1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35 
36 #include "zram_drv.h"
37 
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42 
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45 
deprecated_attr_warn(const char * name)46 static inline void deprecated_attr_warn(const char *name)
47 {
48 	pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 			task_pid_nr(current),
50 			current->comm,
51 			name,
52 			"See zram documentation.");
53 }
54 
55 #define ZRAM_ATTR_RO(name)						\
56 static ssize_t name##_show(struct device *d,		\
57 				struct device_attribute *attr, char *b)	\
58 {									\
59 	struct zram *zram = dev_to_zram(d);				\
60 									\
61 	deprecated_attr_warn(__stringify(name));			\
62 	return scnprintf(b, PAGE_SIZE, "%llu\n",			\
63 		(u64)atomic64_read(&zram->stats.name));			\
64 }									\
65 static DEVICE_ATTR_RO(name);
66 
init_done(struct zram * zram)67 static inline bool init_done(struct zram *zram)
68 {
69 	return zram->disksize;
70 }
71 
dev_to_zram(struct device * dev)72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 	return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76 
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)77 static ssize_t compact_store(struct device *dev,
78 		struct device_attribute *attr, const char *buf, size_t len)
79 {
80 	unsigned long nr_migrated;
81 	struct zram *zram = dev_to_zram(dev);
82 	struct zram_meta *meta;
83 
84 	down_read(&zram->init_lock);
85 	if (!init_done(zram)) {
86 		up_read(&zram->init_lock);
87 		return -EINVAL;
88 	}
89 
90 	meta = zram->meta;
91 	nr_migrated = zs_compact(meta->mem_pool);
92 	atomic64_add(nr_migrated, &zram->stats.num_migrated);
93 	up_read(&zram->init_lock);
94 
95 	return len;
96 }
97 
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)98 static ssize_t disksize_show(struct device *dev,
99 		struct device_attribute *attr, char *buf)
100 {
101 	struct zram *zram = dev_to_zram(dev);
102 
103 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
104 }
105 
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)106 static ssize_t initstate_show(struct device *dev,
107 		struct device_attribute *attr, char *buf)
108 {
109 	u32 val;
110 	struct zram *zram = dev_to_zram(dev);
111 
112 	down_read(&zram->init_lock);
113 	val = init_done(zram);
114 	up_read(&zram->init_lock);
115 
116 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
117 }
118 
orig_data_size_show(struct device * dev,struct device_attribute * attr,char * buf)119 static ssize_t orig_data_size_show(struct device *dev,
120 		struct device_attribute *attr, char *buf)
121 {
122 	struct zram *zram = dev_to_zram(dev);
123 
124 	deprecated_attr_warn("orig_data_size");
125 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
126 		(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
127 }
128 
mem_used_total_show(struct device * dev,struct device_attribute * attr,char * buf)129 static ssize_t mem_used_total_show(struct device *dev,
130 		struct device_attribute *attr, char *buf)
131 {
132 	u64 val = 0;
133 	struct zram *zram = dev_to_zram(dev);
134 
135 	deprecated_attr_warn("mem_used_total");
136 	down_read(&zram->init_lock);
137 	if (init_done(zram)) {
138 		struct zram_meta *meta = zram->meta;
139 		val = zs_get_total_pages(meta->mem_pool);
140 	}
141 	up_read(&zram->init_lock);
142 
143 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
144 }
145 
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)146 static ssize_t max_comp_streams_show(struct device *dev,
147 		struct device_attribute *attr, char *buf)
148 {
149 	int val;
150 	struct zram *zram = dev_to_zram(dev);
151 
152 	down_read(&zram->init_lock);
153 	val = zram->max_comp_streams;
154 	up_read(&zram->init_lock);
155 
156 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
157 }
158 
mem_limit_show(struct device * dev,struct device_attribute * attr,char * buf)159 static ssize_t mem_limit_show(struct device *dev,
160 		struct device_attribute *attr, char *buf)
161 {
162 	u64 val;
163 	struct zram *zram = dev_to_zram(dev);
164 
165 	deprecated_attr_warn("mem_limit");
166 	down_read(&zram->init_lock);
167 	val = zram->limit_pages;
168 	up_read(&zram->init_lock);
169 
170 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
171 }
172 
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)173 static ssize_t mem_limit_store(struct device *dev,
174 		struct device_attribute *attr, const char *buf, size_t len)
175 {
176 	u64 limit;
177 	char *tmp;
178 	struct zram *zram = dev_to_zram(dev);
