1 /*
2  * SuperH IrDA Driver
3  *
4  * Copyright (C) 2009 Renesas Solutions Corp.
5  * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6  *
7  * Based on bfin_sir.c
8  * Copyright 2006-2009 Analog Devices Inc.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/io.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <net/irda/wrapper.h>
21 #include <net/irda/irda_device.h>
22 #include <asm/clock.h>
23 
24 #define DRIVER_NAME "sh_sir"
25 
26 #define RX_PHASE	(1 << 0)
27 #define TX_PHASE	(1 << 1)
28 #define TX_COMP_PHASE	(1 << 2) /* tx complete */
29 #define NONE_PHASE	(1 << 31)
30 
31 #define IRIF_RINTCLR	0x0016 /* DMA rx interrupt source clear */
32 #define IRIF_TINTCLR	0x0018 /* DMA tx interrupt source clear */
33 #define IRIF_SIR0	0x0020 /* IrDA-SIR10 control */
34 #define IRIF_SIR1	0x0022 /* IrDA-SIR10 baudrate error correction */
35 #define IRIF_SIR2	0x0024 /* IrDA-SIR10 baudrate count */
36 #define IRIF_SIR3	0x0026 /* IrDA-SIR10 status */
37 #define IRIF_SIR_FRM	0x0028 /* Hardware frame processing set */
38 #define IRIF_SIR_EOF	0x002A /* EOF value */
39 #define IRIF_SIR_FLG	0x002C /* Flag clear */
40 #define IRIF_UART_STS2	0x002E /* UART status 2 */
41 #define IRIF_UART0	0x0030 /* UART control */
42 #define IRIF_UART1	0x0032 /* UART status */
43 #define IRIF_UART2	0x0034 /* UART mode */
44 #define IRIF_UART3	0x0036 /* UART transmit data */
45 #define IRIF_UART4	0x0038 /* UART receive data */
46 #define IRIF_UART5	0x003A /* UART interrupt mask */
47 #define IRIF_UART6	0x003C /* UART baud rate error correction */
48 #define IRIF_UART7	0x003E /* UART baud rate count set */
49 #define IRIF_CRC0	0x0040 /* CRC engine control */
50 #define IRIF_CRC1	0x0042 /* CRC engine input data */
51 #define IRIF_CRC2	0x0044 /* CRC engine calculation */
52 #define IRIF_CRC3	0x0046 /* CRC engine output data 1 */
53 #define IRIF_CRC4	0x0048 /* CRC engine output data 2 */
54 
55 /* IRIF_SIR0 */
56 #define IRTPW		(1 << 1) /* transmit pulse width select */
57 #define IRERRC		(1 << 0) /* Clear receive pulse width error */
58 
59 /* IRIF_SIR3 */
60 #define IRERR		(1 << 0) /* received pulse width Error */
61 
62 /* IRIF_SIR_FRM */
63 #define EOFD		(1 << 9) /* EOF detection flag */
64 #define FRER		(1 << 8) /* Frame Error bit */
65 #define FRP		(1 << 0) /* Frame processing set */
66 
67 /* IRIF_UART_STS2 */
68 #define IRSME		(1 << 6) /* Receive Sum     Error flag */
69 #define IROVE		(1 << 5) /* Receive Overrun Error flag */
70 #define IRFRE		(1 << 4) /* Receive Framing Error flag */
71 #define IRPRE		(1 << 3) /* Receive Parity  Error flag */
72 
73 /* IRIF_UART0_*/
74 #define TBEC		(1 << 2) /* Transmit Data Clear */
75 #define RIE		(1 << 1) /* Receive Enable */
76 #define TIE		(1 << 0) /* Transmit Enable */
77 
78 /* IRIF_UART1 */
79 #define URSME		(1 << 6) /* Receive Sum Error Flag */
80 #define UROVE		(1 << 5) /* Receive Overrun Error Flag */
81 #define URFRE		(1 << 4) /* Receive Framing Error Flag */
82 #define URPRE		(1 << 3) /* Receive Parity Error Flag */
83 #define RBF		(1 << 2) /* Receive Buffer Full Flag */
84 #define TSBE		(1 << 1) /* Transmit Shift Buffer Empty Flag */
85 #define TBE		(1 << 0) /* Transmit Buffer Empty flag */
86 #define TBCOMP		(TSBE | TBE)
87 
88 /* IRIF_UART5 */
89 #define RSEIM		(1 << 6) /* Receive Sum Error Flag IRQ Mask */
90 #define RBFIM		(1 << 2) /* Receive Buffer Full Flag IRQ Mask */
91 #define TSBEIM		(1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
92 #define TBEIM		(1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
93 #define RX_MASK		(RSEIM  | RBFIM)
94 
95 /* IRIF_CRC0 */
96 #define CRC_RST		(1 << 15) /* CRC Engine Reset */
97 #define CRC_CT_MASK	0x0FFF
98 
99 /************************************************************************
