1/* 2 * Copyright 2011 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 * 14 * Linux interrupt vectors. 15 */ 16 17#include <linux/linkage.h> 18#include <linux/errno.h> 19#include <linux/unistd.h> 20#include <linux/init.h> 21#include <asm/ptrace.h> 22#include <asm/thread_info.h> 23#include <asm/irqflags.h> 24#include <asm/asm-offsets.h> 25#include <asm/types.h> 26#include <asm/traps.h> 27#include <asm/signal.h> 28#include <hv/hypervisor.h> 29#include <arch/abi.h> 30#include <arch/interrupts.h> 31#include <arch/spr_def.h> 32 33#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg) 34 35#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR) 36 37#if CONFIG_KERNEL_PL == 1 || CONFIG_KERNEL_PL == 2 38/* 39 * Set "result" non-zero if ex1 holds the PL of the kernel 40 * (with or without ICS being set). Note this works only 41 * because we never find the PL at level 3. 42 */ 43# define IS_KERNEL_EX1(result, ex1) andi result, ex1, CONFIG_KERNEL_PL 44#else 45# error Recode IS_KERNEL_EX1 for CONFIG_KERNEL_PL 46#endif 47 48 .macro push_reg reg, ptr=sp, delta=-8 49 { 50 st \ptr, \reg 51 addli \ptr, \ptr, \delta 52 } 53 .endm 54 55 .macro pop_reg reg, ptr=sp, delta=8 56 { 57 ld \reg, \ptr 58 addli \ptr, \ptr, \delta 59 } 60 .endm 61 62 .macro pop_reg_zero reg, zreg, ptr=sp, delta=8 63 { 64 move \zreg, zero 65 ld \reg, \ptr 66 addi \ptr, \ptr, \delta 67 } 68 .endm 69 70 .macro push_extra_callee_saves reg 71 PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51)) 72 push_reg r51, \reg 73 push_reg r50, \reg 74 push_reg r49, \reg 75 push_reg r48, \reg 76 push_reg r47, \reg 77 push_reg r46, \reg 78 push_reg r45, \reg 79 push_reg r44, \reg 80 push_reg r43, \reg 81 push_reg r42, \reg 82 push_reg r41, \reg 83 push_reg r40, \reg 84 push_reg r39, \reg 85 push_reg r38, \reg 86 push_reg r37, \reg 87 push_reg r36, \reg 88 push_reg r35, \reg 89 push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34) 90 .endm 91 92 .macro panic str 93 .pushsection .rodata, "a" 941: 95 .asciz "\str" 96 .popsection 97 { 98 moveli r0, hw2_last(1b) 99 } 100 { 101 shl16insli r0, r0, hw1(1b) 102 } 103 { 104 shl16insli r0, r0, hw0(1b) 105 jal panic 106 } 107 .endm 108 109 /* 110 * Unalign data exception fast handling: In order to handle 111 * unaligned data access, a fast JIT version is generated and stored 112 * in a specific area in user space. We first need to do a quick poke 113 * to see if the JIT is available. We use certain bits in the fault 114 * PC (3 to 9 is used for 16KB page size) as index to address the JIT 115 * code area. The first 64bit word is the fault PC, and the 2nd one is 116 * the fault bundle itself. If these 2 words both match, then we 117 * directly "iret" to JIT code. If not, a slow path is invoked to 118 * generate new JIT code. Note: the current JIT code WILL be 119 * overwritten if it existed. So, ideally we can handle 128 unalign 120 * fixups via JIT. For lookup efficiency and to effectively support 121 * tight loops with multiple unaligned reference, a simple 122 * direct-mapped cache is used. 123 * 124 * SPR_EX_CONTEXT_K_0 is modified to return to JIT code. 125 * SPR_EX_CONTEXT_K_1 has ICS set. 126 * SPR_EX_CONTEXT_0_0 is setup to user program's next PC. 127 * SPR_EX_CONTEXT_0_1 = 0. 128 */ 129 .macro int_hand_unalign_fast vecnum, vecname 130 .org (\vecnum << 8) 131intvec_\vecname: 132 /* Put r3 in SPR_SYSTEM_SAVE_K_1. */ 133 mtspr SPR_SYSTEM_SAVE_K_1, r3 134 135 mfspr r3, SPR_EX_CONTEXT_K_1 136 /* 137 * Examine if exception comes from user without ICS set. 138 * If not, just go directly to the slow path. 139 */ 140 bnez r3, hand_unalign_slow_nonuser 141 142 mfspr r3, SPR_SYSTEM_SAVE_K_0 143 144 /* Get &thread_info->unalign_jit_tmp[0] in r3. */ 145 bfexts r3, r3, 0, CPU_SHIFT-1 146 mm r3, zero, LOG2_THREAD_SIZE, 63 147 addli r3, r3, THREAD_INFO_UNALIGN_JIT_TMP_OFFSET 148 149 /* 150 * Save r0, r1, r2 into thread_info array r3 points to 151 * from low to high memory in order. 152 */ 153 st_add r3, r0, 8 154 st_add r3, r1, 8 155 { 156 st_add r3, r2, 8 157 andi r2, sp, 7 158 } 159 160 /* Save stored r3 value so we can revert it on a page fault. */ 161 mfspr r1, SPR_SYSTEM_SAVE_K_1 162 st r3, r1 163 164 { 165 /* Generate a SIGBUS if sp is not 8-byte aligned. */ 166 bnez r2, hand_unalign_slow_badsp 167 } 168 169 /* 170 * Get the thread_info in r0; load r1 with pc. Set the low bit of sp 171 * as an indicator to the page fault code in case we fault. 