179 
180 	limit = memparse(buf, &tmp);
181 	if (buf == tmp) /* no chars parsed, invalid input */
182 		return -EINVAL;
183 
184 	down_write(&zram->init_lock);
185 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
186 	up_write(&zram->init_lock);
187 
188 	return len;
189 }
190 
mem_used_max_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t mem_used_max_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	u64 val = 0;
195 	struct zram *zram = dev_to_zram(dev);
196 
197 	deprecated_attr_warn("mem_used_max");
198 	down_read(&zram->init_lock);
199 	if (init_done(zram))
200 		val = atomic_long_read(&zram->stats.max_used_pages);
201 	up_read(&zram->init_lock);
202 
203 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
204 }
205 
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)206 static ssize_t mem_used_max_store(struct device *dev,
207 		struct device_attribute *attr, const char *buf, size_t len)
208 {
209 	int err;
210 	unsigned long val;
211 	struct zram *zram = dev_to_zram(dev);
212 
213 	err = kstrtoul(buf, 10, &val);
214 	if (err || val != 0)
215 		return -EINVAL;
216 
217 	down_read(&zram->init_lock);
218 	if (init_done(zram)) {
219 		struct zram_meta *meta = zram->meta;
220 		atomic_long_set(&zram->stats.max_used_pages,
221 				zs_get_total_pages(meta->mem_pool));
222 	}
223 	up_read(&zram->init_lock);
224 
225 	return len;
226 }
227 
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)228 static ssize_t max_comp_streams_store(struct device *dev,
229 		struct device_attribute *attr, const char *buf, size_t len)
230 {
231 	int num;
232 	struct zram *zram = dev_to_zram(dev);
233 	int ret;
234 
235 	ret = kstrtoint(buf, 0, &num);
236 	if (ret < 0)
237 		return ret;
238 	if (num < 1)
239 		return -EINVAL;
240 
241 	down_write(&zram->init_lock);
242 	if (init_done(zram)) {
243 		if (!zcomp_set_max_streams(zram->comp, num)) {
244 			pr_info("Cannot change max compression streams\n");
245 			ret = -EINVAL;
246 			goto out;
247 		}
248 	}
249 
250 	zram->max_comp_streams = num;
251 	ret = len;
252 out:
253 	up_write(&zram->init_lock);
254 	return ret;
255 }
256 
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)257 static ssize_t comp_algorithm_show(struct device *dev,
258 		struct device_attribute *attr, char *buf)
259 {
260 	size_t sz;
261 	struct zram *zram = dev_to_zram(dev);
262 
263 	down_read(&zram->init_lock);
264 	sz = zcomp_available_show(zram->compressor, buf);
265 	up_read(&zram->init_lock);
266 
267 	return sz;
268 }
269 
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)270 static ssize_t comp_algorithm_store(struct device *dev,
271 		struct device_attribute *attr, const char *buf, size_t len)
272 {
273 	struct zram *zram = dev_to_zram(dev);
274 	down_write(&zram->init_lock);
275 	if (init_done(zram)) {
276 		up_write(&zram->init_lock);
277 		pr_info("Can't change algorithm for initialized device\n");
278 		return -EBUSY;
279 	}
280 	strlcpy(zram->compressor, buf, sizeof(zram->compressor));
281 	up_write(&zram->init_lock);
282 	return len;
283 }
284 
285 /* flag operations needs meta->tb_lock */
zram_test_flag(struct zram_meta * meta,u32 index,enum zram_pageflags flag)286 static int zram_test_flag(struct zram_meta *meta, u32 index,
287 			enum zram_pageflags flag)
288 {
289 	return meta->table[index].value & BIT(flag);
290 }
291 
zram_set_flag(struct zram_meta * meta,u32 index,enum zram_pageflags flag)292 static void zram_set_flag(struct zram_meta *meta, u32 index,
293 			enum zram_pageflags flag)
294 {
295 	meta->table[index].value |= BIT(flag);
296 }
297 
zram_clear_flag(struct zram_meta * meta,u32 index,enum zram_pageflags flag)298 static void zram_clear_flag(struct zram_meta *meta, u32 index,
299 			enum zram_pageflags flag)
300 {
301 	meta->table[index].value &= ~BIT(flag);
302 }
303 
zram_get_obj_size(struct zram_meta * meta,u32 index)304 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
305 {
306 	return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
307 }
308 
zram_set_obj_size(struct zram_meta * meta,u32 index,size_t size)309 static void zram_set_obj_size(struct zram_meta *meta,
310 					u32 index, size_t size)
311 {
312 	unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
313 
314 	meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
315 }
316 
is_partial_io(struct bio_vec * bvec)317 static inline int is_partial_io(struct bio_vec *bvec)
318 {
319 	return bvec->bv_len != PAGE_SIZE;
320 }
321 
322 /*
323  * Check if request is within bounds and aligned on zram logical blocks.
