /* Update ai bits in tcam sw entry */
mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int enable)1155 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1156 				     unsigned int bits, unsigned int enable)
1157 {
1158 	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1159 
1160 	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1161 
1162 		if (!(enable & BIT(i)))
1163 			continue;
1164 
1165 		if (bits & BIT(i))
1166 			pe->tcam.byte[ai_idx] |= 1 << i;
1167 		else
1168 			pe->tcam.byte[ai_idx] &= ~(1 << i);
1169 	}
1170 
1171 	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1172 }
1173 
1174 /* Get ai bits from tcam sw entry */
mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry * pe)1175 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1176 {
1177 	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1178 }
1179 
1180 /* Set ethertype in tcam sw entry */
mvpp2_prs_match_etype(struct mvpp2_prs_entry * pe,int offset,unsigned short ethertype)1181 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1182 				  unsigned short ethertype)
1183 {
1184 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1185 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1186 }
1187 
1188 /* Set bits in sram sw entry */
mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry * pe,int bit_num,int val)1189 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1190 				    int val)
1191 {
1192 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1193 }
1194 
1195 /* Clear bits in sram sw entry */
mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry * pe,int bit_num,int val)1196 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1197 				      int val)
1198 {
1199 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1200 }
1201 
1202 /* Update ri bits in sram sw entry */
mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1203 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1204 				     unsigned int bits, unsigned int mask)
1205 {
1206 	unsigned int i;
1207 
1208 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1209 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1210 
1211 		if (!(mask & BIT(i)))
1212 			continue;
1213 
1214 		if (bits & BIT(i))
1215 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1216 		else
1217 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1218 
1219 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1220 	}
1221 }
1222 
1223 /* Obtain ri bits from sram sw entry */
mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry * pe)1224 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1225 {
1226 	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1227 }
1228 
1229 /* Update ai bits in sram sw entry */
mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1230 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1231 				     unsigned int bits, unsigned int mask)
1232 {
1233 	unsigned int i;
1234 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1235 
1236 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1237 
1238 		if (!(mask & BIT(i)))
1239 			continue;
1240 
1241 		if (bits & BIT(i))
1242 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1243 		else
1244 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1245 
1246 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1247 	}
1248 }
1249 
1250 /* Read ai bits from sram sw entry */
mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry * pe)1251 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1252 {
1253 	u8 bits;
1254 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1255 	int ai_en_off = ai_off + 1;
1256 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1257 
1258 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1259 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1260 
1261 	return bits;
1262 }
1263 
1264 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1265  * lookup interation
1266  */
mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1267 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1268 				       unsigned int lu)
1269 {
1270 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1271 
1272 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1273 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1274 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1275 }
1276 
1277 /* In the sram sw entry set sign and value of the next lookup offset
1278  * and the offset value generated to the classifier
1279  */
mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry * pe,int shift,unsigned int op)1280 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1281 				     unsigned int op)
1282 {
1283 	/* Set sign */
1284 	if (shift < 0) {
1285 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1286 		shift = 0 - shift;
1287 	} else {
1288 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1289 	}
1290 
1291 	/* Set value */
1292 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1293 							   (unsigned char)shift;
1294 
1295 	/* Reset and set operation */
1296 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1297 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1298 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1299 
1300 	/* Set base offset as current */
1301 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1302 }
1303 
1304 /* In the sram sw entry set sign and value of the user defined offset
1305  * generated to the classifier
1306  */
mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry * pe,unsigned int type,int offset,unsigned int op)1307 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1308 				      unsigned int type, int offset,
1309 				      unsigned int op)
1310 {
1311 	/* Set sign */
1312 	if (offset < 0) {
1313 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1314 		offset = 0 - offset;
1315 	} else {
1316 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1317 	}
1318 
1319 	/* Set value */
1320 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1321 				  MVPP2_PRS_SRAM_UDF_MASK);
1322 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1323 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1324 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1325 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1326 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1327 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1328 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1329 
1330 	/* Set offset type */
1331 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1332 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1333 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1334 
1335 	/* Set offset operation */
1336 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1337 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1338 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1339 
1340 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1341 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1342 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1343 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1344 
1345 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1346 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1347 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1348 
1349 	/* Set base offset as current */
1350 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1351 }
1352 
1353 /* Find parser flow entry */
mvpp2_prs_flow_find(struct mvpp2 * priv,int flow)1354 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1355 {
1356 	struct mvpp2_prs_entry *pe;
1357 	int tid;
1358 
1359 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1360 	if (!pe)
1361 		return NULL;
1362 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1363 
1364 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1365 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1366 		u8 bits;
1367 
1368 		if (!priv->prs_shadow[tid].valid ||
1369 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1370 			continue;
1371 
1372 		pe->index = tid;
1373 		mvpp2_prs_hw_read(priv, pe);
1374 		bits = mvpp2_prs_sram_ai_get(pe);
1375 
1376 		/* Sram store classification lookup ID in AI bits [5:0] */
1377 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1378 			return pe;
1379 	}
1380 	kfree(pe);
1381 
1382 	return NULL;
1383 }
1384 
1385 /* Return first free tcam index, seeking from start to end */
mvpp2_prs_tcam_first_free(struct mvpp2 * priv,unsigned char start,unsigned char end)1386 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1387 				     unsigned char end)
1388 {
1389 	int tid;
1390 
1391 	if (start > end)
1392 		swap(start, end);
1393 
1394 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1395 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1396 
1397 	for (tid = start; tid <= end; tid++) {
1398 		if (!priv->prs_shadow[tid].valid)
1399 			return tid;
1400 	}
1401 
1402 	return -EINVAL;
1403 }
1404 
1405 /* Enable/disable dropping all mac da's */
mvpp2_prs_mac_drop_all_set(struct mvpp2 * priv,int port,bool add)1406 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1407 {
1408 	struct mvpp2_prs_entry pe;
1409 
1410 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1411 		/* Entry exist - update port only */
1412 		pe.index = MVPP2_PE_DROP_ALL;
1413 		mvpp2_prs_hw_read(priv, &pe);
1414 	} else {
1415 		/* Entry doesn't exist - create new */
1416 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1417 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1418 		pe.index = MVPP2_PE_DROP_ALL;
1419 
1420 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1421 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1422 					 MVPP2_PRS_RI_DROP_MASK);
1423 
1424 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1425 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1426 
1427 		/* Update shadow table */
1428 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1429 
1430 		/* Mask all ports */
1431 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1432 	}
1433 
1434 	/* Update port mask */
1435 	mvpp2_prs_tcam_port_set(&pe, port, add);
1436 
1437 	mvpp2_prs_hw_write(priv, &pe);
1438 }
1439 
1440 /* Set port to promiscuous mode */
mvpp2_prs_mac_promisc_set(struct mvpp2 * priv,int port,bool add)1441 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1442 {
1443 	struct mvpp2_prs_entry pe;
1444 
1445 	/* Promiscuous mode - Accept unknown packets */
1446 
1447 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1448 		/* Entry exist - update port only */
1449 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1450 		mvpp2_prs_hw_read(priv, &pe);
1451 	} else {
1452 		/* Entry doesn't exist - create new */
1453 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1454 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1455 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1456 
1457 		/* Continue - set next lookup */
1458 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1459 
1460 		/* Set result info bits */
1461 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1462 					 MVPP2_PRS_RI_L2_CAST_MASK);
1463 
1464 		/* Shift to ethertype */
1465 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1466 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1467 
1468 		/* Mask all ports */
1469 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1470 
1471 		/* Update shadow table */
1472 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1473 	}
1474 
1475 	/* Update port mask */
1476 	mvpp2_prs_tcam_port_set(&pe, port, add);
1477 
1478 	mvpp2_prs_hw_write(priv, &pe);
1479 }
1480 
1481 /* Accept multicast */
mvpp2_prs_mac_multi_set(struct mvpp2 * priv,int port,int index,bool add)1482 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1483 				    bool add)
1484 {
1485 	struct mvpp2_prs_entry pe;
1486 	unsigned char da_mc;
1487 
1488 	/* Ethernet multicast address first byte is
1489 	 * 0x01 for IPv4 and 0x33 for IPv6
1490 	 */
1491 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1492 
1493 	if (priv->prs_shadow[index].valid) {
1494 		/* Entry exist - update port only */
1495 		pe.index = index;
1496 		mvpp2_prs_hw_read(priv, &pe);
1497 	} else {
1498 		/* Entry doesn't exist - create new */
1499 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1500 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1501 		pe.index = index;
1502 
1503 		/* Continue - set next lookup */
1504 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1505 
1506 		/* Set result info bits */
1507 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1508 					 MVPP2_PRS_RI_L2_CAST_MASK);
1509 
1510 		/* Update tcam entry data first byte */
1511 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1512 
1513 		/* Shift to ethertype */
1514 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1515 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1516 
1517 		/* Mask all ports */
1518 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1519 
1520 		/* Update shadow table */
1521 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1522 	}
1523 
1524 	/* Update port mask */
1525 	mvpp2_prs_tcam_port_set(&pe, port, add);
1526 
1527 	mvpp2_prs_hw_write(priv, &pe);
1528 }
1529 
1530 /* Set entry for dsa packets */
mvpp2_prs_dsa_tag_set(struct mvpp2 * priv,int port,bool add,bool tagged,bool extend)1531 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1532 				  bool tagged, bool extend)
1533 {
1534 	struct mvpp2_prs_entry pe;
1535 	int tid, shift;
1536 
1537 	if (extend) {
1538 		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1539 		shift = 8;
1540 	} else {
1541 		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1542 		shift = 4;
1543 	}
1544 
1545 	if (priv->prs_shadow[tid].valid) {
1546 		/* Entry exist - update port only */
1547 		pe.index = tid;
1548 		mvpp2_prs_hw_read(priv, &pe);
1549 	} else {
1550 		/* Entry doesn't exist - create new */
1551 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1552 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1553 		pe.index = tid;
1554 
1555 		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1556 		mvpp2_prs_sram_shift_set(&pe, shift,
1557 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1558 
1559 		/* Update shadow table */
1560 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1561 
1562 		if (tagged) {
1563 			/* Set tagged bit in DSA tag */
1564 			mvpp2_prs_tcam_data_byte_set(&pe, 0,
1565 						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1566 						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1567 			/* Clear all ai bits for next iteration */
1568 			mvpp2_prs_sram_ai_update(&pe, 0,
1569 						 MVPP2_PRS_SRAM_AI_MASK);
1570 			/* If packet is tagged continue check vlans */
1571 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1572 		} else {
1573 			/* Set result info bits to 'no vlans' */
1574 			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1575 						 MVPP2_PRS_RI_VLAN_MASK);
1576 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1577 		}
1578 
1579 		/* Mask all ports */
1580 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1581 	}
1582 
1583 	/* Update port mask */
1584 	mvpp2_prs_tcam_port_set(&pe, port, add);
1585 
1586 	mvpp2_prs_hw_write(priv, &pe);
1587 }
1588 
1589 /* Set entry for dsa ethertype */
mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 * priv,int port,bool add,bool tagged,bool extend)1590 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1591 					    bool add, bool tagged, bool extend)
1592 {
1593 	struct mvpp2_prs_entry pe;
1594 	int tid, shift, port_mask;
1595 
1596 	if (extend) {
1597 		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1598 		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1599 		port_mask = 0;
1600 		shift = 8;
1601 	} else {
1602 		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1603 		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
1604 		port_mask = MVPP2_PRS_PORT_MASK;
1605 		shift = 4;
1606 	}
1607 
1608 	if (priv->prs_shadow[tid].valid) {
1609 		/* Entry exist - update port only */
1610 		pe.index = tid;
1611 		mvpp2_prs_hw_read(priv, &pe);
1612 	} else {
1613 		/* Entry doesn't exist - create new */
1614 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1615 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1616 		pe.index = tid;
1617 
1618 		/* Set ethertype */
1619 		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1620 		mvpp2_prs_match_etype(&pe, 2, 0);
1621 
1622 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1623 					 MVPP2_PRS_RI_DSA_MASK);
1624 		/* Shift ethertype + 2 byte reserved + tag*/
1625 		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1626 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1627 
1628 		/* Update shadow table */
1629 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1630 
1631 		if (tagged) {
1632 			/* Set tagged bit in DSA tag */
1633 			mvpp2_prs_tcam_data_byte_set(&pe,
1634 						     MVPP2_ETH_TYPE_LEN + 2 + 3,
1635 						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1636 						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1637 			/* Clear all ai bits for next iteration */
1638 			mvpp2_prs_sram_ai_update(&pe, 0,
1639 						 MVPP2_PRS_SRAM_AI_MASK);
1640 			/* If packet is tagged continue check vlans */
1641 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1642 		} else {
1643 			/* Set result info bits to 'no vlans' */
1644 			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1645 						 MVPP2_PRS_RI_VLAN_MASK);
1646 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1647 		}
1648 		/* Mask/unmask all ports, depending on dsa type */
1649 		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1650 	}
1651 
1652 	/* Update port mask */
1653 	mvpp2_prs_tcam_port_set(&pe, port, add);
1654 
1655 	mvpp2_prs_hw_write(priv, &pe);
1656 }
1657 
1658 /* Search for existing single/triple vlan entry */
mvpp2_prs_vlan_find(struct mvpp2 * priv,unsigned short tpid,int ai)1659 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1660 						   unsigned short tpid, int ai)
1661 {
1662 	struct mvpp2_prs_entry *pe;
1663 	int tid;
1664 
1665 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1666 	if (!pe)
1667 		return NULL;
1668 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1669 
1670 	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1671 	for (tid = MVPP2_PE_FIRST_FREE_TID;
1672 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1673 		unsigned int ri_bits, ai_bits;
1674 		bool match;
1675 
1676 		if (!priv->prs_shadow[tid].valid ||
1677 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1678 			continue;
1679 
1680 		pe->index = tid;
1681 
1682 		mvpp2_prs_hw_read(priv, pe);
1683 		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1684 		if (!match)
1685 			continue;
1686 
1687 		/* Get vlan type */
1688 		ri_bits = mvpp2_prs_sram_ri_get(pe);
1689 		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1690 
1691 		/* Get current ai value from tcam */
1692 		ai_bits = mvpp2_prs_tcam_ai_get(pe);
1693 		/* Clear double vlan bit */
1694 		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1695 
1696 		if (ai != ai_bits)
1697 			continue;
1698 
1699 		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1700 		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1701 			return pe;
1702 	}
1703 	kfree(pe);
1704 
1705 	return NULL;
1706 }
1707 
1708 /* Add/update single/triple vlan entry */
mvpp2_prs_vlan_add(struct mvpp2 * priv,unsigned short tpid,int ai,unsigned int port_map)1709 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1710 			      unsigned int port_map)
1711 {
1712 	struct mvpp2_prs_entry *pe;
1713 	int tid_aux, tid;
1714 	int ret = 0;
1715 
1716 	pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1717 
1718 	if (!pe) {
1719 		/* Create new tcam entry */
1720 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1721 						MVPP2_PE_FIRST_FREE_TID);
1722 		if (tid < 0)
1723 			return tid;
1724 
1725 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1726 		if (!pe)
1727 			return -ENOMEM;
1728 
1729 		/* Get last double vlan tid */
1730 		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1731 		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1732 			unsigned int ri_bits;
1733 
1734 			if (!priv->prs_shadow[tid_aux].valid ||
1735 			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1736 				continue;
1737 
1738 			pe->index = tid_aux;
1739 			mvpp2_prs_hw_read(priv, pe);
1740 			ri_bits = mvpp2_prs_sram_ri_get(pe);
1741 			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1742 			    MVPP2_PRS_RI_VLAN_DOUBLE)
1743 				break;
1744 		}
1745 
1746 		if (tid <= tid_aux) {
1747 			ret = -EINVAL;
1748 			goto error;
1749 		}
1750 
1751 		memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1752 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1753 		pe->index = tid;
1754 
1755 		mvpp2_prs_match_etype(pe, 0, tpid);
1756 
1757 		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1758 		/* Shift 4 bytes - skip 1 vlan tag */
1759 		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1760 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1761 		/* Clear all ai bits for next iteration */
1762 		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1763 
1764 		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1765 			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1766 						 MVPP2_PRS_RI_VLAN_MASK);
1767 		} else {
1768 			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1769 			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1770 						 MVPP2_PRS_RI_VLAN_MASK);
1771 		}
1772 		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1773 
1774 		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1775 	}
1776 	/* Update ports' mask */
1777 	mvpp2_prs_tcam_port_map_set(pe, port_map);
1778 
1779 	mvpp2_prs_hw_write(priv, pe);
1780 
1781 error:
1782 	kfree(pe);
1783 
1784 	return ret;
1785 }
1786 
1787 /* Get first free double vlan ai number */
mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 * priv)1788 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1789 {
1790 	int i;
1791 
1792 	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1793 		if (!priv->prs_double_vlans[i])
1794 			return i;
1795 	}
1796 
1797 	return -EINVAL;
1798 }
1799 
1800 /* Search for existing double vlan entry */
mvpp2_prs_double_vlan_find(struct mvpp2 * priv,unsigned short tpid1,unsigned short tpid2)1801 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1802 							  unsigned short tpid1,
1803 							  unsigned short tpid2)
1804 {
1805 	struct mvpp2_prs_entry *pe;
1806 	int tid;
1807 
1808 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1809 	if (!pe)
1810 		return NULL;
1811 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1812 
1813 	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1814 	for (tid = MVPP2_PE_FIRST_FREE_TID;
1815 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1816 		unsigned int ri_mask;
1817 		bool match;
1818 
1819 		if (!priv->prs_shadow[tid].valid ||
1820 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1821 			continue;
1822 
1823 		pe->index = tid;
1824 		mvpp2_prs_hw_read(priv, pe);
1825 
1826 		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1827 			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1828 
1829 		if (!match)
1830 			continue;
1831 
1832 		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1833 		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1834 			return pe;
1835 	}
1836 	kfree(pe);
1837 
1838 	return NULL;
1839 }
1840 
1841 /* Add or update double vlan entry */
mvpp2_prs_double_vlan_add(struct mvpp2 * priv,unsigned short tpid1,unsigned short tpid2,unsigned int port_map)1842 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1843 				     unsigned short tpid2,
1844 				     unsigned int port_map)
1845 {
1846 	struct mvpp2_prs_entry *pe;
1847 	int tid_aux, tid, ai, ret = 0;
1848 
1849 	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1850 
1851 	if (!pe) {
1852 		/* Create new tcam entry */
1853 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1854 				MVPP2_PE_LAST_FREE_TID);
1855 		if (tid < 0)
1856 			return tid;
1857 
1858 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1859 		if (!pe)
1860 			return -ENOMEM;
1861 
1862 		/* Set ai value for new double vlan entry */
1863 		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1864 		if (ai < 0) {
1865 			ret = ai;
1866 			goto error;
1867 		}
1868 
1869 		/* Get first single/triple vlan tid */
1870 		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1871 		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1872 			unsigned int ri_bits;
1873 
1874 			if (!priv->prs_shadow[tid_aux].valid ||
1875 			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1876 				continue;
1877 
1878 			pe->index = tid_aux;
1879 			mvpp2_prs_hw_read(priv, pe);
1880 			ri_bits = mvpp2_prs_sram_ri_get(pe);
1881 			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1882 			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1883 			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1884 				break;
1885 		}
1886 
1887 		if (tid >= tid_aux) {
1888 			ret = -ERANGE;
1889 			goto error;
1890 		}
1891 
1892 		memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1893 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1894 		pe->index = tid;
1895 
1896 		priv->prs_double_vlans[ai] = true;
1897 
1898 		mvpp2_prs_match_etype(pe, 0, tpid1);
1899 		mvpp2_prs_match_etype(pe, 4, tpid2);
1900 
1901 		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1902 		/* Shift 8 bytes - skip 2 vlan tags */
