1 /*
2  * Macros for manipulating and testing page->flags
3  */
4 
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7 
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15 
16 /*
17  * Various page->flags bits:
18  *
19  * PG_reserved is set for special pages, which can never be swapped out. Some
20  * of them might not even exist (eg empty_bad_page)...
21  *
22  * The PG_private bitflag is set on pagecache pages if they contain filesystem
23  * specific data (which is normally at page->private). It can be used by
24  * private allocations for its own usage.
25  *
26  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28  * is set before writeback starts and cleared when it finishes.
29  *
30  * PG_locked also pins a page in pagecache, and blocks truncation of the file
31  * while it is held.
32  *
33  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34  * to become unlocked.
35  *
36  * PG_uptodate tells whether the page's contents is valid.  When a read
37  * completes, the page becomes uptodate, unless a disk I/O error happened.
38  *
39  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40  * file-backed pagecache (see mm/vmscan.c).
41  *
42  * PG_error is set to indicate that an I/O error occurred on this page.
43  *
44  * PG_arch_1 is an architecture specific page state bit.  The generic code
45  * guarantees that this bit is cleared for a page when it first is entered into
46  * the page cache.
47  *
48  * PG_highmem pages are not permanently mapped into the kernel virtual address
49  * space, they need to be kmapped separately for doing IO on the pages.  The
50  * struct page (these bits with information) are always mapped into kernel
51  * address space...
52  *
53  * PG_hwpoison indicates that a page got corrupted in hardware and contains
54  * data with incorrect ECC bits that triggered a machine check. Accessing is
55  * not safe since it may cause another machine check. Don't touch!
56  */
57 
58 /*
59  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
60  * locked- and dirty-page accounting.
61  *
62  * The page flags field is split into two parts, the main flags area
63  * which extends from the low bits upwards, and the fields area which
64  * extends from the high bits downwards.
65  *
66  *  | FIELD | ... | FLAGS |
67  *  N-1           ^       0
68  *               (NR_PAGEFLAGS)
69  *
70  * The fields area is reserved for fields mapping zone, node (for NUMA) and
71  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73  */
74 enum pageflags {
75 	PG_locked,		/* Page is locked. Don't touch. */
76 	PG_error,
77 	PG_referenced,
78 	PG_uptodate,
79 	PG_dirty,
80 	PG_lru,
81 	PG_active,
82 	PG_slab,
83 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
84 	PG_arch_1,
85 	PG_reserved,
86 	PG_private,		/* If pagecache, has fs-private data */
87 	PG_private_2,		/* If pagecache, has fs aux data */
88 	PG_writeback,		/* Page is under writeback */
89 #ifdef CONFIG_PAGEFLAGS_EXTENDED
90 	PG_head,		/* A head page */
91 	PG_tail,		/* A tail page */
92 #else
93 	PG_compound,		/* A compound page */
94 #endif
95 	PG_swapcache,		/* Swap page: swp_entry_t in private */
96 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
97 	PG_reclaim,		/* To be reclaimed asap */
98 	PG_swapbacked,		/* Page is backed by RAM/swap */
99 	PG_unevictable,		/* Page is "unevictable"  */
100 #ifdef CONFIG_MMU
101 	PG_mlocked,		/* Page is vma mlocked */
102 #endif
103 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
104 	PG_uncached,		/* Page has been mapped as uncached */
105 #endif
106 #ifdef CONFIG_MEMORY_FAILURE
107 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
108 #endif
109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
110 	PG_compound_lock,
111 #endif
112 	__NR_PAGEFLAGS,
113 
114 	/* Filesystems */
115 	PG_checked = PG_owner_priv_1,
116 
117 	/* Two page bits are conscripted by FS-Cache to maintain local caching
118 	 * state.  These bits are set on pages belonging to the netfs's inodes
119 	 * when those inodes are being locally cached.