324  */
valid_io_request(struct zram * zram,sector_t start,unsigned int size)325 static inline int valid_io_request(struct zram *zram,
326 		sector_t start, unsigned int size)
327 {
328 	u64 end, bound;
329 
330 	/* unaligned request */
331 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
332 		return 0;
333 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
334 		return 0;
335 
336 	end = start + (size >> SECTOR_SHIFT);
337 	bound = zram->disksize >> SECTOR_SHIFT;
338 	/* out of range range */
339 	if (unlikely(start >= bound || end > bound || start > end))
340 		return 0;
341 
342 	/* I/O request is valid */
343 	return 1;
344 }
345 
zram_meta_free(struct zram_meta * meta,u64 disksize)346 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
347 {
348 	size_t num_pages = disksize >> PAGE_SHIFT;
349 	size_t index;
350 
351 	/* Free all pages that are still in this zram device */
352 	for (index = 0; index < num_pages; index++) {
353 		unsigned long handle = meta->table[index].handle;
354 
355 		if (!handle)
356 			continue;
357 
358 		zs_free(meta->mem_pool, handle);
359 	}
360 
361 	zs_destroy_pool(meta->mem_pool);
362 	vfree(meta->table);
363 	kfree(meta);
364 }
365 
zram_meta_alloc(int device_id,u64 disksize)366 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
367 {
368 	size_t num_pages;
369 	char pool_name[8];
370 	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
371 
372 	if (!meta)
373 		return NULL;
374 
375 	num_pages = disksize >> PAGE_SHIFT;
376 	meta->table = vzalloc(num_pages * sizeof(*meta->table));
377 	if (!meta->table) {
378 		pr_err("Error allocating zram address table\n");
379 		goto out_error;
380 	}
381 
382 	snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
383 	meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
384 	if (!meta->mem_pool) {
385 		pr_err("Error creating memory pool\n");
386 		goto out_error;
387 	}
388 
389 	return meta;
390 
391 out_error:
392 	vfree(meta->table);
393 	kfree(meta);
394 	return NULL;
395 }
396 
zram_meta_get(struct zram * zram)397 static inline bool zram_meta_get(struct zram *zram)
398 {
399 	if (atomic_inc_not_zero(&zram->refcount))
400 		return true;
401 	return false;
402 }
403 
zram_meta_put(struct zram * zram)404 static inline void zram_meta_put(struct zram *zram)
405 {
406 	atomic_dec(&zram->refcount);
407 }
408 
update_position(u32 * index,int * offset,struct bio_vec * bvec)409 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
410 {
411 	if (*offset + bvec->bv_len >= PAGE_SIZE)
412 		(*index)++;
413 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
414 }
415 
page_zero_filled(void * ptr)416 static int page_zero_filled(void *ptr)
417 {
418 	unsigned int pos;
419 	unsigned long *page;
420 
421 	page = (unsigned long *)ptr;
422 
423 	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
424 		if (page[pos])
425 			return 0;
426 	}
427 
428 	return 1;
429 }
430 
handle_zero_page(struct bio_vec * bvec)431 static void handle_zero_page(struct bio_vec *bvec)
432 {
433 	struct page *page = bvec->bv_page;
434 	void *user_mem;
435 
436 	user_mem = kmap_atomic(page);
437 	if (is_partial_io(bvec))
438 		memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
439 	else
440 		clear_page(user_mem);
441 	kunmap_atomic(user_mem);
442 
443 	flush_dcache_page(page);
444 }
445 
446 
447 /*
448  * To protect concurrent access to the same index entry,
449  * caller should hold this table index entry's bit_spinlock to
450  * indicate this index entry is accessing.
451  */
zram_free_page(struct zram * zram,size_t index)452 static void zram_free_page(struct zram *zram, size_t index)
453 {
454 	struct zram_meta *meta = zram->meta;
455 	unsigned long handle = meta->table[index].handle;
456 
457 	if (unlikely(!handle)) {
458 		/*
459 		 * No memory is allocated for zero filled pages.
460 		 * Simply clear zero page flag.
461 		 */
462 		if (zram_test_flag(meta, index, ZRAM_ZERO)) {
463 			zram_clear_flag(meta, index, ZRAM_ZERO);
464 			atomic64_dec(&zram->stats.zero_pages);
465 		}
466 		return;
467 	}
468 
469 	zs_free(meta->mem_pool, handle);
470 
471 	atomic64_sub(zram_get_obj_size(meta, index),
472 			&zram->stats.compr_data_size);
473 	atomic64_dec(&zram->stats.pages_stored);
474 
475 	meta->table[index].handle = 0;
476 	zram_set_obj_size(meta, index, 0);
477 }
478 
zram_decompress_page(struct zram * zram,char * mem,u32 index)479 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
480 {
481 	int ret = 0;
482 	unsigned char *cmem;
483 	struct zram_meta *meta = zram->meta;
484 	unsigned long handle;
485 	size_t size;
486 
487 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
488 	handle = meta->table[index].handle;
489 	size = zram_get_obj_size(meta, index);
490 
491 	if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
492 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
493 		clear_page(mem);
494 		return 0;
495 	}
496 
497 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
498 	if (size == PAGE_SIZE)
499 		copy_page(mem, cmem);
500 	else
501 		ret = zcomp_decompress(zram->comp, cmem, size, mem);
502 	zs_unmap_object(meta->mem_pool, handle);