1903 		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1904 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1905 		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1906 					 MVPP2_PRS_RI_VLAN_MASK);
1907 		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1908 					 MVPP2_PRS_SRAM_AI_MASK);
1909 
1910 		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1911 	}
1912 
1913 	/* Update ports' mask */
1914 	mvpp2_prs_tcam_port_map_set(pe, port_map);
1915 	mvpp2_prs_hw_write(priv, pe);
1916 
1917 error:
1918 	kfree(pe);
1919 	return ret;
1920 }
1921 
1922 /* IPv4 header parsing for fragmentation and L4 offset */
mvpp2_prs_ip4_proto(struct mvpp2 * priv,unsigned short proto,unsigned int ri,unsigned int ri_mask)1923 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1924 			       unsigned int ri, unsigned int ri_mask)
1925 {
1926 	struct mvpp2_prs_entry pe;
1927 	int tid;
1928 
1929 	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1930 	    (proto != IPPROTO_IGMP))
1931 		return -EINVAL;
1932 
1933 	/* Fragmented packet */
1934 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1935 					MVPP2_PE_LAST_FREE_TID);
1936 	if (tid < 0)
1937 		return tid;
1938 
1939 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1940 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1941 	pe.index = tid;
1942 
1943 	/* Set next lu to IPv4 */
1944 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1945 	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1946 	/* Set L4 offset */
1947 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1948 				  sizeof(struct iphdr) - 4,
1949 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1950 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1951 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
1952 	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1953 				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1954 
1955 	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1956 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1957 	/* Unmask all ports */
1958 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1959 
1960 	/* Update shadow table and hw entry */
1961 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1962 	mvpp2_prs_hw_write(priv, &pe);
1963 
1964 	/* Not fragmented packet */
1965 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1966 					MVPP2_PE_LAST_FREE_TID);
1967 	if (tid < 0)
1968 		return tid;
1969 
1970 	pe.index = tid;
1971 	/* Clear ri before updating */
1972 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1973 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1974 	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1975 
1976 	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1977 	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1978 
1979 	/* Update shadow table and hw entry */
1980 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1981 	mvpp2_prs_hw_write(priv, &pe);
1982 
1983 	return 0;
1984 }
1985 
1986 /* IPv4 L3 multicast or broadcast */
mvpp2_prs_ip4_cast(struct mvpp2 * priv,unsigned short l3_cast)1987 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1988 {
1989 	struct mvpp2_prs_entry pe;
1990 	int mask, tid;
1991 
1992 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1993 					MVPP2_PE_LAST_FREE_TID);
1994 	if (tid < 0)
1995 		return tid;
1996 
1997 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1998 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1999 	pe.index = tid;
2000 
2001 	switch (l3_cast) {
2002 	case MVPP2_PRS_L3_MULTI_CAST:
2003 		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2004 					     MVPP2_PRS_IPV4_MC_MASK);
2005 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2006 					 MVPP2_PRS_RI_L3_ADDR_MASK);
2007 		break;
2008 	case  MVPP2_PRS_L3_BROAD_CAST:
2009 		mask = MVPP2_PRS_IPV4_BC_MASK;
2010 		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2011 		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2012 		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2013 		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2014 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2015 					 MVPP2_PRS_RI_L3_ADDR_MASK);
2016 		break;
2017 	default:
2018 		return -EINVAL;
2019 	}
2020 
2021 	/* Finished: go to flowid generation */
2022 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2023 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2024 
2025 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2026 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2027 	/* Unmask all ports */
2028 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2029 
2030 	/* Update shadow table and hw entry */
2031 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2032 	mvpp2_prs_hw_write(priv, &pe);
2033 
2034 	return 0;
2035 }
2036 
2037 /* Set entries for protocols over IPv6  */
mvpp2_prs_ip6_proto(struct mvpp2 * priv,unsigned short proto,unsigned int ri,unsigned int ri_mask)2038 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2039 			       unsigned int ri, unsigned int ri_mask)
2040 {
2041 	struct mvpp2_prs_entry pe;
2042 	int tid;
2043 
2044 	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2045 	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2046 		return -EINVAL;
2047 
2048 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2049 					MVPP2_PE_LAST_FREE_TID);
2050 	if (tid < 0)
2051 		return tid;
2052 
2053 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2054 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2055 	pe.index = tid;
2056 
2057 	/* Finished: go to flowid generation */
2058 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2059 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2060 	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2061 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2062 				  sizeof(struct ipv6hdr) - 6,
2063 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2064 
2065 	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2066 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2067 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2068 	/* Unmask all ports */
2069 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2070 
2071 	/* Write HW */
2072 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2073 	mvpp2_prs_hw_write(priv, &pe);
2074 
2075 	return 0;
2076 }
2077 
2078 /* IPv6 L3 multicast entry */
mvpp2_prs_ip6_cast(struct mvpp2 * priv,unsigned short l3_cast)2079 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2080 {
2081 	struct mvpp2_prs_entry pe;
2082 	int tid;
2083 
2084 	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2085 		return -EINVAL;
2086 
2087 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2088 					MVPP2_PE_LAST_FREE_TID);
2089 	if (tid < 0)
2090 		return tid;
2091 
2092 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2093 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2094 	pe.index = tid;
2095 
2096 	/* Finished: go to flowid generation */
2097 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2098 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2099 				 MVPP2_PRS_RI_L3_ADDR_MASK);
2100 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2101 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2102 	/* Shift back to IPv6 NH */
2103 	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2104 
2105 	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2106 				     MVPP2_PRS_IPV6_MC_MASK);
2107 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2108 	/* Unmask all ports */
2109 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2110 
2111 	/* Update shadow table and hw entry */
2112 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2113 	mvpp2_prs_hw_write(priv, &pe);
2114 
2115 	return 0;
2116 }
2117 
2118 /* Parser per-port initialization */
mvpp2_prs_hw_port_init(struct mvpp2 * priv,int port,int lu_first,int lu_max,int offset)2119 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2120 				   int lu_max, int offset)
2121 {
2122 	u32 val;
2123 
2124 	/* Set lookup ID */
2125 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2126 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2127 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2128 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2129 
2130 	/* Set maximum number of loops for packet received from port */
2131 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2132 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2133 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2134 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2135 
2136 	/* Set initial offset for packet header extraction for the first
2137 	 * searching loop
2138 	 */
2139 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2140 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2141 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2142 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2143 }
2144 
2145 /* Default flow entries initialization for all ports */
mvpp2_prs_def_flow_init(struct mvpp2 * priv)2146 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2147 {
2148 	struct mvpp2_prs_entry pe;
2149 	int port;
2150 
2151 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2152 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2153 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2154 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2155 
2156 		/* Mask all ports */
2157 		mvpp2_prs_tcam_port_map_set(&pe, 0);
2158 
2159 		/* Set flow ID*/
2160 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2161 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2162 
2163 		/* Update shadow table and hw entry */
2164 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2165 		mvpp2_prs_hw_write(priv, &pe);
2166 	}
2167 }
2168 
2169 /* Set default entry for Marvell Header field */
mvpp2_prs_mh_init(struct mvpp2 * priv)2170 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2171 {
2172 	struct mvpp2_prs_entry pe;
2173 
2174 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2175 
2176 	pe.index = MVPP2_PE_MH_DEFAULT;
2177 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2178 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2179 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2180 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2181 
2182 	/* Unmask all ports */
2183 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2184 
2185 	/* Update shadow table and hw entry */
2186 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2187 	mvpp2_prs_hw_write(priv, &pe);
2188 }
2189 
2190 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2191  * multicast MAC addresses
2192  */
mvpp2_prs_mac_init(struct mvpp2 * priv)2193 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2194 {
2195 	struct mvpp2_prs_entry pe;
2196 
2197 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2198 
2199 	/* Non-promiscuous mode for all ports - DROP unknown packets */
2200 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2201 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2202 
2203 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2204 				 MVPP2_PRS_RI_DROP_MASK);
2205 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2206 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2207 
2208 	/* Unmask all ports */
2209 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2210 
2211 	/* Update shadow table and hw entry */
2212 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2213 	mvpp2_prs_hw_write(priv, &pe);
2214 
2215 	/* place holders only - no ports */
2216 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
2217 	mvpp2_prs_mac_promisc_set(priv, 0, false);
2218 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2219 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2220 }
2221 
2222 /* Set default entries for various types of dsa packets */
mvpp2_prs_dsa_init(struct mvpp2 * priv)2223 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2224 {
2225 	struct mvpp2_prs_entry pe;
2226 
2227 	/* None tagged EDSA entry - place holder */
2228 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2229 			      MVPP2_PRS_EDSA);
2230 
2231 	/* Tagged EDSA entry - place holder */
2232 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2233 
2234 	/* None tagged DSA entry - place holder */
2235 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2236 			      MVPP2_PRS_DSA);
2237 
2238 	/* Tagged DSA entry - place holder */
2239 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2240 
2241 	/* None tagged EDSA ethertype entry - place holder*/
2242 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2243 					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2244 
2245 	/* Tagged EDSA ethertype entry - place holder*/
2246 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2247 					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2248 
2249 	/* None tagged DSA ethertype entry */
2250 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2251 					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2252 
2253 	/* Tagged DSA ethertype entry */
2254 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2255 					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2256 
2257 	/* Set default entry, in case DSA or EDSA tag not found */
2258 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2259 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2260 	pe.index = MVPP2_PE_DSA_DEFAULT;
2261 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2262 
2263 	/* Shift 0 bytes */
2264 	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2265 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2266 
2267 	/* Clear all sram ai bits for next iteration */
2268 	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2269 
2270 	/* Unmask all ports */
2271 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2272 
2273 	mvpp2_prs_hw_write(priv, &pe);
2274 }
2275 
2276 /* Match basic ethertypes */
mvpp2_prs_etype_init(struct mvpp2 * priv)2277 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2278 {
2279 	struct mvpp2_prs_entry pe;
2280 	int tid;
2281 
2282 	/* Ethertype: PPPoE */
2283 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2284 					MVPP2_PE_LAST_FREE_TID);
2285 	if (tid < 0)
2286 		return tid;
2287 
2288 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2289 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2290 	pe.index = tid;
2291 
2292 	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2293 
2294 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2295 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2296 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2297 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2298 				 MVPP2_PRS_RI_PPPOE_MASK);
2299 
2300 	/* Update shadow table and hw entry */
2301 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2302 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2303 	priv->prs_shadow[pe.index].finish = false;
2304 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2305 				MVPP2_PRS_RI_PPPOE_MASK);
2306 	mvpp2_prs_hw_write(priv, &pe);
2307 
2308 	/* Ethertype: ARP */
2309 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2310 					MVPP2_PE_LAST_FREE_TID);
2311 	if (tid < 0)
2312 		return tid;
2313 
2314 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2315 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2316 	pe.index = tid;
2317 
2318 	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2319 
2320 	/* Generate flow in the next iteration*/
2321 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2322 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2323 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2324 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2325 	/* Set L3 offset */
2326 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2327 				  MVPP2_ETH_TYPE_LEN,
2328 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2329 
2330 	/* Update shadow table and hw entry */
2331 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2332 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2333 	priv->prs_shadow[pe.index].finish = true;
2334 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2335 				MVPP2_PRS_RI_L3_PROTO_MASK);
2336 	mvpp2_prs_hw_write(priv, &pe);
2337 
2338 	/* Ethertype: LBTD */
2339 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2340 					MVPP2_PE_LAST_FREE_TID);
2341 	if (tid < 0)
2342 		return tid;
2343 
2344 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2345 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2346 	pe.index = tid;
2347 
2348 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2349 
2350 	/* Generate flow in the next iteration*/
2351 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2352 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2353 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2354 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2355 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2356 				 MVPP2_PRS_RI_UDF3_MASK);
2357 	/* Set L3 offset */
2358 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2359 				  MVPP2_ETH_TYPE_LEN,
2360 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2361 
2362 	/* Update shadow table and hw entry */
2363 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2364 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2365 	priv->prs_shadow[pe.index].finish = true;
2366 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2367 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2368 				MVPP2_PRS_RI_CPU_CODE_MASK |
2369 				MVPP2_PRS_RI_UDF3_MASK);
2370 	mvpp2_prs_hw_write(priv, &pe);
2371 
2372 	/* Ethertype: IPv4 without options */
2373 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2374 					MVPP2_PE_LAST_FREE_TID);
2375 	if (tid < 0)
2376 		return tid;
2377 
2378 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2379 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2380 	pe.index = tid;
2381 
2382 	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2383 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2384 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2385 				     MVPP2_PRS_IPV4_HEAD_MASK |
2386 				     MVPP2_PRS_IPV4_IHL_MASK);
2387 
2388 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2389 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2390 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2391 	/* Skip eth_type + 4 bytes of IP header */
2392 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2393 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2394 	/* Set L3 offset */
2395 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2396 				  MVPP2_ETH_TYPE_LEN,
2397 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2398 
2399 	/* Update shadow table and hw entry */
2400 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2401 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2402 	priv->prs_shadow[pe.index].finish = false;
2403 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2404 				MVPP2_PRS_RI_L3_PROTO_MASK);
2405 	mvpp2_prs_hw_write(priv, &pe);
2406 
2407 	/* Ethertype: IPv4 with options */
2408 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2409 					MVPP2_PE_LAST_FREE_TID);
2410 	if (tid < 0)
2411 		return tid;
2412 
2413 	pe.index = tid;
2414 
2415 	/* Clear tcam data before updating */
2416 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2417 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2418 
2419 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2420 				     MVPP2_PRS_IPV4_HEAD,
2421 				     MVPP2_PRS_IPV4_HEAD_MASK);
2422 
2423 	/* Clear ri before updating */
2424 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2425 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2426 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2427 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2428 
2429 	/* Update shadow table and hw entry */
2430 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2431 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2432 	priv->prs_shadow[pe.index].finish = false;
2433 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2434 				MVPP2_PRS_RI_L3_PROTO_MASK);
2435 	mvpp2_prs_hw_write(priv, &pe);
2436 
2437 	/* Ethertype: IPv6 without options */
2438 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2439 					MVPP2_PE_LAST_FREE_TID);
2440 	if (tid < 0)
2441 		return tid;
2442 
2443 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2444 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2445 	pe.index = tid;
2446 
2447 	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2448 
2449 	/* Skip DIP of IPV6 header */
2450 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2451 				 MVPP2_MAX_L3_ADDR_SIZE,
2452 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2453 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2454 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2455 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2456 	/* Set L3 offset */
2457 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2458 				  MVPP2_ETH_TYPE_LEN,
2459 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2460 
2461 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2462 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2463 	priv->prs_shadow[pe.index].finish = false;
2464 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2465 				MVPP2_PRS_RI_L3_PROTO_MASK);
2466 	mvpp2_prs_hw_write(priv, &pe);
2467 
2468 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2469 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2470 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2471 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2472 
2473 	/* Unmask all ports */
2474 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2475 
2476 	/* Generate flow in the next iteration*/
2477 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2478 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2479 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2480 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2481 	/* Set L3 offset even it's unknown L3 */
2482 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2483 				  MVPP2_ETH_TYPE_LEN,
2484 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2485 
2486 	/* Update shadow table and hw entry */
2487 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2488 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2489 	priv->prs_shadow[pe.index].finish = true;
2490 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2491 				MVPP2_PRS_RI_L3_PROTO_MASK);
2492 	mvpp2_prs_hw_write(priv, &pe);
2493 
2494 	return 0;
2495 }
2496 
2497 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2498  * Possible options:
2499  * 0x8100, 0x88A8
2500  * 0x8100, 0x8100
2501  * 0x8100
2502  * 0x88A8
2503  */
mvpp2_prs_vlan_init(struct platform_device * pdev,struct mvpp2 * priv)2504 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2505 {
2506 	struct mvpp2_prs_entry pe;
2507 	int err;
2508 
2509 	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2510 					      MVPP2_PRS_DBL_VLANS_MAX,
2511 					      GFP_KERNEL);
2512 	if (!priv->prs_double_vlans)
2513 		return -ENOMEM;
2514 
2515 	/* Double VLAN: 0x8100, 0x88A8 */
2516 	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2517 					MVPP2_PRS_PORT_MASK);
2518 	if (err)
2519 		return err;
2520 
2521 	/* Double VLAN: 0x8100, 0x8100 */
2522 	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2523 					MVPP2_PRS_PORT_MASK);
2524 	if (err)
2525 		return err;
2526 
2527 	/* Single VLAN: 0x88a8 */
2528 	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2529 				 MVPP2_PRS_PORT_MASK);
2530 	if (err)
2531 		return err;
2532 
2533 	/* Single VLAN: 0x8100 */
2534 	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2535 				 MVPP2_PRS_PORT_MASK);
2536 	if (err)
2537 		return err;
2538 
2539 	/* Set default double vlan entry */
2540 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2541 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2542 	pe.index = MVPP2_PE_VLAN_DBL;
2543 
2544 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2545 	/* Clear ai for next iterations */
2546 	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2547 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2548 				 MVPP2_PRS_RI_VLAN_MASK);
2549 
2550 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2551 				 MVPP2_PRS_DBL_VLAN_AI_BIT);
2552 	/* Unmask all ports */
2553 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2554 
2555 	/* Update shadow table and hw entry */
2556 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2557 	mvpp2_prs_hw_write(priv, &pe);
2558 
2559 	/* Set default vlan none entry */
2560 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2561 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2562 	pe.index = MVPP2_PE_VLAN_NONE;
2563 
2564 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2565 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2566 				 MVPP2_PRS_RI_VLAN_MASK);
2567 
2568 	/* Unmask all ports */
2569 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2570 
2571 	/* Update shadow table and hw entry */
2572 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2573 	mvpp2_prs_hw_write(priv, &pe);
2574 
2575 	return 0;
2576 }
2577 
2578 /* Set entries for PPPoE ethertype */
mvpp2_prs_pppoe_init(struct mvpp2 * priv)2579 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2580 {
2581 	struct mvpp2_prs_entry pe;
2582 	int tid;
2583 
2584 	/* IPv4 over PPPoE with options */
2585 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2586 					MVPP2_PE_LAST_FREE_TID);
2587 	if (tid < 0)
2588 		return tid;
2589 
