1 /*
2  *  kernel/sched/proc.c
3  *
4  *  Kernel load calculations, forked from sched/core.c
5  */
6 
7 #include <linux/export.h>
8 
9 #include "sched.h"
10 
11 /*
12  * Global load-average calculations
13  *
14  * We take a distributed and async approach to calculating the global load-avg
15  * in order to minimize overhead.
16  *
17  * The global load average is an exponentially decaying average of nr_running +
18  * nr_uninterruptible.
19  *
20  * Once every LOAD_FREQ:
21  *
22  *   nr_active = 0;
23  *   for_each_possible_cpu(cpu)
24  *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
25  *
26  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
27  *
28  * Due to a number of reasons the above turns in the mess below:
29  *
30  *  - for_each_possible_cpu() is prohibitively expensive on machines with
31  *    serious number of cpus, therefore we need to take a distributed approach
32  *    to calculating nr_active.
33  *
34  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
35  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
36  *
37  *    So assuming nr_active := 0 when we start out -- true per definition, we
38  *    can simply take per-cpu deltas and fold those into a global accumulate
39  *    to obtain the same result. See calc_load_fold_active().
40  *
41  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
42  *    across the machine, we assume 10 ticks is sufficient time for every
43  *    cpu to have completed this task.
44  *
45  *    This places an upper-bound on the IRQ-off latency of the machine. Then
46  *    again, being late doesn't loose the delta, just wrecks the sample.
47  *
48  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
49  *    this would add another cross-cpu cacheline miss and atomic operation
50  *    to the wakeup path. Instead we increment on whatever cpu the task ran
51  *    when it went into uninterruptible state and decrement on whatever cpu
52  *    did the wakeup. This means that only the sum of nr_uninterruptible over
53  *    all cpus yields the correct result.
54  *
55  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
56  */
57 
58 /* Variables and functions for calc_load */
59 atomic_long_t calc_load_tasks;
60 unsigned long calc_load_update;
61 unsigned long avenrun[3];
62 EXPORT_SYMBOL(avenrun); /* should be removed */
63 
64 /**
65  * get_avenrun - get the load average array
66  * @loads:	pointer to dest load array
67  * @offset:	offset to add
68  * @shift:	shift count to shift the result left
69  *
70  * These values are estimates at best, so no need for locking.
71  */
get_avenrun(unsigned long * loads,unsigned long offset,int shift)72 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
73 {
74 	loads[0] = (avenrun[0] + offset) << shift;
75 	loads[1] = (avenrun[1] + offset) << shift;
76 	loads[2] = (avenrun[2] + offset) << shift;
77 }
78 
calc_load_fold_active(struct rq * this_rq)79 long calc_load_fold_active(struct rq *this_rq)
80 {
81 	long nr_active, delta = 0;
82 
83 	nr_active = this_rq->nr_running;
84 	nr_active += (long) this_rq->nr_uninterruptible;
85 
86 	if (nr_active != this_rq->calc_load_active) {
87 		delta = nr_active - this_rq->calc_load_active;
88 		this_rq->calc_load_active = nr_active;
89 	}
90 
91 	return delta;
92 }
93 
94 /*
95  * a1 = a0 * e + a * (1 - e)
96  */
97 static unsigned long
calc_load(unsigned long load,unsigned long exp,unsigned long active)98 calc_load(unsigned long load, unsigned long exp, unsigned long active)
99 {
100 	unsigned long newload;
101 
102 	newload = load * exp + active * (FIXED_1 - exp);
103 	if (active >= load)
104 		newload += FIXED_1-1;
105 
106 	return newload / FIXED_1;
107 }
108 
109 #ifdef CONFIG_NO_HZ_COMMON
110 /*
111  * Handle NO_HZ for the global load-average.
112  *
113  * Since the above described distributed algorithm to compute the global
114  * load-average relies on per-cpu sampling from the tick, it is affected by
115  * NO_HZ.
116  *
117  * The basic idea is to fold the nr_active delta into a global idle-delta upon
118  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
119  * when we read the global state.
120  *
121  * Obviously reality has to ruin such a delightfully simple scheme:
122  *
123  *  - When we go NO_HZ idle during the window, we can negate our sample
124  *    contribution, causing under-accounting.
125  *
126  *    We avoid this by keeping two idle-delta counters and flipping them
127  *    when the window starts, thus separating old and new NO_HZ load.
128  *
129  *    The only trick is the slight shift in index flip for read vs write.
130  *
131  *        0s            5s            10s           15s
132  *          +10           +10           +10           +10
133  *        |-|-----------|-|-----------|-|-----------|-|
134  *    r:0 0 1           1 0           0 1           1 0
135  *    w:0 1 1           0 0           1 1           0 0
136  *
137  *    This ensures we'll fold the old idle contribution in this window while
138  *    accumlating the new one.