503 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
504 
505 	/* Should NEVER happen. Return bio error if it does. */
506 	if (unlikely(ret)) {
507 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
508 		return ret;
509 	}
510 
511 	return 0;
512 }
513 
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset)514 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
515 			  u32 index, int offset)
516 {
517 	int ret;
518 	struct page *page;
519 	unsigned char *user_mem, *uncmem = NULL;
520 	struct zram_meta *meta = zram->meta;
521 	page = bvec->bv_page;
522 
523 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
524 	if (unlikely(!meta->table[index].handle) ||
525 			zram_test_flag(meta, index, ZRAM_ZERO)) {
526 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
527 		handle_zero_page(bvec);
528 		return 0;
529 	}
530 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
531 
532 	if (is_partial_io(bvec))
533 		/* Use  a temporary buffer to decompress the page */
534 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
535 
536 	user_mem = kmap_atomic(page);
537 	if (!is_partial_io(bvec))
538 		uncmem = user_mem;
539 
540 	if (!uncmem) {
541 		pr_info("Unable to allocate temp memory\n");
542 		ret = -ENOMEM;
543 		goto out_cleanup;
544 	}
545 
546 	ret = zram_decompress_page(zram, uncmem, index);
547 	/* Should NEVER happen. Return bio error if it does. */
548 	if (unlikely(ret))
549 		goto out_cleanup;
550 
551 	if (is_partial_io(bvec))
552 		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
553 				bvec->bv_len);
554 
555 	flush_dcache_page(page);
556 	ret = 0;
557 out_cleanup:
558 	kunmap_atomic(user_mem);
559 	if (is_partial_io(bvec))
560 		kfree(uncmem);
561 	return ret;
562 }
563 
update_used_max(struct zram * zram,const unsigned long pages)564 static inline void update_used_max(struct zram *zram,
565 					const unsigned long pages)
566 {
567 	unsigned long old_max, cur_max;
568 
569 	old_max = atomic_long_read(&zram->stats.max_used_pages);
570 
571 	do {
572 		cur_max = old_max;
573 		if (pages > cur_max)
574 			old_max = atomic_long_cmpxchg(
575 				&zram->stats.max_used_pages, cur_max, pages);
576 	} while (old_max != cur_max);
577 }
578 
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset)579 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
580 			   int offset)
581 {
582 	int ret = 0;
583 	size_t clen;
584 	unsigned long handle;
585 	struct page *page;
586 	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
587 	struct zram_meta *meta = zram->meta;
588 	struct zcomp_strm *zstrm;
589 	bool locked = false;
590 	unsigned long alloced_pages;
591 
592 	page = bvec->bv_page;
593 	if (is_partial_io(bvec)) {
594 		/*
595 		 * This is a partial IO. We need to read the full page
596 		 * before to write the changes.
597 		 */
598 		uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
599 		if (!uncmem) {
600 			ret = -ENOMEM;
601 			goto out;
602 		}
603 		ret = zram_decompress_page(zram, uncmem, index);
604 		if (ret)
605 			goto out;
606 	}
607 
608 	zstrm = zcomp_strm_find(zram->comp);
609 	locked = true;
610 	user_mem = kmap_atomic(page);
611 
612 	if (is_partial_io(bvec)) {
613 		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
614 		       bvec->bv_len);
615 		kunmap_atomic(user_mem);
616 		user_mem = NULL;
617 	} else {
618 		uncmem = user_mem;
619 	}
620 
621 	if (page_zero_filled(uncmem)) {
622 		if (user_mem)
623 			kunmap_atomic(user_mem);
624 		/* Free memory associated with this sector now. */
625 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
626 		zram_free_page(zram, index);
627 		zram_set_flag(meta, index, ZRAM_ZERO);
628 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
629 
630 		atomic64_inc(&zram->stats.zero_pages);
631 		ret = 0;
632 		goto out;
633 	}
634 
635 	ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
636 	if (!is_partial_io(bvec)) {
637 		kunmap_atomic(user_mem);
638 		user_mem = NULL;
639 		uncmem = NULL;
640 	}
641 
642 	if (unlikely(ret)) {
643 		pr_err("Compression failed! err=%d\n", ret);
644 		goto out;
645 	}
646 	src = zstrm->buffer;
647 	if (unlikely(clen > max_zpage_size)) {
648 		clen = PAGE_SIZE;
649 		if (is_partial_io(bvec))
650 			src = uncmem;
651 	}
652 
653 	handle = zs_malloc(meta->mem_pool, clen);
654 	if (!handle) {
655 		pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
656 			index, clen);
657 		ret = -ENOMEM;
658 		goto out;
659 	}
660 
661 	alloced_pages = zs_get_total_pages(meta->mem_pool);
662 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
663 		zs_free(meta->mem_pool, handle);
664 		ret = -ENOMEM;
665 		goto out;
666 	}
667 
668 	update_used_max(zram, alloced_pages);
669 
670 	cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
671 
672 	if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
673 		src = kmap_atomic(page);
674 		copy_page(cmem, src);
675 		kunmap_atomic(src);
676 	} else {
677 		memcpy(cmem, src, clen);
678 	}
679 
680 	zcomp_strm_release(zram->comp, zstrm);
681 	locked = false;
682 	zs_unmap_object(meta->mem_pool, handle);
683 
684 	/*
685 	 * Free memory associated with this sector
686 	 * before overwriting unused sectors.
