1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3 
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7 
8 #include "perf_event.h"
9 
10 enum {
11 	LBR_FORMAT_32		= 0x00,
12 	LBR_FORMAT_LIP		= 0x01,
13 	LBR_FORMAT_EIP		= 0x02,
14 	LBR_FORMAT_EIP_FLAGS	= 0x03,
15 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16 	LBR_FORMAT_INFO		= 0x05,
17 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_INFO,
18 };
19 
20 static enum {
21 	LBR_EIP_FLAGS		= 1,
22 	LBR_TSX			= 2,
23 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
24 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
25 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
26 };
27 
28 /*
29  * Intel LBR_SELECT bits
30  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
31  *
32  * Hardware branch filter (not available on all CPUs)
33  */
34 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
35 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
36 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
37 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
38 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
39 #define LBR_RETURN_BIT		5 /* do not capture near returns */
40 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
41 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
42 #define LBR_FAR_BIT		8 /* do not capture far branches */
43 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
44 
45 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
46 #define LBR_USER	(1 << LBR_USER_BIT)
47 #define LBR_JCC		(1 << LBR_JCC_BIT)
48 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
49 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
50 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
51 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
52 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
53 #define LBR_FAR		(1 << LBR_FAR_BIT)
54 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
55 
56 #define LBR_PLM (LBR_KERNEL | LBR_USER)
57 
58 #define LBR_SEL_MASK	0x1ff	/* valid bits in LBR_SELECT */
59 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
60 #define LBR_IGN		0	/* ignored */
61 
62 #define LBR_ANY		 \
63 	(LBR_JCC	|\
64 	 LBR_REL_CALL	|\
65 	 LBR_IND_CALL	|\
66 	 LBR_RETURN	|\
67 	 LBR_REL_JMP	|\
68 	 LBR_IND_JMP	|\
69 	 LBR_FAR)
70 
71 #define LBR_FROM_FLAG_MISPRED  (1ULL << 63)
72 #define LBR_FROM_FLAG_IN_TX    (1ULL << 62)
73 #define LBR_FROM_FLAG_ABORT    (1ULL << 61)
74 
75 /*
76  * x86control flow change classification
77  * x86control flow changes include branches, interrupts, traps, faults
78  */
79 enum {
80 	X86_BR_NONE		= 0,      /* unknown */
81 
82 	X86_BR_USER		= 1 << 0, /* branch target is user */
83 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
84 
85 	X86_BR_CALL		= 1 << 2, /* call */
86 	X86_BR_RET		= 1 << 3, /* return */
87 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
88 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
89 	X86_BR_INT		= 1 << 6, /* sw interrupt */
90 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
91 	X86_BR_JCC		= 1 << 8, /* conditional */
92 	X86_BR_JMP		= 1 << 9, /* jump */
93 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
94 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
95 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
96 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
97 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
98 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
99 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
100 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
101 };
102 
103 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
104 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
105 
106 #define X86_BR_ANY       \
107 	(X86_BR_CALL    |\
108 	 X86_BR_RET     |\
109 	 X86_BR_SYSCALL |\
110 	 X86_BR_SYSRET  |\
111 	 X86_BR_INT     |\
112 	 X86_BR_IRET    |\
113 	 X86_BR_JCC     |\
114 	 X86_BR_JMP	 |\
115 	 X86_BR_IRQ	 |\
116 	 X86_BR_ABORT	 |\
117 	 X86_BR_IND_CALL |\
118 	 X86_BR_IND_JMP  |\
119 	 X86_BR_ZERO_CALL)
120 
121 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
122 
123 #define X86_BR_ANY_CALL		 \
124 	(X86_BR_CALL		|\
125 	 X86_BR_IND_CALL	|\
126 	 X86_BR_ZERO_CALL	|\
127 	 X86_BR_SYSCALL		|\
128 	 X86_BR_IRQ		|\
129 	 X86_BR_INT)
130 
131 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
132 
133 /*
134  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
135  * otherwise it becomes near impossible to get a reliable stack.