100 
101 
102 			structure
103 
104 
105 ************************************************************************/
106 struct sh_sir_self {
107 	void __iomem		*membase;
108 	unsigned int		 irq;
109 	struct clk		*clk;
110 
111 	struct net_device	*ndev;
112 
113 	struct irlap_cb		*irlap;
114 	struct qos_info		qos;
115 
116 	iobuff_t		tx_buff;
117 	iobuff_t		rx_buff;
118 };
119 
120 /************************************************************************
121 
122 
123 			common function
124 
125 
126 ************************************************************************/
sh_sir_write(struct sh_sir_self * self,u32 offset,u16 data)127 static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
128 {
129 	iowrite16(data, self->membase + offset);
130 }
131 
sh_sir_read(struct sh_sir_self * self,u32 offset)132 static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
133 {
134 	return ioread16(self->membase + offset);
135 }
136 
sh_sir_update_bits(struct sh_sir_self * self,u32 offset,u16 mask,u16 data)137 static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
138 			       u16 mask, u16 data)
139 {
140 	u16 old, new;
141 
142 	old = sh_sir_read(self, offset);
143 	new = (old & ~mask) | data;
144 	if (old != new)
145 		sh_sir_write(self, offset, new);
146 }
147 
148 /************************************************************************
149 
150 
151 			CRC function
152 
153 
154 ************************************************************************/
sh_sir_crc_reset(struct sh_sir_self * self)155 static void sh_sir_crc_reset(struct sh_sir_self *self)
156 {
157 	sh_sir_write(self, IRIF_CRC0, CRC_RST);
158 }
159 
sh_sir_crc_add(struct sh_sir_self * self,u8 data)160 static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
161 {
162 	sh_sir_write(self, IRIF_CRC1, (u16)data);
163 }
164 
sh_sir_crc_cnt(struct sh_sir_self * self)165 static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
166 {
167 	return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
168 }
169 
sh_sir_crc_out(struct sh_sir_self * self)170 static u16 sh_sir_crc_out(struct sh_sir_self *self)
171 {
172 	return sh_sir_read(self, IRIF_CRC4);
173 }
174 
sh_sir_crc_init(struct sh_sir_self * self)175 static int sh_sir_crc_init(struct sh_sir_self *self)
176 {
177 	struct device *dev = &self->ndev->dev;
178 	int ret = -EIO;
179 	u16 val;
180 
181 	sh_sir_crc_reset(self);
182 
183 	sh_sir_crc_add(self, 0xCC);
184 	sh_sir_crc_add(self, 0xF5);
185 	sh_sir_crc_add(self, 0xF1);
186 	sh_sir_crc_add(self, 0xA7);
187 
188 	val = sh_sir_crc_cnt(self);
189 	if (4 != val) {
190 		dev_err(dev, "CRC count error %x\n", val);
191 		goto crc_init_out;
192 	}
193 
194 	val = sh_sir_crc_out(self);
195 	if (0x51DF != val) {
196 		dev_err(dev, "CRC result error%x\n", val);
197 		goto crc_init_out;
198 	}
199 
200 	ret = 0;
201 
202 crc_init_out:
203 
204 	sh_sir_crc_reset(self);
205 	return ret;
206 }
207 
208 /************************************************************************
209 
210 
211 			baud rate functions
212 
213 
214 ************************************************************************/
215 #define SCLK_BASE 1843200 /* 1.8432MHz */
216 
sh_sir_find_sclk(struct clk * irda_clk)217 static u32 sh_sir_find_sclk(struct clk *irda_clk)
218 {
219 	struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
220 	struct cpufreq_frequency_table *pos;
221 	struct clk *pclk = clk_get(NULL, "peripheral_clk");
222 	u32 limit, min = 0xffffffff, tmp;
223 	int index = 0;
224 
225 	limit = clk_get_rate(pclk);
226 	clk_put(pclk);
227 
228 	/* IrDA can not set over peripheral_clk */
229 	cpufreq_for_each_valid_entry(pos, freq_table) {