687 	 */
688 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
689 	zram_free_page(zram, index);
690 
691 	meta->table[index].handle = handle;
692 	zram_set_obj_size(meta, index, clen);
693 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
694 
695 	/* Update stats */
696 	atomic64_add(clen, &zram->stats.compr_data_size);
697 	atomic64_inc(&zram->stats.pages_stored);
698 out:
699 	if (locked)
700 		zcomp_strm_release(zram->comp, zstrm);
701 	if (is_partial_io(bvec))
702 		kfree(uncmem);
703 	return ret;
704 }
705 
zram_bvec_rw(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,int rw)706 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
707 			int offset, int rw)
708 {
709 	unsigned long start_time = jiffies;
710 	int ret;
711 
712 	generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
713 			&zram->disk->part0);
714 
715 	if (rw == READ) {
716 		atomic64_inc(&zram->stats.num_reads);
717 		ret = zram_bvec_read(zram, bvec, index, offset);
718 	} else {
719 		atomic64_inc(&zram->stats.num_writes);
720 		ret = zram_bvec_write(zram, bvec, index, offset);
721 	}
722 
723 	generic_end_io_acct(rw, &zram->disk->part0, start_time);
724 
725 	if (unlikely(ret)) {
726 		if (rw == READ)
727 			atomic64_inc(&zram->stats.failed_reads);
728 		else
729 			atomic64_inc(&zram->stats.failed_writes);
730 	}
731 
732 	return ret;
733 }
734 
735 /*
736  * zram_bio_discard - handler on discard request
737  * @index: physical block index in PAGE_SIZE units
738  * @offset: byte offset within physical block
739  */
zram_bio_discard(struct zram * zram,u32 index,int offset,struct bio * bio)740 static void zram_bio_discard(struct zram *zram, u32 index,
741 			     int offset, struct bio *bio)
742 {
743 	size_t n = bio->bi_iter.bi_size;
744 	struct zram_meta *meta = zram->meta;
745 
746 	/*
747 	 * zram manages data in physical block size units. Because logical block
748 	 * size isn't identical with physical block size on some arch, we
749 	 * could get a discard request pointing to a specific offset within a
750 	 * certain physical block.  Although we can handle this request by
751 	 * reading that physiclal block and decompressing and partially zeroing
752 	 * and re-compressing and then re-storing it, this isn't reasonable
753 	 * because our intent with a discard request is to save memory.  So
754 	 * skipping this logical block is appropriate here.
755 	 */
756 	if (offset) {
757 		if (n <= (PAGE_SIZE - offset))
758 			return;
759 
760 		n -= (PAGE_SIZE - offset);
761 		index++;
762 	}
763 
764 	while (n >= PAGE_SIZE) {
765 		bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
766 		zram_free_page(zram, index);
767 		bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
768 		atomic64_inc(&zram->stats.notify_free);
769 		index++;
770 		n -= PAGE_SIZE;
771 	}
772 }
773 
zram_reset_device(struct zram * zram)774 static void zram_reset_device(struct zram *zram)
775 {
776 	struct zram_meta *meta;
777 	struct zcomp *comp;
778 	u64 disksize;
779 
780 	down_write(&zram->init_lock);
781 
782 	zram->limit_pages = 0;
783 
784 	if (!init_done(zram)) {
785 		up_write(&zram->init_lock);
786 		return;
787 	}
788 
789 	meta = zram->meta;
790 	comp = zram->comp;
791 	disksize = zram->disksize;
792 	/*
793 	 * Refcount will go down to 0 eventually and r/w handler
794 	 * cannot handle further I/O so it will bail out by
795 	 * check zram_meta_get.
796 	 */
797 	zram_meta_put(zram);
798 	/*
799 	 * We want to free zram_meta in process context to avoid
800 	 * deadlock between reclaim path and any other locks.
801 	 */
802 	wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
803 
804 	/* Reset stats */
805 	memset(&zram->stats, 0, sizeof(zram->stats));
806 	zram->disksize = 0;
807 	zram->max_comp_streams = 1;
808 
809 	set_capacity(zram->disk, 0);
810 	part_stat_set_all(&zram->disk->part0, 0);
811 
812 	up_write(&zram->init_lock);
813 	/* I/O operation under all of CPU are done so let's free */
814 	zram_meta_free(meta, disksize);
815 	zcomp_destroy(comp);
816 }
817 
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)818 static ssize_t disksize_store(struct device *dev,
819 		struct device_attribute *attr, const char *buf, size_t len)
820 {
821 	u64 disksize;
822 	struct zcomp *comp;
823 	struct zram_meta *meta;
824 	struct zram *zram = dev_to_zram(dev);
825 	int err;
826 
827 	disksize = memparse(buf, NULL);
828 	if (!disksize)
829 		return -EINVAL;
830 
831 	disksize = PAGE_ALIGN(disksize);
832 	meta = zram_meta_alloc(zram->disk->first_minor, disksize);
833 	if (!meta)
834 		return -ENOMEM;
835 
836 	comp = zcomp_create(zram->compressor, zram->max_comp_streams);
837 	if (IS_ERR(comp)) {
838 		pr_info("Cannot initialise %s compressing backend\n",
839 				zram->compressor);
840 		err = PTR_ERR(comp);
841 		goto out_free_meta;
842 	}
843 
844 	down_write(&zram->init_lock);
845 	if (init_done(zram)) {
846 		pr_info("Cannot change disksize for initialized device\n");
847 		err = -EBUSY;
848 		goto out_destroy_comp;
849 	}
850 
851 	init_waitqueue_head(&zram->io_done);
852 	atomic_set(&zram->refcount, 1);
853 	zram->meta = meta;
854 	zram->comp = comp;
855 	zram->disksize = disksize;
856 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
857 	up_write(&zram->init_lock);
858 
859 	/*
860 	 * Revalidate disk out of the init_lock to avoid lockdep splat.
861 	 * It's okay because disk's capacity is protected by init_lock
862 	 * so that revalidate_disk always sees up-to-date capacity.