136  */
137 
__intel_pmu_lbr_enable(bool pmi)138 static void __intel_pmu_lbr_enable(bool pmi)
139 {
140 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
141 	u64 debugctl, lbr_select = 0, orig_debugctl;
142 
143 	/*
144 	 * No need to unfreeze manually, as v4 can do that as part
145 	 * of the GLOBAL_STATUS ack.
146 	 */
147 	if (pmi && x86_pmu.version >= 4)
148 		return;
149 
150 	/*
151 	 * No need to reprogram LBR_SELECT in a PMI, as it
152 	 * did not change.
153 	 */
154 	if (cpuc->lbr_sel)
155 		lbr_select = cpuc->lbr_sel->config;
156 	if (!pmi)
157 		wrmsrl(MSR_LBR_SELECT, lbr_select);
158 
159 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
160 	orig_debugctl = debugctl;
161 	debugctl |= DEBUGCTLMSR_LBR;
162 	/*
163 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
164 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
165 	 * may cause superfluous increase/decrease of LBR_TOS.
166 	 */
167 	if (!(lbr_select & LBR_CALL_STACK))
168 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
169 	if (orig_debugctl != debugctl)
170 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171 }
172 
__intel_pmu_lbr_disable(void)173 static void __intel_pmu_lbr_disable(void)
174 {
175 	u64 debugctl;
176 
177 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
178 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
179 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
180 }
181 
intel_pmu_lbr_reset_32(void)182 static void intel_pmu_lbr_reset_32(void)
183 {
184 	int i;
185 
186 	for (i = 0; i < x86_pmu.lbr_nr; i++)
187 		wrmsrl(x86_pmu.lbr_from + i, 0);
188 }
189 
intel_pmu_lbr_reset_64(void)190 static void intel_pmu_lbr_reset_64(void)
191 {
192 	int i;
193 
194 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
195 		wrmsrl(x86_pmu.lbr_from + i, 0);
196 		wrmsrl(x86_pmu.lbr_to   + i, 0);
197 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
198 			wrmsrl(MSR_LBR_INFO_0 + i, 0);
199 	}
200 }
201 
intel_pmu_lbr_reset(void)202 void intel_pmu_lbr_reset(void)
203 {
204 	if (!x86_pmu.lbr_nr)
205 		return;
206 
207 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
208 		intel_pmu_lbr_reset_32();
209 	else
210 		intel_pmu_lbr_reset_64();
211 }
212 
213 /*
214  * TOS = most recently recorded branch
215  */
intel_pmu_lbr_tos(void)216 static inline u64 intel_pmu_lbr_tos(void)
217 {
218 	u64 tos;
219 
220 	rdmsrl(x86_pmu.lbr_tos, tos);
221 	return tos;
222 }
223 
224 enum {
225 	LBR_NONE,
226 	LBR_VALID,
227 };
228 
__intel_pmu_lbr_restore(struct x86_perf_task_context * task_ctx)229 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
230 {
231 	int i;
232 	unsigned lbr_idx, mask;
233 	u64 tos;
234 
235 	if (task_ctx->lbr_callstack_users == 0 ||
236 	    task_ctx->lbr_stack_state == LBR_NONE) {
237 		intel_pmu_lbr_reset();
238 		return;
239 	}
240 
241 	mask = x86_pmu.lbr_nr - 1;
242 	tos = task_ctx->tos;
243 	for (i = 0; i < tos; i++) {
244 		lbr_idx = (tos - i) & mask;
245 		wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
246 		wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
247 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
248 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
249 	}
250 	wrmsrl(x86_pmu.lbr_tos, tos);
251 	task_ctx->lbr_stack_state = LBR_NONE;
252 }
253 
__intel_pmu_lbr_save(struct x86_perf_task_context * task_ctx)254 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
255 {
256 	int i;
257 	unsigned lbr_idx, mask;
258 	u64 tos;
259 
260 	if (task_ctx->lbr_callstack_users == 0) {
261 		task_ctx->lbr_stack_state = LBR_NONE;
262 		return;
263 	}
264 
265 	mask = x86_pmu.lbr_nr - 1;
266 	tos = intel_pmu_lbr_tos();
267 	for (i = 0; i < tos; i++) {
268 		lbr_idx = (tos - i) & mask;
269 		rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
270 		rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
271 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
272 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
273 	}
274 	task_ctx->tos = tos;
275 	task_ctx->lbr_stack_state = LBR_VALID;
276 }
277 
intel_pmu_lbr_sched_task(struct perf_event_context * ctx,bool sched_in)278 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
279 {
280 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
281 	struct x86_perf_task_context *task_ctx;
282 
283 	/*
284 	 * If LBR callstack feature is enabled and the stack was saved when
285 	 * the task was scheduled out, restore the stack. Otherwise flush
286 	 * the LBR stack.