230 		u32 freq = pos->frequency;
231 
232 		/* IrDA should not over peripheral_clk */
233 		if (freq > limit)
234 			continue;
235 
236 		tmp = freq % SCLK_BASE;
237 		if (tmp < min) {
238 			min = tmp;
239 			index = pos - freq_table;
240 		}
241 	}
242 
243 	return freq_table[index].frequency;
244 }
245 
246 #define ERR_ROUNDING(a) ((a + 5000) / 10000)
sh_sir_set_baudrate(struct sh_sir_self * self,u32 baudrate)247 static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
248 {
249 	struct clk *clk;
250 	struct device *dev = &self->ndev->dev;
251 	u32 rate;
252 	u16 uabca, uabc;
253 	u16 irbca, irbc;
254 	u32 min, rerr, tmp;
255 	int i;
256 
257 	/* Baud Rate Error Correction x 10000 */
258 	u32 rate_err_array[] = {
259 		   0,  625, 1250, 1875,
260 		2500, 3125, 3750, 4375,
261 		5000, 5625, 6250, 6875,
262 		7500, 8125, 8750, 9375,
263 	};
264 
265 	/*
266 	 * FIXME
267 	 *
268 	 * it support 9600 only now
269 	 */
270 	switch (baudrate) {
271 	case 9600:
272 		break;
273 	default:
274 		dev_err(dev, "un-supported baudrate %d\n", baudrate);
275 		return -EIO;
276 	}
277 
278 	clk = clk_get(NULL, "irda_clk");
279 	if (IS_ERR(clk)) {
280 		dev_err(dev, "can not get irda_clk\n");
281 		return -EIO;
282 	}
283 
284 	clk_set_rate(clk, sh_sir_find_sclk(clk));
285 	rate = clk_get_rate(clk);
286 	clk_put(clk);
287 
288 	dev_dbg(dev, "selected sclk = %d\n", rate);
289 
290 	/*
291 	 * CALCULATION
292 	 *
293 	 * 1843200 = system rate / (irbca + (irbc + 1))
294 	 */
295 
296 	irbc = rate / SCLK_BASE;
297 
298 	tmp = rate - (SCLK_BASE * irbc);
299 	tmp *= 10000;
300 
301 	rerr = tmp / SCLK_BASE;
302 
303 	min = 0xffffffff;
304 	irbca = 0;
305 	for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
306 		tmp = abs(rate_err_array[i] - rerr);
307 		if (min > tmp) {
308 			min = tmp;
309 			irbca = i;
310 		}
311 	}
312 
313 	tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
314 	if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
315 		dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
316 
317 	dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
318 	       SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
319 
320 	irbca = (irbca & 0xF) << 4;
321 	irbc  = (irbc - 1) & 0xF;
322 
323 	if (!irbc) {
324 		dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
325 		return -EIO;
326 	}
327 
328 	sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
329 	sh_sir_write(self, IRIF_SIR1, irbca);
330 	sh_sir_write(self, IRIF_SIR2, irbc);
331 
332 	/*
333 	 * CALCULATION
334 	 *
335 	 * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
336 	 */
337 
338 	uabc = rate / baudrate;
339 	uabc = (uabc / 16) - 1;
340 	uabc = (uabc + 1) * 16;
341 
342 	tmp = rate - (uabc * baudrate);
343 	tmp *= 10000;
344 
345 	rerr = tmp / baudrate;
346 
347 	min = 0xffffffff;
348 	uabca = 0;
349 	for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
350 		tmp = abs(rate_err_array[i] - rerr);
351 		if (min > tmp) {
352 			min = tmp;
353 			uabca = i;
354 		}
355 	}
356 
357 	tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
358 	if ((baudrate / 100) < abs(tmp - baudrate))
359 		dev_warn(dev, "UART freq error margin over %d\n", tmp);
360 
361 	dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
362 	       baudrate, tmp,
363 	       uabc, rate_err_array[uabca]);
364 
365 	uabca = (uabca & 0xF) << 4;
366 	uabc  = (uabc / 16) - 1;
367 
368 	sh_sir_write(self, IRIF_UART6, uabca);
369 	sh_sir_write(self, IRIF_UART7, uabc);
370 
371 	return 0;
372 }
373 
374 /************************************************************************
375 
376 
377 			iobuf function
378 
379 
380 ************************************************************************/