120 	 */
121 	PG_fscache = PG_private_2,	/* page backed by cache */
122 
123 	/* XEN */
124 	/* Pinned in Xen as a read-only pagetable page. */
125 	PG_pinned = PG_owner_priv_1,
126 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
127 	PG_savepinned = PG_dirty,
128 	/* Has a grant mapping of another (foreign) domain's page. */
129 	PG_foreign = PG_owner_priv_1,
130 
131 	/* SLOB */
132 	PG_slob_free = PG_private,
133 };
134 
135 #ifndef __GENERATING_BOUNDS_H
136 
137 /*
138  * Macros to create function definitions for page flags
139  */
140 #define TESTPAGEFLAG(uname, lname)					\
141 static inline int Page##uname(const struct page *page)			\
142 			{ return test_bit(PG_##lname, &page->flags); }
143 
144 #define SETPAGEFLAG(uname, lname)					\
145 static inline void SetPage##uname(struct page *page)			\
146 			{ set_bit(PG_##lname, &page->flags); }
147 
148 #define CLEARPAGEFLAG(uname, lname)					\
149 static inline void ClearPage##uname(struct page *page)			\
150 			{ clear_bit(PG_##lname, &page->flags); }
151 
152 #define __SETPAGEFLAG(uname, lname)					\
153 static inline void __SetPage##uname(struct page *page)			\
154 			{ __set_bit(PG_##lname, &page->flags); }
155 
156 #define __CLEARPAGEFLAG(uname, lname)					\
157 static inline void __ClearPage##uname(struct page *page)		\
158 			{ __clear_bit(PG_##lname, &page->flags); }
159 
160 #define TESTSETFLAG(uname, lname)					\
161 static inline int TestSetPage##uname(struct page *page)			\
162 		{ return test_and_set_bit(PG_##lname, &page->flags); }
163 
164 #define TESTCLEARFLAG(uname, lname)					\
165 static inline int TestClearPage##uname(struct page *page)		\
166 		{ return test_and_clear_bit(PG_##lname, &page->flags); }
167 
168 #define __TESTCLEARFLAG(uname, lname)					\
169 static inline int __TestClearPage##uname(struct page *page)		\
170 		{ return __test_and_clear_bit(PG_##lname, &page->flags); }
171 
172 #define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname)		\
173 	SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
174 
175 #define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname)		\
176 	__SETPAGEFLAG(uname, lname)  __CLEARPAGEFLAG(uname, lname)
177 
178 #define TESTSCFLAG(uname, lname)					\
179 	TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
180 
181 #define TESTPAGEFLAG_FALSE(uname)					\
182 static inline int Page##uname(const struct page *page) { return 0; }
183 
184 #define SETPAGEFLAG_NOOP(uname)						\
185 static inline void SetPage##uname(struct page *page) {  }
186 
187 #define CLEARPAGEFLAG_NOOP(uname)					\
188 static inline void ClearPage##uname(struct page *page) {  }
189 
190 #define __CLEARPAGEFLAG_NOOP(uname)					\
191 static inline void __ClearPage##uname(struct page *page) {  }
192 
193 #define TESTSETFLAG_FALSE(uname)					\
194 static inline int TestSetPage##uname(struct page *page) { return 0; }
195 
196 #define TESTCLEARFLAG_FALSE(uname)					\
197 static inline int TestClearPage##uname(struct page *page) { return 0; }
198 
199 #define __TESTCLEARFLAG_FALSE(uname)					\
200 static inline int __TestClearPage##uname(struct page *page) { return 0; }
201 
202 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
203 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
204 
205 #define TESTSCFLAG_FALSE(uname)						\
206 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
207 
208 struct page;	/* forward declaration */
209 
210 TESTPAGEFLAG(Locked, locked)
211 PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
212 PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
213 	__SETPAGEFLAG(Referenced, referenced)
214 PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
215 PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
216 PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
217 	TESTCLEARFLAG(Active, active)
218 __PAGEFLAG(Slab, slab)
219 PAGEFLAG(Checked, checked)		/* Used by some filesystems */
220 PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned)	/* Xen */
221 PAGEFLAG(SavePinned, savepinned);			/* Xen */
222 PAGEFLAG(Foreign, foreign);				/* Xen */
PAGEFLAG(Reserved,reserved)223 PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
224 PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
225 	__SETPAGEFLAG(SwapBacked, swapbacked)
226 
227 __PAGEFLAG(SlobFree, slob_free)
228 
229 /*
230  * Private page markings that may be used by the filesystem that owns the page
231  * for its own purposes.
232  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
233  */
234 PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
235 	__CLEARPAGEFLAG(Private, private)
236 PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
237 PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
238 
239 /*
240  * Only test-and-set exist for PG_writeback.  The unconditional operators are
241  * risky: they bypass page accounting.
242  */
243 TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
244 PAGEFLAG(MappedToDisk, mappedtodisk)
245 
246 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
247 PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
248 PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
249 
250 #ifdef CONFIG_HIGHMEM
251 /*
252  * Must use a macro here due to header dependency issues. page_zone() is not
253  * available at this point.