2590 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2591 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2592 	pe.index = tid;
2593 
2594 	mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2595 
2596 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2597 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2598 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2599 	/* Skip eth_type + 4 bytes of IP header */
2600 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2601 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2602 	/* Set L3 offset */
2603 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2604 				  MVPP2_ETH_TYPE_LEN,
2605 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2606 
2607 	/* Update shadow table and hw entry */
2608 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2609 	mvpp2_prs_hw_write(priv, &pe);
2610 
2611 	/* IPv4 over PPPoE without options */
2612 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2613 					MVPP2_PE_LAST_FREE_TID);
2614 	if (tid < 0)
2615 		return tid;
2616 
2617 	pe.index = tid;
2618 
2619 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2620 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2621 				     MVPP2_PRS_IPV4_HEAD_MASK |
2622 				     MVPP2_PRS_IPV4_IHL_MASK);
2623 
2624 	/* Clear ri before updating */
2625 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2626 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2627 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2628 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2629 
2630 	/* Update shadow table and hw entry */
2631 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2632 	mvpp2_prs_hw_write(priv, &pe);
2633 
2634 	/* IPv6 over PPPoE */
2635 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2636 					MVPP2_PE_LAST_FREE_TID);
2637 	if (tid < 0)
2638 		return tid;
2639 
2640 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2641 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2642 	pe.index = tid;
2643 
2644 	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2645 
2646 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2647 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2648 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2649 	/* Skip eth_type + 4 bytes of IPv6 header */
2650 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2651 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2652 	/* Set L3 offset */
2653 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2654 				  MVPP2_ETH_TYPE_LEN,
2655 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2656 
2657 	/* Update shadow table and hw entry */
2658 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2659 	mvpp2_prs_hw_write(priv, &pe);
2660 
2661 	/* Non-IP over PPPoE */
2662 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2663 					MVPP2_PE_LAST_FREE_TID);
2664 	if (tid < 0)
2665 		return tid;
2666 
2667 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2668 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2669 	pe.index = tid;
2670 
2671 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2672 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2673 
2674 	/* Finished: go to flowid generation */
2675 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2676 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2677 	/* Set L3 offset even if it's unknown L3 */
2678 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2679 				  MVPP2_ETH_TYPE_LEN,
2680 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2681 
2682 	/* Update shadow table and hw entry */
2683 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2684 	mvpp2_prs_hw_write(priv, &pe);
2685 
2686 	return 0;
2687 }
2688 
2689 /* Initialize entries for IPv4 */
mvpp2_prs_ip4_init(struct mvpp2 * priv)2690 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2691 {
2692 	struct mvpp2_prs_entry pe;
2693 	int err;
2694 
2695 	/* Set entries for TCP, UDP and IGMP over IPv4 */
2696 	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2697 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2698 	if (err)
2699 		return err;
2700 
2701 	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2702 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2703 	if (err)
2704 		return err;
2705 
2706 	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2707 				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2708 				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2709 				  MVPP2_PRS_RI_CPU_CODE_MASK |
2710 				  MVPP2_PRS_RI_UDF3_MASK);
2711 	if (err)
2712 		return err;
2713 
2714 	/* IPv4 Broadcast */
2715 	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2716 	if (err)
2717 		return err;
2718 
2719 	/* IPv4 Multicast */
2720 	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2721 	if (err)
2722 		return err;
2723 
2724 	/* Default IPv4 entry for unknown protocols */
2725 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2726 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2727 	pe.index = MVPP2_PE_IP4_PROTO_UN;
2728 
2729 	/* Set next lu to IPv4 */
2730 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2731 	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2732 	/* Set L4 offset */
2733 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2734 				  sizeof(struct iphdr) - 4,
2735 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2736 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2737 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2738 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2739 				 MVPP2_PRS_RI_L4_PROTO_MASK);
2740 
2741 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2742 	/* Unmask all ports */
2743 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2744 
2745 	/* Update shadow table and hw entry */
2746 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2747 	mvpp2_prs_hw_write(priv, &pe);
2748 
2749 	/* Default IPv4 entry for unicast address */
2750 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2751 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2752 	pe.index = MVPP2_PE_IP4_ADDR_UN;
2753 
2754 	/* Finished: go to flowid generation */
2755 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2756 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2757 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2758 				 MVPP2_PRS_RI_L3_ADDR_MASK);
2759 
2760 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2761 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2762 	/* Unmask all ports */
2763 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2764 
2765 	/* Update shadow table and hw entry */
2766 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2767 	mvpp2_prs_hw_write(priv, &pe);
2768 
2769 	return 0;
2770 }
2771 
2772 /* Initialize entries for IPv6 */
mvpp2_prs_ip6_init(struct mvpp2 * priv)2773 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2774 {
2775 	struct mvpp2_prs_entry pe;
2776 	int tid, err;
2777 
2778 	/* Set entries for TCP, UDP and ICMP over IPv6 */
2779 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2780 				  MVPP2_PRS_RI_L4_TCP,
2781 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2782 	if (err)
2783 		return err;
2784 
2785 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2786 				  MVPP2_PRS_RI_L4_UDP,
2787 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2788 	if (err)
2789 		return err;
2790 
2791 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2792 				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2793 				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2794 				  MVPP2_PRS_RI_CPU_CODE_MASK |
2795 				  MVPP2_PRS_RI_UDF3_MASK);
2796 	if (err)
2797 		return err;
2798 
2799 	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2800 	/* Result Info: UDF7=1, DS lite */
2801 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2802 				  MVPP2_PRS_RI_UDF7_IP6_LITE,
2803 				  MVPP2_PRS_RI_UDF7_MASK);
2804 	if (err)
2805 		return err;
2806 
2807 	/* IPv6 multicast */
2808 	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2809 	if (err)
2810 		return err;
2811 
2812 	/* Entry for checking hop limit */
2813 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2814 					MVPP2_PE_LAST_FREE_TID);
2815 	if (tid < 0)
2816 		return tid;
2817 
2818 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2819 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2820 	pe.index = tid;
2821 
2822 	/* Finished: go to flowid generation */
2823 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2824 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2825 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2826 				 MVPP2_PRS_RI_DROP_MASK,
2827 				 MVPP2_PRS_RI_L3_PROTO_MASK |
2828 				 MVPP2_PRS_RI_DROP_MASK);
2829 
2830 	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2831 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2832 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2833 
2834 	/* Update shadow table and hw entry */
2835 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2836 	mvpp2_prs_hw_write(priv, &pe);
2837 
2838 	/* Default IPv6 entry for unknown protocols */
2839 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2840 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2841 	pe.index = MVPP2_PE_IP6_PROTO_UN;
2842 
2843 	/* Finished: go to flowid generation */
2844 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2845 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2846 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2847 				 MVPP2_PRS_RI_L4_PROTO_MASK);
2848 	/* Set L4 offset relatively to our current place */
2849 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2850 				  sizeof(struct ipv6hdr) - 4,
2851 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2852 
2853 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2854 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2855 	/* Unmask all ports */
2856 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2857 
2858 	/* Update shadow table and hw entry */
2859 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2860 	mvpp2_prs_hw_write(priv, &pe);
2861 
2862 	/* Default IPv6 entry for unknown ext protocols */
2863 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2864 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2865 	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2866 
2867 	/* Finished: go to flowid generation */
2868 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2869 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2870 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2871 				 MVPP2_PRS_RI_L4_PROTO_MASK);
2872 
2873 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2874 				 MVPP2_PRS_IPV6_EXT_AI_BIT);
2875 	/* Unmask all ports */
2876 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2877 
2878 	/* Update shadow table and hw entry */
2879 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2880 	mvpp2_prs_hw_write(priv, &pe);
2881 
2882 	/* Default IPv6 entry for unicast address */
2883 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2884 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2885 	pe.index = MVPP2_PE_IP6_ADDR_UN;
2886 
2887 	/* Finished: go to IPv6 again */
2888 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2889 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2890 				 MVPP2_PRS_RI_L3_ADDR_MASK);
2891 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2892 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2893 	/* Shift back to IPV6 NH */
2894 	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2895 
2896 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2897 	/* Unmask all ports */
2898 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2899 
2900 	/* Update shadow table and hw entry */
2901 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2902 	mvpp2_prs_hw_write(priv, &pe);
2903 
2904 	return 0;
2905 }
2906 
2907 /* Parser default initialization */
mvpp2_prs_default_init(struct platform_device * pdev,struct mvpp2 * priv)2908 static int mvpp2_prs_default_init(struct platform_device *pdev,
2909 				  struct mvpp2 *priv)
2910 {
2911 	int err, index, i;
2912 
2913 	/* Enable tcam table */
2914 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2915 
2916 	/* Clear all tcam and sram entries */
2917 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2918 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2919 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2920 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2921 
2922 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2923 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2924 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2925 	}
2926 
2927 	/* Invalidate all tcam entries */
2928 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2929 		mvpp2_prs_hw_inv(priv, index);
2930 
2931 	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2932 					sizeof(struct mvpp2_prs_shadow),
2933 					GFP_KERNEL);
2934 	if (!priv->prs_shadow)
2935 		return -ENOMEM;
2936 
2937 	/* Always start from lookup = 0 */
2938 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2939 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2940 				       MVPP2_PRS_PORT_LU_MAX, 0);
2941 
2942 	mvpp2_prs_def_flow_init(priv);
2943 
2944 	mvpp2_prs_mh_init(priv);
2945 
2946 	mvpp2_prs_mac_init(priv);
2947 
2948 	mvpp2_prs_dsa_init(priv);
2949 
2950 	err = mvpp2_prs_etype_init(priv);
2951 	if (err)
2952 		return err;
2953 
2954 	err = mvpp2_prs_vlan_init(pdev, priv);
2955 	if (err)
2956 		return err;
2957 
2958 	err = mvpp2_prs_pppoe_init(priv);
2959 	if (err)
2960 		return err;
2961 
2962 	err = mvpp2_prs_ip6_init(priv);
2963 	if (err)
2964 		return err;
2965 
2966 	err = mvpp2_prs_ip4_init(priv);
2967 	if (err)
2968 		return err;
2969 
2970 	return 0;
2971 }
2972 
2973 /* Compare MAC DA with tcam entry data */
mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry * pe,const u8 * da,unsigned char * mask)2974 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2975 				       const u8 *da, unsigned char *mask)
2976 {
2977 	unsigned char tcam_byte, tcam_mask;
2978 	int index;
2979 
2980 	for (index = 0; index < ETH_ALEN; index++) {
2981 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2982 		if (tcam_mask != mask[index])
2983 			return false;
2984 
2985 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2986 			return false;
2987 	}
2988 
2989 	return true;
2990 }
2991 
2992 /* Find tcam entry with matched pair <MAC DA, port> */
2993 static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 * priv,int pmap,const u8 * da,unsigned char * mask,int udf_type)2994 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2995 			    unsigned char *mask, int udf_type)
2996 {
2997 	struct mvpp2_prs_entry *pe;
2998 	int tid;
2999 
3000 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3001 	if (!pe)
3002 		return NULL;
3003 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3004 
3005 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
3006 	for (tid = MVPP2_PE_FIRST_FREE_TID;
3007 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3008 		unsigned int entry_pmap;
3009 
3010 		if (!priv->prs_shadow[tid].valid ||
3011 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3012 		    (priv->prs_shadow[tid].udf != udf_type))
3013 			continue;
3014 
3015 		pe->index = tid;
3016 		mvpp2_prs_hw_read(priv, pe);
3017 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3018 
3019 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3020 		    entry_pmap == pmap)
3021 			return pe;
3022 	}
3023 	kfree(pe);
3024 
3025 	return NULL;
3026 }
3027 
3028 /* Update parser's mac da entry */
mvpp2_prs_mac_da_accept(struct mvpp2 * priv,int port,const u8 * da,bool add)3029 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3030 				   const u8 *da, bool add)
3031 {
3032 	struct mvpp2_prs_entry *pe;
3033 	unsigned int pmap, len, ri;
3034 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3035 	int tid;
3036 
3037 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3038 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3039 					 MVPP2_PRS_UDF_MAC_DEF);
3040 
3041 	/* No such entry */
3042 	if (!pe) {
3043 		if (!add)
3044 			return 0;
3045 
3046 		/* Create new TCAM entry */
3047 		/* Find first range mac entry*/
3048 		for (tid = MVPP2_PE_FIRST_FREE_TID;
3049 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3050 			if (priv->prs_shadow[tid].valid &&
3051 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3052 			    (priv->prs_shadow[tid].udf ==
3053 						       MVPP2_PRS_UDF_MAC_RANGE))
3054 				break;
3055 
3056 		/* Go through the all entries from first to last */
3057 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3058 						tid - 1);
3059 		if (tid < 0)
3060 			return tid;
3061 
3062 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3063 		if (!pe)
3064 			return -1;
3065 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3066 		pe->index = tid;
3067 
3068 		/* Mask all ports */
3069 		mvpp2_prs_tcam_port_map_set(pe, 0);
3070 	}
3071 
3072 	/* Update port mask */
3073 	mvpp2_prs_tcam_port_set(pe, port, add);
3074 
3075 	/* Invalidate the entry if no ports are left enabled */
3076 	pmap = mvpp2_prs_tcam_port_map_get(pe);
3077 	if (pmap == 0) {
3078 		if (add) {
3079 			kfree(pe);
3080 			return -1;
3081 		}
3082 		mvpp2_prs_hw_inv(priv, pe->index);
3083 		priv->prs_shadow[pe->index].valid = false;
3084 		kfree(pe);
3085 		return 0;
3086 	}
3087 
3088 	/* Continue - set next lookup */
3089 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3090 
3091 	/* Set match on DA */
3092 	len = ETH_ALEN;
3093 	while (len--)
3094 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3095 
3096 	/* Set result info bits */
3097 	if (is_broadcast_ether_addr(da))
3098 		ri = MVPP2_PRS_RI_L2_BCAST;
3099 	else if (is_multicast_ether_addr(da))
3100 		ri = MVPP2_PRS_RI_L2_MCAST;
3101 	else
3102 		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3103 
3104 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3105 				 MVPP2_PRS_RI_MAC_ME_MASK);
3106 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3107 				MVPP2_PRS_RI_MAC_ME_MASK);
3108 
3109 	/* Shift to ethertype */
3110 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3111 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3112 
3113 	/* Update shadow table and hw entry */
3114 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3115 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3116 	mvpp2_prs_hw_write(priv, pe);
3117 
3118 	kfree(pe);
3119 
3120 	return 0;
3121 }
3122 
mvpp2_prs_update_mac_da(struct net_device * dev,const u8 * da)3123 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3124 {
3125 	struct mvpp2_port *port = netdev_priv(dev);
3126 	int err;
3127 
3128 	/* Remove old parser entry */
3129 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3130 				      false);
3131 	if (err)
3132 		return err;
3133 
3134 	/* Add new parser entry */
3135 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3136 	if (err)
3137 		return err;
3138 
3139 	/* Set addr in the device */
3140 	ether_addr_copy(dev->dev_addr, da);
3141 
3142 	return 0;
3143 }
3144 
3145 /* Delete all port's multicast simple (not range) entries */
mvpp2_prs_mcast_del_all(struct mvpp2 * priv,int port)3146 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3147 {
3148 	struct mvpp2_prs_entry pe;
3149 	int index, tid;
3150 
3151 	for (tid = MVPP2_PE_FIRST_FREE_TID;
3152 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3153 		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3154 
3155 		if (!priv->prs_shadow[tid].valid ||
3156 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3157 		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3158 			continue;
3159 
3160 		/* Only simple mac entries */
3161 		pe.index = tid;
3162 		mvpp2_prs_hw_read(priv, &pe);
3163 
3164 		/* Read mac addr from entry */
3165 		for (index = 0; index < ETH_ALEN; index++)
3166 			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3167 						     &da_mask[index]);
3168 
3169 		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3170 			/* Delete this entry */
3171 			mvpp2_prs_mac_da_accept(priv, port, da, false);
3172 	}
3173 }
3174 
mvpp2_prs_tag_mode_set(struct mvpp2 * priv,int port,int type)3175 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3176 {
3177 	switch (type) {
3178 	case MVPP2_TAG_TYPE_EDSA:
3179 		/* Add port to EDSA entries */
3180 		mvpp2_prs_dsa_tag_set(priv, port, true,
3181 				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3182 		mvpp2_prs_dsa_tag_set(priv, port, true,
3183 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3184 		/* Remove port from DSA entries */
3185 		mvpp2_prs_dsa_tag_set(priv, port, false,
3186 				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3187 		mvpp2_prs_dsa_tag_set(priv, port, false,
3188 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3189 		break;
3190 
3191 	case MVPP2_TAG_TYPE_DSA:
3192 		/* Add port to DSA entries */
3193 		mvpp2_prs_dsa_tag_set(priv, port, true,
3194 				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3195 		mvpp2_prs_dsa_tag_set(priv, port, true,
3196 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3197 		/* Remove port from EDSA entries */
3198 		mvpp2_prs_dsa_tag_set(priv, port, false,
3199 				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3200 		mvpp2_prs_dsa_tag_set(priv, port, false,
3201 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3202 		break;
3203 
3204 	case MVPP2_TAG_TYPE_MH:
3205 	case MVPP2_TAG_TYPE_NONE:
3206 		/* Remove port form EDSA and DSA entries */
3207 		mvpp2_prs_dsa_tag_set(priv, port, false,
3208 				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3209 		mvpp2_prs_dsa_tag_set(priv, port, false,
3210 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3211 		mvpp2_prs_dsa_tag_set(priv, port, false,
3212 				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3213 		mvpp2_prs_dsa_tag_set(priv, port, false,
3214 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3215 		break;
3216 
3217 	default:
3218 		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3219 			return -EINVAL;
3220 	}
3221 
3222 	return 0;
3223 }
3224 
3225 /* Set prs flow for the port */
mvpp2_prs_def_flow(struct mvpp2_port * port)3226 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3227 {
3228 	struct mvpp2_prs_entry *pe;
3229 	int tid;
3230 
3231 	pe = mvpp2_prs_flow_find(port->priv, port->id);
3232 
3233 	/* Such entry not exist */
3234 	if (!pe) {
3235 		/* Go through the all entires from last to first */
3236 		tid = mvpp2_prs_tcam_first_free(port->priv,
3237 						MVPP2_PE_LAST_FREE_TID,
3238 					       MVPP2_PE_FIRST_FREE_TID);
3239 		if (tid < 0)
3240 			return tid;
3241 
3242 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3243 		if (!pe)
3244 			return -ENOMEM;
3245 
3246 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3247 		pe->index = tid;
3248 
3249 		/* Set flow ID*/
3250 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3251 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3252 
3253 		/* Update shadow table */
3254 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3255 	}
3256 
3257 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3258 	mvpp2_prs_hw_write(port->priv, pe);
3259 	kfree(pe);
3260 
3261 	return 0;
3262 }
3263 
3264 /* Classifier configuration routines */
3265 
3266 /* Update classification flow table registers */
mvpp2_cls_flow_write(struct mvpp2 * priv,struct mvpp2_cls_flow_entry * fe)3267 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3268 				 struct mvpp2_cls_flow_entry *fe)
3269 {
3270 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3271 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
3272 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
3273 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
3274 }
3275 
3276 /* Update classification lookup table register */
mvpp2_cls_lookup_write(struct mvpp2 * priv,struct mvpp2_cls_lookup_entry * le)3277 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3278 				   struct mvpp2_cls_lookup_entry *le)
3279 {
3280 	u32 val;
3281 
3282 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3283 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3284 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3285 }
3286 
3287 /* Classifier default initialization */
mvpp2_cls_init(struct mvpp2 * priv)3288 static void mvpp2_cls_init(struct mvpp2 *priv)
3289 {
3290 	struct mvpp2_cls_lookup_entry le;
3291 	struct mvpp2_cls_flow_entry fe;
3292 	int index;
3293 
3294 	/* Enable classifier */
3295 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3296 
3297 	/* Clear classifier flow table */
3298 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3299 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3300 		fe.index = index;
3301 		mvpp2_cls_flow_write(priv, &fe);
3302 	}
3303 
3304 	/* Clear classifier lookup table */
3305 	le.data = 0;
3306 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3307 		le.lkpid = index;
3308 		le.way = 0;
3309 		mvpp2_cls_lookup_write(priv, &le);
3310 
3311 		le.way = 1;
3312 		mvpp2_cls_lookup_write(priv, &le);
3313 	}
3314 }
3315 
mvpp2_cls_port_config(struct mvpp2_port * port)3316 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3317 {
3318 	struct mvpp2_cls_lookup_entry le;
3319 	u32 val;
3320 
3321 	/* Set way for the port */
3322 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3323 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3324 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3325 
3326 	/* Pick the entry to be accessed in lookup ID decoding table
3327 	 * according to the way and lkpid.
