1 /*P:200 This contains all the /dev/lguest code, whereby the userspace
2  * launcher controls and communicates with the Guest.  For example,
3  * the first write will tell us the Guest's memory layout and entry
4  * point.  A read will run the Guest until something happens, such as
5  * a signal or the Guest accessing a device.
6 :*/
7 #include <linux/uaccess.h>
8 #include <linux/miscdevice.h>
9 #include <linux/fs.h>
10 #include <linux/sched.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/export.h>
14 #include "lg.h"
15 
16 /*L:052
17   The Launcher can get the registers, and also set some of them.
18 */
getreg_setup(struct lg_cpu * cpu,const unsigned long __user * input)19 static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input)
20 {
21 	unsigned long which;
22 
23 	/* We re-use the ptrace structure to specify which register to read. */
24 	if (get_user(which, input) != 0)
25 		return -EFAULT;
26 
27 	/*
28 	 * We set up the cpu register pointer, and their next read will
29 	 * actually get the value (instead of running the guest).
30 	 *
31 	 * The last argument 'true' says we can access any register.
32 	 */
33 	cpu->reg_read = lguest_arch_regptr(cpu, which, true);
34 	if (!cpu->reg_read)
35 		return -ENOENT;
36 
37 	/* And because this is a write() call, we return the length used. */
38 	return sizeof(unsigned long) * 2;
39 }
40 
setreg(struct lg_cpu * cpu,const unsigned long __user * input)41 static int setreg(struct lg_cpu *cpu, const unsigned long __user *input)
42 {
43 	unsigned long which, value, *reg;
44 
45 	/* We re-use the ptrace structure to specify which register to read. */
46 	if (get_user(which, input) != 0)
47 		return -EFAULT;
48 	input++;
49 	if (get_user(value, input) != 0)
50 		return -EFAULT;
51 
52 	/* The last argument 'false' means we can't access all registers. */
53 	reg = lguest_arch_regptr(cpu, which, false);
54 	if (!reg)
55 		return -ENOENT;
56 
57 	*reg = value;
58 
59 	/* And because this is a write() call, we return the length used. */
60 	return sizeof(unsigned long) * 3;
61 }
62 
63 /*L:050
64  * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
65  * number to /dev/lguest.
66  */
user_send_irq(struct lg_cpu * cpu,const unsigned long __user * input)67 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
68 {
69 	unsigned long irq;
70 
71 	if (get_user(irq, input) != 0)
72 		return -EFAULT;
73 	if (irq >= LGUEST_IRQS)
74 		return -EINVAL;
75 
76 	/*
77 	 * Next time the Guest runs, the core code will see if it can deliver
78 	 * this interrupt.
79 	 */
80 	set_interrupt(cpu, irq);
81 	return 0;
82 }
83 
84 /*L:053
85  * Deliver a trap: this is used by the Launcher if it can't emulate
86  * an instruction.
87  */
trap(struct lg_cpu * cpu,const unsigned long __user * input)88 static int trap(struct lg_cpu *cpu, const unsigned long __user *input)
89 {
90 	unsigned long trapnum;
91 
92 	if (get_user(trapnum, input) != 0)
93 		return -EFAULT;
94 
95 	if (!deliver_trap(cpu, trapnum))
96 		return -EINVAL;
97 
98 	return 0;
99 }
100 
101 /*L:040
102  * Once our Guest is initialized, the Launcher makes it run by reading
103  * from /dev/lguest.
104  */
read(struct file * file,char __user * user,size_t size,loff_t * o)105 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
106 {
107 	struct lguest *lg = file->private_data;
108 	struct lg_cpu *cpu;
109 	unsigned int cpu_id = *o;
110 
111 	/* You must write LHREQ_INITIALIZE first! */
112 	if (!lg)
113 		return -EINVAL;
114 
115 	/* Watch out for arbitrary vcpu indexes! */
116 	if (cpu_id >= lg->nr_cpus)
117 		return -EINVAL;
118 
119 	cpu = &lg->cpus[cpu_id];
120 
121 	/* If you're not the task which owns the Guest, go away. */
122 	if (current != cpu->tsk)
123 		return -EPERM;
124 
125 	/* If the Guest is already dead, we indicate why */
126 	if (lg->dead) {
127 		size_t len;
128 
129 		/* lg->dead either contains an error code, or a string. */
130 		if (IS_ERR(lg->dead))
131 			return PTR_ERR(lg->dead);
132 
133 		/* We can only return as much as the buffer they read with. */
134 		len = min(size, strlen(lg->dead)+1);
135 		if (copy_to_user(user, lg->dead, len) != 0)
136 			return -EFAULT;
137 		return len;
138 	}
139 
140 	/*
141 	 * If we returned from read() last time because the Guest sent I/O,
142 	 * clear the flag.
143 	 */
144 	if (cpu->pending.trap)
145 		cpu->pending.trap = 0;
146 
147 	/* Run the Guest until something interesting happens. */
148 	return run_guest(cpu, (unsigned long __user *)user);
149 }
150 
151 /*L:025
152  * This actually initializes a CPU.  For the moment, a Guest is only
153  * uniprocessor, so "id" is always 0.
