1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 count_vm_event(item);
26 }
27
count_compact_events(enum vm_event_item item,long delta)28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 "deferred",
41 "skipped",
42 "continue",
43 "partial",
44 "complete",
45 "no_suitable_page",
46 "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
release_freepages(struct list_head * freelist)53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
map_pages(struct list_head * list)69 static void map_pages(struct list_head *list)
70 {
71 struct page *page;
72
73 list_for_each_entry(page, list, lru) {
74 arch_alloc_page(page, 0);
75 kernel_map_pages(page, 1, 1);
76 kasan_alloc_pages(page, 0);
77 }
78 }
79
migrate_async_suitable(int migratetype)80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
90 * pageblocks.
91 *
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93 *
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
101 */
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 unsigned long end_pfn, struct zone *zone)
104 {
105 struct page *start_page;
106 struct page *end_page;
107
108 /* end_pfn is one past the range we are checking */
109 end_pfn--;
110
111 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 return NULL;
113
114 start_page = pfn_to_page(start_pfn);
115
116 if (page_zone(start_page) != zone)
117 return NULL;
118
119 end_page = pfn_to_page(end_pfn);
120
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page) != page_zone_id(end_page))
123 return NULL;
124
125 return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137 */
defer_compaction(struct zone * zone,int order)138 void defer_compaction(struct zone *zone, int order)
139 {
140 zone->compact_considered = 0;
141 zone->compact_defer_shift++;
142
143 if (order < zone->compact_order_failed)
144 zone->compact_order_failed = order;
145
146 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149 trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157 if (order < zone->compact_order_failed)
158 return false;
159
160 /* Avoid possible overflow */
161 if (++zone->compact_considered > defer_limit)
162 zone->compact_considered = defer_limit;
163
164 if (zone->compact_considered >= defer_limit)
165 return false;
166
167 trace_mm_compaction_deferred(zone, order);
168
169 return true;
170 }
171
172 /*
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
176 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)177 void compaction_defer_reset(struct zone *zone, int order,
178 bool alloc_success)
179 {
180 if (alloc_success) {
181 zone->compact_considered = 0;
182 zone->compact_defer_shift = 0;
183 }
184 if (order >= zone->compact_order_failed)
185 zone->compact_order_failed = order + 1;
186
187 trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 if (order < zone->compact_order_failed)
194 return false;
195
196 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)201 static inline bool isolation_suitable(struct compact_control *cc,
202 struct page *page)
203 {
204 if (cc->ignore_skip_hint)
205 return true;
206
207 return !get_pageblock_skip(page);
208 }
209
210 /*
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
213 * meet.
214 */
__reset_isolation_suitable(struct zone * zone)215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217 unsigned long start_pfn = zone->zone_start_pfn;
218 unsigned long end_pfn = zone_end_pfn(zone);
219 unsigned long pfn;
220
221 zone->compact_cached_migrate_pfn[0] = start_pfn;
222 zone->compact_cached_migrate_pfn[1] = start_pfn;
223 zone->compact_cached_free_pfn = end_pfn;
224 zone->compact_blockskip_flush = false;
225
226 /* Walk the zone and mark every pageblock as suitable for isolation */
227 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 struct page *page;
229
230 cond_resched();
231
232 if (!pfn_valid(pfn))
233 continue;
234
235 page = pfn_to_page(pfn);
236 if (zone != page_zone(page))
237 continue;
238
239 clear_pageblock_skip(page);
240 }
241 }
242
reset_isolation_suitable(pg_data_t * pgdat)243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245 int zoneid;
246
247 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 struct zone *zone = &pgdat->node_zones[zoneid];
249 if (!populated_zone(zone))
250 continue;
251
252 /* Only flush if a full compaction finished recently */
253 if (zone->compact_blockskip_flush)
254 __reset_isolation_suitable(zone);
255 }
256 }
257
258 /*
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
261 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)262 static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
264 bool migrate_scanner)
265 {
266 struct zone *zone = cc->zone;
267 unsigned long pfn;
268
269 if (cc->ignore_skip_hint)
270 return;
271
272 if (!page)
273 return;
274
275 if (nr_isolated)
276 return;
277
278 set_pageblock_skip(page);
279
280 pfn = page_to_pfn(page);
281
282 /* Update where async and sync compaction should restart */
283 if (migrate_scanner) {
284 if (pfn > zone->compact_cached_migrate_pfn[0])
285 zone->compact_cached_migrate_pfn[0] = pfn;
286 if (cc->mode != MIGRATE_ASYNC &&
287 pfn > zone->compact_cached_migrate_pfn[1])
288 zone->compact_cached_migrate_pfn[1] = pfn;
289 } else {
290 if (pfn < zone->compact_cached_free_pfn)
291 zone->compact_cached_free_pfn = pfn;
292 }
293 }
294 #else
isolation_suitable(struct compact_control * cc,struct page * page)295 static inline bool isolation_suitable(struct compact_control *cc,
296 struct page *page)
297 {
298 return true;
299 }
300
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)301 static void update_pageblock_skip(struct compact_control *cc,
302 struct page *page, unsigned long nr_isolated,
303 bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307
308 /*
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
312 *
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
315 */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 struct compact_control *cc)
318 {
319 if (cc->mode == MIGRATE_ASYNC) {
320 if (!spin_trylock_irqsave(lock, *flags)) {
321 cc->contended = COMPACT_CONTENDED_LOCK;
322 return false;
323 }
324 } else {
325 spin_lock_irqsave(lock, *flags);
326 }
327
328 return true;
329 }
330
331 /*
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
340 *
341 * Returns true if compaction should abort due to fatal signal pending, or
342 * async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
344 * scheduled)
345 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349 if (*locked) {
350 spin_unlock_irqrestore(lock, flags);
351 *locked = false;
352 }
353
354 if (fatal_signal_pending(current)) {
355 cc->contended = COMPACT_CONTENDED_SCHED;
356 return true;
357 }
358
359 if (need_resched()) {
360 if (cc->mode == MIGRATE_ASYNC) {
361 cc->contended = COMPACT_CONTENDED_SCHED;
362 return true;
363 }
364 cond_resched();
365 }
366
367 return false;
368 }
369
370 /*
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
375 *
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
378 */
compact_should_abort(struct compact_control * cc)379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381 /* async compaction aborts if contended */
382 if (need_resched()) {
383 if (cc->mode == MIGRATE_ASYNC) {
384 cc->contended = COMPACT_CONTENDED_SCHED;
385 return true;
386 }
387
388 cond_resched();
389 }
390
391 return false;
392 }
393
394 /*
395 * Isolate free pages onto a private freelist. If @strict is true, will abort
396 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397 * (even though it may still end up isolating some pages).