287 	 */
288 	task_ctx = ctx ? ctx->task_ctx_data : NULL;
289 	if (task_ctx) {
290 		if (sched_in) {
291 			__intel_pmu_lbr_restore(task_ctx);
292 			cpuc->lbr_context = ctx;
293 		} else {
294 			__intel_pmu_lbr_save(task_ctx);
295 		}
296 		return;
297 	}
298 
299 	/*
300 	 * When sampling the branck stack in system-wide, it may be
301 	 * necessary to flush the stack on context switch. This happens
302 	 * when the branch stack does not tag its entries with the pid
303 	 * of the current task. Otherwise it becomes impossible to
304 	 * associate a branch entry with a task. This ambiguity is more
305 	 * likely to appear when the branch stack supports priv level
306 	 * filtering and the user sets it to monitor only at the user
307 	 * level (which could be a useful measurement in system-wide
308 	 * mode). In that case, the risk is high of having a branch
309 	 * stack with branch from multiple tasks.
310  	 */
311 	if (sched_in) {
312 		intel_pmu_lbr_reset();
313 		cpuc->lbr_context = ctx;
314 	}
315 }
316 
branch_user_callstack(unsigned br_sel)317 static inline bool branch_user_callstack(unsigned br_sel)
318 {
319 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
320 }
321 
intel_pmu_lbr_enable(struct perf_event * event)322 void intel_pmu_lbr_enable(struct perf_event *event)
323 {
324 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
325 	struct x86_perf_task_context *task_ctx;
326 
327 	if (!x86_pmu.lbr_nr)
328 		return;
329 
330 	/*
331 	 * Reset the LBR stack if we changed task context to
332 	 * avoid data leaks.
333 	 */
334 	if (event->ctx->task && cpuc->lbr_context != event->ctx) {
335 		intel_pmu_lbr_reset();
336 		cpuc->lbr_context = event->ctx;
337 	}
338 	cpuc->br_sel = event->hw.branch_reg.reg;
339 
340 	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
341 					event->ctx->task_ctx_data) {
342 		task_ctx = event->ctx->task_ctx_data;
343 		task_ctx->lbr_callstack_users++;
344 	}
345 
346 	cpuc->lbr_users++;
347 	perf_sched_cb_inc(event->ctx->pmu);
348 }
349 
intel_pmu_lbr_disable(struct perf_event * event)350 void intel_pmu_lbr_disable(struct perf_event *event)
351 {
352 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
353 	struct x86_perf_task_context *task_ctx;
354 
355 	if (!x86_pmu.lbr_nr)
356 		return;
357 
358 	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
359 					event->ctx->task_ctx_data) {
360 		task_ctx = event->ctx->task_ctx_data;
361 		task_ctx->lbr_callstack_users--;
362 	}
363 
364 	cpuc->lbr_users--;
365 	WARN_ON_ONCE(cpuc->lbr_users < 0);
366 	perf_sched_cb_dec(event->ctx->pmu);
367 
368 	if (cpuc->enabled && !cpuc->lbr_users) {
369 		__intel_pmu_lbr_disable();
370 		/* avoid stale pointer */
371 		cpuc->lbr_context = NULL;
372 	}
373 }
374 
intel_pmu_lbr_enable_all(bool pmi)375 void intel_pmu_lbr_enable_all(bool pmi)
376 {
377 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
378 
379 	if (cpuc->lbr_users)
380 		__intel_pmu_lbr_enable(pmi);