__sh_sir_init_iobuf(iobuff_t * io,int size)381 static int __sh_sir_init_iobuf(iobuff_t *io, int size)
382 {
383 	io->head = kmalloc(size, GFP_KERNEL);
384 	if (!io->head)
385 		return -ENOMEM;
386 
387 	io->truesize	= size;
388 	io->in_frame	= FALSE;
389 	io->state	= OUTSIDE_FRAME;
390 	io->data	= io->head;
391 
392 	return 0;
393 }
394 
sh_sir_remove_iobuf(struct sh_sir_self * self)395 static void sh_sir_remove_iobuf(struct sh_sir_self *self)
396 {
397 	kfree(self->rx_buff.head);
398 	kfree(self->tx_buff.head);
399 
400 	self->rx_buff.head = NULL;
401 	self->tx_buff.head = NULL;
402 }
403 
sh_sir_init_iobuf(struct sh_sir_self * self,int rxsize,int txsize)404 static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
405 {
406 	int err = -ENOMEM;
407 
408 	if (self->rx_buff.head ||
409 	    self->tx_buff.head) {
410 		dev_err(&self->ndev->dev, "iobuff has already existed.");
411 		return err;
412 	}
413 
414 	err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
415 	if (err)
416 		goto iobuf_err;
417 
418 	err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
419 
420 iobuf_err:
421 	if (err)
422 		sh_sir_remove_iobuf(self);
423 
424 	return err;
425 }
426 
427 /************************************************************************
428 
429 
430 			status function
431 
432 
433 ************************************************************************/
sh_sir_clear_all_err(struct sh_sir_self * self)434 static void sh_sir_clear_all_err(struct sh_sir_self *self)
435 {
436 	/* Clear error flag for receive pulse width */
437 	sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
438 
439 	/* Clear frame / EOF error flag */
440 	sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
441 
442 	/* Clear all status error */
443 	sh_sir_write(self, IRIF_UART_STS2, 0);
444 }
445 
sh_sir_set_phase(struct sh_sir_self * self,int phase)446 static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
447 {
448 	u16 uart5 = 0;
449 	u16 uart0 = 0;
450 
451 	switch (phase) {
452 	case TX_PHASE:
453 		uart5 = TBEIM;
454 		uart0 = TBEC | TIE;
455 		break;
456 	case TX_COMP_PHASE:
457 		uart5 = TSBEIM;
458 		uart0 = TIE;
459 		break;
460 	case RX_PHASE:
461 		uart5 = RX_MASK;
462 		uart0 = RIE;
463 		break;
464 	default:
465 		break;
466 	}
467 
468 	sh_sir_write(self, IRIF_UART5, uart5);
469 	sh_sir_write(self, IRIF_UART0, uart0);
470 }
471 
sh_sir_is_which_phase(struct sh_sir_self * self)472 static int sh_sir_is_which_phase(struct sh_sir_self *self)
473 {
474 	u16 val = sh_sir_read(self, IRIF_UART5);
475 
476 	if (val & TBEIM)
477 		return TX_PHASE;
478 
479 	if (val & TSBEIM)
480 		return TX_COMP_PHASE;
481 
482 	if (val & RX_MASK)
483 		return RX_PHASE;
484 
485 	return NONE_PHASE;
486 }
487 
sh_sir_tx(struct sh_sir_self * self,int phase)488 static void sh_sir_tx(struct sh_sir_self *self, int phase)
489 {
490 	switch (phase) {
491 	case TX_PHASE:
492 		if (0 >= self->tx_buff.len) {
493 			sh_sir_set_phase(self, TX_COMP_PHASE);
494 		} else {
495 			sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
496 			self->tx_buff.len--;
497 			self->tx_buff.data++;
498 		}
499 		break;
500 	case TX_COMP_PHASE:
501 		sh_sir_set_phase(self, RX_PHASE);
502 		netif_wake_queue(self->ndev);
503 		break;
504 	default:
505 		dev_err(&self->ndev->dev, "should not happen\n");
506 		break;
507 	}
508 }
509 
sh_sir_read_data(struct sh_sir_self * self)510 static int sh_sir_read_data(struct sh_sir_self *self)
511 {
512 	u16 val = 0;
513 	int timeout = 1024;
514 
515 	while (timeout--) {
516 		val = sh_sir_read(self, IRIF_UART1);
517 
518 		/* data get */
519 		if (val & RBF) {
520 			if (val & (URSME | UROVE | URFRE | URPRE))
521 				break;
522 