398 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)399 static unsigned long isolate_freepages_block(struct compact_control *cc,
400 unsigned long *start_pfn,
401 unsigned long end_pfn,
402 struct list_head *freelist,
403 bool strict)
404 {
405 int nr_scanned = 0, total_isolated = 0;
406 struct page *cursor, *valid_page = NULL;
407 unsigned long flags = 0;
408 bool locked = false;
409 unsigned long blockpfn = *start_pfn;
410
411 cursor = pfn_to_page(blockpfn);
412
413 /* Isolate free pages. */
414 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
415 int isolated, i;
416 struct page *page = cursor;
417
418 /*
419 * Periodically drop the lock (if held) regardless of its
420 * contention, to give chance to IRQs. Abort if fatal signal
421 * pending or async compaction detects need_resched()
422 */
423 if (!(blockpfn % SWAP_CLUSTER_MAX)
424 && compact_unlock_should_abort(&cc->zone->lock, flags,
425 &locked, cc))
426 break;
427
428 nr_scanned++;
429 if (!pfn_valid_within(blockpfn))
430 goto isolate_fail;
431
432 if (!valid_page)
433 valid_page = page;
434 if (!PageBuddy(page))
435 goto isolate_fail;
436
437 /*
438 * If we already hold the lock, we can skip some rechecking.
439 * Note that if we hold the lock now, checked_pageblock was
440 * already set in some previous iteration (or strict is true),
441 * so it is correct to skip the suitable migration target
442 * recheck as well.
443 */
444 if (!locked) {
445 /*
446 * The zone lock must be held to isolate freepages.
447 * Unfortunately this is a very coarse lock and can be
448 * heavily contended if there are parallel allocations
449 * or parallel compactions. For async compaction do not
450 * spin on the lock and we acquire the lock as late as
451 * possible.
452 */
453 locked = compact_trylock_irqsave(&cc->zone->lock,
454 &flags, cc);
455 if (!locked)
456 break;
457
458 /* Recheck this is a buddy page under lock */
459 if (!PageBuddy(page))
460 goto isolate_fail;
461 }
462
463 /* Found a free page, break it into order-0 pages */
464 isolated = split_free_page(page);
465 total_isolated += isolated;
466 for (i = 0; i < isolated; i++) {
467 list_add(&page->lru, freelist);
468 page++;
469 }
470
471 /* If a page was split, advance to the end of it */
472 if (isolated) {
473 cc->nr_freepages += isolated;
474 if (!strict &&
475 cc->nr_migratepages <= cc->nr_freepages) {
476 blockpfn += isolated;
477 break;
478 }
479
480 blockpfn += isolated - 1;
481 cursor += isolated - 1;
482 continue;
483 }
484
485 isolate_fail:
486 if (strict)
487 break;
488 else
489 continue;
490
491 }
492
493 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
494 nr_scanned, total_isolated);
495
496 /* Record how far we have got within the block */
497 *start_pfn = blockpfn;
498
499 /*
500 * If strict isolation is requested by CMA then check that all the
501 * pages requested were isolated. If there were any failures, 0 is
502 * returned and CMA will fail.
503 */
504 if (strict && blockpfn < end_pfn)
505 total_isolated = 0;
506
507 if (locked)
508 spin_unlock_irqrestore(&cc->zone->lock, flags);
509
510 /* Update the pageblock-skip if the whole pageblock was scanned */
511 if (blockpfn == end_pfn)
512 update_pageblock_skip(cc, valid_page, total_isolated, false);
513
514 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
515 if (total_isolated)
516 count_compact_events(COMPACTISOLATED, total_isolated);
517 return total_isolated;
518 }
519
520 /**
521 * isolate_freepages_range() - isolate free pages.
522 * @start_pfn: The first PFN to start isolating.
523 * @end_pfn: The one-past-last PFN.
524 *
525 * Non-free pages, invalid PFNs, or zone boundaries within the
526 * [start_pfn, end_pfn) range are considered errors, cause function to
527 * undo its actions and return zero.
528 *
529 * Otherwise, function returns one-past-the-last PFN of isolated page
530 * (which may be greater then end_pfn if end fell in a middle of
531 * a free page).
532 */
533 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)534 isolate_freepages_range(struct compact_control *cc,
535 unsigned long start_pfn, unsigned long end_pfn)
536 {
537 unsigned long isolated, pfn, block_end_pfn;
538 LIST_HEAD(freelist);
539
540 pfn = start_pfn;
541 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
542
543 for (; pfn < end_pfn; pfn += isolated,
544 block_end_pfn += pageblock_nr_pages) {
545 /* Protect pfn from changing by isolate_freepages_block */
546 unsigned long isolate_start_pfn = pfn;
547
548 block_end_pfn = min(block_end_pfn, end_pfn);
549
550 /*
551 * pfn could pass the block_end_pfn if isolated freepage
552 * is more than pageblock order. In this case, we adjust
553 * scanning range to right one.
554 */
555 if (pfn >= block_end_pfn) {
556 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
557 block_end_pfn = min(block_end_pfn, end_pfn);
558 }
559
560 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
561 break;
562
563 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
564 block_end_pfn, &freelist, true);
565
566 /*
567 * In strict mode, isolate_freepages_block() returns 0 if
568 * there are any holes in the block (ie. invalid PFNs or
569 * non-free pages).