863 	 */
864 	revalidate_disk(zram->disk);
865 
866 	return len;
867 
868 out_destroy_comp:
869 	up_write(&zram->init_lock);
870 	zcomp_destroy(comp);
871 out_free_meta:
872 	zram_meta_free(meta, disksize);
873 	return err;
874 }
875 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)876 static ssize_t reset_store(struct device *dev,
877 		struct device_attribute *attr, const char *buf, size_t len)
878 {
879 	int ret;
880 	unsigned short do_reset;
881 	struct zram *zram;
882 	struct block_device *bdev;
883 
884 	zram = dev_to_zram(dev);
885 	bdev = bdget_disk(zram->disk, 0);
886 
887 	if (!bdev)
888 		return -ENOMEM;
889 
890 	mutex_lock(&bdev->bd_mutex);
891 	/* Do not reset an active device! */
892 	if (bdev->bd_openers) {
893 		ret = -EBUSY;
894 		goto out;
895 	}
896 
897 	ret = kstrtou16(buf, 10, &do_reset);
898 	if (ret)
899 		goto out;
900 
901 	if (!do_reset) {
902 		ret = -EINVAL;
903 		goto out;
904 	}
905 
906 	/* Make sure all pending I/O is finished */
907 	fsync_bdev(bdev);
908 	zram_reset_device(zram);
909 
910 	mutex_unlock(&bdev->bd_mutex);
911 	revalidate_disk(zram->disk);
912 	bdput(bdev);
913 
914 	return len;
915 
916 out:
917 	mutex_unlock(&bdev->bd_mutex);
918 	bdput(bdev);
919 	return ret;
920 }
921 
__zram_make_request(struct zram * zram,struct bio * bio)922 static void __zram_make_request(struct zram *zram, struct bio *bio)
923 {
924 	int offset, rw;
925 	u32 index;
926 	struct bio_vec bvec;
927 	struct bvec_iter iter;
928 
929 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
930 	offset = (bio->bi_iter.bi_sector &
931 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
932 
933 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
934 		zram_bio_discard(zram, index, offset, bio);
935 		bio_endio(bio, 0);
936 		return;
937 	}
938 
939 	rw = bio_data_dir(bio);
940 	bio_for_each_segment(bvec, bio, iter) {
941 		int max_transfer_size = PAGE_SIZE - offset;
942 
943 		if (bvec.bv_len > max_transfer_size) {
944 			/*
945 			 * zram_bvec_rw() can only make operation on a single
946 			 * zram page. Split the bio vector.
947 			 */
948 			struct bio_vec bv;
949 
950 			bv.bv_page = bvec.bv_page;
951 			bv.bv_len = max_transfer_size;
952 			bv.bv_offset = bvec.bv_offset;
953 
954 			if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
955 				goto out;
956 
957 			bv.bv_len = bvec.bv_len - max_transfer_size;
958 			bv.bv_offset += max_transfer_size;
959 			if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
960 				goto out;
961 		} else
962 			if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
963 				goto out;
964 
965 		update_position(&index, &offset, &bvec);
966 	}
967 
968 	set_bit(BIO_UPTODATE, &bio->bi_flags);
969 	bio_endio(bio, 0);
970 	return;
971 
972 out:
973 	bio_io_error(bio);
974 }
975 
976 /*
977  * Handler function for all zram I/O requests.
978  */
zram_make_request(struct request_queue * queue,struct bio * bio)979 static void zram_make_request(struct request_queue *queue, struct bio *bio)
980 {
981 	struct zram *zram = queue->queuedata;
982 
983 	if (unlikely(!zram_meta_get(zram)))
984 		goto error;
985 
986 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
987 					bio->bi_iter.bi_size)) {
988 		atomic64_inc(&zram->stats.invalid_io);
989 		goto put_zram;
990 	}
991 
992 	__zram_make_request(zram, bio);
993 	zram_meta_put(zram);
994 	return;
995 put_zram:
996 	zram_meta_put(zram);
997 error:
998 	bio_io_error(bio);
999 }
1000 
zram_slot_free_notify(struct block_device * bdev,unsigned long index)1001 static void zram_slot_free_notify(struct block_device *bdev,
1002 				unsigned long index)
1003 {
1004 	struct zram *zram;
1005 	struct zram_meta *meta;
1006 
1007 	zram = bdev->bd_disk->private_data;
1008 	meta = zram->meta;
1009 
1010 	bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
1011 	zram_free_page(zram, index);
1012 	bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
1013 	atomic64_inc(&zram->stats.notify_free);
1014 }
1015 
zram_rw_page(struct block_device * bdev,sector_t sector,struct page * page,int rw)1016 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1017 		       struct page *page, int rw)
1018 {
1019 	int offset, err = -EIO;
1020 	u32 index;
1021 	struct zram *zram;
1022 	struct bio_vec bv;
1023 
1024 	zram = bdev->bd_disk->private_data;
1025 	if (unlikely(!zram_meta_get(zram)))
1026 		goto out;
1027 
1028 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1029 		atomic64_inc(&zram->stats.invalid_io);
1030 		err = -EINVAL;
1031 		goto put_zram;
1032 	}
1033 
1034 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1035 	offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
1036 
1037 	bv.bv_page = page;
1038 	bv.bv_len = PAGE_SIZE;
1039 	bv.bv_offset = 0;
1040 
1041 	err = zram_bvec_rw(zram, &bv, index, offset, rw);
1042 put_zram:
1043 	zram_meta_put(zram);
1044 out:
1045 	/*
1046 	 * If I/O fails, just return error(ie, non-zero) without
1047 	 * calling page_endio.