172 */ 173 { 174 ori sp, sp, 1 175 mfspr r1, SPR_EX_CONTEXT_K_0 176 } 177 178 /* Add the jit_info offset in thread_info; extract r1 [3:9] into r2. */ 179 { 180 addli r0, r3, THREAD_INFO_UNALIGN_JIT_BASE_OFFSET - \ 181 (THREAD_INFO_UNALIGN_JIT_TMP_OFFSET + (3 * 8)) 182 bfextu r2, r1, 3, (2 + PAGE_SHIFT - UNALIGN_JIT_SHIFT) 183 } 184 185 /* Load the jit_info; multiply r2 by 128. */ 186 { 187 ld r0, r0 188 shli r2, r2, UNALIGN_JIT_SHIFT 189 } 190 191 /* 192 * If r0 is NULL, the JIT page is not mapped, so go to slow path; 193 * add offset r2 to r0 at the same time. 194 */ 195 { 196 beqz r0, hand_unalign_slow 197 add r2, r0, r2 198 } 199 200 /* 201 * We are loading from userspace (both the JIT info PC and 202 * instruction word, and the instruction word we executed) 203 * and since either could fault while holding the interrupt 204 * critical section, we must tag this region and check it in 205 * do_page_fault() to handle it properly. 206 */ 207ENTRY(__start_unalign_asm_code) 208 209 /* Load first word of JIT in r0 and increment r2 by 8. */ 210 ld_add r0, r2, 8 211 212 /* 213 * Compare the PC with the 1st word in JIT; load the fault bundle 214 * into r1. 215 */ 216 { 217 cmpeq r0, r0, r1 218 ld r1, r1 219 } 220 221 /* Go to slow path if PC doesn't match. */ 222 beqz r0, hand_unalign_slow 223 224 /* 225 * Load the 2nd word of JIT, which is supposed to be the fault 226 * bundle for a cache hit. Increment r2; after this bundle r2 will 227 * point to the potential start of the JIT code we want to run. 228 */ 229 ld_add r0, r2, 8 230 231 /* No further accesses to userspace are done after this point. */ 232ENTRY(__end_unalign_asm_code) 233 234 /* Compare the real bundle with what is saved in the JIT area. */ 235 { 236 cmpeq r0, r1, r0 237 mtspr SPR_EX_CONTEXT_0_1, zero 238 } 239 240 /* Go to slow path if the fault bundle does not match. */ 241 beqz r0, hand_unalign_slow 242 243 /* 244 * A cache hit is found. 245 * r2 points to start of JIT code (3rd word). 246 * r0 is the fault pc. 247 * r1 is the fault bundle. 248 * Reset the low bit of sp. 249 */ 250 { 251 mfspr r0, SPR_EX_CONTEXT_K_0 252 andi sp, sp, ~1 253 } 254 255 /* Write r2 into EX_CONTEXT_K_0 and increment PC. */ 256 { 257 mtspr SPR_EX_CONTEXT_K_0, r2 258 addi r0, r0, 8 259 } 260 261 /* 262 * Set ICS on kernel EX_CONTEXT_K_1 in order to "iret" to 263 * user with ICS set. This way, if the JIT fixup causes another 264 * unalign exception (which shouldn't be possible) the user 265 * process will be terminated with SIGBUS. Also, our fixup will 266 * run without interleaving with external interrupts. 267 * Each fixup is at most 14 bundles, so it won't hold ICS for long. 268 */ 269 { 270 movei r1, PL_ICS_EX1(USER_PL, 1) 271 mtspr SPR_EX_CONTEXT_0_0, r0 272 } 273 274 { 275 mtspr SPR_EX_CONTEXT_K_1, r1 276 addi r3, r3, -(3 * 8) 277 } 278 279 /* Restore r0..r3. */ 280 ld_add r0, r3, 8 281 ld_add r1, r3, 8 282 ld_add r2, r3, 8 283 ld r3, r3 284 285 iret 286 ENDPROC(intvec_\vecname) 287 .endm 288 289#ifdef __COLLECT_LINKER_FEEDBACK__ 290 .pushsection .text.intvec_feedback,"ax" 291intvec_feedback: 292 .popsection 293#endif 294 295 /* 296 * Default interrupt handler. 297 * 298 * vecnum is where we'll put this code. 299 * c_routine is the C routine we'll call. 300 * 301 * The C routine is passed two arguments: 302 * - A pointer to the pt_regs state. 303 * - The interrupt vector number. 304 * 305 * The "processing" argument specifies the code for processing 306 * the interrupt. Defaults to "handle_interrupt". 307 */ 308 .macro __int_hand vecnum, vecname, c_routine,processing=handle_interrupt 309intvec_\vecname: 310 /* Temporarily save a register so we have somewhere to work. */ 311 312 mtspr SPR_SYSTEM_SAVE_K_1, r0 313 mfspr r0, SPR_EX_CONTEXT_K_1 314 315 /* 316 * The unalign data fastpath code sets the low bit in sp to 317 * force us to reset it here on fault. 318 */ 319 { 320 blbs sp, 2f 321 IS_KERNEL_EX1(r0, r0) 322 } 323 324 .ifc \vecnum, INT_DOUBLE_FAULT 325 /* 326 * For double-faults from user-space, fall through to the normal 327 * register save and stack setup path. Otherwise, it's the 328 * hypervisor giving us one last chance to dump diagnostics, and we 329 * branch to the kernel_double_fault routine to do so. 330 */ 331 beqz r0, 1f 332 j _kernel_double_fault 3331: 334 .else 335 /* 336 * If we're coming from user-space, then set sp to the top of 337 * the kernel stack. Otherwise, assume sp is already valid. 