570 */
571 if (!isolated)
572 break;
573
574 /*
575 * If we managed to isolate pages, it is always (1 << n) *
576 * pageblock_nr_pages for some non-negative n. (Max order
577 * page may span two pageblocks).
578 */
579 }
580
581 /* split_free_page does not map the pages */
582 map_pages(&freelist);
583
584 if (pfn < end_pfn) {
585 /* Loop terminated early, cleanup. */
586 release_freepages(&freelist);
587 return 0;
588 }
589
590 /* We don't use freelists for anything. */
591 return pfn;
592 }
593
594 /* Update the number of anon and file isolated pages in the zone */
acct_isolated(struct zone * zone,struct compact_control * cc)595 static void acct_isolated(struct zone *zone, struct compact_control *cc)
596 {
597 struct page *page;
598 unsigned int count[2] = { 0, };
599
600 if (list_empty(&cc->migratepages))
601 return;
602
603 list_for_each_entry(page, &cc->migratepages, lru)
604 count[!!page_is_file_cache(page)]++;
605
606 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
607 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
608 }
609
610 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)611 static bool too_many_isolated(struct zone *zone)
612 {
613 unsigned long active, inactive, isolated;
614
615 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
616 zone_page_state(zone, NR_INACTIVE_ANON);
617 active = zone_page_state(zone, NR_ACTIVE_FILE) +
618 zone_page_state(zone, NR_ACTIVE_ANON);
619 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
620 zone_page_state(zone, NR_ISOLATED_ANON);
621
622 return isolated > (inactive + active) / 2;
623 }
624
625 /**
626 * isolate_migratepages_block() - isolate all migrate-able pages within
627 * a single pageblock
628 * @cc: Compaction control structure.
629 * @low_pfn: The first PFN to isolate
630 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
631 * @isolate_mode: Isolation mode to be used.
632 *
633 * Isolate all pages that can be migrated from the range specified by
634 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
635 * Returns zero if there is a fatal signal pending, otherwise PFN of the
636 * first page that was not scanned (which may be both less, equal to or more
637 * than end_pfn).
638 *
639 * The pages are isolated on cc->migratepages list (not required to be empty),
640 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
641 * is neither read nor updated.
642 */
643 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)644 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
645 unsigned long end_pfn, isolate_mode_t isolate_mode)
646 {
647 struct zone *zone = cc->zone;
648 unsigned long nr_scanned = 0, nr_isolated = 0;
649 struct list_head *migratelist = &cc->migratepages;
650 struct lruvec *lruvec;
651 unsigned long flags = 0;
652 bool locked = false;
653 struct page *page = NULL, *valid_page = NULL;
654 unsigned long start_pfn = low_pfn;
655
656 /*
657 * Ensure that there are not too many pages isolated from the LRU
658 * list by either parallel reclaimers or compaction. If there are,
659 * delay for some time until fewer pages are isolated
660 */
661 while (unlikely(too_many_isolated(zone))) {
662 /* async migration should just abort */
663 if (cc->mode == MIGRATE_ASYNC)
664 return 0;
665
666 congestion_wait(BLK_RW_ASYNC, HZ/10);
667
668 if (fatal_signal_pending(current))
669 return 0;
670 }
671
672 if (compact_should_abort(cc))
673 return 0;
674
675 /* Time to isolate some pages for migration */
676 for (; low_pfn < end_pfn; low_pfn++) {
677 /*
678 * Periodically drop the lock (if held) regardless of its
679 * contention, to give chance to IRQs. Abort async compaction
680 * if contended.
681 */
682 if (!(low_pfn % SWAP_CLUSTER_MAX)
683 && compact_unlock_should_abort(&zone->lru_lock, flags,
684 &locked, cc))
685 break;
686
687 if (!pfn_valid_within(low_pfn))
688 continue;
689 nr_scanned++;
690
691 page = pfn_to_page(low_pfn);
692
693 if (!valid_page)
694 valid_page = page;
695
696 /*
697 * Skip if free. We read page order here without zone lock
698 * which is generally unsafe, but the race window is small and
699 * the worst thing that can happen is that we skip some
700 * potential isolation targets.
701 */
702 if (PageBuddy(page)) {
703 unsigned long freepage_order = page_order_unsafe(page);
704
705 /*
706 * Without lock, we cannot be sure that what we got is
707 * a valid page order. Consider only values in the
708 * valid order range to prevent low_pfn overflow.
709 */
710 if (freepage_order > 0 && freepage_order < MAX_ORDER)
711 low_pfn += (1UL << freepage_order) - 1;
712 continue;
713 }
714
715 /*
716 * Check may be lockless but that's ok as we recheck later.
717 * It's possible to migrate LRU pages and balloon pages
718 * Skip any other type of page
719 */
720 if (!PageLRU(page)) {
721 if (unlikely(balloon_page_movable(page))) {
722 if (balloon_page_isolate(page)) {
723 /* Successfully isolated */
724 goto isolate_success;
725 }
726 }
727 continue;
728 }
729
730 /*
731 * PageLRU is set. lru_lock normally excludes isolation
732 * splitting and collapsing (collapsing has already happened
733 * if PageLRU is set) but the lock is not necessarily taken
734 * here and it is wasteful to take it just to check transhuge.
735 * Check TransHuge without lock and skip the whole pageblock if
736 * it's either a transhuge or hugetlbfs page, as calling
737 * compound_order() without preventing THP from splitting the
738 * page underneath us may return surprising results.
739 */
740 if (PageTransHuge(page)) {
741 if (!locked)
742 low_pfn = ALIGN(low_pfn + 1,
743 pageblock_nr_pages) - 1;
744 else
745 low_pfn += (1 << compound_order(page)) - 1;
746
747 continue;
748 }
749
750 /*
751 * Migration will fail if an anonymous page is pinned in memory,
752 * so avoid taking lru_lock and isolating it unnecessarily in an
753 * admittedly racy check.