154  */
lg_cpu_start(struct lg_cpu * cpu,unsigned id,unsigned long start_ip)155 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
156 {
157 	/* We have a limited number of CPUs in the lguest struct. */
158 	if (id >= ARRAY_SIZE(cpu->lg->cpus))
159 		return -EINVAL;
160 
161 	/* Set up this CPU's id, and pointer back to the lguest struct. */
162 	cpu->id = id;
163 	cpu->lg = container_of(cpu, struct lguest, cpus[id]);
164 	cpu->lg->nr_cpus++;
165 
166 	/* Each CPU has a timer it can set. */
167 	init_clockdev(cpu);
168 
169 	/*
170 	 * We need a complete page for the Guest registers: they are accessible
171 	 * to the Guest and we can only grant it access to whole pages.
172 	 */
173 	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
174 	if (!cpu->regs_page)
175 		return -ENOMEM;
176 
177 	/* We actually put the registers at the end of the page. */
178 	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
179 
180 	/*
181 	 * Now we initialize the Guest's registers, handing it the start
182 	 * address.
183 	 */
184 	lguest_arch_setup_regs(cpu, start_ip);
185 
186 	/*
187 	 * We keep a pointer to the Launcher task (ie. current task) for when
188 	 * other Guests want to wake this one (eg. console input).
189 	 */
190 	cpu->tsk = current;
191 
192 	/*
193 	 * We need to keep a pointer to the Launcher's memory map, because if
194 	 * the Launcher dies we need to clean it up.  If we don't keep a
195 	 * reference, it is destroyed before close() is called.
196 	 */
197 	cpu->mm = get_task_mm(cpu->tsk);
198 
199 	/*
200 	 * We remember which CPU's pages this Guest used last, for optimization
201 	 * when the same Guest runs on the same CPU twice.
202 	 */
203 	cpu->last_pages = NULL;
204 
205 	/* No error == success. */
206 	return 0;
207 }
208 
209 /*L:020
210  * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
211  * addition to the LHREQ_INITIALIZE value).  These are:
212  *
213  * base: The start of the Guest-physical memory inside the Launcher memory.
214  *
215  * pfnlimit: The highest (Guest-physical) page number the Guest should be
216  * allowed to access.  The Guest memory lives inside the Launcher, so it sets
217  * this to ensure the Guest can only reach its own memory.
218  *
219  * start: The first instruction to execute ("eip" in x86-speak).
220  */
initialize(struct file * file,const unsigned long __user * input)221 static int initialize(struct file *file, const unsigned long __user *input)
222 {
223 	/* "struct lguest" contains all we (the Host) know about a Guest. */
224 	struct lguest *lg;
225 	int err;
226 	unsigned long args[4];
227 
228 	/*
229 	 * We grab the Big Lguest lock, which protects against multiple
230 	 * simultaneous initializations.
231 	 */
232 	mutex_lock(&lguest_lock);
233 	/* You can't initialize twice!  Close the device and start again... */
234 	if (file->private_data) {
235 		err = -EBUSY;
236 		goto unlock;
237 	}
238 
239 	if (copy_from_user(args, input, sizeof(args)) != 0) {
240 		err = -EFAULT;
241 		goto unlock;
242 	}
243 
244 	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
245 	if (!lg) {
246 		err = -ENOMEM;
247 		goto unlock;
248 	}
249 
250 	/* Populate the easy fields of our "struct lguest" */
251 	lg->mem_base = (void __user *)args[0];
252 	lg->pfn_limit = args[1];
253 	lg->device_limit = args[3];
254 
255 	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
256 	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
257 	if (err)
258 		goto free_lg;
259 
260 	/*
261 	 * Initialize the Guest's shadow page tables.  This allocates
262 	 * memory, so can fail.
263 	 */
264 	err = init_guest_pagetable(lg);
265 	if (err)
266 		goto free_regs;
267 
268 	/* We keep our "struct lguest" in the file's private_data. */
269 	file->private_data = lg;
270 
271 	mutex_unlock(&lguest_lock);
272 
273 	/* And because this is a write() call, we return the length used. */
274 	return sizeof(args);
275 
276 free_regs:
277 	/* FIXME: This should be in free_vcpu */
278 	free_page(lg->cpus[0].regs_page);
279 free_lg:
280 	kfree(lg);
281 unlock:
282 	mutex_unlock(&lguest_lock);
283 	return err;
284 }
285 
286 /*L:010
287  * The first operation the Launcher does must be a write.  All writes
288  * start with an unsigned long number: for the first write this must be
289  * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
290  * writes of other values to send interrupts or set up receipt of notifications.
291  *
292  * Note that we overload the "offset" in the /dev/lguest file to indicate what
293  * CPU number we're dealing with.  Currently this is always 0 since we only
294  * support uniprocessor Guests, but you can see the beginnings of SMP support
295  * here.