1048 	 * It causes resubmit the I/O with bio request by upper functions
1049 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1050 	 * bio->bi_end_io does things to handle the error
1051 	 * (e.g., SetPageError, set_page_dirty and extra works).
1052 	 */
1053 	if (err == 0)
1054 		page_endio(page, rw, 0);
1055 	return err;
1056 }
1057 
1058 static const struct block_device_operations zram_devops = {
1059 	.swap_slot_free_notify = zram_slot_free_notify,
1060 	.rw_page = zram_rw_page,
1061 	.owner = THIS_MODULE
1062 };
1063 
1064 static DEVICE_ATTR_WO(compact);
1065 static DEVICE_ATTR_RW(disksize);
1066 static DEVICE_ATTR_RO(initstate);
1067 static DEVICE_ATTR_WO(reset);
1068 static DEVICE_ATTR_RO(orig_data_size);
1069 static DEVICE_ATTR_RO(mem_used_total);
1070 static DEVICE_ATTR_RW(mem_limit);
1071 static DEVICE_ATTR_RW(mem_used_max);
1072 static DEVICE_ATTR_RW(max_comp_streams);
1073 static DEVICE_ATTR_RW(comp_algorithm);
1074 
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1075 static ssize_t io_stat_show(struct device *dev,
1076 		struct device_attribute *attr, char *buf)
1077 {
1078 	struct zram *zram = dev_to_zram(dev);
1079 	ssize_t ret;
1080 
1081 	down_read(&zram->init_lock);
1082 	ret = scnprintf(buf, PAGE_SIZE,
1083 			"%8llu %8llu %8llu %8llu\n",
1084 			(u64)atomic64_read(&zram->stats.failed_reads),
1085 			(u64)atomic64_read(&zram->stats.failed_writes),
1086 			(u64)atomic64_read(&zram->stats.invalid_io),
1087 			(u64)atomic64_read(&zram->stats.notify_free));
1088 	up_read(&zram->init_lock);
1089 
1090 	return ret;
1091 }
1092 
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1093 static ssize_t mm_stat_show(struct device *dev,
1094 		struct device_attribute *attr, char *buf)
1095 {
1096 	struct zram *zram = dev_to_zram(dev);
1097 	u64 orig_size, mem_used = 0;
1098 	long max_used;
1099 	ssize_t ret;
1100 
1101 	down_read(&zram->init_lock);
1102 	if (init_done(zram))
1103 		mem_used = zs_get_total_pages(zram->meta->mem_pool);
1104 
1105 	orig_size = atomic64_read(&zram->stats.pages_stored);
1106 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1107 
1108 	ret = scnprintf(buf, PAGE_SIZE,
1109 			"%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
1110 			orig_size << PAGE_SHIFT,
1111 			(u64)atomic64_read(&zram->stats.compr_data_size),
1112 			mem_used << PAGE_SHIFT,
1113 			zram->limit_pages << PAGE_SHIFT,
1114 			max_used << PAGE_SHIFT,
1115 			(u64)atomic64_read(&zram->stats.zero_pages),
1116 			(u64)atomic64_read(&zram->stats.num_migrated));
1117 	up_read(&zram->init_lock);
1118 
1119 	return ret;
1120 }
1121 
1122 static DEVICE_ATTR_RO(io_stat);
1123 static DEVICE_ATTR_RO(mm_stat);
1124 ZRAM_ATTR_RO(num_reads);
1125 ZRAM_ATTR_RO(num_writes);
1126 ZRAM_ATTR_RO(failed_reads);
1127 ZRAM_ATTR_RO(failed_writes);
1128 ZRAM_ATTR_RO(invalid_io);
1129 ZRAM_ATTR_RO(notify_free);
1130 ZRAM_ATTR_RO(zero_pages);
1131 ZRAM_ATTR_RO(compr_data_size);
1132 
1133 static struct attribute *zram_disk_attrs[] = {
1134 	&dev_attr_disksize.attr,
1135 	&dev_attr_initstate.attr,
1136 	&dev_attr_reset.attr,
1137 	&dev_attr_num_reads.attr,
1138 	&dev_attr_num_writes.attr,
1139 	&dev_attr_failed_reads.attr,
1140 	&dev_attr_failed_writes.attr,
1141 	&dev_attr_compact.attr,
1142 	&dev_attr_invalid_io.attr,
1143 	&dev_attr_notify_free.attr,
1144 	&dev_attr_zero_pages.attr,
1145 	&dev_attr_orig_data_size.attr,
1146 	&dev_attr_compr_data_size.attr,
1147 	&dev_attr_mem_used_total.attr,
1148 	&dev_attr_mem_limit.attr,
1149 	&dev_attr_mem_used_max.attr,
1150 	&dev_attr_max_comp_streams.attr,
1151 	&dev_attr_comp_algorithm.attr,
1152 	&dev_attr_io_stat.attr,
1153 	&dev_attr_mm_stat.attr,
1154 	NULL,
1155 };
1156 
1157 static struct attribute_group zram_disk_attr_group = {
1158 	.attrs = zram_disk_attrs,
1159 };
1160 
create_device(struct zram * zram,int device_id)1161 static int create_device(struct zram *zram, int device_id)
1162 {
1163 	struct request_queue *queue;
1164 	int ret = -ENOMEM;
1165 
1166 	init_rwsem(&zram->init_lock);
1167 
1168 	queue = blk_alloc_queue(GFP_KERNEL);
1169 	if (!queue) {
1170 		pr_err("Error allocating disk queue for device %d\n",
1171 			device_id);
1172 		goto out;
1173 	}
1174 
1175 	blk_queue_make_request(queue, zram_make_request);
1176 
1177 	 /* gendisk structure */
1178 	zram->disk = alloc_disk(1);
1179 	if (!zram->disk) {
1180 		pr_warn("Error allocating disk structure for device %d\n",
1181 			device_id);
1182 		ret = -ENOMEM;
1183 		goto out_free_queue;
1184 	}
1185 
1186 	zram->disk->major = zram_major;
1187 	zram->disk->first_minor = device_id;
1188 	zram->disk->fops = &zram_devops;
1189 	zram->disk->queue = queue;
1190 	zram->disk->queue->queuedata = zram;
1191 	zram->disk->private_data = zram;
1192 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1193 
1194 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1195 	set_capacity(zram->disk, 0);
1196 	/* zram devices sort of resembles non-rotational disks */
1197 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1198 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1199 	/*
1200 	 * To ensure that we always get PAGE_SIZE aligned
1201 	 * and n*PAGE_SIZED sized I/O requests.