3328 	 */
3329 	le.lkpid = port->id;
3330 	le.way = 0;
3331 	le.data = 0;
3332 
3333 	/* Set initial CPU queue for receiving packets */
3334 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3335 	le.data |= port->first_rxq;
3336 
3337 	/* Disable classification engines */
3338 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3339 
3340 	/* Update lookup ID table entry */
3341 	mvpp2_cls_lookup_write(port->priv, &le);
3342 }
3343 
3344 /* Set CPU queue number for oversize packets */
mvpp2_cls_oversize_rxq_set(struct mvpp2_port * port)3345 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3346 {
3347 	u32 val;
3348 
3349 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3350 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3351 
3352 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3353 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3354 
3355 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3356 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3357 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3358 }
3359 
3360 /* Buffer Manager configuration routines */
3361 
3362 /* Create pool */
mvpp2_bm_pool_create(struct platform_device * pdev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int size)3363 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3364 				struct mvpp2 *priv,
3365 				struct mvpp2_bm_pool *bm_pool, int size)
3366 {
3367 	int size_bytes;
3368 	u32 val;
3369 
3370 	size_bytes = sizeof(u32) * size;
3371 	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3372 						&bm_pool->phys_addr,
3373 						GFP_KERNEL);
3374 	if (!bm_pool->virt_addr)
3375 		return -ENOMEM;
3376 
3377 	if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3378 		dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3379 				  bm_pool->phys_addr);
3380 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3381 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3382 		return -ENOMEM;
3383 	}
3384 
3385 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3386 		    bm_pool->phys_addr);
3387 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3388 
3389 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3390 	val |= MVPP2_BM_START_MASK;
3391 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3392 
3393 	bm_pool->type = MVPP2_BM_FREE;
3394 	bm_pool->size = size;
3395 	bm_pool->pkt_size = 0;
3396 	bm_pool->buf_num = 0;
3397 	atomic_set(&bm_pool->in_use, 0);
3398 
3399 	return 0;
3400 }
3401 
3402 /* Set pool buffer size */
mvpp2_bm_pool_bufsize_set(struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int buf_size)3403 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3404 				      struct mvpp2_bm_pool *bm_pool,
3405 				      int buf_size)
3406 {
3407 	u32 val;
3408 
3409 	bm_pool->buf_size = buf_size;
3410 
3411 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3412 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3413 }
3414 
3415 /* Free all buffers from the pool */
mvpp2_bm_bufs_free(struct device * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)3416 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3417 			       struct mvpp2_bm_pool *bm_pool)
3418 {
3419 	int i;
3420 
3421 	for (i = 0; i < bm_pool->buf_num; i++) {
3422 		dma_addr_t buf_phys_addr;
3423 		u32 vaddr;
3424 
3425 		/* Get buffer virtual address (indirect access) */
3426 		buf_phys_addr = mvpp2_read(priv,
3427 					   MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3428 		vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3429 
3430 		dma_unmap_single(dev, buf_phys_addr,
3431 				 bm_pool->buf_size, DMA_FROM_DEVICE);
3432 
3433 		if (!vaddr)
3434 			break;
3435 		dev_kfree_skb_any((struct sk_buff *)vaddr);
3436 	}
3437 
3438 	/* Update BM driver with number of buffers removed from pool */
3439 	bm_pool->buf_num -= i;
3440 }
3441 
3442 /* Cleanup pool */
mvpp2_bm_pool_destroy(struct platform_device * pdev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)3443 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3444 				 struct mvpp2 *priv,
3445 				 struct mvpp2_bm_pool *bm_pool)
3446 {
3447 	u32 val;
3448 
3449 	mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3450 	if (bm_pool->buf_num) {
3451 		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3452 		return 0;
3453 	}
3454 
3455 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3456 	val |= MVPP2_BM_STOP_MASK;
3457 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3458 
3459 	dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3460 			  bm_pool->virt_addr,
3461 			  bm_pool->phys_addr);
3462 	return 0;
3463 }
3464 
mvpp2_bm_pools_init(struct platform_device * pdev,struct mvpp2 * priv)3465 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3466 			       struct mvpp2 *priv)
3467 {
3468 	int i, err, size;
3469 	struct mvpp2_bm_pool *bm_pool;
3470 
3471 	/* Create all pools with maximum size */
3472 	size = MVPP2_BM_POOL_SIZE_MAX;
3473 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3474 		bm_pool = &priv->bm_pools[i];
3475 		bm_pool->id = i;
3476 		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3477 		if (err)
3478 			goto err_unroll_pools;
3479 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3480 	}
3481 	return 0;
3482 
3483 err_unroll_pools:
3484 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3485 	for (i = i - 1; i >= 0; i--)
3486 		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3487 	return err;
3488 }
3489 
mvpp2_bm_init(struct platform_device * pdev,struct mvpp2 * priv)3490 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3491 {
3492 	int i, err;
3493 
3494 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3495 		/* Mask BM all interrupts */
3496 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3497 		/* Clear BM cause register */
3498 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3499 	}
3500 
3501 	/* Allocate and initialize BM pools */
3502 	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3503 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3504 	if (!priv->bm_pools)
3505 		return -ENOMEM;
3506 
3507 	err = mvpp2_bm_pools_init(pdev, priv);
3508 	if (err < 0)
3509 		return err;
3510 	return 0;
3511 }
3512 
3513 /* Attach long pool to rxq */
mvpp2_rxq_long_pool_set(struct mvpp2_port * port,int lrxq,int long_pool)3514 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3515 				    int lrxq, int long_pool)
3516 {
3517 	u32 val;
3518 	int prxq;
3519 
3520 	/* Get queue physical ID */
3521 	prxq = port->rxqs[lrxq]->id;
3522 
3523 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3524 	val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3525 	val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3526 		    MVPP2_RXQ_POOL_LONG_MASK);
3527 
3528 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3529 }
3530 
3531 /* Attach short pool to rxq */
mvpp2_rxq_short_pool_set(struct mvpp2_port * port,int lrxq,int short_pool)3532 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3533 				     int lrxq, int short_pool)
3534 {
3535 	u32 val;
3536 	int prxq;
3537 
3538 	/* Get queue physical ID */
3539 	prxq = port->rxqs[lrxq]->id;
3540 
3541 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3542 	val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3543 	val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3544 		    MVPP2_RXQ_POOL_SHORT_MASK);
3545 
3546 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3547 }
3548 
3549 /* Allocate skb for BM pool */
mvpp2_skb_alloc(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,dma_addr_t * buf_phys_addr,gfp_t gfp_mask)3550 static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3551 				       struct mvpp2_bm_pool *bm_pool,
3552 				       dma_addr_t *buf_phys_addr,
3553 				       gfp_t gfp_mask)
3554 {
3555 	struct sk_buff *skb;
3556 	dma_addr_t phys_addr;
3557 
3558 	skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3559 	if (!skb)
3560 		return NULL;
3561 
3562 	phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3563 				   MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3564 				    DMA_FROM_DEVICE);
3565 	if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3566 		dev_kfree_skb_any(skb);
3567 		return NULL;
3568 	}
3569 	*buf_phys_addr = phys_addr;
3570 
3571 	return skb;
3572 }
3573 
3574 /* Set pool number in a BM cookie */
mvpp2_bm_cookie_pool_set(u32 cookie,int pool)3575 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3576 {
3577 	u32 bm;
3578 
3579 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3580 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3581 
3582 	return bm;
3583 }
3584 
3585 /* Get pool number from a BM cookie */
mvpp2_bm_cookie_pool_get(u32 cookie)3586 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3587 {
3588 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3589 }
3590 
3591 /* Release buffer to BM */
mvpp2_bm_pool_put(struct mvpp2_port * port,int pool,u32 buf_phys_addr,u32 buf_virt_addr)3592 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3593 				     u32 buf_phys_addr, u32 buf_virt_addr)
3594 {
3595 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3596 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3597 }
3598 
3599 /* Release multicast buffer */
mvpp2_bm_pool_mc_put(struct mvpp2_port * port,int pool,u32 buf_phys_addr,u32 buf_virt_addr,int mc_id)3600 static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3601 				 u32 buf_phys_addr, u32 buf_virt_addr,
3602 				 int mc_id)
3603 {
3604 	u32 val = 0;
3605 
3606 	val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3607 	mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3608 
3609 	mvpp2_bm_pool_put(port, pool,
3610 			  buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3611 			  buf_virt_addr);
3612 }
3613 
3614 /* Refill BM pool */
mvpp2_pool_refill(struct mvpp2_port * port,u32 bm,u32 phys_addr,u32 cookie)3615 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3616 			      u32 phys_addr, u32 cookie)
3617 {
3618 	int pool = mvpp2_bm_cookie_pool_get(bm);
3619 
3620 	mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3621 }
3622 
3623 /* Allocate buffers for the pool */
mvpp2_bm_bufs_add(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,int buf_num)3624 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3625 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
3626 {
3627 	struct sk_buff *skb;
3628 	int i, buf_size, total_size;
3629 	u32 bm;
3630 	dma_addr_t phys_addr;
3631 
3632 	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3633 	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3634 
3635 	if (buf_num < 0 ||
3636 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
3637 		netdev_err(port->dev,
3638 			   "cannot allocate %d buffers for pool %d\n",
3639 			   buf_num, bm_pool->id);
3640 		return 0;
3641 	}
3642 
3643 	bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3644 	for (i = 0; i < buf_num; i++) {
3645 		skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3646 		if (!skb)
3647 			break;
3648 
3649 		mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3650 	}
3651 
3652 	/* Update BM driver with number of buffers added to pool */
3653 	bm_pool->buf_num += i;
3654 	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3655 
3656 	netdev_dbg(port->dev,
3657 		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3658 		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3659 		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3660 
3661 	netdev_dbg(port->dev,
3662 		   "%s pool %d: %d of %d buffers added\n",
3663 		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3664 		   bm_pool->id, i, buf_num);
3665 	return i;
3666 }
3667 
3668 /* Notify the driver that BM pool is being used as specific type and return the
3669  * pool pointer on success
3670  */
3671 static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port * port,int pool,enum mvpp2_bm_type type,int pkt_size)3672 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3673 		  int pkt_size)
3674 {
3675 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3676 	int num;
3677 
3678 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3679 		netdev_err(port->dev, "mixing pool types is forbidden\n");
3680 		return NULL;
3681 	}
3682 
3683 	if (new_pool->type == MVPP2_BM_FREE)
3684 		new_pool->type = type;
3685 
3686 	/* Allocate buffers in case BM pool is used as long pool, but packet
3687 	 * size doesn't match MTU or BM pool hasn't being used yet
3688 	 */
3689 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3690 	    (new_pool->pkt_size == 0)) {
3691 		int pkts_num;
3692 
3693 		/* Set default buffer number or free all the buffers in case
3694 		 * the pool is not empty
3695 		 */
3696 		pkts_num = new_pool->buf_num;
3697 		if (pkts_num == 0)
3698 			pkts_num = type == MVPP2_BM_SWF_LONG ?
3699 				   MVPP2_BM_LONG_BUF_NUM :
3700 				   MVPP2_BM_SHORT_BUF_NUM;
3701 		else
3702 			mvpp2_bm_bufs_free(port->dev->dev.parent,
3703 					   port->priv, new_pool);
3704 
3705 		new_pool->pkt_size = pkt_size;
3706 
3707 		/* Allocate buffers for this pool */
3708 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3709 		if (num != pkts_num) {
3710 			WARN(1, "pool %d: %d of %d allocated\n",
3711 			     new_pool->id, num, pkts_num);
3712 			return NULL;
3713 		}
3714 	}
3715 
3716 	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3717 				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3718 
3719 	return new_pool;
3720 }
3721 
3722 /* Initialize pools for swf */
mvpp2_swf_bm_pool_init(struct mvpp2_port * port)3723 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3724 {
3725 	int rxq;
3726 
3727 	if (!port->pool_long) {
3728 		port->pool_long =
3729 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3730 					 MVPP2_BM_SWF_LONG,
3731 					 port->pkt_size);
3732 		if (!port->pool_long)
3733 			return -ENOMEM;
3734 
3735 		port->pool_long->port_map |= (1 << port->id);
3736 
3737 		for (rxq = 0; rxq < rxq_number; rxq++)
3738 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3739 	}
3740 
3741 	if (!port->pool_short) {
3742 		port->pool_short =
3743 			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3744 					  MVPP2_BM_SWF_SHORT,
3745 					  MVPP2_BM_SHORT_PKT_SIZE);
3746 		if (!port->pool_short)
3747 			return -ENOMEM;
3748 
3749 		port->pool_short->port_map |= (1 << port->id);
3750 
3751 		for (rxq = 0; rxq < rxq_number; rxq++)
3752 			mvpp2_rxq_short_pool_set(port, rxq,
3753 						 port->pool_short->id);
3754 	}
3755 
3756 	return 0;
3757 }
3758 
mvpp2_bm_update_mtu(struct net_device * dev,int mtu)3759 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3760 {
3761 	struct mvpp2_port *port = netdev_priv(dev);
3762 	struct mvpp2_bm_pool *port_pool = port->pool_long;
3763 	int num, pkts_num = port_pool->buf_num;
3764 	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3765 
3766 	/* Update BM pool with new buffer size */
3767 	mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3768 	if (port_pool->buf_num) {
3769 		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3770 		return -EIO;
3771 	}
3772 
3773 	port_pool->pkt_size = pkt_size;
3774 	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3775 	if (num != pkts_num) {
3776 		WARN(1, "pool %d: %d of %d allocated\n",
3777 		     port_pool->id, num, pkts_num);
3778 		return -EIO;
3779 	}
3780 
3781 	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3782 				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3783 	dev->mtu = mtu;
3784 	netdev_update_features(dev);
3785 	return 0;
3786 }
3787 
mvpp2_interrupts_enable(struct mvpp2_port * port)3788 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3789 {
3790 	int cpu, cpu_mask = 0;
3791 
3792 	for_each_present_cpu(cpu)
3793 		cpu_mask |= 1 << cpu;
3794 	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3795 		    MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3796 }
3797 
mvpp2_interrupts_disable(struct mvpp2_port * port)3798 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3799 {
3800 	int cpu, cpu_mask = 0;
3801 
3802 	for_each_present_cpu(cpu)
3803 		cpu_mask |= 1 << cpu;
3804 	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3805 		    MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3806 }
3807 
3808 /* Mask the current CPU's Rx/Tx interrupts */
mvpp2_interrupts_mask(void * arg)3809 static void mvpp2_interrupts_mask(void *arg)
3810 {
3811 	struct mvpp2_port *port = arg;
3812 
3813 	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3814 }
3815 
3816 /* Unmask the current CPU's Rx/Tx interrupts */
mvpp2_interrupts_unmask(void * arg)3817 static void mvpp2_interrupts_unmask(void *arg)
3818 {
3819 	struct mvpp2_port *port = arg;
3820 
3821 	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3822 		    (MVPP2_CAUSE_MISC_SUM_MASK |
3823 		     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3824 }
3825 
3826 /* Port configuration routines */
3827 
mvpp2_port_mii_set(struct mvpp2_port * port)3828 static void mvpp2_port_mii_set(struct mvpp2_port *port)
3829 {
3830 	u32 val;
3831 
3832 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3833 
3834 	switch (port->phy_interface) {
3835 	case PHY_INTERFACE_MODE_SGMII:
3836 		val |= MVPP2_GMAC_INBAND_AN_MASK;
3837 		break;
3838 	case PHY_INTERFACE_MODE_RGMII:
3839 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
3840 	default:
3841 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3842 	}
3843 
3844 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3845 }
3846 
mvpp2_port_fc_adv_enable(struct mvpp2_port * port)3847 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3848 {
3849 	u32 val;
3850 
3851 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3852 	val |= MVPP2_GMAC_FC_ADV_EN;
3853 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3854 }
3855 
mvpp2_port_enable(struct mvpp2_port * port)3856 static void mvpp2_port_enable(struct mvpp2_port *port)
3857 {
3858 	u32 val;
3859 
3860 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3861 	val |= MVPP2_GMAC_PORT_EN_MASK;
3862 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3863 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3864 }
3865 
mvpp2_port_disable(struct mvpp2_port * port)3866 static void mvpp2_port_disable(struct mvpp2_port *port)
3867 {
3868 	u32 val;
3869 
3870 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3871 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3872 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3873 }
3874 
3875 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
mvpp2_port_periodic_xon_disable(struct mvpp2_port * port)3876 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3877 {
3878 	u32 val;
3879 
3880 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3881 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3882 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3883 }
3884 
3885 /* Configure loopback port */
mvpp2_port_loopback_set(struct mvpp2_port * port)3886 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3887 {
3888 	u32 val;
3889 
3890 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3891 
3892 	if (port->speed == 1000)
3893 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3894 	else
3895 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3896 
3897 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3898 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3899 	else
3900 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3901 
3902 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3903 }
3904 
mvpp2_port_reset(struct mvpp2_port * port)3905 static void mvpp2_port_reset(struct mvpp2_port *port)
3906 {
3907 	u32 val;
3908 
3909 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3910 		    ~MVPP2_GMAC_PORT_RESET_MASK;
3911 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3912 
3913 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3914 	       MVPP2_GMAC_PORT_RESET_MASK)
3915 		continue;
3916 }
3917 
3918 /* Change maximum receive size of the port */
mvpp2_gmac_max_rx_size_set(struct mvpp2_port * port)3919 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3920 {
3921 	u32 val;
3922 
3923 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3924 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3925 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3926 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3927 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3928 }
3929 
3930 /* Set defaults to the MVPP2 port */
mvpp2_defaults_set(struct mvpp2_port * port)3931 static void mvpp2_defaults_set(struct mvpp2_port *port)
3932 {
3933 	int tx_port_num, val, queue, ptxq, lrxq;
3934 
3935 	/* Configure port to loopback if needed */
3936 	if (port->flags & MVPP2_F_LOOPBACK)
3937 		mvpp2_port_loopback_set(port);
3938 
3939 	/* Update TX FIFO MIN Threshold */
3940 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3941 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3942 	/* Min. TX threshold must be less than minimal packet length */
3943 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3944 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3945 
3946 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3947 	tx_port_num = mvpp2_egress_port(port);
3948 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3949 		    tx_port_num);
3950 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3951 
3952 	/* Close bandwidth for all queues */
3953 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3954 		ptxq = mvpp2_txq_phys(port->id, queue);
3955 		mvpp2_write(port->priv,
3956 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3957 	}
3958 
3959 	/* Set refill period to 1 usec, refill tokens
3960 	 * and bucket size to maximum
3961 	 */
3962 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3963 		    port->priv->tclk / USEC_PER_SEC);
3964 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3965 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3966 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3967 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3968 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3969 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3970 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3971 
3972 	/* Set MaximumLowLatencyPacketSize value to 256 */
3973 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3974 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3975 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3976 
3977 	/* Enable Rx cache snoop */
3978 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3979 		queue = port->rxqs[lrxq]->id;
3980 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3981 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3982 			   MVPP2_SNOOP_BUF_HDR_MASK;
3983 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3984 	}
3985 
3986 	/* At default, mask all interrupts to all present cpus */
3987 	mvpp2_interrupts_disable(port);
3988 }
3989 
3990 /* Enable/disable receiving packets */
mvpp2_ingress_enable(struct mvpp2_port * port)3991 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3992 {
3993 	u32 val;
3994 	int lrxq, queue;
3995 
3996 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3997 		queue = port->rxqs[lrxq]->id;
3998 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3999 		val &= ~MVPP2_RXQ_DISABLE_MASK;
4000 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4001 	}
4002 }
4003 
mvpp2_ingress_disable(struct mvpp2_port * port)4004 static void mvpp2_ingress_disable(struct mvpp2_port *port)
4005 {
4006 	u32 val;
4007 	int lrxq, queue;
4008 
4009 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4010 		queue = port->rxqs[lrxq]->id;
4011 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4012 		val |= MVPP2_RXQ_DISABLE_MASK;
4013 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4014 	}
4015 }
4016 
4017 /* Enable transmit via physical egress queue
4018  * - HW starts take descriptors from DRAM
4019  */
mvpp2_egress_enable(struct mvpp2_port * port)4020 static void mvpp2_egress_enable(struct mvpp2_port *port)
4021 {
4022 	u32 qmap;
4023 	int queue;
4024 	int tx_port_num = mvpp2_egress_port(port);
4025 
4026 	/* Enable all initialized TXs. */
4027 	qmap = 0;
4028 	for (queue = 0; queue < txq_number; queue++) {
4029 		struct mvpp2_tx_queue *txq = port->txqs[queue];
4030 
4031 		if (txq->descs != NULL)
4032 			qmap |= (1 << queue);
4033 	}
4034 
4035 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4036 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4037 }
4038 
4039 /* Disable transmit via physical egress queue
4040  * - HW doesn't take descriptors from DRAM
4041  */
mvpp2_egress_disable(struct mvpp2_port * port)4042 static void mvpp2_egress_disable(struct mvpp2_port *port)
4043 {
4044 	u32 reg_data;
4045 	int delay;
4046 	int tx_port_num = mvpp2_egress_port(port);
4047 
4048 	/* Issue stop command for active channels only */
4049 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4050 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4051 		    MVPP2_TXP_SCHED_ENQ_MASK;
4052 	if (reg_data != 0)
4053 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4054 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4055 
4056 	/* Wait for all Tx activity to terminate. */
4057 	delay = 0;
4058 	do {
4059 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4060 			netdev_warn(port->dev,
4061 				    "Tx stop timed out, status=0x%08x\n",
4062 				    reg_data);
4063 			break;
4064 		}
4065 		mdelay(1);
4066 		delay++;
4067 
4068 		/* Check port TX Command register that all
4069 		 * Tx queues are stopped
4070 		 */
4071 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4072 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4073 }
4074 
4075 /* Rx descriptors helper methods */
4076 
4077 /* Get number of Rx descriptors occupied by received packets */
4078 static inline int
mvpp2_rxq_received(struct mvpp2_port * port,int rxq_id)4079 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4080 {
4081 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4082 
4083 	return val & MVPP2_RXQ_OCCUPIED_MASK;
4084 }
4085 
4086 /* Update Rx queue status with the number of occupied and available
4087  * Rx descriptor slots.