754 */
755 if (!page_mapping(page) &&
756 page_count(page) > page_mapcount(page))
757 continue;
758
759 /* If we already hold the lock, we can skip some rechecking */
760 if (!locked) {
761 locked = compact_trylock_irqsave(&zone->lru_lock,
762 &flags, cc);
763 if (!locked)
764 break;
765
766 /* Recheck PageLRU and PageTransHuge under lock */
767 if (!PageLRU(page))
768 continue;
769 if (PageTransHuge(page)) {
770 low_pfn += (1 << compound_order(page)) - 1;
771 continue;
772 }
773 }
774
775 lruvec = mem_cgroup_page_lruvec(page, zone);
776
777 /* Try isolate the page */
778 if (__isolate_lru_page(page, isolate_mode) != 0)
779 continue;
780
781 VM_BUG_ON_PAGE(PageTransCompound(page), page);
782
783 /* Successfully isolated */
784 del_page_from_lru_list(page, lruvec, page_lru(page));
785
786 isolate_success:
787 list_add(&page->lru, migratelist);
788 cc->nr_migratepages++;
789 nr_isolated++;
790
791 /* Avoid isolating too much */
792 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
793 ++low_pfn;
794 break;
795 }
796 }
797
798 /*
799 * The PageBuddy() check could have potentially brought us outside
800 * the range to be scanned.
801 */
802 if (unlikely(low_pfn > end_pfn))
803 low_pfn = end_pfn;
804
805 if (locked)
806 spin_unlock_irqrestore(&zone->lru_lock, flags);
807
808 /*
809 * Update the pageblock-skip information and cached scanner pfn,
810 * if the whole pageblock was scanned without isolating any page.
811 */
812 if (low_pfn == end_pfn)
813 update_pageblock_skip(cc, valid_page, nr_isolated, true);
814
815 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
816 nr_scanned, nr_isolated);
817
818 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
819 if (nr_isolated)
820 count_compact_events(COMPACTISOLATED, nr_isolated);
821
822 return low_pfn;
823 }
824
825 /**
826 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
827 * @cc: Compaction control structure.
828 * @start_pfn: The first PFN to start isolating.
829 * @end_pfn: The one-past-last PFN.
830 *
831 * Returns zero if isolation fails fatally due to e.g. pending signal.
832 * Otherwise, function returns one-past-the-last PFN of isolated page
833 * (which may be greater than end_pfn if end fell in a middle of a THP page).
834 */
835 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)836 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
837 unsigned long end_pfn)
838 {
839 unsigned long pfn, block_end_pfn;
840
841 /* Scan block by block. First and last block may be incomplete */
842 pfn = start_pfn;
843 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
844
845 for (; pfn < end_pfn; pfn = block_end_pfn,
846 block_end_pfn += pageblock_nr_pages) {
847
848 block_end_pfn = min(block_end_pfn, end_pfn);
849
850 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
851 continue;
852
853 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
854 ISOLATE_UNEVICTABLE);
855
856 if (!pfn)
857 break;
858
859 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
860 break;
861 }
862 acct_isolated(cc->zone, cc);
863
864 return pfn;
865 }
866
867 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
868 #ifdef CONFIG_COMPACTION
869
870 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct page * page)871 static bool suitable_migration_target(struct page *page)
872 {
873 /* If the page is a large free page, then disallow migration */
874 if (PageBuddy(page)) {
875 /*
876 * We are checking page_order without zone->lock taken. But
877 * the only small danger is that we skip a potentially suitable
878 * pageblock, so it's not worth to check order for valid range.
879 */
880 if (page_order_unsafe(page) >= pageblock_order)
881 return false;
882 }
883
884 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
885 if (migrate_async_suitable(get_pageblock_migratetype(page)))
886 return true;
887
888 /* Otherwise skip the block */
889 return false;
890 }
891
892 /*
893 * Based on information in the current compact_control, find blocks
894 * suitable for isolating free pages from and then isolate them.
895 */
isolate_freepages(struct compact_control * cc)896 static void isolate_freepages(struct compact_control *cc)
897 {
898 struct zone *zone = cc->zone;
899 struct page *page;
900 unsigned long block_start_pfn; /* start of current pageblock */
901 unsigned long isolate_start_pfn; /* exact pfn we start at */
902 unsigned long block_end_pfn; /* end of current pageblock */
903 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
904 struct list_head *freelist = &cc->freepages;
905
906 /*
907 * Initialise the free scanner. The starting point is where we last
908 * successfully isolated from, zone-cached value, or the end of the
909 * zone when isolating for the first time. For looping we also need
910 * this pfn aligned down to the pageblock boundary, because we do
911 * block_start_pfn -= pageblock_nr_pages in the for loop.
912 * For ending point, take care when isolating in last pageblock of a
913 * a zone which ends in the middle of a pageblock.
914 * The low boundary is the end of the pageblock the migration scanner
915 * is using.
916 */
917 isolate_start_pfn = cc->free_pfn;
918 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
919 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
920 zone_end_pfn(zone));
921 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
922
923 /*
924 * Isolate free pages until enough are available to migrate the
925 * pages on cc->migratepages. We stop searching if the migrate
926 * and free page scanners meet or enough free pages are isolated.
927 */
928 for (; block_start_pfn >= low_pfn &&
929 cc->nr_migratepages > cc->nr_freepages;
930 block_end_pfn = block_start_pfn,
931 block_start_pfn -= pageblock_nr_pages,
932 isolate_start_pfn = block_start_pfn) {
933
934 /*
935 * This can iterate a massively long zone without finding any
936 * suitable migration targets, so periodically check if we need
937 * to schedule, or even abort async compaction.
938 */
939 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
940 && compact_should_abort(cc))
941 break;
942
943 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
944 zone);
945 if (!page)
946 continue;
947
948 /* Check the block is suitable for migration */
949 if (!suitable_migration_target(page))
950 continue;
951
952 /* If isolation recently failed, do not retry */
953 if (!isolation_suitable(cc, page))
954 continue;
955
956 /* Found a block suitable for isolating free pages from. */
957 isolate_freepages_block(cc, &isolate_start_pfn,
958 block_end_pfn, freelist, false);
959
960 /*
961 * Remember where the free scanner should restart next time,
962 * which is where isolate_freepages_block() left off.