523 			return (int)sh_sir_read(self, IRIF_UART4);
524 		}
525 
526 		udelay(1);
527 	}
528 
529 	dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
530 		val, sh_sir_read(self, IRIF_UART_STS2));
531 
532 	/* read data register for clear error */
533 	sh_sir_read(self, IRIF_UART4);
534 
535 	return -1;
536 }
537 
sh_sir_rx(struct sh_sir_self * self)538 static void sh_sir_rx(struct sh_sir_self *self)
539 {
540 	int timeout = 1024;
541 	int data;
542 
543 	while (timeout--) {
544 		data = sh_sir_read_data(self);
545 		if (data < 0)
546 			break;
547 
548 		async_unwrap_char(self->ndev, &self->ndev->stats,
549 				  &self->rx_buff, (u8)data);
550 		self->ndev->last_rx = jiffies;
551 
552 		if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
553 			continue;
554 
555 		break;
556 	}
557 }
558 
sh_sir_irq(int irq,void * dev_id)559 static irqreturn_t sh_sir_irq(int irq, void *dev_id)
560 {
561 	struct sh_sir_self *self = dev_id;
562 	struct device *dev = &self->ndev->dev;
563 	int phase = sh_sir_is_which_phase(self);
564 
565 	switch (phase) {
566 	case TX_COMP_PHASE:
567 	case TX_PHASE:
568 		sh_sir_tx(self, phase);
569 		break;
570 	case RX_PHASE:
571 		if (sh_sir_read(self, IRIF_SIR3))
572 			dev_err(dev, "rcv pulse width error occurred\n");
573 
574 		sh_sir_rx(self);
575 		sh_sir_clear_all_err(self);
576 		break;
577 	default:
578 		dev_err(dev, "unknown interrupt\n");
579 	}
580 
581 	 return IRQ_HANDLED;
582 }
583 
584 /************************************************************************
585 
586 
587 			net_device_ops function
588 
589 
590 ************************************************************************/
sh_sir_hard_xmit(struct sk_buff * skb,struct net_device * ndev)591 static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
592 {
593 	struct sh_sir_self *self = netdev_priv(ndev);
594 	int speed = irda_get_next_speed(skb);
595 
596 	if ((0 < speed) &&
597 	    (9600 != speed)) {
598 		dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
599 		return -EIO;
600 	}
601 
602 	netif_stop_queue(ndev);
603 
604 	self->tx_buff.data = self->tx_buff.head;
605 	self->tx_buff.len = 0;
606 	if (skb->len)
607 		self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
608 						   self->tx_buff.truesize);
609 
610 	sh_sir_set_phase(self, TX_PHASE);
611 	dev_kfree_skb(skb);
612 
613 	return 0;
614 }
615 
sh_sir_ioctl(struct net_device * ndev,struct ifreq * ifreq,int cmd)616 static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
617 {
618 	/*
619 	 * FIXME
620 	 *
621 	 * This function is needed for irda framework.
622 	 * But nothing to do now
623 	 */
624 	return 0;
625 }
626 
sh_sir_stats(struct net_device * ndev)627 static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
628 {
629 	struct sh_sir_self *self = netdev_priv(ndev);
630 
631 	return &self->ndev->stats;
632 }
633 
sh_sir_open(struct net_device * ndev)634 static int sh_sir_open(struct net_device *ndev)
635 {
636 	struct sh_sir_self *self = netdev_priv(ndev);
637 	int err;
638 
639 	clk_enable(self->clk);
640 	err = sh_sir_crc_init(self);
641 	if (err)
642 		goto open_err;
643 
644 	sh_sir_set_baudrate(self, 9600);
645 
646 	self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
647 	if (!self->irlap) {
648 		err = -ENODEV;
649 		goto open_err;
650 	}
651 
652 	/*
653 	 * Now enable the interrupt then start the queue
654 	 */
655 	sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
656 	sh_sir_read(self, IRIF_UART1); /* flag clear */
657 	sh_sir_read(self, IRIF_UART4); /* flag clear */
658 	sh_sir_set_phase(self, RX_PHASE);
659 
660 	netif_start_queue(ndev);
661 
662 	dev_info(&self->ndev->dev, "opened\n");
663 
664 	return 0;
665 
666 open_err:
667 	clk_disable(self->clk);