139  *
140  *  - When we wake up from NO_HZ idle during the window, we push up our
141  *    contribution, since we effectively move our sample point to a known
142  *    busy state.
143  *
144  *    This is solved by pushing the window forward, and thus skipping the
145  *    sample, for this cpu (effectively using the idle-delta for this cpu which
146  *    was in effect at the time the window opened). This also solves the issue
147  *    of having to deal with a cpu having been in NOHZ idle for multiple
148  *    LOAD_FREQ intervals.
149  *
150  * When making the ILB scale, we should try to pull this in as well.
151  */
152 static atomic_long_t calc_load_idle[2];
153 static int calc_load_idx;
154 
calc_load_write_idx(void)155 static inline int calc_load_write_idx(void)
156 {
157 	int idx = calc_load_idx;
158 
159 	/*
160 	 * See calc_global_nohz(), if we observe the new index, we also
161 	 * need to observe the new update time.
162 	 */
163 	smp_rmb();
164 
165 	/*
166 	 * If the folding window started, make sure we start writing in the
167 	 * next idle-delta.
168 	 */
169 	if (!time_before(jiffies, calc_load_update))
170 		idx++;
171 
172 	return idx & 1;
173 }
174 
calc_load_read_idx(void)175 static inline int calc_load_read_idx(void)
176 {
177 	return calc_load_idx & 1;
178 }
179 
calc_load_enter_idle(void)180 void calc_load_enter_idle(void)
181 {
182 	struct rq *this_rq = this_rq();
183 	long delta;
184 
185 	/*
186 	 * We're going into NOHZ mode, if there's any pending delta, fold it
187 	 * into the pending idle delta.
188 	 */
189 	delta = calc_load_fold_active(this_rq);
190 	if (delta) {
191 		int idx = calc_load_write_idx();
192 		atomic_long_add(delta, &calc_load_idle[idx]);
193 	}
194 }
195 
calc_load_exit_idle(void)196 void calc_load_exit_idle(void)
197 {
198 	struct rq *this_rq = this_rq();
199 
200 	/*
201 	 * If we're still before the sample window, we're done.
202 	 */
203 	if (time_before(jiffies, this_rq->calc_load_update))
204 		return;
205 
206 	/*
207 	 * We woke inside or after the sample window, this means we're already
208 	 * accounted through the nohz accounting, so skip the entire deal and
209 	 * sync up for the next window.
210 	 */
211 	this_rq->calc_load_update = calc_load_update;
212 	if (time_before(jiffies, this_rq->calc_load_update + 10))
213 		this_rq->calc_load_update += LOAD_FREQ;
214 }
215 
calc_load_fold_idle(void)216 static long calc_load_fold_idle(void)
217 {
218 	int idx = calc_load_read_idx();
219 	long delta = 0;
220 
221 	if (atomic_long_read(&calc_load_idle[idx]))
222 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
223 
224 	return delta;
225 }
226 
227 /**
228  * fixed_power_int - compute: x^n, in O(log n) time
229  *
230  * @x:         base of the power
231  * @frac_bits: fractional bits of @x
232  * @n:         power to raise @x to.
233  *
234  * By exploiting the relation between the definition of the natural power
235  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
236  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
237  * (where: n_i \elem {0, 1}, the binary vector representing n),
238  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
239  * of course trivially computable in O(log_2 n), the length of our binary
240  * vector.
241  */
242 static unsigned long
fixed_power_int(unsigned long x,unsigned int frac_bits,unsigned int n)243 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
244 {
245 	unsigned long result = 1UL << frac_bits;
246 
247 	if (n) for (;;) {
248 		if (n & 1) {
249 			result *= x;
250 			result += 1UL << (frac_bits - 1);
251 			result >>= frac_bits;
252 		}
253 		n >>= 1;
254 		if (!n)
255 			break;
256 		x *= x;
257 		x += 1UL << (frac_bits - 1);
258 		x >>= frac_bits;
259 	}
260 
261 	return result;
262 }
263 
264 /*
265  * a1 = a0 * e + a * (1 - e)
266  *
267  * a2 = a1 * e + a * (1 - e)
268  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
269  *    = a0 * e^2 + a * (1 - e) * (1 + e)
270  *
271  * a3 = a2 * e + a * (1 - e)
272  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
273  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
274  *
275  *  ...