381 }
382 
intel_pmu_lbr_disable_all(void)383 void intel_pmu_lbr_disable_all(void)
384 {
385 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
386 
387 	if (cpuc->lbr_users)
388 		__intel_pmu_lbr_disable();
389 }
390 
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)391 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
392 {
393 	unsigned long mask = x86_pmu.lbr_nr - 1;
394 	u64 tos = intel_pmu_lbr_tos();
395 	int i;
396 
397 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
398 		unsigned long lbr_idx = (tos - i) & mask;
399 		union {
400 			struct {
401 				u32 from;
402 				u32 to;
403 			};
404 			u64     lbr;
405 		} msr_lastbranch;
406 
407 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
408 
409 		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
410 		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
411 		cpuc->lbr_entries[i].mispred	= 0;
412 		cpuc->lbr_entries[i].predicted	= 0;
413 		cpuc->lbr_entries[i].reserved	= 0;
414 	}
415 	cpuc->lbr_stack.nr = i;
416 }
417 
418 /*
419  * Due to lack of segmentation in Linux the effective address (offset)
420  * is the same as the linear address, allowing us to merge the LIP and EIP
421  * LBR formats.
422  */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)423 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
424 {
425 	unsigned long mask = x86_pmu.lbr_nr - 1;
426 	int lbr_format = x86_pmu.intel_cap.lbr_format;
427 	u64 tos = intel_pmu_lbr_tos();
428 	int i;
429 	int out = 0;
430 	int num = x86_pmu.lbr_nr;
431 
432 	if (cpuc->lbr_sel->config & LBR_CALL_STACK)
433 		num = tos;
434 
435 	for (i = 0; i < num; i++) {
436 		unsigned long lbr_idx = (tos - i) & mask;
437 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
438 		int skip = 0;
439 		u16 cycles = 0;
440 		int lbr_flags = lbr_desc[lbr_format];
441 
442 		rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
443 		rdmsrl(x86_pmu.lbr_to   + lbr_idx, to);
444 
445 		if (lbr_format == LBR_FORMAT_INFO) {
446 			u64 info;
447 
448 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
449 			mis = !!(info & LBR_INFO_MISPRED);
450 			pred = !mis;
451 			in_tx = !!(info & LBR_INFO_IN_TX);
452 			abort = !!(info & LBR_INFO_ABORT);
453 			cycles = (info & LBR_INFO_CYCLES);
454 		}
455 		if (lbr_flags & LBR_EIP_FLAGS) {
456 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
457 			pred = !mis;
458 			skip = 1;
459 		}
460 		if (lbr_flags & LBR_TSX) {
461 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
462 			abort = !!(from & LBR_FROM_FLAG_ABORT);
463 			skip = 3;
464 		}
465 		from = (u64)((((s64)from) << skip) >> skip);
466 
467 		/*
468 		 * Some CPUs report duplicated abort records,
469 		 * with the second entry not having an abort bit set.
470 		 * Skip them here. This loop runs backwards,
471 		 * so we need to undo the previous record.
472 		 * If the abort just happened outside the window
473 		 * the extra entry cannot be removed.