963 * But if it scanned the whole pageblock, isolate_start_pfn
964 * now points at block_end_pfn, which is the start of the next
965 * pageblock.
966 * In that case we will however want to restart at the start
967 * of the previous pageblock.
968 */
969 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
970 isolate_start_pfn :
971 block_start_pfn - pageblock_nr_pages;
972
973 /*
974 * isolate_freepages_block() might have aborted due to async
975 * compaction being contended
976 */
977 if (cc->contended)
978 break;
979 }
980
981 /* split_free_page does not map the pages */
982 map_pages(freelist);
983
984 /*
985 * If we crossed the migrate scanner, we want to keep it that way
986 * so that compact_finished() may detect this
987 */
988 if (block_start_pfn < low_pfn)
989 cc->free_pfn = cc->migrate_pfn;
990 }
991
992 /*
993 * This is a migrate-callback that "allocates" freepages by taking pages
994 * from the isolated freelists in the block we are migrating to.
995 */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)996 static struct page *compaction_alloc(struct page *migratepage,
997 unsigned long data,
998 int **result)
999 {
1000 struct compact_control *cc = (struct compact_control *)data;
1001 struct page *freepage;
1002
1003 /*
1004 * Isolate free pages if necessary, and if we are not aborting due to
1005 * contention.
1006 */
1007 if (list_empty(&cc->freepages)) {
1008 if (!cc->contended)
1009 isolate_freepages(cc);
1010
1011 if (list_empty(&cc->freepages))
1012 return NULL;
1013 }
1014
1015 freepage = list_entry(cc->freepages.next, struct page, lru);
1016 list_del(&freepage->lru);
1017 cc->nr_freepages--;
1018
1019 return freepage;
1020 }
1021
1022 /*
1023 * This is a migrate-callback that "frees" freepages back to the isolated
1024 * freelist. All pages on the freelist are from the same zone, so there is no
1025 * special handling needed for NUMA.
1026 */
compaction_free(struct page * page,unsigned long data)1027 static void compaction_free(struct page *page, unsigned long data)
1028 {
1029 struct compact_control *cc = (struct compact_control *)data;
1030
1031 list_add(&page->lru, &cc->freepages);
1032 cc->nr_freepages++;
1033 }
1034
1035 /* possible outcome of isolate_migratepages */
1036 typedef enum {
1037 ISOLATE_ABORT, /* Abort compaction now */
1038 ISOLATE_NONE, /* No pages isolated, continue scanning */
1039 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1040 } isolate_migrate_t;
1041
1042 /*
1043 * Allow userspace to control policy on scanning the unevictable LRU for
1044 * compactable pages.
1045 */
1046 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1047
1048 /*
1049 * Isolate all pages that can be migrated from the first suitable block,
1050 * starting at the block pointed to by the migrate scanner pfn within
1051 * compact_control.
1052 */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1053 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1054 struct compact_control *cc)
1055 {
1056 unsigned long low_pfn, end_pfn;
1057 struct page *page;
1058 const isolate_mode_t isolate_mode =
1059 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1060 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1061
1062 /*
1063 * Start at where we last stopped, or beginning of the zone as
1064 * initialized by compact_zone()
1065 */
1066 low_pfn = cc->migrate_pfn;
1067
1068 /* Only scan within a pageblock boundary */
1069 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1070
1071 /*
1072 * Iterate over whole pageblocks until we find the first suitable.
1073 * Do not cross the free scanner.
1074 */
1075 for (; end_pfn <= cc->free_pfn;
1076 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1077
1078 /*
1079 * This can potentially iterate a massively long zone with
1080 * many pageblocks unsuitable, so periodically check if we
1081 * need to schedule, or even abort async compaction.
1082 */
1083 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 && compact_should_abort(cc))
1085 break;
1086
1087 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1088 if (!page)
1089 continue;
1090
1091 /* If isolation recently failed, do not retry */
1092 if (!isolation_suitable(cc, page))
1093 continue;
1094
1095 /*
1096 * For async compaction, also only scan in MOVABLE blocks.
1097 * Async compaction is optimistic to see if the minimum amount
1098 * of work satisfies the allocation.
1099 */
1100 if (cc->mode == MIGRATE_ASYNC &&
1101 !migrate_async_suitable(get_pageblock_migratetype(page)))
1102 continue;
1103
1104 /* Perform the isolation */
1105 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1106 isolate_mode);
1107
1108 if (!low_pfn || cc->contended) {
1109 acct_isolated(zone, cc);
1110 return ISOLATE_ABORT;
1111 }
1112
1113 /*
1114 * Either we isolated something and proceed with migration. Or
1115 * we failed and compact_zone should decide if we should
1116 * continue or not.
1117 */
1118 break;
1119 }
1120
1121 acct_isolated(zone, cc);
1122 /*
1123 * Record where migration scanner will be restarted. If we end up in
1124 * the same pageblock as the free scanner, make the scanners fully
1125 * meet so that compact_finished() terminates compaction.
1126 */
1127 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1128
1129 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1130 }
1131
__compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1132 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1133 const int migratetype)
1134 {
1135 unsigned int order;
1136 unsigned long watermark;
1137
1138 if (cc->contended || fatal_signal_pending(current))
1139 return COMPACT_PARTIAL;
1140
1141 /* Compaction run completes if the migrate and free scanner meet */
1142 if (cc->free_pfn <= cc->migrate_pfn) {
1143 /* Let the next compaction start anew. */
1144 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1145 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1146 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1147
1148 /*
1149 * Mark that the PG_migrate_skip information should be cleared
1150 * by kswapd when it goes to sleep. kswapd does not set the
1151 * flag itself as the decision to be clear should be directly
1152 * based on an allocation request.