254  */
255 #define PageHighMem(__p) is_highmem(page_zone(__p))
256 #else
257 PAGEFLAG_FALSE(HighMem)
258 #endif
259 
260 #ifdef CONFIG_SWAP
261 PAGEFLAG(SwapCache, swapcache)
262 #else
263 PAGEFLAG_FALSE(SwapCache)
264 #endif
265 
266 PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
267 	TESTCLEARFLAG(Unevictable, unevictable)
268 
269 #ifdef CONFIG_MMU
270 PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
271 	TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
272 #else
273 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
274 	TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
275 #endif
276 
277 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
278 PAGEFLAG(Uncached, uncached)
279 #else
280 PAGEFLAG_FALSE(Uncached)
281 #endif
282 
283 #ifdef CONFIG_MEMORY_FAILURE
284 PAGEFLAG(HWPoison, hwpoison)
285 TESTSCFLAG(HWPoison, hwpoison)
286 #define __PG_HWPOISON (1UL << PG_hwpoison)
287 #else
288 PAGEFLAG_FALSE(HWPoison)
289 #define __PG_HWPOISON 0
290 #endif
291 
292 /*
293  * On an anonymous page mapped into a user virtual memory area,
294  * page->mapping points to its anon_vma, not to a struct address_space;
295  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
296  *
297  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
298  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
299  * and then page->mapping points, not to an anon_vma, but to a private
300  * structure which KSM associates with that merged page.  See ksm.h.
301  *
302  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
303  *
304  * Please note that, confusingly, "page_mapping" refers to the inode
305  * address_space which maps the page from disk; whereas "page_mapped"
306  * refers to user virtual address space into which the page is mapped.
307  */
308 #define PAGE_MAPPING_ANON	1
309 #define PAGE_MAPPING_KSM	2
310 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
311 
312 static inline int PageAnon(struct page *page)
313 {
314 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
315 }
316 
317 #ifdef CONFIG_KSM
318 /*
319  * A KSM page is one of those write-protected "shared pages" or "merged pages"
320  * which KSM maps into multiple mms, wherever identical anonymous page content
321  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
322  * anon_vma, but to that page's node of the stable tree.
323  */
PageKsm(struct page * page)324 static inline int PageKsm(struct page *page)
325 {
326 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
327 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
328 }
329 #else
330 TESTPAGEFLAG_FALSE(Ksm)
331 #endif
332 
333 u64 stable_page_flags(struct page *page);
334 
PageUptodate(struct page * page)335 static inline int PageUptodate(struct page *page)
336 {
337 	int ret = test_bit(PG_uptodate, &(page)->flags);
338 
339 	/*
340 	 * Must ensure that the data we read out of the page is loaded
341 	 * _after_ we've loaded page->flags to check for PageUptodate.
342 	 * We can skip the barrier if the page is not uptodate, because
343 	 * we wouldn't be reading anything from it.
344 	 *
345 	 * See SetPageUptodate() for the other side of the story.
346 	 */
347 	if (ret)
348 		smp_rmb();
349 
350 	return ret;
351 }
352 
__SetPageUptodate(struct page * page)353 static inline void __SetPageUptodate(struct page *page)
354 {
355 	smp_wmb();
356 	__set_bit(PG_uptodate, &(page)->flags);
357 }
358 
SetPageUptodate(struct page * page)359 static inline void SetPageUptodate(struct page *page)
360 {
361 	/*
362 	 * Memory barrier must be issued before setting the PG_uptodate bit,
363 	 * so that all previous stores issued in order to bring the page
364 	 * uptodate are actually visible before PageUptodate becomes true.
365 	 */
366 	smp_wmb();
367 	set_bit(PG_uptodate, &(page)->flags);
368 }
369 
370 CLEARPAGEFLAG(Uptodate, uptodate)
371 
372 int test_clear_page_writeback(struct page *page);
373 int __test_set_page_writeback(struct page *page, bool keep_write);
374 
375 #define test_set_page_writeback(page)			\
376 	__test_set_page_writeback(page, false)
377 #define test_set_page_writeback_keepwrite(page)	\
378 	__test_set_page_writeback(page, true)
379 
set_page_writeback(struct page * page)380 static inline void set_page_writeback(struct page *page)
381 {
382 	test_set_page_writeback(page);
383 }
384 
set_page_writeback_keepwrite(struct page * page)385 static inline void set_page_writeback_keepwrite(struct page *page)
386 {
387 	test_set_page_writeback_keepwrite(page);
388 }
389 
390 #ifdef CONFIG_PAGEFLAGS_EXTENDED
391 /*
392  * System with lots of page flags available. This allows separate
393  * flags for PageHead() and PageTail() checks of compound pages so that bit
394  * tests can be used in performance sensitive paths. PageCompound is
395  * generally not used in hot code paths except arch/powerpc/mm/init_64.c
396  * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
397  * and avoid handling those in real mode.