474 		 */
475 		if (abort && x86_pmu.lbr_double_abort && out > 0)
476 			out--;
477 
478 		cpuc->lbr_entries[out].from	 = from;
479 		cpuc->lbr_entries[out].to	 = to;
480 		cpuc->lbr_entries[out].mispred	 = mis;
481 		cpuc->lbr_entries[out].predicted = pred;
482 		cpuc->lbr_entries[out].in_tx	 = in_tx;
483 		cpuc->lbr_entries[out].abort	 = abort;
484 		cpuc->lbr_entries[out].cycles	 = cycles;
485 		cpuc->lbr_entries[out].reserved	 = 0;
486 		out++;
487 	}
488 	cpuc->lbr_stack.nr = out;
489 }
490 
intel_pmu_lbr_read(void)491 void intel_pmu_lbr_read(void)
492 {
493 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
494 
495 	if (!cpuc->lbr_users)
496 		return;
497 
498 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
499 		intel_pmu_lbr_read_32(cpuc);
500 	else
501 		intel_pmu_lbr_read_64(cpuc);
502 
503 	intel_pmu_lbr_filter(cpuc);
504 }
505 
506 /*
507  * SW filter is used:
508  * - in case there is no HW filter
509  * - in case the HW filter has errata or limitations
510  */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)511 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
512 {
513 	u64 br_type = event->attr.branch_sample_type;
514 	int mask = 0;
515 
516 	if (br_type & PERF_SAMPLE_BRANCH_USER)
517 		mask |= X86_BR_USER;
518 
519 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
520 		mask |= X86_BR_KERNEL;
521 
522 	/* we ignore BRANCH_HV here */
523 
524 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
525 		mask |= X86_BR_ANY;
526 
527 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
528 		mask |= X86_BR_ANY_CALL;
529 
530 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
531 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
532 
533 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
534 		mask |= X86_BR_IND_CALL;
535 
536 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
537 		mask |= X86_BR_ABORT;
538 
539 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
540 		mask |= X86_BR_IN_TX;
541 
542 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
543 		mask |= X86_BR_NO_TX;
544 
545 	if (br_type & PERF_SAMPLE_BRANCH_COND)
546 		mask |= X86_BR_JCC;
547 
548 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
549 		if (!x86_pmu_has_lbr_callstack())
550 			return -EOPNOTSUPP;
551 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
552 			return -EINVAL;
553 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
554 			X86_BR_CALL_STACK;
555 	}
556 
557 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
558 		mask |= X86_BR_IND_JMP;
559 
560 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
561 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
562 	/*
563 	 * stash actual user request into reg, it may
564 	 * be used by fixup code for some CPU
565 	 */
566 	event->hw.branch_reg.reg = mask;
567 	return 0;
568 }
569 
570 /*
571  * setup the HW LBR filter
572  * Used only when available, may not be enough to disambiguate
573  * all branches, may need the help of the SW filter
574  */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)575 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
576 {
577 	struct hw_perf_event_extra *reg;
578 	u64 br_type = event->attr.branch_sample_type;
579 	u64 mask = 0, v;
580 	int i;
581 
582 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
583 		if (!(br_type & (1ULL << i)))
584 			continue;
585 
586 		v = x86_pmu.lbr_sel_map[i];
587 		if (v == LBR_NOT_SUPP)
588 			return -EOPNOTSUPP;
589 
590 		if (v != LBR_IGN)
591 			mask |= v;
592 	}
593 	reg = &event->hw.branch_reg;
594 	reg->idx = EXTRA_REG_LBR;
595 
596 	/*
597 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
598 	 * in suppress mode. So LBR_SELECT should be set to
599 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
600 	 */
601 	reg->config = mask ^ x86_pmu.lbr_sel_mask;
602 
603 	return 0;
604 }
605 
intel_pmu_setup_lbr_filter(struct perf_event * event)606 int intel_pmu_setup_lbr_filter(struct perf_event *event)
607 {
608 	int ret = 0;
609 
610 	/*
611 	 * no LBR on this PMU
612 	 */
613 	if (!x86_pmu.lbr_nr)
614 		return -EOPNOTSUPP;
615 
616 	/*
617 	 * setup SW LBR filter
618 	 */
619 	ret = intel_pmu_setup_sw_lbr_filter(event);
620 	if (ret)
621 		return ret;
622 
623 	/*
624 	 * setup HW LBR filter, if any
625 	 */
626 	if (x86_pmu.lbr_sel_map)
627 		ret = intel_pmu_setup_hw_lbr_filter(event);
628 
629 	return ret;
630 }
631 
632 /*
633  * return the type of control flow change at address "from"
634  * intruction is not necessarily a branch (in case of interrupt).