1153 */
1154 if (!current_is_kswapd())
1155 zone->compact_blockskip_flush = true;
1156
1157 return COMPACT_COMPLETE;
1158 }
1159
1160 /*
1161 * order == -1 is expected when compacting via
1162 * /proc/sys/vm/compact_memory
1163 */
1164 if (cc->order == -1)
1165 return COMPACT_CONTINUE;
1166
1167 /* Compaction run is not finished if the watermark is not met */
1168 watermark = low_wmark_pages(zone);
1169
1170 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1171 cc->alloc_flags))
1172 return COMPACT_CONTINUE;
1173
1174 /* Direct compactor: Is a suitable page free? */
1175 for (order = cc->order; order < MAX_ORDER; order++) {
1176 struct free_area *area = &zone->free_area[order];
1177 bool can_steal;
1178
1179 /* Job done if page is free of the right migratetype */
1180 if (!list_empty(&area->free_list[migratetype]))
1181 return COMPACT_PARTIAL;
1182
1183 #ifdef CONFIG_CMA
1184 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1185 if (migratetype == MIGRATE_MOVABLE &&
1186 !list_empty(&area->free_list[MIGRATE_CMA]))
1187 return COMPACT_PARTIAL;
1188 #endif
1189 /*
1190 * Job done if allocation would steal freepages from
1191 * other migratetype buddy lists.
1192 */
1193 if (find_suitable_fallback(area, order, migratetype,
1194 true, &can_steal) != -1)
1195 return COMPACT_PARTIAL;
1196 }
1197
1198 return COMPACT_NO_SUITABLE_PAGE;
1199 }
1200
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1201 static int compact_finished(struct zone *zone, struct compact_control *cc,
1202 const int migratetype)
1203 {
1204 int ret;
1205
1206 ret = __compact_finished(zone, cc, migratetype);
1207 trace_mm_compaction_finished(zone, cc->order, ret);
1208 if (ret == COMPACT_NO_SUITABLE_PAGE)
1209 ret = COMPACT_CONTINUE;
1210
1211 return ret;
1212 }
1213
1214 /*
1215 * compaction_suitable: Is this suitable to run compaction on this zone now?
1216 * Returns
1217 * COMPACT_SKIPPED - If there are too few free pages for compaction
1218 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1219 * COMPACT_CONTINUE - If compaction should run now
1220 */
__compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1221 static unsigned long __compaction_suitable(struct zone *zone, int order,
1222 int alloc_flags, int classzone_idx)
1223 {
1224 int fragindex;
1225 unsigned long watermark;
1226
1227 /*
1228 * order == -1 is expected when compacting via
1229 * /proc/sys/vm/compact_memory
1230 */
1231 if (order == -1)
1232 return COMPACT_CONTINUE;
1233
1234 watermark = low_wmark_pages(zone);
1235 /*
1236 * If watermarks for high-order allocation are already met, there
1237 * should be no need for compaction at all.
1238 */
1239 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1240 alloc_flags))
1241 return COMPACT_PARTIAL;
1242
1243 /*
1244 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1245 * This is because during migration, copies of pages need to be
1246 * allocated and for a short time, the footprint is higher
1247 */
1248 watermark += (2UL << order);
1249 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1250 return COMPACT_SKIPPED;
1251
1252 /*
1253 * fragmentation index determines if allocation failures are due to
1254 * low memory or external fragmentation
1255 *
1256 * index of -1000 would imply allocations might succeed depending on
1257 * watermarks, but we already failed the high-order watermark check
1258 * index towards 0 implies failure is due to lack of memory
1259 * index towards 1000 implies failure is due to fragmentation
1260 *
1261 * Only compact if a failure would be due to fragmentation.
1262 */
1263 fragindex = fragmentation_index(zone, order);
1264 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1265 return COMPACT_NOT_SUITABLE_ZONE;
1266
1267 return COMPACT_CONTINUE;
1268 }
1269
compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1270 unsigned long compaction_suitable(struct zone *zone, int order,
1271 int alloc_flags, int classzone_idx)
1272 {
1273 unsigned long ret;
1274
1275 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1276 trace_mm_compaction_suitable(zone, order, ret);
1277 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1278 ret = COMPACT_SKIPPED;
1279
1280 return ret;
1281 }
1282
compact_zone(struct zone * zone,struct compact_control * cc)1283 static int compact_zone(struct zone *zone, struct compact_control *cc)
1284 {
1285 int ret;
1286 unsigned long start_pfn = zone->zone_start_pfn;
1287 unsigned long end_pfn = zone_end_pfn(zone);
1288 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1289 const bool sync = cc->mode != MIGRATE_ASYNC;
1290 unsigned long last_migrated_pfn = 0;
1291
1292 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1293 cc->classzone_idx);
1294 switch (ret) {
1295 case COMPACT_PARTIAL:
1296 case COMPACT_SKIPPED:
1297 /* Compaction is likely to fail */
1298 return ret;
1299 case COMPACT_CONTINUE:
1300 /* Fall through to compaction */
1301 ;
1302 }
1303
1304 /*
1305 * Clear pageblock skip if there were failures recently and compaction
1306 * is about to be retried after being deferred. kswapd does not do
1307 * this reset as it'll reset the cached information when going to sleep.
1308 */
1309 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1310 __reset_isolation_suitable(zone);
1311
1312 /*
1313 * Setup to move all movable pages to the end of the zone. Used cached
1314 * information on where the scanners should start but check that it
1315 * is initialised by ensuring the values are within zone boundaries.
1316 */
1317 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1318 cc->free_pfn = zone->compact_cached_free_pfn;
1319 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1320 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1321 zone->compact_cached_free_pfn = cc->free_pfn;
1322 }
1323 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1324 cc->migrate_pfn = start_pfn;
1325 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1326 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1327 }
1328
1329 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1330 cc->free_pfn, end_pfn, sync);
1331
1332 migrate_prep_local();
1333
1334 while ((ret = compact_finished(zone, cc, migratetype)) ==
1335 COMPACT_CONTINUE) {
1336 int err;
1337 unsigned long isolate_start_pfn = cc->migrate_pfn;
1338
1339 switch (isolate_migratepages(zone, cc)) {
1340 case ISOLATE_ABORT:
1341 ret = COMPACT_PARTIAL;
1342 putback_movable_pages(&cc->migratepages);
1343 cc->nr_migratepages = 0;
1344 goto out;
1345 case ISOLATE_NONE:
1346 /*
1347 * We haven't isolated and migrated anything, but
1348 * there might still be unflushed migrations from
1349 * previous cc->order aligned block.