398  */
__PAGEFLAG(Head,head)399 __PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
400 __PAGEFLAG(Tail, tail)
401 
402 static inline int PageCompound(struct page *page)
403 {
404 	return page->flags & ((1L << PG_head) | (1L << PG_tail));
405 
406 }
407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)408 static inline void ClearPageCompound(struct page *page)
409 {
410 	BUG_ON(!PageHead(page));
411 	ClearPageHead(page);
412 }
413 #endif
414 
415 #define PG_head_mask ((1L << PG_head))
416 
417 #else
418 /*
419  * Reduce page flag use as much as possible by overlapping
420  * compound page flags with the flags used for page cache pages. Possible
421  * because PageCompound is always set for compound pages and not for
422  * pages on the LRU and/or pagecache.
423  */
TESTPAGEFLAG(Compound,compound)424 TESTPAGEFLAG(Compound, compound)
425 __SETPAGEFLAG(Head, compound)  __CLEARPAGEFLAG(Head, compound)
426 
427 /*
428  * PG_reclaim is used in combination with PG_compound to mark the
429  * head and tail of a compound page. This saves one page flag
430  * but makes it impossible to use compound pages for the page cache.
431  * The PG_reclaim bit would have to be used for reclaim or readahead
432  * if compound pages enter the page cache.
433  *
434  * PG_compound & PG_reclaim	=> Tail page
435  * PG_compound & ~PG_reclaim	=> Head page
436  */
437 #define PG_head_mask ((1L << PG_compound))
438 #define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
439 
440 static inline int PageHead(struct page *page)
441 {
442 	return ((page->flags & PG_head_tail_mask) == PG_head_mask);
443 }
444 
PageTail(struct page * page)445 static inline int PageTail(struct page *page)
446 {
447 	return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
448 }
449 
__SetPageTail(struct page * page)450 static inline void __SetPageTail(struct page *page)
451 {
452 	page->flags |= PG_head_tail_mask;
453 }
454 
__ClearPageTail(struct page * page)455 static inline void __ClearPageTail(struct page *page)
456 {
457 	page->flags &= ~PG_head_tail_mask;
458 }
459 
460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)461 static inline void ClearPageCompound(struct page *page)
462 {
463 	BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
464 	clear_bit(PG_compound, &page->flags);
465 }
466 #endif
467 
468 #endif /* !PAGEFLAGS_EXTENDED */
469 
470 #ifdef CONFIG_HUGETLB_PAGE
471 int PageHuge(struct page *page);
472 int PageHeadHuge(struct page *page);
473 bool page_huge_active(struct page *page);
474 #else
475 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)476 TESTPAGEFLAG_FALSE(HeadHuge)
477 
478 static inline bool page_huge_active(struct page *page)
479 {
480 	return 0;
481 }
482 #endif
483 
484 
485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
486 /*
487  * PageHuge() only returns true for hugetlbfs pages, but not for
488  * normal or transparent huge pages.
489  *
490  * PageTransHuge() returns true for both transparent huge and
491  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
492  * called only in the core VM paths where hugetlbfs pages can't exist.
493  */
PageTransHuge(struct page * page)494 static inline int PageTransHuge(struct page *page)
495 {
496 	VM_BUG_ON_PAGE(PageTail(page), page);
497 	return PageHead(page);
498 }
499 
500 /*
501  * PageTransCompound returns true for both transparent huge pages
502  * and hugetlbfs pages, so it should only be called when it's known
503  * that hugetlbfs pages aren't involved.
504  */
PageTransCompound(struct page * page)505 static inline int PageTransCompound(struct page *page)
506 {
507 	return PageCompound(page);
508 }
509 
510 /*
511  * PageTransTail returns true for both transparent huge pages
512  * and hugetlbfs pages, so it should only be called when it's known
513  * that hugetlbfs pages aren't involved.
514  */
PageTransTail(struct page * page)515 static inline int PageTransTail(struct page *page)
516 {
517 	return PageTail(page);
518 }
519 
520 #else
521 
PageTransHuge(struct page * page)522 static inline int PageTransHuge(struct page *page)
523 {
524 	return 0;
525 }
526 
PageTransCompound(struct page * page)527 static inline int PageTransCompound(struct page *page)
528 {
529 	return 0;
530 }
531 
PageTransTail(struct page * page)532 static inline int PageTransTail(struct page *page)
533 {
534 	return 0;
535 }
536 #endif
537 
538 /*
539  * PageBuddy() indicate that the page is free and in the buddy system
540  * (see mm/page_alloc.c).