276  *
277  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
278  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
279  *    = a0 * e^n + a * (1 - e^n)
280  *
281  * [1] application of the geometric series:
282  *
283  *              n         1 - x^(n+1)
284  *     S_n := \Sum x^i = -------------
285  *             i=0          1 - x
286  */
287 static unsigned long
calc_load_n(unsigned long load,unsigned long exp,unsigned long active,unsigned int n)288 calc_load_n(unsigned long load, unsigned long exp,
289 	    unsigned long active, unsigned int n)
290 {
291 
292 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
293 }
294 
295 /*
296  * NO_HZ can leave us missing all per-cpu ticks calling
297  * calc_load_account_active(), but since an idle CPU folds its delta into
298  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
299  * in the pending idle delta if our idle period crossed a load cycle boundary.
300  *
301  * Once we've updated the global active value, we need to apply the exponential
302  * weights adjusted to the number of cycles missed.
303  */
calc_global_nohz(void)304 static void calc_global_nohz(void)
305 {
306 	long delta, active, n;
307 
308 	if (!time_before(jiffies, calc_load_update + 10)) {
309 		/*
310 		 * Catch-up, fold however many we are behind still
311 		 */
312 		delta = jiffies - calc_load_update - 10;
313 		n = 1 + (delta / LOAD_FREQ);
314 
315 		active = atomic_long_read(&calc_load_tasks);
316 		active = active > 0 ? active * FIXED_1 : 0;
317 
318 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
319 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
320 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
321 
322 		calc_load_update += n * LOAD_FREQ;
323 	}
324 
325 	/*
326 	 * Flip the idle index...
327 	 *
328 	 * Make sure we first write the new time then flip the index, so that
329 	 * calc_load_write_idx() will see the new time when it reads the new
330 	 * index, this avoids a double flip messing things up.
331 	 */
332 	smp_wmb();
333 	calc_load_idx++;
334 }
335 #else /* !CONFIG_NO_HZ_COMMON */
336 
calc_load_fold_idle(void)337 static inline long calc_load_fold_idle(void) { return 0; }
calc_global_nohz(void)338 static inline void calc_global_nohz(void) { }
339 
340 #endif /* CONFIG_NO_HZ_COMMON */
341 
342 /*
343  * calc_load - update the avenrun load estimates 10 ticks after the
344  * CPUs have updated calc_load_tasks.
345  */
calc_global_load(unsigned long ticks)346 void calc_global_load(unsigned long ticks)
347 {
348 	long active, delta;
349 
350 	if (time_before(jiffies, calc_load_update + 10))
351 		return;
352 
353 	/*
354 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
355 	 */
356 	delta = calc_load_fold_idle();
357 	if (delta)
358 		atomic_long_add(delta, &calc_load_tasks);
359 
360 	active = atomic_long_read(&calc_load_tasks);
361 	active = active > 0 ? active * FIXED_1 : 0;
362 
363 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
364 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
365 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
366 
367 	calc_load_update += LOAD_FREQ;
368 
369 	/*
370 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
371 	 */
372 	calc_global_nohz();
373 }
374 
375 /*
376  * Called from update_cpu_load() to periodically update this CPU's
377  * active count.
378  */
calc_load_account_active(struct rq * this_rq)379 static void calc_load_account_active(struct rq *this_rq)
380 {
381 	long delta;
382 
383 	if (time_before(jiffies, this_rq->calc_load_update))
384 		return;
385 
386 	delta  = calc_load_fold_active(this_rq);
387 	if (delta)
388 		atomic_long_add(delta, &calc_load_tasks);
389 
390 	this_rq->calc_load_update += LOAD_FREQ;
391 }
392 
393 /*
394  * End of global load-average stuff
395  */
396 
397 /*
398  * The exact cpuload at various idx values, calculated at every tick would be
399  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
400  *
401  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
402  * on nth tick when cpu may be busy, then we have:
403  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
404  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
405  *
406  * decay_load_missed() below does efficient calculation of
407  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
408  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
409  *
410  * The calculation is approximated on a 128 point scale.
411  * degrade_zero_ticks is the number of ticks after which load at any
412  * particular idx is approximated to be zero.
413  * degrade_factor is a precomputed table, a row for each load idx.
414  * Each column corresponds to degradation factor for a power of two ticks,
415  * based on 128 point scale.
416  * Example:
417  * row 2, col 3 (=12) says that the degradation at load idx 2 after
418  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
419  *
420  * With this power of 2 load factors, we can degrade the load n times
421  * by looking at 1 bits in n and doing as many mult/shift instead of
422  * n mult/shifts needed by the exact degradation.
423  */
424 #define DEGRADE_SHIFT		7
425 static const unsigned char
426 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
427 static const unsigned char
428 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
429 					{0, 0, 0, 0, 0, 0, 0, 0},
430 					{64, 32, 8, 0, 0, 0, 0, 0},
431 					{96, 72, 40, 12, 1, 0, 0},
432 					{112, 98, 75, 43, 15, 1, 0},
433 					{120, 112, 98, 76, 45, 16, 2} };
434 
435 /*
436  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
437  * would be when CPU is idle and so we just decay the old load without
438  * adding any new load.