4088  */
4089 static inline void
mvpp2_rxq_status_update(struct mvpp2_port * port,int rxq_id,int used_count,int free_count)4090 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4091 			int used_count, int free_count)
4092 {
4093 	/* Decrement the number of used descriptors and increment count
4094 	 * increment the number of free descriptors.
4095 	 */
4096 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4097 
4098 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4099 }
4100 
4101 /* Get pointer to next RX descriptor to be processed by SW */
4102 static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue * rxq)4103 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4104 {
4105 	int rx_desc = rxq->next_desc_to_proc;
4106 
4107 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4108 	prefetch(rxq->descs + rxq->next_desc_to_proc);
4109 	return rxq->descs + rx_desc;
4110 }
4111 
4112 /* Set rx queue offset */
mvpp2_rxq_offset_set(struct mvpp2_port * port,int prxq,int offset)4113 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4114 				 int prxq, int offset)
4115 {
4116 	u32 val;
4117 
4118 	/* Convert offset from bytes to units of 32 bytes */
4119 	offset = offset >> 5;
4120 
4121 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4122 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4123 
4124 	/* Offset is in */
4125 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4126 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
4127 
4128 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4129 }
4130 
4131 /* Obtain BM cookie information from descriptor */
mvpp2_bm_cookie_build(struct mvpp2_rx_desc * rx_desc)4132 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4133 {
4134 	int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4135 		   MVPP2_RXD_BM_POOL_ID_OFFS;
4136 	int cpu = smp_processor_id();
4137 
4138 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4139 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4140 }
4141 
4142 /* Tx descriptors helper methods */
4143 
4144 /* Get number of Tx descriptors waiting to be transmitted by HW */
mvpp2_txq_pend_desc_num_get(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4145 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4146 				       struct mvpp2_tx_queue *txq)
4147 {
4148 	u32 val;
4149 
4150 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4151 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4152 
4153 	return val & MVPP2_TXQ_PENDING_MASK;
4154 }
4155 
4156 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4157 static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue * txq)4158 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4159 {
4160 	int tx_desc = txq->next_desc_to_proc;
4161 
4162 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4163 	return txq->descs + tx_desc;
4164 }
4165 
4166 /* Update HW with number of aggregated Tx descriptors to be sent */
mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port * port,int pending)4167 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4168 {
4169 	/* aggregated access - relevant TXQ number is written in TX desc */
4170 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4171 }
4172 
4173 
4174 /* Check if there are enough free descriptors in aggregated txq.
4175  * If not, update the number of occupied descriptors and repeat the check.
4176  */
mvpp2_aggr_desc_num_check(struct mvpp2 * priv,struct mvpp2_tx_queue * aggr_txq,int num)4177 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4178 				     struct mvpp2_tx_queue *aggr_txq, int num)
4179 {
4180 	if ((aggr_txq->count + num) > aggr_txq->size) {
4181 		/* Update number of occupied aggregated Tx descriptors */
4182 		int cpu = smp_processor_id();
4183 		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4184 
4185 		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4186 	}
4187 
4188 	if ((aggr_txq->count + num) > aggr_txq->size)
4189 		return -ENOMEM;
4190 
4191 	return 0;
4192 }
4193 
4194 /* Reserved Tx descriptors allocation request */
mvpp2_txq_alloc_reserved_desc(struct mvpp2 * priv,struct mvpp2_tx_queue * txq,int num)4195 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4196 					 struct mvpp2_tx_queue *txq, int num)
4197 {
4198 	u32 val;
4199 
4200 	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4201 	mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4202 
4203 	val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4204 
4205 	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4206 }
4207 
4208 /* Check if there are enough reserved descriptors for transmission.
4209  * If not, request chunk of reserved descriptors and check again.
4210  */
mvpp2_txq_reserved_desc_num_proc(struct mvpp2 * priv,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu,int num)4211 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4212 					    struct mvpp2_tx_queue *txq,
4213 					    struct mvpp2_txq_pcpu *txq_pcpu,
4214 					    int num)
4215 {
4216 	int req, cpu, desc_count;
4217 
4218 	if (txq_pcpu->reserved_num >= num)
4219 		return 0;
4220 
4221 	/* Not enough descriptors reserved! Update the reserved descriptor
4222 	 * count and check again.
4223 	 */
4224 
4225 	desc_count = 0;
4226 	/* Compute total of used descriptors */
4227 	for_each_present_cpu(cpu) {
4228 		struct mvpp2_txq_pcpu *txq_pcpu_aux;
4229 
4230 		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4231 		desc_count += txq_pcpu_aux->count;
4232 		desc_count += txq_pcpu_aux->reserved_num;
4233 	}
4234 
4235 	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4236 	desc_count += req;
4237 
4238 	if (desc_count >
4239 	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4240 		return -ENOMEM;
4241 
4242 	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4243 
4244 	/* OK, the descriptor cound has been updated: check again. */
4245 	if (txq_pcpu->reserved_num < num)
4246 		return -ENOMEM;
4247 	return 0;
4248 }
4249 
4250 /* Release the last allocated Tx descriptor. Useful to handle DMA
4251  * mapping failures in the Tx path.
4252  */
mvpp2_txq_desc_put(struct mvpp2_tx_queue * txq)4253 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4254 {
4255 	if (txq->next_desc_to_proc == 0)
4256 		txq->next_desc_to_proc = txq->last_desc - 1;
4257 	else
4258 		txq->next_desc_to_proc--;
4259 }
4260 
4261 /* Set Tx descriptors fields relevant for CSUM calculation */
mvpp2_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)4262 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4263 			       int ip_hdr_len, int l4_proto)
4264 {
4265 	u32 command;
4266 
4267 	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4268 	 * G_L4_chk, L4_type required only for checksum calculation
4269 	 */
4270 	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4271 	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4272 	command |= MVPP2_TXD_IP_CSUM_DISABLE;
4273 
4274 	if (l3_proto == swab16(ETH_P_IP)) {
4275 		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
4276 		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
4277 	} else {
4278 		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
4279 	}
4280 
4281 	if (l4_proto == IPPROTO_TCP) {
4282 		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
4283 		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4284 	} else if (l4_proto == IPPROTO_UDP) {
4285 		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
4286 		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4287 	} else {
4288 		command |= MVPP2_TXD_L4_CSUM_NOT;
4289 	}
4290 
4291 	return command;
4292 }
4293 
4294 /* Get number of sent descriptors and decrement counter.
4295  * The number of sent descriptors is returned.
4296  * Per-CPU access
4297  */
mvpp2_txq_sent_desc_proc(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4298 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4299 					   struct mvpp2_tx_queue *txq)
4300 {
4301 	u32 val;
4302 
4303 	/* Reading status reg resets transmitted descriptor counter */
4304 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4305 
4306 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4307 		MVPP2_TRANSMITTED_COUNT_OFFSET;
4308 }
4309 
mvpp2_txq_sent_counter_clear(void * arg)4310 static void mvpp2_txq_sent_counter_clear(void *arg)
4311 {
4312 	struct mvpp2_port *port = arg;
4313 	int queue;
4314 
4315 	for (queue = 0; queue < txq_number; queue++) {
4316 		int id = port->txqs[queue]->id;
4317 
4318 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4319 	}
4320 }
4321 
4322 /* Set max sizes for Tx queues */
mvpp2_txp_max_tx_size_set(struct mvpp2_port * port)4323 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4324 {
4325 	u32	val, size, mtu;
4326 	int	txq, tx_port_num;
4327 
4328 	mtu = port->pkt_size * 8;
4329 	if (mtu > MVPP2_TXP_MTU_MAX)
4330 		mtu = MVPP2_TXP_MTU_MAX;
4331 
4332 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4333 	mtu = 3 * mtu;
4334 
4335 	/* Indirect access to registers */
4336 	tx_port_num = mvpp2_egress_port(port);
4337 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4338 
4339 	/* Set MTU */
4340 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4341 	val &= ~MVPP2_TXP_MTU_MAX;
4342 	val |= mtu;
4343 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4344 
4345 	/* TXP token size and all TXQs token size must be larger that MTU */
4346 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4347 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4348 	if (size < mtu) {
4349 		size = mtu;
4350 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4351 		val |= size;
4352 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4353 	}
4354 
4355 	for (txq = 0; txq < txq_number; txq++) {
4356 		val = mvpp2_read(port->priv,
4357 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4358 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4359 
4360 		if (size < mtu) {
4361 			size = mtu;
4362 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4363 			val |= size;
4364 			mvpp2_write(port->priv,
4365 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4366 				    val);
4367 		}
4368 	}
4369 }
4370 
4371 /* Set the number of packets that will be received before Rx interrupt
4372  * will be generated by HW.
4373  */
mvpp2_rx_pkts_coal_set(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq,u32 pkts)4374 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4375 				   struct mvpp2_rx_queue *rxq, u32 pkts)
4376 {
4377 	u32 val;
4378 
4379 	val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4380 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4381 	mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4382 
4383 	rxq->pkts_coal = pkts;
4384 }
4385 
4386 /* Set the time delay in usec before Rx interrupt */
mvpp2_rx_time_coal_set(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq,u32 usec)4387 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4388 				   struct mvpp2_rx_queue *rxq, u32 usec)
4389 {
4390 	u32 val;
4391 
4392 	val = (port->priv->tclk / USEC_PER_SEC) * usec;
4393 	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4394 
4395 	rxq->time_coal = usec;
4396 }
4397 
4398 /* Free Tx queue skbuffs */
mvpp2_txq_bufs_free(struct mvpp2_port * port,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu,int num)4399 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4400 				struct mvpp2_tx_queue *txq,
4401 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4402 {
4403 	int i;
4404 
4405 	for (i = 0; i < num; i++) {
4406 		dma_addr_t buf_phys_addr =
4407 				    txq_pcpu->tx_buffs[txq_pcpu->txq_get_index];
4408 		struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4409 
4410 		mvpp2_txq_inc_get(txq_pcpu);
4411 
4412 		dma_unmap_single(port->dev->dev.parent, buf_phys_addr,
4413 				 skb_headlen(skb), DMA_TO_DEVICE);
4414 		if (!skb)
4415 			continue;
4416 		dev_kfree_skb_any(skb);
4417 	}
4418 }
4419 
mvpp2_get_rx_queue(struct mvpp2_port * port,u32 cause)4420 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4421 							u32 cause)
4422 {
4423 	int queue = fls(cause) - 1;
4424 
4425 	return port->rxqs[queue];
4426 }
4427 
mvpp2_get_tx_queue(struct mvpp2_port * port,u32 cause)4428 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4429 							u32 cause)
4430 {
4431 	int queue = fls(cause) - 1;
4432 
4433 	return port->txqs[queue];
4434 }
4435 
4436 /* Handle end of transmission */
mvpp2_txq_done(struct mvpp2_port * port,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu)4437 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4438 			   struct mvpp2_txq_pcpu *txq_pcpu)
4439 {
4440 	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4441 	int tx_done;
4442 
4443 	if (txq_pcpu->cpu != smp_processor_id())
4444 		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4445 
4446 	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4447 	if (!tx_done)
4448 		return;
4449 	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4450 
4451 	txq_pcpu->count -= tx_done;
4452 
4453 	if (netif_tx_queue_stopped(nq))
4454 		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4455 			netif_tx_wake_queue(nq);
4456 }
4457 
mvpp2_tx_done(struct mvpp2_port * port,u32 cause)4458 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4459 {
4460 	struct mvpp2_tx_queue *txq;
4461 	struct mvpp2_txq_pcpu *txq_pcpu;
4462 	unsigned int tx_todo = 0;
4463 
4464 	while (cause) {
4465 		txq = mvpp2_get_tx_queue(port, cause);
4466 		if (!txq)
4467 			break;
4468 
4469 		txq_pcpu = this_cpu_ptr(txq->pcpu);
4470 
4471 		if (txq_pcpu->count) {
4472 			mvpp2_txq_done(port, txq, txq_pcpu);
4473 			tx_todo += txq_pcpu->count;
4474 		}
4475 
4476 		cause &= ~(1 << txq->log_id);
4477 	}
4478 	return tx_todo;
4479 }
4480 
4481 /* Rx/Tx queue initialization/cleanup methods */
4482 
4483 /* Allocate and initialize descriptors for aggr TXQ */
mvpp2_aggr_txq_init(struct platform_device * pdev,struct mvpp2_tx_queue * aggr_txq,int desc_num,int cpu,struct mvpp2 * priv)4484 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4485 			       struct mvpp2_tx_queue *aggr_txq,
4486 			       int desc_num, int cpu,
4487 			       struct mvpp2 *priv)
4488 {
4489 	/* Allocate memory for TX descriptors */
4490 	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4491 				desc_num * MVPP2_DESC_ALIGNED_SIZE,
4492 				&aggr_txq->descs_phys, GFP_KERNEL);
4493 	if (!aggr_txq->descs)
4494 		return -ENOMEM;
4495 
4496 	/* Make sure descriptor address is cache line size aligned  */
4497 	BUG_ON(aggr_txq->descs !=
4498 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4499 
4500 	aggr_txq->last_desc = aggr_txq->size - 1;
4501 
4502 	/* Aggr TXQ no reset WA */
4503 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4504 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4505 
4506 	/* Set Tx descriptors queue starting address */
4507 	/* indirect access */
4508 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4509 		    aggr_txq->descs_phys);
4510 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4511 
4512 	return 0;
4513 }
4514 
4515 /* Create a specified Rx queue */
mvpp2_rxq_init(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4516 static int mvpp2_rxq_init(struct mvpp2_port *port,
4517 			  struct mvpp2_rx_queue *rxq)
4518 
4519 {
4520 	rxq->size = port->rx_ring_size;
4521 
4522 	/* Allocate memory for RX descriptors */
4523 	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4524 					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4525 					&rxq->descs_phys, GFP_KERNEL);
4526 	if (!rxq->descs)
4527 		return -ENOMEM;
4528 
4529 	BUG_ON(rxq->descs !=
4530 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4531 
4532 	rxq->last_desc = rxq->size - 1;
4533 
4534 	/* Zero occupied and non-occupied counters - direct access */
4535 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4536 
4537 	/* Set Rx descriptors queue starting address - indirect access */
4538 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4539 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4540 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4541 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4542 
4543 	/* Set Offset */
4544 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4545 
4546 	/* Set coalescing pkts and time */
4547 	mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4548 	mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4549 
4550 	/* Add number of descriptors ready for receiving packets */
4551 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4552 
4553 	return 0;
4554 }
4555 
4556 /* Push packets received by the RXQ to BM pool */
mvpp2_rxq_drop_pkts(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4557 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4558 				struct mvpp2_rx_queue *rxq)
4559 {
4560 	int rx_received, i;
4561 
4562 	rx_received = mvpp2_rxq_received(port, rxq->id);
4563 	if (!rx_received)
4564 		return;
4565 
4566 	for (i = 0; i < rx_received; i++) {
4567 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4568 		u32 bm = mvpp2_bm_cookie_build(rx_desc);
4569 
4570 		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4571 				  rx_desc->buf_cookie);
4572 	}
4573 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4574 }
4575 
4576 /* Cleanup Rx queue */
mvpp2_rxq_deinit(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4577 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4578 			     struct mvpp2_rx_queue *rxq)
4579 {
4580 	mvpp2_rxq_drop_pkts(port, rxq);
4581 
4582 	if (rxq->descs)
4583 		dma_free_coherent(port->dev->dev.parent,
4584 				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4585 				  rxq->descs,
4586 				  rxq->descs_phys);
4587 
4588 	rxq->descs             = NULL;
4589 	rxq->last_desc         = 0;
4590 	rxq->next_desc_to_proc = 0;
4591 	rxq->descs_phys        = 0;
4592 
4593 	/* Clear Rx descriptors queue starting address and size;
4594 	 * free descriptor number
4595 	 */
4596 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4597 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4598 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4599 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4600 }
4601 
4602 /* Create and initialize a Tx queue */
mvpp2_txq_init(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4603 static int mvpp2_txq_init(struct mvpp2_port *port,
4604 			  struct mvpp2_tx_queue *txq)
4605 {
4606 	u32 val;
4607 	int cpu, desc, desc_per_txq, tx_port_num;
4608 	struct mvpp2_txq_pcpu *txq_pcpu;
4609 
4610 	txq->size = port->tx_ring_size;
4611 
4612 	/* Allocate memory for Tx descriptors */
4613 	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4614 				txq->size * MVPP2_DESC_ALIGNED_SIZE,
4615 				&txq->descs_phys, GFP_KERNEL);
4616 	if (!txq->descs)
4617 		return -ENOMEM;
4618 
4619 	/* Make sure descriptor address is cache line size aligned  */
4620 	BUG_ON(txq->descs !=
4621 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4622 
4623 	txq->last_desc = txq->size - 1;
4624 
4625 	/* Set Tx descriptors queue starting address - indirect access */
4626 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4627 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4628 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4629 					     MVPP2_TXQ_DESC_SIZE_MASK);
4630 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4631 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4632 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4633 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4634 	val &= ~MVPP2_TXQ_PENDING_MASK;
4635 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4636 
4637 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4638 	 * for each existing TXQ.
4639 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4640 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4641 	 */
4642 	desc_per_txq = 16;
4643 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4644 	       (txq->log_id * desc_per_txq);
4645 
4646 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4647 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4648 		    MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4649 
4650 	/* WRR / EJP configuration - indirect access */
4651 	tx_port_num = mvpp2_egress_port(port);
4652 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4653 
4654 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4655 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4656 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4657 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4658 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4659 
4660 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4661 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4662 		    val);
4663 
4664 	for_each_present_cpu(cpu) {
4665 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4666 		txq_pcpu->size = txq->size;
4667 		txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4668 					   sizeof(*txq_pcpu->tx_skb),
4669 					   GFP_KERNEL);
4670 		if (!txq_pcpu->tx_skb)
4671 			goto error;
4672 
4673 		txq_pcpu->tx_buffs = kmalloc(txq_pcpu->size *
4674 					     sizeof(dma_addr_t), GFP_KERNEL);
4675 		if (!txq_pcpu->tx_buffs)
4676 			goto error;
4677 
4678 		txq_pcpu->count = 0;
4679 		txq_pcpu->reserved_num = 0;
4680 		txq_pcpu->txq_put_index = 0;
4681 		txq_pcpu->txq_get_index = 0;
4682 	}
4683 
4684 	return 0;
4685 
4686 error:
4687 	for_each_present_cpu(cpu) {
4688 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4689 		kfree(txq_pcpu->tx_skb);
4690 		kfree(txq_pcpu->tx_buffs);
4691 	}
4692 
4693 	dma_free_coherent(port->dev->dev.parent,
4694 			  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4695 			  txq->descs, txq->descs_phys);
4696 
4697 	return -ENOMEM;
4698 }
4699 
4700 /* Free allocated TXQ resources */
mvpp2_txq_deinit(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4701 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4702 			     struct mvpp2_tx_queue *txq)
4703 {
4704 	struct mvpp2_txq_pcpu *txq_pcpu;
4705 	int cpu;
4706 
4707 	for_each_present_cpu(cpu) {
4708 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4709 		kfree(txq_pcpu->tx_skb);
4710 		kfree(txq_pcpu->tx_buffs);
4711 	}
4712 
4713 	if (txq->descs)
4714 		dma_free_coherent(port->dev->dev.parent,
4715 				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4716 				  txq->descs, txq->descs_phys);
4717 
4718 	txq->descs             = NULL;
4719 	txq->last_desc         = 0;
4720 	txq->next_desc_to_proc = 0;
4721 	txq->descs_phys        = 0;
4722 
4723 	/* Set minimum bandwidth for disabled TXQs */
4724 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4725 
4726 	/* Set Tx descriptors queue starting address and size */
4727 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4728 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4729 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4730 }
4731 
4732 /* Cleanup Tx ports */
mvpp2_txq_clean(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4733 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4734 {
4735 	struct mvpp2_txq_pcpu *txq_pcpu;
4736 	int delay, pending, cpu;
4737 	u32 val;
4738 
4739 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4740 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4741 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4742 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4743 
4744 	/* The napi queue has been stopped so wait for all packets
4745 	 * to be transmitted.