635  *
636  * The branch type returned also includes the priv level of the
637  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
638  *
639  * If a branch type is unknown OR the instruction cannot be
640  * decoded (e.g., text page not present), then X86_BR_NONE is
641  * returned.
642  */
branch_type(unsigned long from,unsigned long to,int abort)643 static int branch_type(unsigned long from, unsigned long to, int abort)
644 {
645 	struct insn insn;
646 	void *addr;
647 	int bytes_read, bytes_left;
648 	int ret = X86_BR_NONE;
649 	int ext, to_plm, from_plm;
650 	u8 buf[MAX_INSN_SIZE];
651 	int is64 = 0;
652 
653 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
654 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
655 
656 	/*
657 	 * maybe zero if lbr did not fill up after a reset by the time
658 	 * we get a PMU interrupt
659 	 */
660 	if (from == 0 || to == 0)
661 		return X86_BR_NONE;
662 
663 	if (abort)
664 		return X86_BR_ABORT | to_plm;
665 
666 	if (from_plm == X86_BR_USER) {
667 		/*
668 		 * can happen if measuring at the user level only
669 		 * and we interrupt in a kernel thread, e.g., idle.
670 		 */
671 		if (!current->mm)
672 			return X86_BR_NONE;
673 
674 		/* may fail if text not present */
675 		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
676 						MAX_INSN_SIZE);
677 		bytes_read = MAX_INSN_SIZE - bytes_left;
678 		if (!bytes_read)
679 			return X86_BR_NONE;
680 
681 		addr = buf;
682 	} else {
683 		/*
684 		 * The LBR logs any address in the IP, even if the IP just
685 		 * faulted. This means userspace can control the from address.
686 		 * Ensure we don't blindy read any address by validating it is
687 		 * a known text address.
688 		 */
689 		if (kernel_text_address(from)) {
690 			addr = (void *)from;
691 			/*
692 			 * Assume we can get the maximum possible size
693 			 * when grabbing kernel data.  This is not
694 			 * _strictly_ true since we could possibly be
695 			 * executing up next to a memory hole, but
696 			 * it is very unlikely to be a problem.
697 			 */
698 			bytes_read = MAX_INSN_SIZE;
699 		} else {
700 			return X86_BR_NONE;
701 		}
702 	}
703 
704 	/*
705 	 * decoder needs to know the ABI especially
706 	 * on 64-bit systems running 32-bit apps
707 	 */
708 #ifdef CONFIG_X86_64
709 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
710 #endif
711 	insn_init(&insn, addr, bytes_read, is64);
712 	insn_get_opcode(&insn);
713 	if (!insn.opcode.got)
714 		return X86_BR_ABORT;
715 
716 	switch (insn.opcode.bytes[0]) {
717 	case 0xf:
718 		switch (insn.opcode.bytes[1]) {
719 		case 0x05: /* syscall */
720 		case 0x34: /* sysenter */
721 			ret = X86_BR_SYSCALL;
722 			break;
723 		case 0x07: /* sysret */
724 		case 0x35: /* sysexit */
725 			ret = X86_BR_SYSRET;
726 			break;
727 		case 0x80 ... 0x8f: /* conditional */
728 			ret = X86_BR_JCC;
729 			break;
730 		default:
731 			ret = X86_BR_NONE;
732 		}
733 		break;
734 	case 0x70 ... 0x7f: /* conditional */
735 		ret = X86_BR_JCC;
736 		break;
737 	case 0xc2: /* near ret */
738 	case 0xc3: /* near ret */
739 	case 0xca: /* far ret */
740 	case 0xcb: /* far ret */
741 		ret = X86_BR_RET;
742 		break;
743 	case 0xcf: /* iret */
744 		ret = X86_BR_IRET;
745 		break;
746 	case 0xcc ... 0xce: /* int */
747 		ret = X86_BR_INT;
748 		break;
749 	case 0xe8: /* call near rel */
750 		insn_get_immediate(&insn);
751 		if (insn.immediate1.value == 0) {
752 			/* zero length call */
753 			ret = X86_BR_ZERO_CALL;
754 			break;
755 		}
756 	case 0x9a: /* call far absolute */
757 		ret = X86_BR_CALL;
758 		break;
759 	case 0xe0 ... 0xe3: /* loop jmp */
760 		ret = X86_BR_JCC;
761 		break;
762 	case 0xe9 ... 0xeb: /* jmp */
763 		ret = X86_BR_JMP;
764 		break;
765 	case 0xff: /* call near absolute, call far absolute ind */
766 		insn_get_modrm(&insn);
767 		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
768 		switch (ext) {
769 		case 2: /* near ind call */
770 		case 3: /* far ind call */
771 			ret = X86_BR_IND_CALL;
772 			break;
773 		case 4:
774 		case 5:
775 			ret = X86_BR_IND_JMP;
776 			break;
777 		}
778 		break;
779 	default:
780 		ret = X86_BR_NONE;
781 	}
782 	/*
783 	 * interrupts, traps, faults (and thus ring transition) may