668 
669 	return err;
670 }
671 
sh_sir_stop(struct net_device * ndev)672 static int sh_sir_stop(struct net_device *ndev)
673 {
674 	struct sh_sir_self *self = netdev_priv(ndev);
675 
676 	/* Stop IrLAP */
677 	if (self->irlap) {
678 		irlap_close(self->irlap);
679 		self->irlap = NULL;
680 	}
681 
682 	netif_stop_queue(ndev);
683 
684 	dev_info(&ndev->dev, "stopped\n");
685 
686 	return 0;
687 }
688 
689 static const struct net_device_ops sh_sir_ndo = {
690 	.ndo_open		= sh_sir_open,
691 	.ndo_stop		= sh_sir_stop,
692 	.ndo_start_xmit		= sh_sir_hard_xmit,
693 	.ndo_do_ioctl		= sh_sir_ioctl,
694 	.ndo_get_stats		= sh_sir_stats,
695 };
696 
697 /************************************************************************
698 
699 
700 			platform_driver function
701 
702 
703 ************************************************************************/
sh_sir_probe(struct platform_device * pdev)704 static int sh_sir_probe(struct platform_device *pdev)
705 {
706 	struct net_device *ndev;
707 	struct sh_sir_self *self;
708 	struct resource *res;
709 	char clk_name[8];
710 	int irq;
711 	int err = -ENOMEM;
712 
713 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
714 	irq = platform_get_irq(pdev, 0);
715 	if (!res || irq < 0) {
716 		dev_err(&pdev->dev, "Not enough platform resources.\n");
717 		goto exit;
718 	}
719 
720 	ndev = alloc_irdadev(sizeof(*self));
721 	if (!ndev)
722 		goto exit;
723 
724 	self = netdev_priv(ndev);
725 	self->membase = ioremap_nocache(res->start, resource_size(res));
726 	if (!self->membase) {
727 		err = -ENXIO;
728 		dev_err(&pdev->dev, "Unable to ioremap.\n");
729 		goto err_mem_1;
730 	}
731 
732 	err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
733 	if (err)
734 		goto err_mem_2;
735 
736 	snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
737 	self->clk = clk_get(&pdev->dev, clk_name);
738 	if (IS_ERR(self->clk)) {
739 		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
740 		err = -ENODEV;
741 		goto err_mem_3;
742 	}
743 
744 	irda_init_max_qos_capabilies(&self->qos);
745 
746 	ndev->netdev_ops	= &sh_sir_ndo;
747 	ndev->irq		= irq;
748 
749 	self->ndev			= ndev;
750 	self->qos.baud_rate.bits	&= IR_9600; /* FIXME */
751 	self->qos.min_turn_time.bits	= 1; /* 10 ms or more */
752 
753 	irda_qos_bits_to_value(&self->qos);
754 
755 	err = register_netdev(ndev);
756 	if (err)
757 		goto err_mem_4;
758 
759 	platform_set_drvdata(pdev, ndev);
760 	err = devm_request_irq(&pdev->dev, irq, sh_sir_irq, 0, "sh_sir", self);
761 	if (err) {
762 		dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
763 		goto err_mem_4;
764 	}
765 
766 	dev_info(&pdev->dev, "SuperH IrDA probed\n");
767 
768 	goto exit;
769 
770 err_mem_4:
771 	clk_put(self->clk);
772 err_mem_3:
773 	sh_sir_remove_iobuf(self);
774 err_mem_2:
775 	iounmap(self->membase);
776 err_mem_1:
777 	free_netdev(ndev);
778 exit:
779 	return err;
780 }
781 
sh_sir_remove(struct platform_device * pdev)782 static int sh_sir_remove(struct platform_device *pdev)
783 {
784 	struct net_device *ndev = platform_get_drvdata(pdev);
785 	struct sh_sir_self *self = netdev_priv(ndev);
786 
787 	if (!self)
788 		return 0;
789 
790 	unregister_netdev(ndev);
791 	clk_put(self->clk);
792 	sh_sir_remove_iobuf(self);
793 	iounmap(self->membase);
794 	free_netdev(ndev);
795 
796 	return 0;
797 }
798 
799 static struct platform_driver sh_sir_driver = {
800 	.probe   = sh_sir_probe,
801 	.remove  = sh_sir_remove,
802 	.driver  = {
803 		.name = DRIVER_NAME,
804 	},
805 };
806 
807 module_platform_driver(sh_sir_driver);
808 
809 MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
810 MODULE_DESCRIPTION("SuperH IrDA driver");
811 MODULE_LICENSE("GPL");
812