4746 	 */
4747 	delay = 0;
4748 	do {
4749 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4750 			netdev_warn(port->dev,
4751 				    "port %d: cleaning queue %d timed out\n",
4752 				    port->id, txq->log_id);
4753 			break;
4754 		}
4755 		mdelay(1);
4756 		delay++;
4757 
4758 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4759 	} while (pending);
4760 
4761 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4762 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4763 
4764 	for_each_present_cpu(cpu) {
4765 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4766 
4767 		/* Release all packets */
4768 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4769 
4770 		/* Reset queue */
4771 		txq_pcpu->count = 0;
4772 		txq_pcpu->txq_put_index = 0;
4773 		txq_pcpu->txq_get_index = 0;
4774 	}
4775 }
4776 
4777 /* Cleanup all Tx queues */
mvpp2_cleanup_txqs(struct mvpp2_port * port)4778 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4779 {
4780 	struct mvpp2_tx_queue *txq;
4781 	int queue;
4782 	u32 val;
4783 
4784 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4785 
4786 	/* Reset Tx ports and delete Tx queues */
4787 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4788 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4789 
4790 	for (queue = 0; queue < txq_number; queue++) {
4791 		txq = port->txqs[queue];
4792 		mvpp2_txq_clean(port, txq);
4793 		mvpp2_txq_deinit(port, txq);
4794 	}
4795 
4796 	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4797 
4798 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4799 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4800 }
4801 
4802 /* Cleanup all Rx queues */
mvpp2_cleanup_rxqs(struct mvpp2_port * port)4803 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4804 {
4805 	int queue;
4806 
4807 	for (queue = 0; queue < rxq_number; queue++)
4808 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4809 }
4810 
4811 /* Init all Rx queues for port */
mvpp2_setup_rxqs(struct mvpp2_port * port)4812 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4813 {
4814 	int queue, err;
4815 
4816 	for (queue = 0; queue < rxq_number; queue++) {
4817 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4818 		if (err)
4819 			goto err_cleanup;
4820 	}
4821 	return 0;
4822 
4823 err_cleanup:
4824 	mvpp2_cleanup_rxqs(port);
4825 	return err;
4826 }
4827 
4828 /* Init all tx queues for port */
mvpp2_setup_txqs(struct mvpp2_port * port)4829 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4830 {
4831 	struct mvpp2_tx_queue *txq;
4832 	int queue, err;
4833 
4834 	for (queue = 0; queue < txq_number; queue++) {
4835 		txq = port->txqs[queue];
4836 		err = mvpp2_txq_init(port, txq);
4837 		if (err)
4838 			goto err_cleanup;
4839 	}
4840 
4841 	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4842 	return 0;
4843 
4844 err_cleanup:
4845 	mvpp2_cleanup_txqs(port);
4846 	return err;
4847 }
4848 
4849 /* The callback for per-port interrupt */
mvpp2_isr(int irq,void * dev_id)4850 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4851 {
4852 	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4853 
4854 	mvpp2_interrupts_disable(port);
4855 
4856 	napi_schedule(&port->napi);
4857 
4858 	return IRQ_HANDLED;
4859 }
4860 
4861 /* Adjust link */
mvpp2_link_event(struct net_device * dev)4862 static void mvpp2_link_event(struct net_device *dev)
4863 {
4864 	struct mvpp2_port *port = netdev_priv(dev);
4865 	struct phy_device *phydev = port->phy_dev;
4866 	int status_change = 0;
4867 	u32 val;
4868 
4869 	if (phydev->link) {
4870 		if ((port->speed != phydev->speed) ||
4871 		    (port->duplex != phydev->duplex)) {
4872 			u32 val;
4873 
4874 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4875 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4876 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4877 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4878 				 MVPP2_GMAC_AN_SPEED_EN |
4879 				 MVPP2_GMAC_AN_DUPLEX_EN);
4880 
4881 			if (phydev->duplex)
4882 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4883 
4884 			if (phydev->speed == SPEED_1000)
4885 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4886 			else if (phydev->speed == SPEED_100)
4887 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4888 
4889 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4890 
4891 			port->duplex = phydev->duplex;
4892 			port->speed  = phydev->speed;
4893 		}
4894 	}
4895 
4896 	if (phydev->link != port->link) {
4897 		if (!phydev->link) {
4898 			port->duplex = -1;
4899 			port->speed = 0;
4900 		}
4901 
4902 		port->link = phydev->link;
4903 		status_change = 1;
4904 	}
4905 
4906 	if (status_change) {
4907 		if (phydev->link) {
4908 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4909 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4910 				MVPP2_GMAC_FORCE_LINK_DOWN);
4911 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4912 			mvpp2_egress_enable(port);
4913 			mvpp2_ingress_enable(port);
4914 		} else {
4915 			mvpp2_ingress_disable(port);
4916 			mvpp2_egress_disable(port);
4917 		}
4918 		phy_print_status(phydev);
4919 	}
4920 }
4921 
mvpp2_timer_set(struct mvpp2_port_pcpu * port_pcpu)4922 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4923 {
4924 	ktime_t interval;
4925 
4926 	if (!port_pcpu->timer_scheduled) {
4927 		port_pcpu->timer_scheduled = true;
4928 		interval = ktime_set(0, MVPP2_TXDONE_HRTIMER_PERIOD_NS);
4929 		hrtimer_start(&port_pcpu->tx_done_timer, interval,
4930 			      HRTIMER_MODE_REL_PINNED);
4931 	}
4932 }
4933 
mvpp2_tx_proc_cb(unsigned long data)4934 static void mvpp2_tx_proc_cb(unsigned long data)
4935 {
4936 	struct net_device *dev = (struct net_device *)data;
4937 	struct mvpp2_port *port = netdev_priv(dev);
4938 	struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4939 	unsigned int tx_todo, cause;
4940 
4941 	if (!netif_running(dev))
4942 		return;
4943 	port_pcpu->timer_scheduled = false;
4944 
4945 	/* Process all the Tx queues */
4946 	cause = (1 << txq_number) - 1;
4947 	tx_todo = mvpp2_tx_done(port, cause);
4948 
4949 	/* Set the timer in case not all the packets were processed */
4950 	if (tx_todo)
4951 		mvpp2_timer_set(port_pcpu);
4952 }
4953 
mvpp2_hr_timer_cb(struct hrtimer * timer)4954 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4955 {
4956 	struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4957 							 struct mvpp2_port_pcpu,
4958 							 tx_done_timer);
4959 
4960 	tasklet_schedule(&port_pcpu->tx_done_tasklet);
4961 
4962 	return HRTIMER_NORESTART;
4963 }
4964 
4965 /* Main RX/TX processing routines */
4966 
4967 /* Display more error info */
mvpp2_rx_error(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)4968 static void mvpp2_rx_error(struct mvpp2_port *port,
4969 			   struct mvpp2_rx_desc *rx_desc)
4970 {
4971 	u32 status = rx_desc->status;
4972 
4973 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4974 	case MVPP2_RXD_ERR_CRC:
4975 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4976 			   status, rx_desc->data_size);
4977 		break;
4978 	case MVPP2_RXD_ERR_OVERRUN:
4979 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4980 			   status, rx_desc->data_size);
4981 		break;
4982 	case MVPP2_RXD_ERR_RESOURCE:
4983 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4984 			   status, rx_desc->data_size);
4985 		break;
4986 	}
4987 }
4988 
4989 /* Handle RX checksum offload */
mvpp2_rx_csum(struct mvpp2_port * port,u32 status,struct sk_buff * skb)4990 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4991 			  struct sk_buff *skb)
4992 {
4993 	if (((status & MVPP2_RXD_L3_IP4) &&
4994 	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4995 	    (status & MVPP2_RXD_L3_IP6))
4996 		if (((status & MVPP2_RXD_L4_UDP) ||
4997 		     (status & MVPP2_RXD_L4_TCP)) &&
4998 		     (status & MVPP2_RXD_L4_CSUM_OK)) {
4999 			skb->csum = 0;
5000 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5001 			return;
5002 		}
5003 
5004 	skb->ip_summed = CHECKSUM_NONE;
5005 }
5006 
5007 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
mvpp2_rx_refill(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,u32 bm,int is_recycle)5008 static int mvpp2_rx_refill(struct mvpp2_port *port,
5009 			   struct mvpp2_bm_pool *bm_pool,
5010 			   u32 bm, int is_recycle)
5011 {
5012 	struct sk_buff *skb;
5013 	dma_addr_t phys_addr;
5014 
5015 	if (is_recycle &&
5016 	    (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5017 		return 0;
5018 
5019 	/* No recycle or too many buffers are in use, so allocate a new skb */
5020 	skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5021 	if (!skb)
5022 		return -ENOMEM;
5023 
5024 	mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5025 	atomic_dec(&bm_pool->in_use);
5026 	return 0;
5027 }
5028 
5029 /* Handle tx checksum */
mvpp2_skb_tx_csum(struct mvpp2_port * port,struct sk_buff * skb)5030 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5031 {
5032 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
5033 		int ip_hdr_len = 0;
5034 		u8 l4_proto;
5035 
5036 		if (skb->protocol == htons(ETH_P_IP)) {
5037 			struct iphdr *ip4h = ip_hdr(skb);
5038 
5039 			/* Calculate IPv4 checksum and L4 checksum */
5040 			ip_hdr_len = ip4h->ihl;
5041 			l4_proto = ip4h->protocol;
5042 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
5043 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
5044 
5045 			/* Read l4_protocol from one of IPv6 extra headers */
5046 			if (skb_network_header_len(skb) > 0)
5047 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
5048 			l4_proto = ip6h->nexthdr;
5049 		} else {
5050 			return MVPP2_TXD_L4_CSUM_NOT;
5051 		}
5052 
5053 		return mvpp2_txq_desc_csum(skb_network_offset(skb),
5054 				skb->protocol, ip_hdr_len, l4_proto);
5055 	}
5056 
5057 	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5058 }
5059 
mvpp2_buff_hdr_rx(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)5060 static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5061 			      struct mvpp2_rx_desc *rx_desc)
5062 {
5063 	struct mvpp2_buff_hdr *buff_hdr;
5064 	struct sk_buff *skb;
5065 	u32 rx_status = rx_desc->status;
5066 	u32 buff_phys_addr;
5067 	u32 buff_virt_addr;
5068 	u32 buff_phys_addr_next;
5069 	u32 buff_virt_addr_next;
5070 	int mc_id;
5071 	int pool_id;
5072 
5073 	pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5074 		   MVPP2_RXD_BM_POOL_ID_OFFS;
5075 	buff_phys_addr = rx_desc->buf_phys_addr;
5076 	buff_virt_addr = rx_desc->buf_cookie;
5077 
5078 	do {
5079 		skb = (struct sk_buff *)buff_virt_addr;
5080 		buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5081 
5082 		mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5083 
5084 		buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5085 		buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5086 
5087 		/* Release buffer */
5088 		mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5089 				     buff_virt_addr, mc_id);
5090 
5091 		buff_phys_addr = buff_phys_addr_next;
5092 		buff_virt_addr = buff_virt_addr_next;
5093 
5094 	} while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5095 }
5096 
5097 /* Main rx processing */
mvpp2_rx(struct mvpp2_port * port,int rx_todo,struct mvpp2_rx_queue * rxq)5098 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5099 		    struct mvpp2_rx_queue *rxq)
5100 {
5101 	struct net_device *dev = port->dev;
5102 	int rx_received;
5103 	int rx_done = 0;
5104 	u32 rcvd_pkts = 0;
5105 	u32 rcvd_bytes = 0;
5106 
5107 	/* Get number of received packets and clamp the to-do */
5108 	rx_received = mvpp2_rxq_received(port, rxq->id);
5109 	if (rx_todo > rx_received)
5110 		rx_todo = rx_received;
5111 
5112 	while (rx_done < rx_todo) {
5113 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5114 		struct mvpp2_bm_pool *bm_pool;
5115 		struct sk_buff *skb;
5116 		dma_addr_t phys_addr;
5117 		u32 bm, rx_status;
5118 		int pool, rx_bytes, err;
5119 
5120 		rx_done++;
5121 		rx_status = rx_desc->status;
5122 		rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5123 		phys_addr = rx_desc->buf_phys_addr;
5124 
5125 		bm = mvpp2_bm_cookie_build(rx_desc);
5126 		pool = mvpp2_bm_cookie_pool_get(bm);
5127 		bm_pool = &port->priv->bm_pools[pool];
5128 		/* Check if buffer header is used */
5129 		if (rx_status & MVPP2_RXD_BUF_HDR) {
5130 			mvpp2_buff_hdr_rx(port, rx_desc);
5131 			continue;
5132 		}
5133 
5134 		/* In case of an error, release the requested buffer pointer
5135 		 * to the Buffer Manager. This request process is controlled
5136 		 * by the hardware, and the information about the buffer is
5137 		 * comprised by the RX descriptor.
5138 		 */
5139 		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5140 		err_drop_frame:
5141 			dev->stats.rx_errors++;
5142 			mvpp2_rx_error(port, rx_desc);
5143 			/* Return the buffer to the pool */
5144 			mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5145 					  rx_desc->buf_cookie);
5146 			continue;
5147 		}
5148 
5149 		skb = (struct sk_buff *)rx_desc->buf_cookie;
5150 
5151 		err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5152 		if (err) {
5153 			netdev_err(port->dev, "failed to refill BM pools\n");
5154 			goto err_drop_frame;
5155 		}
5156 
5157 		dma_unmap_single(dev->dev.parent, phys_addr,
5158 				 bm_pool->buf_size, DMA_FROM_DEVICE);
5159 
5160 		rcvd_pkts++;
5161 		rcvd_bytes += rx_bytes;
5162 		atomic_inc(&bm_pool->in_use);
5163 
5164 		skb_reserve(skb, MVPP2_MH_SIZE);
5165 		skb_put(skb, rx_bytes);
5166 		skb->protocol = eth_type_trans(skb, dev);
5167 		mvpp2_rx_csum(port, rx_status, skb);
5168 
5169 		napi_gro_receive(&port->napi, skb);
5170 	}
5171 
5172 	if (rcvd_pkts) {
5173 		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5174 
5175 		u64_stats_update_begin(&stats->syncp);
5176 		stats->rx_packets += rcvd_pkts;
5177 		stats->rx_bytes   += rcvd_bytes;
5178 		u64_stats_update_end(&stats->syncp);
5179 	}
5180 
5181 	/* Update Rx queue management counters */
5182 	wmb();
5183 	mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5184 
5185 	return rx_todo;
5186 }
5187 
5188 static inline void
tx_desc_unmap_put(struct device * dev,struct mvpp2_tx_queue * txq,struct mvpp2_tx_desc * desc)5189 tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5190 		  struct mvpp2_tx_desc *desc)
5191 {
5192 	dma_unmap_single(dev, desc->buf_phys_addr,
5193 			 desc->data_size, DMA_TO_DEVICE);
5194 	mvpp2_txq_desc_put(txq);
5195 }
5196 
5197 /* Handle tx fragmentation processing */
mvpp2_tx_frag_process(struct mvpp2_port * port,struct sk_buff * skb,struct mvpp2_tx_queue * aggr_txq,struct mvpp2_tx_queue * txq)5198 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5199 				 struct mvpp2_tx_queue *aggr_txq,
5200 				 struct mvpp2_tx_queue *txq)
5201 {
5202 	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5203 	struct mvpp2_tx_desc *tx_desc;
5204 	int i;
5205 	dma_addr_t buf_phys_addr;
5206 
5207 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5208 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5209 		void *addr = page_address(frag->page.p) + frag->page_offset;
5210 
5211 		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5212 		tx_desc->phys_txq = txq->id;
5213 		tx_desc->data_size = frag->size;
5214 
5215 		buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5216 					       tx_desc->data_size,
5217 					       DMA_TO_DEVICE);
5218 		if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5219 			mvpp2_txq_desc_put(txq);
5220 			goto error;
5221 		}
5222 
5223 		tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5224 		tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5225 
5226 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5227 			/* Last descriptor */
5228 			tx_desc->command = MVPP2_TXD_L_DESC;
5229 			mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5230 		} else {
5231 			/* Descriptor in the middle: Not First, Not Last */
5232 			tx_desc->command = 0;
5233 			mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5234 		}
5235 	}
5236 
5237 	return 0;
5238 
5239 error:
5240 	/* Release all descriptors that were used to map fragments of
5241 	 * this packet, as well as the corresponding DMA mappings
5242 	 */
5243 	for (i = i - 1; i >= 0; i--) {
5244 		tx_desc = txq->descs + i;
5245 		tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5246 	}
5247 
5248 	return -ENOMEM;
5249 }
5250 
5251 /* Main tx processing */
mvpp2_tx(struct sk_buff * skb,struct net_device * dev)5252 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5253 {
5254 	struct mvpp2_port *port = netdev_priv(dev);
5255 	struct mvpp2_tx_queue *txq, *aggr_txq;
5256 	struct mvpp2_txq_pcpu *txq_pcpu;
5257 	struct mvpp2_tx_desc *tx_desc;
5258 	dma_addr_t buf_phys_addr;
5259 	int frags = 0;
5260 	u16 txq_id;
5261 	u32 tx_cmd;
5262 
5263 	txq_id = skb_get_queue_mapping(skb);
5264 	txq = port->txqs[txq_id];
5265 	txq_pcpu = this_cpu_ptr(txq->pcpu);
5266 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5267 
5268 	frags = skb_shinfo(skb)->nr_frags + 1;
5269 
5270 	/* Check number of available descriptors */
5271 	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5272 	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5273 					     txq_pcpu, frags)) {
5274 		frags = 0;
5275 		goto out;
5276 	}
5277 
5278 	/* Get a descriptor for the first part of the packet */
5279 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5280 	tx_desc->phys_txq = txq->id;
5281 	tx_desc->data_size = skb_headlen(skb);
5282 
5283 	buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5284 				       tx_desc->data_size, DMA_TO_DEVICE);
5285 	if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5286 		mvpp2_txq_desc_put(txq);
5287 		frags = 0;
5288 		goto out;
5289 	}
5290 	tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5291 	tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5292 
5293 	tx_cmd = mvpp2_skb_tx_csum(port, skb);
5294 
5295 	if (frags == 1) {
5296 		/* First and Last descriptor */
5297 		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5298 		tx_desc->command = tx_cmd;
5299 		mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5300 	} else {
5301 		/* First but not Last */
5302 		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5303 		tx_desc->command = tx_cmd;
5304 		mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5305 
5306 		/* Continue with other skb fragments */
5307 		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5308 			tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5309 			frags = 0;
5310 			goto out;
5311 		}
5312 	}
5313 
5314 	txq_pcpu->reserved_num -= frags;
5315 	txq_pcpu->count += frags;
5316 	aggr_txq->count += frags;
5317 
5318 	/* Enable transmit */
5319 	wmb();
5320 	mvpp2_aggr_txq_pend_desc_add(port, frags);
5321 
5322 	if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5323 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5324 
5325 		netif_tx_stop_queue(nq);
5326 	}
5327 out:
5328 	if (frags > 0) {
5329 		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5330 
5331 		u64_stats_update_begin(&stats->syncp);
5332 		stats->tx_packets++;
5333 		stats->tx_bytes += skb->len;
5334 		u64_stats_update_end(&stats->syncp);
5335 	} else {
5336 		dev->stats.tx_dropped++;
5337 		dev_kfree_skb_any(skb);
5338 	}
5339 
5340 	/* Finalize TX processing */
5341 	if (txq_pcpu->count >= txq->done_pkts_coal)
5342 		mvpp2_txq_done(port, txq, txq_pcpu);
5343 
5344 	/* Set the timer in case not all frags were processed */
5345 	if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5346 		struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5347 
5348 		mvpp2_timer_set(port_pcpu);
5349 	}
5350 
5351 	return NETDEV_TX_OK;
5352 }
5353 
mvpp2_cause_error(struct net_device * dev,int cause)5354 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5355 {
5356 	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5357 		netdev_err(dev, "FCS error\n");
5358 	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5359 		netdev_err(dev, "rx fifo overrun error\n");
5360 	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5361 		netdev_err(dev, "tx fifo underrun error\n");
5362 }
5363 
mvpp2_poll(struct napi_struct * napi,int budget)5364 static int mvpp2_poll(struct napi_struct *napi, int budget)
5365 {
5366 	u32 cause_rx_tx, cause_rx, cause_misc;
5367 	int rx_done = 0;
5368 	struct mvpp2_port *port = netdev_priv(napi->dev);
5369 
5370 	/* Rx/Tx cause register
5371 	 *
5372 	 * Bits 0-15: each bit indicates received packets on the Rx queue
5373 	 * (bit 0 is for Rx queue 0).