439  */
440 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)441 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
442 {
443 	int j = 0;
444 
445 	if (!missed_updates)
446 		return load;
447 
448 	if (missed_updates >= degrade_zero_ticks[idx])
449 		return 0;
450 
451 	if (idx == 1)
452 		return load >> missed_updates;
453 
454 	while (missed_updates) {
455 		if (missed_updates % 2)
456 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
457 
458 		missed_updates >>= 1;
459 		j++;
460 	}
461 	return load;
462 }
463 
464 /*
465  * Update rq->cpu_load[] statistics. This function is usually called every
466  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
467  * every tick. We fix it up based on jiffies.
468  */
__update_cpu_load(struct rq * this_rq,unsigned long this_load,unsigned long pending_updates)469 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
470 			      unsigned long pending_updates)
471 {
472 	int i, scale;
473 
474 	this_rq->nr_load_updates++;
475 
476 	/* Update our load: */
477 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
478 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
479 		unsigned long old_load, new_load;
480 
481 		/* scale is effectively 1 << i now, and >> i divides by scale */
482 
483 		old_load = this_rq->cpu_load[i];
484 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
485 		new_load = this_load;
486 		/*
487 		 * Round up the averaging division if load is increasing. This
488 		 * prevents us from getting stuck on 9 if the load is 10, for
489 		 * example.
490 		 */
491 		if (new_load > old_load)
492 			new_load += scale - 1;
493 
494 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
495 	}
496 
497 	sched_avg_update(this_rq);
498 }
499 
500 #ifdef CONFIG_SMP
get_rq_runnable_load(struct rq * rq)501 static inline unsigned long get_rq_runnable_load(struct rq *rq)
502 {
503 	return rq->cfs.runnable_load_avg;
504 }
505 #else
get_rq_runnable_load(struct rq * rq)506 static inline unsigned long get_rq_runnable_load(struct rq *rq)
507 {
508 	return rq->load.weight;
509 }
510 #endif
511 
512 #ifdef CONFIG_NO_HZ_COMMON
513 /*
514  * There is no sane way to deal with nohz on smp when using jiffies because the
515  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
516  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
517  *
518  * Therefore we cannot use the delta approach from the regular tick since that
519  * would seriously skew the load calculation. However we'll make do for those
520  * updates happening while idle (nohz_idle_balance) or coming out of idle
521  * (tick_nohz_idle_exit).
522  *
523  * This means we might still be one tick off for nohz periods.
524  */
525 
526 /*
527  * Called from nohz_idle_balance() to update the load ratings before doing the
528  * idle balance.
529  */
update_idle_cpu_load(struct rq * this_rq)530 void update_idle_cpu_load(struct rq *this_rq)
531 {
532 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
533 	unsigned long load = get_rq_runnable_load(this_rq);
534 	unsigned long pending_updates;
535 
536 	/*
537 	 * bail if there's load or we're actually up-to-date.
538 	 */
539 	if (load || curr_jiffies == this_rq->last_load_update_tick)
540 		return;
541 
542 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
543 	this_rq->last_load_update_tick = curr_jiffies;
544 
545 	__update_cpu_load(this_rq, load, pending_updates);
546 }
547 
548 /*
549  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
550  */
update_cpu_load_nohz(void)551 void update_cpu_load_nohz(void)
552 {
553 	struct rq *this_rq = this_rq();
554 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
555 	unsigned long pending_updates;
556 
557 	if (curr_jiffies == this_rq->last_load_update_tick)
558 		return;
559 
560 	raw_spin_lock(&this_rq->lock);
561 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
562 	if (pending_updates) {
563 		this_rq->last_load_update_tick = curr_jiffies;
564 		/*
565 		 * We were idle, this means load 0, the current load might be
566 		 * !0 due to remote wakeups and the sort.
567 		 */
568 		__update_cpu_load(this_rq, 0, pending_updates);
569 	}
570 	raw_spin_unlock(&this_rq->lock);
571 }
572 #endif /* CONFIG_NO_HZ */
573 
574 /*
575  * Called from scheduler_tick()
576  */
update_cpu_load_active(struct rq * this_rq)577 void update_cpu_load_active(struct rq *this_rq)
578 {
579 	unsigned long load = get_rq_runnable_load(this_rq);
580 	/*
581 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
582 	 */
583 	this_rq->last_load_update_tick = jiffies;
584 	__update_cpu_load(this_rq, load, 1);
585 
586 	calc_load_account_active(this_rq);
587 }
588