784 	 * occur on any instructions. Thus, to classify them correctly,
785 	 * we need to first look at the from and to priv levels. If they
786 	 * are different and to is in the kernel, then it indicates
787 	 * a ring transition. If the from instruction is not a ring
788 	 * transition instr (syscall, systenter, int), then it means
789 	 * it was a irq, trap or fault.
790 	 *
791 	 * we have no way of detecting kernel to kernel faults.
792 	 */
793 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
794 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
795 		ret = X86_BR_IRQ;
796 
797 	/*
798 	 * branch priv level determined by target as
799 	 * is done by HW when LBR_SELECT is implemented
800 	 */
801 	if (ret != X86_BR_NONE)
802 		ret |= to_plm;
803 
804 	return ret;
805 }
806 
807 /*
808  * implement actual branch filter based on user demand.
809  * Hardware may not exactly satisfy that request, thus
810  * we need to inspect opcodes. Mismatched branches are
811  * discarded. Therefore, the number of branches returned
812  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
813  */
814 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)815 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
816 {
817 	u64 from, to;
818 	int br_sel = cpuc->br_sel;
819 	int i, j, type;
820 	bool compress = false;
821 
822 	/* if sampling all branches, then nothing to filter */
823 	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
824 		return;
825 
826 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
827 
828 		from = cpuc->lbr_entries[i].from;
829 		to = cpuc->lbr_entries[i].to;
830 
831 		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
832 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
833 			if (cpuc->lbr_entries[i].in_tx)
834 				type |= X86_BR_IN_TX;
835 			else
836 				type |= X86_BR_NO_TX;
837 		}
838 
839 		/* if type does not correspond, then discard */
840 		if (type == X86_BR_NONE || (br_sel & type) != type) {
841 			cpuc->lbr_entries[i].from = 0;
842 			compress = true;
843 		}
844 	}
845 
846 	if (!compress)
847 		return;
848 
849 	/* remove all entries with from=0 */
850 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
851 		if (!cpuc->lbr_entries[i].from) {
852 			j = i;
853 			while (++j < cpuc->lbr_stack.nr)
854 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
855 			cpuc->lbr_stack.nr--;
856 			if (!cpuc->lbr_entries[i].from)
857 				continue;
858 		}
859 		i++;
860 	}
861 }
862 
863 /*
864  * Map interface branch filters onto LBR filters
865  */
866 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
867 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
868 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
869 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
870 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
871 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
872 						| LBR_IND_JMP | LBR_FAR,
873 	/*
874 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
875 	 */
876 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
877 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
878 	/*
879 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
880 	 */
881 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
882 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
883 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
884 };
885 
886 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
887 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
888 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
889 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
890 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
891 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
892 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
893 						| LBR_FAR,
894 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
895 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
896 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
897 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
898 };
899 
900 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
901 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
902 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