5374 	 *
5375 	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5376 	 * (bit 16 is for Tx queue 0).
5377 	 *
5378 	 * Each CPU has its own Rx/Tx cause register
5379 	 */
5380 	cause_rx_tx = mvpp2_read(port->priv,
5381 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5382 	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5383 	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5384 
5385 	if (cause_misc) {
5386 		mvpp2_cause_error(port->dev, cause_misc);
5387 
5388 		/* Clear the cause register */
5389 		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5390 		mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5391 			    cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5392 	}
5393 
5394 	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5395 
5396 	/* Process RX packets */
5397 	cause_rx |= port->pending_cause_rx;
5398 	while (cause_rx && budget > 0) {
5399 		int count;
5400 		struct mvpp2_rx_queue *rxq;
5401 
5402 		rxq = mvpp2_get_rx_queue(port, cause_rx);
5403 		if (!rxq)
5404 			break;
5405 
5406 		count = mvpp2_rx(port, budget, rxq);
5407 		rx_done += count;
5408 		budget -= count;
5409 		if (budget > 0) {
5410 			/* Clear the bit associated to this Rx queue
5411 			 * so that next iteration will continue from
5412 			 * the next Rx queue.
5413 			 */
5414 			cause_rx &= ~(1 << rxq->logic_rxq);
5415 		}
5416 	}
5417 
5418 	if (budget > 0) {
5419 		cause_rx = 0;
5420 		napi_complete(napi);
5421 
5422 		mvpp2_interrupts_enable(port);
5423 	}
5424 	port->pending_cause_rx = cause_rx;
5425 	return rx_done;
5426 }
5427 
5428 /* Set hw internals when starting port */
mvpp2_start_dev(struct mvpp2_port * port)5429 static void mvpp2_start_dev(struct mvpp2_port *port)
5430 {
5431 	mvpp2_gmac_max_rx_size_set(port);
5432 	mvpp2_txp_max_tx_size_set(port);
5433 
5434 	napi_enable(&port->napi);
5435 
5436 	/* Enable interrupts on all CPUs */
5437 	mvpp2_interrupts_enable(port);
5438 
5439 	mvpp2_port_enable(port);
5440 	phy_start(port->phy_dev);
5441 	netif_tx_start_all_queues(port->dev);
5442 }
5443 
5444 /* Set hw internals when stopping port */
mvpp2_stop_dev(struct mvpp2_port * port)5445 static void mvpp2_stop_dev(struct mvpp2_port *port)
5446 {
5447 	/* Stop new packets from arriving to RXQs */
5448 	mvpp2_ingress_disable(port);
5449 
5450 	mdelay(10);
5451 
5452 	/* Disable interrupts on all CPUs */
5453 	mvpp2_interrupts_disable(port);
5454 
5455 	napi_disable(&port->napi);
5456 
5457 	netif_carrier_off(port->dev);
5458 	netif_tx_stop_all_queues(port->dev);
5459 
5460 	mvpp2_egress_disable(port);
5461 	mvpp2_port_disable(port);
5462 	phy_stop(port->phy_dev);
5463 }
5464 
5465 /* Return positive if MTU is valid */
mvpp2_check_mtu_valid(struct net_device * dev,int mtu)5466 static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5467 {
5468 	if (mtu < 68) {
5469 		netdev_err(dev, "cannot change mtu to less than 68\n");
5470 		return -EINVAL;
5471 	}
5472 
5473 	/* 9676 == 9700 - 20 and rounding to 8 */
5474 	if (mtu > 9676) {
5475 		netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5476 		mtu = 9676;
5477 	}
5478 
5479 	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5480 		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5481 			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5482 		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5483 	}
5484 
5485 	return mtu;
5486 }
5487 
mvpp2_check_ringparam_valid(struct net_device * dev,struct ethtool_ringparam * ring)5488 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5489 				       struct ethtool_ringparam *ring)
5490 {
5491 	u16 new_rx_pending = ring->rx_pending;
5492 	u16 new_tx_pending = ring->tx_pending;
5493 
5494 	if (ring->rx_pending == 0 || ring->tx_pending == 0)
5495 		return -EINVAL;
5496 
5497 	if (ring->rx_pending > MVPP2_MAX_RXD)
5498 		new_rx_pending = MVPP2_MAX_RXD;
5499 	else if (!IS_ALIGNED(ring->rx_pending, 16))
5500 		new_rx_pending = ALIGN(ring->rx_pending, 16);
5501 
5502 	if (ring->tx_pending > MVPP2_MAX_TXD)
5503 		new_tx_pending = MVPP2_MAX_TXD;
5504 	else if (!IS_ALIGNED(ring->tx_pending, 32))
5505 		new_tx_pending = ALIGN(ring->tx_pending, 32);
5506 
5507 	if (ring->rx_pending != new_rx_pending) {
5508 		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5509 			    ring->rx_pending, new_rx_pending);
5510 		ring->rx_pending = new_rx_pending;
5511 	}
5512 
5513 	if (ring->tx_pending != new_tx_pending) {
5514 		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5515 			    ring->tx_pending, new_tx_pending);
5516 		ring->tx_pending = new_tx_pending;
5517 	}
5518 
5519 	return 0;
5520 }
5521 
mvpp2_get_mac_address(struct mvpp2_port * port,unsigned char * addr)5522 static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5523 {
5524 	u32 mac_addr_l, mac_addr_m, mac_addr_h;
5525 
5526 	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5527 	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5528 	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5529 	addr[0] = (mac_addr_h >> 24) & 0xFF;
5530 	addr[1] = (mac_addr_h >> 16) & 0xFF;
5531 	addr[2] = (mac_addr_h >> 8) & 0xFF;
5532 	addr[3] = mac_addr_h & 0xFF;
5533 	addr[4] = mac_addr_m & 0xFF;
5534 	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5535 }
5536 
mvpp2_phy_connect(struct mvpp2_port * port)5537 static int mvpp2_phy_connect(struct mvpp2_port *port)
5538 {
5539 	struct phy_device *phy_dev;
5540 
5541 	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5542 				 port->phy_interface);
5543 	if (!phy_dev) {
5544 		netdev_err(port->dev, "cannot connect to phy\n");
5545 		return -ENODEV;
5546 	}
5547 	phy_dev->supported &= PHY_GBIT_FEATURES;
5548 	phy_dev->advertising = phy_dev->supported;
5549 
5550 	port->phy_dev = phy_dev;
5551 	port->link    = 0;
5552 	port->duplex  = 0;
5553 	port->speed   = 0;
5554 
5555 	return 0;
5556 }
5557 
mvpp2_phy_disconnect(struct mvpp2_port * port)5558 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5559 {
5560 	phy_disconnect(port->phy_dev);
5561 	port->phy_dev = NULL;
5562 }
5563 
mvpp2_open(struct net_device * dev)5564 static int mvpp2_open(struct net_device *dev)
5565 {
5566 	struct mvpp2_port *port = netdev_priv(dev);
5567 	unsigned char mac_bcast[ETH_ALEN] = {
5568 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5569 	int err;
5570 
5571 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5572 	if (err) {
5573 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5574 		return err;
5575 	}
5576 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5577 				      dev->dev_addr, true);
5578 	if (err) {
5579 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5580 		return err;
5581 	}
5582 	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5583 	if (err) {
5584 		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5585 		return err;
5586 	}
5587 	err = mvpp2_prs_def_flow(port);
5588 	if (err) {
5589 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5590 		return err;
5591 	}
5592 
5593 	/* Allocate the Rx/Tx queues */
5594 	err = mvpp2_setup_rxqs(port);
5595 	if (err) {
5596 		netdev_err(port->dev, "cannot allocate Rx queues\n");
5597 		return err;
5598 	}
5599 
5600 	err = mvpp2_setup_txqs(port);
5601 	if (err) {
5602 		netdev_err(port->dev, "cannot allocate Tx queues\n");
5603 		goto err_cleanup_rxqs;
5604 	}
5605 
5606 	err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5607 	if (err) {
5608 		netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5609 		goto err_cleanup_txqs;
5610 	}
5611 
5612 	/* In default link is down */
5613 	netif_carrier_off(port->dev);
5614 
5615 	err = mvpp2_phy_connect(port);
5616 	if (err < 0)
5617 		goto err_free_irq;
5618 
5619 	/* Unmask interrupts on all CPUs */
5620 	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5621 
5622 	mvpp2_start_dev(port);
5623 
5624 	return 0;
5625 
5626 err_free_irq:
5627 	free_irq(port->irq, port);
5628 err_cleanup_txqs:
5629 	mvpp2_cleanup_txqs(port);
5630 err_cleanup_rxqs:
5631 	mvpp2_cleanup_rxqs(port);
5632 	return err;
5633 }
5634 
mvpp2_stop(struct net_device * dev)5635 static int mvpp2_stop(struct net_device *dev)
5636 {
5637 	struct mvpp2_port *port = netdev_priv(dev);
5638 	struct mvpp2_port_pcpu *port_pcpu;
5639 	int cpu;
5640 
5641 	mvpp2_stop_dev(port);
5642 	mvpp2_phy_disconnect(port);
5643 
5644 	/* Mask interrupts on all CPUs */
5645 	on_each_cpu(mvpp2_interrupts_mask, port, 1);
5646 
5647 	free_irq(port->irq, port);
5648 	for_each_present_cpu(cpu) {
5649 		port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5650 
5651 		hrtimer_cancel(&port_pcpu->tx_done_timer);
5652 		port_pcpu->timer_scheduled = false;
5653 		tasklet_kill(&port_pcpu->tx_done_tasklet);
5654 	}
5655 	mvpp2_cleanup_rxqs(port);
5656 	mvpp2_cleanup_txqs(port);
5657 
5658 	return 0;
5659 }
5660 
mvpp2_set_rx_mode(struct net_device * dev)5661 static void mvpp2_set_rx_mode(struct net_device *dev)
5662 {
5663 	struct mvpp2_port *port = netdev_priv(dev);
5664 	struct mvpp2 *priv = port->priv;
5665 	struct netdev_hw_addr *ha;
5666 	int id = port->id;
5667 	bool allmulti = dev->flags & IFF_ALLMULTI;
5668 
5669 	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5670 	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5671 	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5672 
5673 	/* Remove all port->id's mcast enries */
5674 	mvpp2_prs_mcast_del_all(priv, id);
5675 
5676 	if (allmulti && !netdev_mc_empty(dev)) {
5677 		netdev_for_each_mc_addr(ha, dev)
5678 			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5679 	}
5680 }
5681 
mvpp2_set_mac_address(struct net_device * dev,void * p)5682 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5683 {
5684 	struct mvpp2_port *port = netdev_priv(dev);
5685 	const struct sockaddr *addr = p;
5686 	int err;
5687 
5688 	if (!is_valid_ether_addr(addr->sa_data)) {
5689 		err = -EADDRNOTAVAIL;
5690 		goto error;
5691 	}
5692 
5693 	if (!netif_running(dev)) {
5694 		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5695 		if (!err)
5696 			return 0;
5697 		/* Reconfigure parser to accept the original MAC address */
5698 		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5699 		if (err)
5700 			goto error;
5701 	}
5702 
5703 	mvpp2_stop_dev(port);
5704 
5705 	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5706 	if (!err)
5707 		goto out_start;
5708 
5709 	/* Reconfigure parser accept the original MAC address */
5710 	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5711 	if (err)
5712 		goto error;
5713 out_start:
5714 	mvpp2_start_dev(port);
5715 	mvpp2_egress_enable(port);
5716 	mvpp2_ingress_enable(port);
5717 	return 0;
5718 
5719 error:
5720 	netdev_err(dev, "fail to change MAC address\n");
5721 	return err;
5722 }
5723 
mvpp2_change_mtu(struct net_device * dev,int mtu)5724 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5725 {
5726 	struct mvpp2_port *port = netdev_priv(dev);
5727 	int err;
5728 
5729 	mtu = mvpp2_check_mtu_valid(dev, mtu);
5730 	if (mtu < 0) {
5731 		err = mtu;
5732 		goto error;
5733 	}
5734 
5735 	if (!netif_running(dev)) {
5736 		err = mvpp2_bm_update_mtu(dev, mtu);
5737 		if (!err) {
5738 			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5739 			return 0;
5740 		}
5741 
5742 		/* Reconfigure BM to the original MTU */
5743 		err = mvpp2_bm_update_mtu(dev, dev->mtu);
5744 		if (err)
5745 			goto error;
5746 	}
5747 
5748 	mvpp2_stop_dev(port);
5749 
5750 	err = mvpp2_bm_update_mtu(dev, mtu);
5751 	if (!err) {
5752 		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5753 		goto out_start;
5754 	}
5755 
5756 	/* Reconfigure BM to the original MTU */
5757 	err = mvpp2_bm_update_mtu(dev, dev->mtu);
5758 	if (err)
5759 		goto error;
5760 
5761 out_start:
5762 	mvpp2_start_dev(port);
5763 	mvpp2_egress_enable(port);
5764 	mvpp2_ingress_enable(port);
5765 
5766 	return 0;
5767 
5768 error:
5769 	netdev_err(dev, "fail to change MTU\n");
5770 	return err;
5771 }
5772 
5773 static struct rtnl_link_stats64 *
mvpp2_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)5774 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5775 {
5776 	struct mvpp2_port *port = netdev_priv(dev);
5777 	unsigned int start;
5778 	int cpu;
5779 
5780 	for_each_possible_cpu(cpu) {
5781 		struct mvpp2_pcpu_stats *cpu_stats;
5782 		u64 rx_packets;
5783 		u64 rx_bytes;
5784 		u64 tx_packets;
5785 		u64 tx_bytes;
5786 
5787 		cpu_stats = per_cpu_ptr(port->stats, cpu);
5788 		do {
5789 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5790 			rx_packets = cpu_stats->rx_packets;
5791 			rx_bytes   = cpu_stats->rx_bytes;
5792 			tx_packets = cpu_stats->tx_packets;
5793 			tx_bytes   = cpu_stats->tx_bytes;
5794 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5795 
5796 		stats->rx_packets += rx_packets;
5797 		stats->rx_bytes   += rx_bytes;
5798 		stats->tx_packets += tx_packets;
5799 		stats->tx_bytes   += tx_bytes;
5800 	}
5801 
5802 	stats->rx_errors	= dev->stats.rx_errors;
5803 	stats->rx_dropped	= dev->stats.rx_dropped;
5804 	stats->tx_dropped	= dev->stats.tx_dropped;
5805 
5806 	return stats;
5807 }
5808 
mvpp2_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)5809 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5810 {
5811 	struct mvpp2_port *port = netdev_priv(dev);
5812 	int ret;
5813 
5814 	if (!port->phy_dev)
5815 		return -ENOTSUPP;
5816 
5817 	ret = phy_mii_ioctl(port->phy_dev, ifr, cmd);
5818 	if (!ret)
5819 		mvpp2_link_event(dev);
5820 
5821 	return ret;
5822 }
5823 
5824 /* Ethtool methods */
5825 
5826 /* Get settings (phy address, speed) for ethtools */
mvpp2_ethtool_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)5827 static int mvpp2_ethtool_get_settings(struct net_device *dev,
5828 				      struct ethtool_cmd *cmd)
5829 {
5830 	struct mvpp2_port *port = netdev_priv(dev);
5831 
5832 	if (!port->phy_dev)
5833 		return -ENODEV;
5834 	return phy_ethtool_gset(port->phy_dev, cmd);
5835 }
5836 
5837 /* Set settings (phy address, speed) for ethtools */
mvpp2_ethtool_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)5838 static int mvpp2_ethtool_set_settings(struct net_device *dev,
5839 				      struct ethtool_cmd *cmd)
5840 {
5841 	struct mvpp2_port *port = netdev_priv(dev);
5842 
5843 	if (!port->phy_dev)
5844 		return -ENODEV;
5845 	return phy_ethtool_sset(port->phy_dev, cmd);
5846 }
5847 
5848 /* Set interrupt coalescing for ethtools */
mvpp2_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)5849 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5850 				      struct ethtool_coalesce *c)
5851 {
5852 	struct mvpp2_port *port = netdev_priv(dev);
5853 	int queue;
5854 
5855 	for (queue = 0; queue < rxq_number; queue++) {
5856 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5857 
5858 		rxq->time_coal = c->rx_coalesce_usecs;
5859 		rxq->pkts_coal = c->rx_max_coalesced_frames;
5860 		mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5861 		mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5862 	}
5863 
5864 	for (queue = 0; queue < txq_number; queue++) {
5865 		struct mvpp2_tx_queue *txq = port->txqs[queue];
5866 
5867 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
5868 	}
5869 
5870 	return 0;
5871 }
5872 
5873 /* get coalescing for ethtools */
mvpp2_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)5874 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5875 				      struct ethtool_coalesce *c)
5876 {
5877 	struct mvpp2_port *port = netdev_priv(dev);
5878 
5879 	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
5880 	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
5881 	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
5882 	return 0;
5883 }
5884 
mvpp2_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)5885 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5886 				      struct ethtool_drvinfo *drvinfo)
5887 {
5888 	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5889 		sizeof(drvinfo->driver));
5890 	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5891 		sizeof(drvinfo->version));
5892 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5893 		sizeof(drvinfo->bus_info));
5894 }
5895 
mvpp2_ethtool_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)5896 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5897 					struct ethtool_ringparam *ring)
5898 {
5899 	struct mvpp2_port *port = netdev_priv(dev);
5900 
5901 	ring->rx_max_pending = MVPP2_MAX_RXD;
5902 	ring->tx_max_pending = MVPP2_MAX_TXD;
5903 	ring->rx_pending = port->rx_ring_size;
5904 	ring->tx_pending = port->tx_ring_size;
5905 }
5906 
mvpp2_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)5907 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5908 				       struct ethtool_ringparam *ring)
5909 {
5910 	struct mvpp2_port *port = netdev_priv(dev);
5911 	u16 prev_rx_ring_size = port->rx_ring_size;
5912 	u16 prev_tx_ring_size = port->tx_ring_size;
5913 	int err;
5914 
5915 	err = mvpp2_check_ringparam_valid(dev, ring);
5916 	if (err)
5917 		return err;
5918 
5919 	if (!netif_running(dev)) {
5920 		port->rx_ring_size = ring->rx_pending;
5921 		port->tx_ring_size = ring->tx_pending;
5922 		return 0;
5923 	}
5924 
5925 	/* The interface is running, so we have to force a
5926 	 * reallocation of the queues
5927 	 */
5928 	mvpp2_stop_dev(port);
5929 	mvpp2_cleanup_rxqs(port);
5930 	mvpp2_cleanup_txqs(port);
5931 
5932 	port->rx_ring_size = ring->rx_pending;
5933 	port->tx_ring_size = ring->tx_pending;
5934 
5935 	err = mvpp2_setup_rxqs(port);
5936 	if (err) {
5937 		/* Reallocate Rx queues with the original ring size */
5938 		port->rx_ring_size = prev_rx_ring_size;
5939 		ring->rx_pending = prev_rx_ring_size;
5940 		err = mvpp2_setup_rxqs(port);
5941 		if (err)
5942 			goto err_out;
5943 	}
5944 	err = mvpp2_setup_txqs(port);
5945 	if (err) {
5946 		/* Reallocate Tx queues with the original ring size */
5947 		port->tx_ring_size = prev_tx_ring_size;
5948 		ring->tx_pending = prev_tx_ring_size;
5949 		err = mvpp2_setup_txqs(port);
5950 		if (err)
5951 			goto err_clean_rxqs;
5952 	}
5953 
5954 	mvpp2_start_dev(port);
5955 	mvpp2_egress_enable(port);
5956 	mvpp2_ingress_enable(port);
5957 
5958 	return 0;
5959 
5960 err_clean_rxqs:
5961 	mvpp2_cleanup_rxqs(port);
5962 err_out:
5963 	netdev_err(dev, "fail to change ring parameters");
5964 	return err;
5965 }
5966 
5967 /* Device ops */
5968 
5969 static const struct net_device_ops mvpp2_netdev_ops = {
5970 	.ndo_open		= mvpp2_open,
5971 	.ndo_stop		= mvpp2_stop,
5972 	.ndo_start_xmit		= mvpp2_tx,
5973 	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
5974 	.ndo_set_mac_address	= mvpp2_set_mac_address,
5975 	.ndo_change_mtu		= mvpp2_change_mtu,
5976 	.ndo_get_stats64	= mvpp2_get_stats64,
5977 	.ndo_do_ioctl		= mvpp2_ioctl,
5978 };
5979 
5980 static const struct ethtool_ops mvpp2_eth_tool_ops = {
5981 	.get_link	= ethtool_op_get_link,
5982 	.get_settings	= mvpp2_ethtool_get_settings,
5983 	.set_settings	= mvpp2_ethtool_set_settings,
5984 	.set_coalesce	= mvpp2_ethtool_set_coalesce,
5985 	.get_coalesce	= mvpp2_ethtool_get_coalesce,
5986 	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
5987 	.get_ringparam	= mvpp2_ethtool_get_ringparam,
5988 	.set_ringparam	= mvpp2_ethtool_set_ringparam,
5989 };
5990 
5991 /* Driver initialization */
5992 
mvpp2_port_power_up(struct mvpp2_port * port)5993 static void mvpp2_port_power_up(struct mvpp2_port *port)
5994 {
5995 	mvpp2_port_mii_set(port);
5996 	mvpp2_port_periodic_xon_disable(port);
5997 	mvpp2_port_fc_adv_enable(port);
5998 	mvpp2_port_reset(port);
5999 }
6000 
6001 /* Initialize port HW */
mvpp2_port_init(struct mvpp2_port * port)6002 static int mvpp2_port_init(struct mvpp2_port *port)
6003 {
6004 	struct device *dev = port->dev->dev.parent;
6005 	struct mvpp2 *priv = port->priv;
6006 	struct mvpp2_txq_pcpu *txq_pcpu;
6007 	int queue, cpu, err;
6008 
6009 	if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
6010 		return -EINVAL;
6011 
6012 	/* Disable port */
6013 	mvpp2_egress_disable(port);
6014 	mvpp2_port_disable(port);
6015 
6016 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
6017 				  GFP_KERNEL);
6018 	if (!port->txqs)
6019 		return -ENOMEM;
6020 
6021 	/* Associate physical Tx queues to this port and initialize.