1202 	 */
1203 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1204 	blk_queue_logical_block_size(zram->disk->queue,
1205 					ZRAM_LOGICAL_BLOCK_SIZE);
1206 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1207 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1208 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1209 	zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1210 	/*
1211 	 * zram_bio_discard() will clear all logical blocks if logical block
1212 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1213 	 * different, we will skip discarding some parts of logical blocks in
1214 	 * the part of the request range which isn't aligned to physical block
1215 	 * size.  So we can't ensure that all discarded logical blocks are
1216 	 * zeroed.
1217 	 */
1218 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1219 		zram->disk->queue->limits.discard_zeroes_data = 1;
1220 	else
1221 		zram->disk->queue->limits.discard_zeroes_data = 0;
1222 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1223 
1224 	add_disk(zram->disk);
1225 
1226 	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1227 				&zram_disk_attr_group);
1228 	if (ret < 0) {
1229 		pr_warn("Error creating sysfs group");
1230 		goto out_free_disk;
1231 	}
1232 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1233 	zram->meta = NULL;
1234 	zram->max_comp_streams = 1;
1235 	return 0;
1236 
1237 out_free_disk:
1238 	del_gendisk(zram->disk);
1239 	put_disk(zram->disk);
1240 out_free_queue:
1241 	blk_cleanup_queue(queue);
1242 out:
1243 	return ret;
1244 }
1245 
destroy_devices(unsigned int nr)1246 static void destroy_devices(unsigned int nr)
1247 {
1248 	struct zram *zram;
1249 	unsigned int i;
1250 
1251 	for (i = 0; i < nr; i++) {
1252 		zram = &zram_devices[i];
1253 		/*
1254 		 * Remove sysfs first, so no one will perform a disksize
1255 		 * store while we destroy the devices
1256 		 */
1257 		sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1258 				&zram_disk_attr_group);
1259 
1260 		zram_reset_device(zram);
1261 
1262 		blk_cleanup_queue(zram->disk->queue);
1263 		del_gendisk(zram->disk);
1264 		put_disk(zram->disk);
1265 	}
1266 
1267 	kfree(zram_devices);
1268 	unregister_blkdev(zram_major, "zram");
1269 	pr_info("Destroyed %u device(s)\n", nr);
1270 }
1271 
zram_init(void)1272 static int __init zram_init(void)
1273 {
1274 	int ret, dev_id;
1275 
1276 	if (num_devices > max_num_devices) {
1277 		pr_warn("Invalid value for num_devices: %u\n",
1278 				num_devices);
1279 		return -EINVAL;
1280 	}
1281 
1282 	zram_major = register_blkdev(0, "zram");
1283 	if (zram_major <= 0) {
1284 		pr_warn("Unable to get major number\n");
1285 		return -EBUSY;
1286 	}
1287 
1288 	/* Allocate the device array and initialize each one */
1289 	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1290 	if (!zram_devices) {
1291 		unregister_blkdev(zram_major, "zram");
1292 		return -ENOMEM;
1293 	}
1294 
1295 	for (dev_id = 0; dev_id < num_devices; dev_id++) {
1296 		ret = create_device(&zram_devices[dev_id], dev_id);
1297 		if (ret)
1298 			goto out_error;
1299 	}
1300 
1301 	pr_info("Created %u device(s)\n", num_devices);
1302 	return 0;
1303 
1304 out_error:
1305 	destroy_devices(dev_id);
1306 	return ret;
1307 }
1308 
zram_exit(void)1309 static void __exit zram_exit(void)
1310 {
1311 	destroy_devices(num_devices);
1312 }
1313 
1314 module_init(zram_init);
1315 module_exit(zram_exit);
1316 
1317 module_param(num_devices, uint, 0);
1318 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1319 
1320 MODULE_LICENSE("Dual BSD/GPL");
1321 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1322 MODULE_DESCRIPTION("Compressed RAM Block Device");
1323