1350 */
1351 goto check_drain;
1352 case ISOLATE_SUCCESS:
1353 ;
1354 }
1355
1356 err = migrate_pages(&cc->migratepages, compaction_alloc,
1357 compaction_free, (unsigned long)cc, cc->mode,
1358 MR_COMPACTION);
1359
1360 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1361 &cc->migratepages);
1362
1363 /* All pages were either migrated or will be released */
1364 cc->nr_migratepages = 0;
1365 if (err) {
1366 putback_movable_pages(&cc->migratepages);
1367 /*
1368 * migrate_pages() may return -ENOMEM when scanners meet
1369 * and we want compact_finished() to detect it
1370 */
1371 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1372 ret = COMPACT_PARTIAL;
1373 goto out;
1374 }
1375 }
1376
1377 /*
1378 * Record where we could have freed pages by migration and not
1379 * yet flushed them to buddy allocator. We use the pfn that
1380 * isolate_migratepages() started from in this loop iteration
1381 * - this is the lowest page that could have been isolated and
1382 * then freed by migration.
1383 */
1384 if (!last_migrated_pfn)
1385 last_migrated_pfn = isolate_start_pfn;
1386
1387 check_drain:
1388 /*
1389 * Has the migration scanner moved away from the previous
1390 * cc->order aligned block where we migrated from? If yes,
1391 * flush the pages that were freed, so that they can merge and
1392 * compact_finished() can detect immediately if allocation
1393 * would succeed.
1394 */
1395 if (cc->order > 0 && last_migrated_pfn) {
1396 int cpu;
1397 unsigned long current_block_start =
1398 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1399
1400 if (last_migrated_pfn < current_block_start) {
1401 cpu = get_cpu();
1402 lru_add_drain_cpu(cpu);
1403 drain_local_pages(zone);
1404 put_cpu();
1405 /* No more flushing until we migrate again */
1406 last_migrated_pfn = 0;
1407 }
1408 }
1409
1410 }
1411
1412 out:
1413 /*
1414 * Release free pages and update where the free scanner should restart,
1415 * so we don't leave any returned pages behind in the next attempt.
1416 */
1417 if (cc->nr_freepages > 0) {
1418 unsigned long free_pfn = release_freepages(&cc->freepages);
1419
1420 cc->nr_freepages = 0;
1421 VM_BUG_ON(free_pfn == 0);
1422 /* The cached pfn is always the first in a pageblock */
1423 free_pfn &= ~(pageblock_nr_pages-1);
1424 /*
1425 * Only go back, not forward. The cached pfn might have been
1426 * already reset to zone end in compact_finished()
1427 */
1428 if (free_pfn > zone->compact_cached_free_pfn)
1429 zone->compact_cached_free_pfn = free_pfn;
1430 }
1431
1432 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1433 cc->free_pfn, end_pfn, sync, ret);
1434
1435 return ret;
1436 }
1437
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum migrate_mode mode,int * contended,int alloc_flags,int classzone_idx)1438 static unsigned long compact_zone_order(struct zone *zone, int order,
1439 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1440 int alloc_flags, int classzone_idx)
1441 {
1442 unsigned long ret;
1443 struct compact_control cc = {
1444 .nr_freepages = 0,
1445 .nr_migratepages = 0,
1446 .order = order,
1447 .gfp_mask = gfp_mask,
1448 .zone = zone,
1449 .mode = mode,
1450 .alloc_flags = alloc_flags,
1451 .classzone_idx = classzone_idx,
1452 };
1453 INIT_LIST_HEAD(&cc.freepages);
1454 INIT_LIST_HEAD(&cc.migratepages);
1455
1456 ret = compact_zone(zone, &cc);
1457
1458 VM_BUG_ON(!list_empty(&cc.freepages));
1459 VM_BUG_ON(!list_empty(&cc.migratepages));
1460
1461 *contended = cc.contended;
1462 return ret;
1463 }
1464
1465 int sysctl_extfrag_threshold = 500;
1466
1467 /**
1468 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1469 * @gfp_mask: The GFP mask of the current allocation
1470 * @order: The order of the current allocation
1471 * @alloc_flags: The allocation flags of the current allocation
1472 * @ac: The context of current allocation
1473 * @mode: The migration mode for async, sync light, or sync migration
1474 * @contended: Return value that determines if compaction was aborted due to
1475 * need_resched() or lock contention
1476 *
1477 * This is the main entry point for direct page compaction.
1478 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended)1479 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1480 int alloc_flags, const struct alloc_context *ac,
1481 enum migrate_mode mode, int *contended)
1482 {
1483 int may_enter_fs = gfp_mask & __GFP_FS;
1484 int may_perform_io = gfp_mask & __GFP_IO;
1485 struct zoneref *z;
1486 struct zone *zone;
1487 int rc = COMPACT_DEFERRED;
1488 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1489
1490 *contended = COMPACT_CONTENDED_NONE;
1491
1492 /* Check if the GFP flags allow compaction */
1493 if (!order || !may_enter_fs || !may_perform_io)
1494 return COMPACT_SKIPPED;
1495
1496 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1497
1498 /* Compact each zone in the list */
1499 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1500 ac->nodemask) {
1501 int status;
1502 int zone_contended;
1503
1504 if (compaction_deferred(zone, order))
1505 continue;
1506
1507 status = compact_zone_order(zone, order, gfp_mask, mode,
1508 &zone_contended, alloc_flags,
1509 ac->classzone_idx);
1510 rc = max(status, rc);
1511 /*
1512 * It takes at least one zone that wasn't lock contended
1513 * to clear all_zones_contended.