541  *
542  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
543  * -2 so that an underflow of the page_mapcount() won't be mistaken
544  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
545  * efficiently by most CPU architectures.
546  */
547 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
548 
PageBuddy(struct page * page)549 static inline int PageBuddy(struct page *page)
550 {
551 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
552 }
553 
__SetPageBuddy(struct page * page)554 static inline void __SetPageBuddy(struct page *page)
555 {
556 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
557 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
558 }
559 
__ClearPageBuddy(struct page * page)560 static inline void __ClearPageBuddy(struct page *page)
561 {
562 	VM_BUG_ON_PAGE(!PageBuddy(page), page);
563 	atomic_set(&page->_mapcount, -1);
564 }
565 
566 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
567 
PageBalloon(struct page * page)568 static inline int PageBalloon(struct page *page)
569 {
570 	return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
571 }
572 
__SetPageBalloon(struct page * page)573 static inline void __SetPageBalloon(struct page *page)
574 {
575 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
576 	atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
577 }
578 
__ClearPageBalloon(struct page * page)579 static inline void __ClearPageBalloon(struct page *page)
580 {
581 	VM_BUG_ON_PAGE(!PageBalloon(page), page);
582 	atomic_set(&page->_mapcount, -1);
583 }
584 
585 /*
586  * If network-based swap is enabled, sl*b must keep track of whether pages
587  * were allocated from pfmemalloc reserves.
588  */
PageSlabPfmemalloc(struct page * page)589 static inline int PageSlabPfmemalloc(struct page *page)
590 {
591 	VM_BUG_ON_PAGE(!PageSlab(page), page);
592 	return PageActive(page);
593 }
594 
SetPageSlabPfmemalloc(struct page * page)595 static inline void SetPageSlabPfmemalloc(struct page *page)
596 {
597 	VM_BUG_ON_PAGE(!PageSlab(page), page);
598 	SetPageActive(page);
599 }
600 
__ClearPageSlabPfmemalloc(struct page * page)601 static inline void __ClearPageSlabPfmemalloc(struct page *page)
602 {
603 	VM_BUG_ON_PAGE(!PageSlab(page), page);
604 	__ClearPageActive(page);
605 }
606 
ClearPageSlabPfmemalloc(struct page * page)607 static inline void ClearPageSlabPfmemalloc(struct page *page)
608 {
609 	VM_BUG_ON_PAGE(!PageSlab(page), page);
610 	ClearPageActive(page);
611 }
612 
613 #ifdef CONFIG_MMU
614 #define __PG_MLOCKED		(1 << PG_mlocked)
615 #else
616 #define __PG_MLOCKED		0
617 #endif
618 
619 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
620 #define __PG_COMPOUND_LOCK		(1 << PG_compound_lock)
621 #else
622 #define __PG_COMPOUND_LOCK		0
623 #endif
624 
625 /*
626  * Flags checked when a page is freed.  Pages being freed should not have
627  * these flags set.  It they are, there is a problem.
628  */
629 #define PAGE_FLAGS_CHECK_AT_FREE \
630 	(1 << PG_lru	 | 1 << PG_locked    | \
631 	 1 << PG_private | 1 << PG_private_2 | \
632 	 1 << PG_writeback | 1 << PG_reserved | \
633 	 1 << PG_slab	 | 1 << PG_swapcache | 1 << PG_active | \
634 	 1 << PG_unevictable | __PG_MLOCKED | \
635 	 __PG_COMPOUND_LOCK)
636 
637 /*
638  * Flags checked when a page is prepped for return by the page allocator.
639  * Pages being prepped should not have these flags set.  It they are set,
640  * there has been a kernel bug or struct page corruption.
641  *
642  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
643  * alloc-free cycle to prevent from reusing the page.
644  */
645 #define PAGE_FLAGS_CHECK_AT_PREP	\
646 	(((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
647 
648 #define PAGE_FLAGS_PRIVATE				\
649 	(1 << PG_private | 1 << PG_private_2)
650 /**
651  * page_has_private - Determine if page has private stuff
652  * @page: The page to be checked
653  *
654  * Determine if a page has private stuff, indicating that release routines
655  * should be invoked upon it.
656  */
page_has_private(struct page * page)657 static inline int page_has_private(struct page *page)
658 {
659 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
660 }
661 
662 #endif /* !__GENERATING_BOUNDS_H */
663 
664 #endif	/* PAGE_FLAGS_H */
665