6022 	 * The mapping is predefined.
6023 	 */
6024 	for (queue = 0; queue < txq_number; queue++) {
6025 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
6026 		struct mvpp2_tx_queue *txq;
6027 
6028 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
6029 		if (!txq)
6030 			return -ENOMEM;
6031 
6032 		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6033 		if (!txq->pcpu) {
6034 			err = -ENOMEM;
6035 			goto err_free_percpu;
6036 		}
6037 
6038 		txq->id = queue_phy_id;
6039 		txq->log_id = queue;
6040 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6041 		for_each_present_cpu(cpu) {
6042 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6043 			txq_pcpu->cpu = cpu;
6044 		}
6045 
6046 		port->txqs[queue] = txq;
6047 	}
6048 
6049 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6050 				  GFP_KERNEL);
6051 	if (!port->rxqs) {
6052 		err = -ENOMEM;
6053 		goto err_free_percpu;
6054 	}
6055 
6056 	/* Allocate and initialize Rx queue for this port */
6057 	for (queue = 0; queue < rxq_number; queue++) {
6058 		struct mvpp2_rx_queue *rxq;
6059 
6060 		/* Map physical Rx queue to port's logical Rx queue */
6061 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6062 		if (!rxq)
6063 			goto err_free_percpu;
6064 		/* Map this Rx queue to a physical queue */
6065 		rxq->id = port->first_rxq + queue;
6066 		rxq->port = port->id;
6067 		rxq->logic_rxq = queue;
6068 
6069 		port->rxqs[queue] = rxq;
6070 	}
6071 
6072 	/* Configure Rx queue group interrupt for this port */
6073 	mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6074 
6075 	/* Create Rx descriptor rings */
6076 	for (queue = 0; queue < rxq_number; queue++) {
6077 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6078 
6079 		rxq->size = port->rx_ring_size;
6080 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6081 		rxq->time_coal = MVPP2_RX_COAL_USEC;
6082 	}
6083 
6084 	mvpp2_ingress_disable(port);
6085 
6086 	/* Port default configuration */
6087 	mvpp2_defaults_set(port);
6088 
6089 	/* Port's classifier configuration */
6090 	mvpp2_cls_oversize_rxq_set(port);
6091 	mvpp2_cls_port_config(port);
6092 
6093 	/* Provide an initial Rx packet size */
6094 	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6095 
6096 	/* Initialize pools for swf */
6097 	err = mvpp2_swf_bm_pool_init(port);
6098 	if (err)
6099 		goto err_free_percpu;
6100 
6101 	return 0;
6102 
6103 err_free_percpu:
6104 	for (queue = 0; queue < txq_number; queue++) {
6105 		if (!port->txqs[queue])
6106 			continue;
6107 		free_percpu(port->txqs[queue]->pcpu);
6108 	}
6109 	return err;
6110 }
6111 
6112 /* Ports initialization */
mvpp2_port_probe(struct platform_device * pdev,struct device_node * port_node,struct mvpp2 * priv,int * next_first_rxq)6113 static int mvpp2_port_probe(struct platform_device *pdev,
6114 			    struct device_node *port_node,
6115 			    struct mvpp2 *priv,
6116 			    int *next_first_rxq)
6117 {
6118 	struct device_node *phy_node;
6119 	struct mvpp2_port *port;
6120 	struct mvpp2_port_pcpu *port_pcpu;
6121 	struct net_device *dev;
6122 	struct resource *res;
6123 	const char *dt_mac_addr;
6124 	const char *mac_from;
6125 	char hw_mac_addr[ETH_ALEN];
6126 	u32 id;
6127 	int features;
6128 	int phy_mode;
6129 	int priv_common_regs_num = 2;
6130 	int err, i, cpu;
6131 
6132 	dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6133 				 rxq_number);
6134 	if (!dev)
6135 		return -ENOMEM;
6136 
6137 	phy_node = of_parse_phandle(port_node, "phy", 0);
6138 	if (!phy_node) {
6139 		dev_err(&pdev->dev, "missing phy\n");
6140 		err = -ENODEV;
6141 		goto err_free_netdev;
6142 	}
6143 
6144 	phy_mode = of_get_phy_mode(port_node);
6145 	if (phy_mode < 0) {
6146 		dev_err(&pdev->dev, "incorrect phy mode\n");
6147 		err = phy_mode;
6148 		goto err_free_netdev;
6149 	}
6150 
6151 	if (of_property_read_u32(port_node, "port-id", &id)) {
6152 		err = -EINVAL;
6153 		dev_err(&pdev->dev, "missing port-id value\n");
6154 		goto err_free_netdev;
6155 	}
6156 
6157 	dev->tx_queue_len = MVPP2_MAX_TXD;
6158 	dev->watchdog_timeo = 5 * HZ;
6159 	dev->netdev_ops = &mvpp2_netdev_ops;
6160 	dev->ethtool_ops = &mvpp2_eth_tool_ops;
6161 
6162 	port = netdev_priv(dev);
6163 
6164 	port->irq = irq_of_parse_and_map(port_node, 0);
6165 	if (port->irq <= 0) {
6166 		err = -EINVAL;
6167 		goto err_free_netdev;
6168 	}
6169 
6170 	if (of_property_read_bool(port_node, "marvell,loopback"))
6171 		port->flags |= MVPP2_F_LOOPBACK;
6172 
6173 	port->priv = priv;
6174 	port->id = id;
6175 	port->first_rxq = *next_first_rxq;
6176 	port->phy_node = phy_node;
6177 	port->phy_interface = phy_mode;
6178 
6179 	res = platform_get_resource(pdev, IORESOURCE_MEM,
6180 				    priv_common_regs_num + id);
6181 	port->base = devm_ioremap_resource(&pdev->dev, res);
6182 	if (IS_ERR(port->base)) {
6183 		err = PTR_ERR(port->base);
6184 		goto err_free_irq;
6185 	}
6186 
6187 	/* Alloc per-cpu stats */
6188 	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6189 	if (!port->stats) {
6190 		err = -ENOMEM;
6191 		goto err_free_irq;
6192 	}
6193 
6194 	dt_mac_addr = of_get_mac_address(port_node);
6195 	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6196 		mac_from = "device tree";
6197 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
6198 	} else {
6199 		mvpp2_get_mac_address(port, hw_mac_addr);
6200 		if (is_valid_ether_addr(hw_mac_addr)) {
6201 			mac_from = "hardware";
6202 			ether_addr_copy(dev->dev_addr, hw_mac_addr);
6203 		} else {
6204 			mac_from = "random";
6205 			eth_hw_addr_random(dev);
6206 		}
6207 	}
6208 
6209 	port->tx_ring_size = MVPP2_MAX_TXD;
6210 	port->rx_ring_size = MVPP2_MAX_RXD;
6211 	port->dev = dev;
6212 	SET_NETDEV_DEV(dev, &pdev->dev);
6213 
6214 	err = mvpp2_port_init(port);
6215 	if (err < 0) {
6216 		dev_err(&pdev->dev, "failed to init port %d\n", id);
6217 		goto err_free_stats;
6218 	}
6219 	mvpp2_port_power_up(port);
6220 
6221 	port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6222 	if (!port->pcpu) {
6223 		err = -ENOMEM;
6224 		goto err_free_txq_pcpu;
6225 	}
6226 
6227 	for_each_present_cpu(cpu) {
6228 		port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6229 
6230 		hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6231 			     HRTIMER_MODE_REL_PINNED);
6232 		port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6233 		port_pcpu->timer_scheduled = false;
6234 
6235 		tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6236 			     (unsigned long)dev);
6237 	}
6238 
6239 	netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6240 	features = NETIF_F_SG | NETIF_F_IP_CSUM;
6241 	dev->features = features | NETIF_F_RXCSUM;
6242 	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6243 	dev->vlan_features |= features;
6244 
6245 	err = register_netdev(dev);
6246 	if (err < 0) {
6247 		dev_err(&pdev->dev, "failed to register netdev\n");
6248 		goto err_free_port_pcpu;
6249 	}
6250 	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6251 
6252 	/* Increment the first Rx queue number to be used by the next port */
6253 	*next_first_rxq += rxq_number;
6254 	priv->port_list[id] = port;
6255 	return 0;
6256 
6257 err_free_port_pcpu:
6258 	free_percpu(port->pcpu);
6259 err_free_txq_pcpu:
6260 	for (i = 0; i < txq_number; i++)
6261 		free_percpu(port->txqs[i]->pcpu);
6262 err_free_stats:
6263 	free_percpu(port->stats);
6264 err_free_irq:
6265 	irq_dispose_mapping(port->irq);
6266 err_free_netdev:
6267 	free_netdev(dev);
6268 	return err;
6269 }
6270 
6271 /* Ports removal routine */
mvpp2_port_remove(struct mvpp2_port * port)6272 static void mvpp2_port_remove(struct mvpp2_port *port)
6273 {
6274 	int i;
6275 
6276 	unregister_netdev(port->dev);
6277 	free_percpu(port->pcpu);
6278 	free_percpu(port->stats);
6279 	for (i = 0; i < txq_number; i++)
6280 		free_percpu(port->txqs[i]->pcpu);
6281 	irq_dispose_mapping(port->irq);
6282 	free_netdev(port->dev);
6283 }
6284 
6285 /* Initialize decoding windows */
mvpp2_conf_mbus_windows(const struct mbus_dram_target_info * dram,struct mvpp2 * priv)6286 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6287 				    struct mvpp2 *priv)
6288 {
6289 	u32 win_enable;
6290 	int i;
6291 
6292 	for (i = 0; i < 6; i++) {
6293 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6294 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6295 
6296 		if (i < 4)
6297 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6298 	}
6299 
6300 	win_enable = 0;
6301 
6302 	for (i = 0; i < dram->num_cs; i++) {
6303 		const struct mbus_dram_window *cs = dram->cs + i;
6304 
6305 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
6306 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6307 			    dram->mbus_dram_target_id);
6308 
6309 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6310 			    (cs->size - 1) & 0xffff0000);
6311 
6312 		win_enable |= (1 << i);
6313 	}
6314 
6315 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6316 }
6317 
6318 /* Initialize Rx FIFO's */
mvpp2_rx_fifo_init(struct mvpp2 * priv)6319 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6320 {
6321 	int port;
6322 
6323 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6324 		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6325 			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
6326 		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6327 			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6328 	}
6329 
6330 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6331 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
6332 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6333 }
6334 
6335 /* Initialize network controller common part HW */
mvpp2_init(struct platform_device * pdev,struct mvpp2 * priv)6336 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6337 {
6338 	const struct mbus_dram_target_info *dram_target_info;
6339 	int err, i;
6340 	u32 val;
6341 
6342 	/* Checks for hardware constraints */
6343 	if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6344 	    (txq_number > MVPP2_MAX_TXQ)) {
6345 		dev_err(&pdev->dev, "invalid queue size parameter\n");
6346 		return -EINVAL;
6347 	}
6348 
6349 	/* MBUS windows configuration */
6350 	dram_target_info = mv_mbus_dram_info();
6351 	if (dram_target_info)
6352 		mvpp2_conf_mbus_windows(dram_target_info, priv);
6353 
6354 	/* Disable HW PHY polling */
6355 	val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6356 	val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6357 	writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6358 
6359 	/* Allocate and initialize aggregated TXQs */
6360 	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6361 				       sizeof(struct mvpp2_tx_queue),
6362 				       GFP_KERNEL);
6363 	if (!priv->aggr_txqs)
6364 		return -ENOMEM;
6365 
6366 	for_each_present_cpu(i) {
6367 		priv->aggr_txqs[i].id = i;
6368 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6369 		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6370 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
6371 		if (err < 0)
6372 			return err;
6373 	}
6374 
6375 	/* Rx Fifo Init */
6376 	mvpp2_rx_fifo_init(priv);
6377 
6378 	/* Reset Rx queue group interrupt configuration */
6379 	for (i = 0; i < MVPP2_MAX_PORTS; i++)
6380 		mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6381 
6382 	writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6383 	       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6384 
6385 	/* Allow cache snoop when transmiting packets */
6386 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6387 
6388 	/* Buffer Manager initialization */
6389 	err = mvpp2_bm_init(pdev, priv);
6390 	if (err < 0)
6391 		return err;
6392 
6393 	/* Parser default initialization */
6394 	err = mvpp2_prs_default_init(pdev, priv);
6395 	if (err < 0)
6396 		return err;
6397 
6398 	/* Classifier default initialization */
6399 	mvpp2_cls_init(priv);
6400 
6401 	return 0;
6402 }
6403 
mvpp2_probe(struct platform_device * pdev)6404 static int mvpp2_probe(struct platform_device *pdev)
6405 {
6406 	struct device_node *dn = pdev->dev.of_node;
6407 	struct device_node *port_node;
6408 	struct mvpp2 *priv;
6409 	struct resource *res;
6410 	int port_count, first_rxq;
6411 	int err;
6412 
6413 	priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6414 	if (!priv)
6415 		return -ENOMEM;
6416 
6417 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6418 	priv->base = devm_ioremap_resource(&pdev->dev, res);
6419 	if (IS_ERR(priv->base))
6420 		return PTR_ERR(priv->base);
6421 
6422 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6423 	priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6424 	if (IS_ERR(priv->lms_base))
6425 		return PTR_ERR(priv->lms_base);
6426 
6427 	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6428 	if (IS_ERR(priv->pp_clk))
6429 		return PTR_ERR(priv->pp_clk);
6430 	err = clk_prepare_enable(priv->pp_clk);
6431 	if (err < 0)
6432 		return err;
6433 
6434 	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6435 	if (IS_ERR(priv->gop_clk)) {
6436 		err = PTR_ERR(priv->gop_clk);
6437 		goto err_pp_clk;
6438 	}
6439 	err = clk_prepare_enable(priv->gop_clk);
6440 	if (err < 0)
6441 		goto err_pp_clk;
6442 
6443 	/* Get system's tclk rate */
6444 	priv->tclk = clk_get_rate(priv->pp_clk);
6445 
6446 	/* Initialize network controller */
6447 	err = mvpp2_init(pdev, priv);
6448 	if (err < 0) {
6449 		dev_err(&pdev->dev, "failed to initialize controller\n");
6450 		goto err_gop_clk;
6451 	}
6452 
6453 	port_count = of_get_available_child_count(dn);
6454 	if (port_count == 0) {
6455 		dev_err(&pdev->dev, "no ports enabled\n");
6456 		err = -ENODEV;
6457 		goto err_gop_clk;
6458 	}
6459 
6460 	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6461 				      sizeof(struct mvpp2_port *),
6462 				      GFP_KERNEL);
6463 	if (!priv->port_list) {
6464 		err = -ENOMEM;
6465 		goto err_gop_clk;
6466 	}
6467 
6468 	/* Initialize ports */
6469 	first_rxq = 0;
6470 	for_each_available_child_of_node(dn, port_node) {
6471 		err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6472 		if (err < 0)
6473 			goto err_gop_clk;
6474 	}
6475 
6476 	platform_set_drvdata(pdev, priv);
6477 	return 0;
6478 
6479 err_gop_clk:
6480 	clk_disable_unprepare(priv->gop_clk);
6481 err_pp_clk:
6482 	clk_disable_unprepare(priv->pp_clk);
6483 	return err;
6484 }
6485 
mvpp2_remove(struct platform_device * pdev)6486 static int mvpp2_remove(struct platform_device *pdev)
6487 {
6488 	struct mvpp2 *priv = platform_get_drvdata(pdev);
6489 	struct device_node *dn = pdev->dev.of_node;
6490 	struct device_node *port_node;
6491 	int i = 0;
6492 
6493 	for_each_available_child_of_node(dn, port_node) {
6494 		if (priv->port_list[i])
6495 			mvpp2_port_remove(priv->port_list[i]);
6496 		i++;
6497 	}
6498 
6499 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6500 		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6501 
6502 		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6503 	}
6504 
6505 	for_each_present_cpu(i) {
6506 		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6507 
6508 		dma_free_coherent(&pdev->dev,
6509 				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6510 				  aggr_txq->descs,
6511 				  aggr_txq->descs_phys);
6512 	}
6513 
6514 	clk_disable_unprepare(priv->pp_clk);
6515 	clk_disable_unprepare(priv->gop_clk);
6516 
6517 	return 0;
6518 }
6519 
6520 static const struct of_device_id mvpp2_match[] = {
6521 	{ .compatible = "marvell,armada-375-pp2" },
6522 	{ }
6523 };
6524 MODULE_DEVICE_TABLE(of, mvpp2_match);
6525 
6526 static struct platform_driver mvpp2_driver = {
6527 	.probe = mvpp2_probe,
6528 	.remove = mvpp2_remove,
6529 	.driver = {
6530 		.name = MVPP2_DRIVER_NAME,
6531 		.of_match_table = mvpp2_match,
6532 	},
6533 };
6534 
6535 module_platform_driver(mvpp2_driver);
6536 
6537 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6538 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6539 MODULE_LICENSE("GPL v2");
6540