1514 */
1515 all_zones_contended &= zone_contended;
1516
1517 /* If a normal allocation would succeed, stop compacting */
1518 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1519 ac->classzone_idx, alloc_flags)) {
1520 /*
1521 * We think the allocation will succeed in this zone,
1522 * but it is not certain, hence the false. The caller
1523 * will repeat this with true if allocation indeed
1524 * succeeds in this zone.
1525 */
1526 compaction_defer_reset(zone, order, false);
1527 /*
1528 * It is possible that async compaction aborted due to
1529 * need_resched() and the watermarks were ok thanks to
1530 * somebody else freeing memory. The allocation can
1531 * however still fail so we better signal the
1532 * need_resched() contention anyway (this will not
1533 * prevent the allocation attempt).
1534 */
1535 if (zone_contended == COMPACT_CONTENDED_SCHED)
1536 *contended = COMPACT_CONTENDED_SCHED;
1537
1538 goto break_loop;
1539 }
1540
1541 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1542 /*
1543 * We think that allocation won't succeed in this zone
1544 * so we defer compaction there. If it ends up
1545 * succeeding after all, it will be reset.
1546 */
1547 defer_compaction(zone, order);
1548 }
1549
1550 /*
1551 * We might have stopped compacting due to need_resched() in
1552 * async compaction, or due to a fatal signal detected. In that
1553 * case do not try further zones and signal need_resched()
1554 * contention.
1555 */
1556 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1557 || fatal_signal_pending(current)) {
1558 *contended = COMPACT_CONTENDED_SCHED;
1559 goto break_loop;
1560 }
1561
1562 continue;
1563 break_loop:
1564 /*
1565 * We might not have tried all the zones, so be conservative
1566 * and assume they are not all lock contended.
1567 */
1568 all_zones_contended = 0;
1569 break;
1570 }
1571
1572 /*
1573 * If at least one zone wasn't deferred or skipped, we report if all
1574 * zones that were tried were lock contended.
1575 */
1576 if (rc > COMPACT_SKIPPED && all_zones_contended)
1577 *contended = COMPACT_CONTENDED_LOCK;
1578
1579 return rc;
1580 }
1581
1582
1583 /* Compact all zones within a node */
__compact_pgdat(pg_data_t * pgdat,struct compact_control * cc)1584 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1585 {
1586 int zoneid;
1587 struct zone *zone;
1588
1589 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1590
1591 zone = &pgdat->node_zones[zoneid];
1592 if (!populated_zone(zone))
1593 continue;
1594
1595 cc->nr_freepages = 0;
1596 cc->nr_migratepages = 0;
1597 cc->zone = zone;
1598 INIT_LIST_HEAD(&cc->freepages);
1599 INIT_LIST_HEAD(&cc->migratepages);
1600
1601 /*
1602 * When called via /proc/sys/vm/compact_memory
1603 * this makes sure we compact the whole zone regardless of
1604 * cached scanner positions.
1605 */
1606 if (cc->order == -1)
1607 __reset_isolation_suitable(zone);
1608
1609 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1610 compact_zone(zone, cc);
1611
1612 if (cc->order > 0) {
1613 if (zone_watermark_ok(zone, cc->order,
1614 low_wmark_pages(zone), 0, 0))
1615 compaction_defer_reset(zone, cc->order, false);
1616 }
1617
1618 VM_BUG_ON(!list_empty(&cc->freepages));
1619 VM_BUG_ON(!list_empty(&cc->migratepages));
1620 }
1621 }
1622
compact_pgdat(pg_data_t * pgdat,int order)1623 void compact_pgdat(pg_data_t *pgdat, int order)
1624 {
1625 struct compact_control cc = {
1626 .order = order,
1627 .mode = MIGRATE_ASYNC,
1628 };
1629
1630 if (!order)
1631 return;
1632
1633 __compact_pgdat(pgdat, &cc);
1634 }
1635
compact_node(int nid)1636 static void compact_node(int nid)
1637 {
1638 struct compact_control cc = {
1639 .order = -1,
1640 .mode = MIGRATE_SYNC,
1641 .ignore_skip_hint = true,
1642 };
1643
1644 __compact_pgdat(NODE_DATA(nid), &cc);
1645 }
1646
1647 /* Compact all nodes in the system */
compact_nodes(void)1648 static void compact_nodes(void)
1649 {
1650 int nid;
1651
1652 /* Flush pending updates to the LRU lists */
1653 lru_add_drain_all();
1654
1655 for_each_online_node(nid)
1656 compact_node(nid);
1657 }
1658
1659 /* The written value is actually unused, all memory is compacted */
1660 int sysctl_compact_memory;
1661
1662 /* This is the entry point for compacting all nodes via /proc/sys/vm */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1663 int sysctl_compaction_handler(struct ctl_table *table, int write,
1664 void __user *buffer, size_t *length, loff_t *ppos)
1665 {
1666 if (write)
1667 compact_nodes();
1668
1669 return 0;
1670 }
1671
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1672 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1673 void __user *buffer, size_t *length, loff_t *ppos)
1674 {
1675 proc_dointvec_minmax(table, write, buffer, length, ppos);
1676
1677 return 0;
1678 }
1679
1680 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1681 static ssize_t sysfs_compact_node(struct device *dev,
1682 struct device_attribute *attr,
1683 const char *buf, size_t count)
1684 {
1685 int nid = dev->id;
1686
1687 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1688 /* Flush pending updates to the LRU lists */
1689 lru_add_drain_all();
1690
1691 compact_node(nid);
1692 }
1693
1694 return count;
1695 }
1696 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1697
compaction_register_node(struct node * node)1698 int compaction_register_node(struct node *node)
1699 {
1700 return device_create_file(&node->dev, &dev_attr_compact);
1701 }
1702
compaction_unregister_node(struct node * node)1703 void compaction_unregister_node(struct node *node)
1704 {
1705 return device_remove_file(&node->dev, &dev_attr_compact);
1706 }
1707 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1708
1709 #endif /* CONFIG_COMPACTION */
1710