903 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
904 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
905 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
906 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
907 						| LBR_FAR,
908 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
909 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
910 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
911 						| LBR_RETURN | LBR_CALL_STACK,
912 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
913 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
914 };
915 
916 /* core */
intel_pmu_lbr_init_core(void)917 void __init intel_pmu_lbr_init_core(void)
918 {
919 	x86_pmu.lbr_nr     = 4;
920 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
921 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
922 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
923 
924 	/*
925 	 * SW branch filter usage:
926 	 * - compensate for lack of HW filter
927 	 */
928 	pr_cont("4-deep LBR, ");
929 }
930 
931 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)932 void __init intel_pmu_lbr_init_nhm(void)
933 {
934 	x86_pmu.lbr_nr     = 16;
935 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
936 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
937 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
938 
939 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
940 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
941 
942 	/*
943 	 * SW branch filter usage:
944 	 * - workaround LBR_SEL errata (see above)
945 	 * - support syscall, sysret capture.
946 	 *   That requires LBR_FAR but that means far
947 	 *   jmp need to be filtered out
948 	 */
949 	pr_cont("16-deep LBR, ");
950 }
951 
952 /* sandy bridge */
intel_pmu_lbr_init_snb(void)953 void __init intel_pmu_lbr_init_snb(void)
954 {
955 	x86_pmu.lbr_nr	 = 16;
956 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
957 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
958 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
959 
960 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
961 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
962 
963 	/*
964 	 * SW branch filter usage:
965 	 * - support syscall, sysret capture.
966 	 *   That requires LBR_FAR but that means far
967 	 *   jmp need to be filtered out
968 	 */
969 	pr_cont("16-deep LBR, ");
970 }
971 
972 /* haswell */
intel_pmu_lbr_init_hsw(void)973 void intel_pmu_lbr_init_hsw(void)
974 {
975 	x86_pmu.lbr_nr	 = 16;
976 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
977 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
978 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
979 
980 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
981 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
982 
983 	pr_cont("16-deep LBR, ");
984 }
985 
986 /* skylake */
intel_pmu_lbr_init_skl(void)987 __init void intel_pmu_lbr_init_skl(void)
988 {
989 	x86_pmu.lbr_nr	 = 32;
990 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
991 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
992 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
993 
994 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
995 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
996 
997 	/*
998 	 * SW branch filter usage:
999 	 * - support syscall, sysret capture.
1000 	 *   That requires LBR_FAR but that means far
1001 	 *   jmp need to be filtered out
1002 	 */
1003 	pr_cont("32-deep LBR, ");
1004 }
1005 
1006 /* atom */
intel_pmu_lbr_init_atom(void)1007 void __init intel_pmu_lbr_init_atom(void)
1008 {
1009 	/*
1010 	 * only models starting at stepping 10 seems
1011 	 * to have an operational LBR which can freeze
1012 	 * on PMU interrupt
1013 	 */
1014 	if (boot_cpu_data.x86_model == 28
1015 	    && boot_cpu_data.x86_mask < 10) {
1016 		pr_cont("LBR disabled due to erratum");
1017 		return;
1018 	}
1019 
1020 	x86_pmu.lbr_nr	   = 8;
1021 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1022 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1023 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1024 
1025 	/*
1026 	 * SW branch filter usage:
1027 	 * - compensate for lack of HW filter
1028 	 */
1029 	pr_cont("8-deep LBR, ");
1030 }
1031