296  */
write(struct file * file,const char __user * in,size_t size,loff_t * off)297 static ssize_t write(struct file *file, const char __user *in,
298 		     size_t size, loff_t *off)
299 {
300 	/*
301 	 * Once the Guest is initialized, we hold the "struct lguest" in the
302 	 * file private data.
303 	 */
304 	struct lguest *lg = file->private_data;
305 	const unsigned long __user *input = (const unsigned long __user *)in;
306 	unsigned long req;
307 	struct lg_cpu *uninitialized_var(cpu);
308 	unsigned int cpu_id = *off;
309 
310 	/* The first value tells us what this request is. */
311 	if (get_user(req, input) != 0)
312 		return -EFAULT;
313 	input++;
314 
315 	/* If you haven't initialized, you must do that first. */
316 	if (req != LHREQ_INITIALIZE) {
317 		if (!lg || (cpu_id >= lg->nr_cpus))
318 			return -EINVAL;
319 		cpu = &lg->cpus[cpu_id];
320 
321 		/* Once the Guest is dead, you can only read() why it died. */
322 		if (lg->dead)
323 			return -ENOENT;
324 	}
325 
326 	switch (req) {
327 	case LHREQ_INITIALIZE:
328 		return initialize(file, input);
329 	case LHREQ_IRQ:
330 		return user_send_irq(cpu, input);
331 	case LHREQ_GETREG:
332 		return getreg_setup(cpu, input);
333 	case LHREQ_SETREG:
334 		return setreg(cpu, input);
335 	case LHREQ_TRAP:
336 		return trap(cpu, input);
337 	default:
338 		return -EINVAL;
339 	}
340 }
341 
open(struct inode * inode,struct file * file)342 static int open(struct inode *inode, struct file *file)
343 {
344 	file->private_data = NULL;
345 
346 	return 0;
347 }
348 
349 /*L:060
350  * The final piece of interface code is the close() routine.  It reverses
351  * everything done in initialize().  This is usually called because the
352  * Launcher exited.
353  *
354  * Note that the close routine returns 0 or a negative error number: it can't
355  * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
356  * letting them do it.
357 :*/
close(struct inode * inode,struct file * file)358 static int close(struct inode *inode, struct file *file)
359 {
360 	struct lguest *lg = file->private_data;
361 	unsigned int i;
362 
363 	/* If we never successfully initialized, there's nothing to clean up */
364 	if (!lg)
365 		return 0;
366 
367 	/*
368 	 * We need the big lock, to protect from inter-guest I/O and other
369 	 * Launchers initializing guests.
370 	 */
371 	mutex_lock(&lguest_lock);
372 
373 	/* Free up the shadow page tables for the Guest. */
374 	free_guest_pagetable(lg);
375 
376 	for (i = 0; i < lg->nr_cpus; i++) {
377 		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
378 		hrtimer_cancel(&lg->cpus[i].hrt);
379 		/* We can free up the register page we allocated. */
380 		free_page(lg->cpus[i].regs_page);
381 		/*
382 		 * Now all the memory cleanups are done, it's safe to release
383 		 * the Launcher's memory management structure.
384 		 */
385 		mmput(lg->cpus[i].mm);
386 	}
387 
388 	/*
389 	 * If lg->dead doesn't contain an error code it will be NULL or a
390 	 * kmalloc()ed string, either of which is ok to hand to kfree().
391 	 */
392 	if (!IS_ERR(lg->dead))
393 		kfree(lg->dead);
394 	/* Free the memory allocated to the lguest_struct */
395 	kfree(lg);
396 	/* Release lock and exit. */
397 	mutex_unlock(&lguest_lock);
398 
399 	return 0;
400 }
401 
402 /*L:000
403  * Welcome to our journey through the Launcher!
404  *
405  * The Launcher is the Host userspace program which sets up, runs and services
406  * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
407  * doing things are inaccurate: the Launcher does all the device handling for
408  * the Guest, but the Guest can't know that.
409  *
410  * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
411  * shall see more of that later.
412  *
413  * We begin our understanding with the Host kernel interface which the Launcher
414  * uses: reading and writing a character device called /dev/lguest.  All the
415  * work happens in the read(), write() and close() routines:
416  */
417 static const struct file_operations lguest_fops = {
418 	.owner	 = THIS_MODULE,
419 	.open	 = open,
420 	.release = close,
421 	.write	 = write,
422 	.read	 = read,
423 	.llseek  = default_llseek,
424 };
425 /*:*/
426 
427 /*
428  * This is a textbook example of a "misc" character device.  Populate a "struct
429  * miscdevice" and register it with misc_register().
430  */
431 static struct miscdevice lguest_dev = {
432 	.minor	= MISC_DYNAMIC_MINOR,
433 	.name	= "lguest",
434 	.fops	= &lguest_fops,
435 };
436 
lguest_device_init(void)437 int __init lguest_device_init(void)
438 {
439 	return misc_register(&lguest_dev);
440 }
441 
lguest_device_remove(void)442 void __exit lguest_device_remove(void)
443 {
444 	misc_deregister(&lguest_dev);
445 }
446