338 */ 339 { 340 bnez r0, 0f 341 move r0, sp 342 } 343 .endif 344 345 .ifc \c_routine, do_page_fault 346 /* 347 * The page_fault handler may be downcalled directly by the 348 * hypervisor even when Linux is running and has ICS set. 349 * 350 * In this case the contents of EX_CONTEXT_K_1 reflect the 351 * previous fault and can't be relied on to choose whether or 352 * not to reinitialize the stack pointer. So we add a test 353 * to see whether SYSTEM_SAVE_K_2 has the high bit set, 354 * and if so we don't reinitialize sp, since we must be coming 355 * from Linux. (In fact the precise case is !(val & ~1), 356 * but any Linux PC has to have the high bit set.) 357 * 358 * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for 359 * any path that turns into a downcall to one of our TLB handlers. 360 * 361 * FIXME: if we end up never using this path, perhaps we should 362 * prevent the hypervisor from generating downcalls in this case. 363 * The advantage of getting a downcall is we can panic in Linux. 364 */ 365 mfspr r0, SPR_SYSTEM_SAVE_K_2 366 { 367 bltz r0, 0f /* high bit in S_S_1_2 is for a PC to use */ 368 move r0, sp 369 } 370 .endif 371 3722: 373 /* 374 * SYSTEM_SAVE_K_0 holds the cpu number in the high bits, and 375 * the current stack top in the lower bits. So we recover 376 * our starting stack value by sign-extending the low bits, then 377 * point sp at the top aligned address on the actual stack page. 378 */ 379 mfspr r0, SPR_SYSTEM_SAVE_K_0 380 bfexts r0, r0, 0, CPU_SHIFT-1 381 3820: 383 /* 384 * Align the stack mod 64 so we can properly predict what 385 * cache lines we need to write-hint to reduce memory fetch 386 * latency as we enter the kernel. The layout of memory is 387 * as follows, with cache line 0 at the lowest VA, and cache 388 * line 8 just below the r0 value this "andi" computes. 389 * Note that we never write to cache line 8, and we skip 390 * cache lines 1-3 for syscalls. 391 * 392 * cache line 8: ptregs padding (two words) 393 * cache line 7: sp, lr, pc, ex1, faultnum, orig_r0, flags, cmpexch 394 * cache line 6: r46...r53 (tp) 395 * cache line 5: r38...r45 396 * cache line 4: r30...r37 397 * cache line 3: r22...r29 398 * cache line 2: r14...r21 399 * cache line 1: r6...r13 400 * cache line 0: 2 x frame, r0..r5 401 */ 402#if STACK_TOP_DELTA != 64 403#error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs() 404#endif 405 andi r0, r0, -64 406 407 /* 408 * Push the first four registers on the stack, so that we can set 409 * them to vector-unique values before we jump to the common code. 410 * 411 * Registers are pushed on the stack as a struct pt_regs, 412 * with the sp initially just above the struct, and when we're 413 * done, sp points to the base of the struct, minus 414 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code. 415 * 416 * This routine saves just the first four registers, plus the 417 * stack context so we can do proper backtracing right away, 418 * and defers to handle_interrupt to save the rest. 419 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum, 420 * and needs sp set to its final location at the bottom of 421 * the stack frame. 422 */ 423 addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP) 424 wh64 r0 /* cache line 7 */ 425 { 426 st r0, lr 427 addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR 428 } 429 { 430 st r0, sp 431 addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP 432 } 433 wh64 sp /* cache line 6 */ 434 { 435 st sp, r52 436 addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52) 437 } 438 wh64 sp /* cache line 0 */ 439 { 440 st sp, r1 441 addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1) 442 } 443 { 444 st sp, r2 445 addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2) 446 } 447 { 448 st sp, r3 449 addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3) 450 } 451 mfspr r0, SPR_EX_CONTEXT_K_0 452 .ifc \processing,handle_syscall 453 /* 454 * Bump the saved PC by one bundle so that when we return, we won't 455 * execute the same swint instruction again. We need to do this while 456 * we're in the critical section. 457 */ 458 addi r0, r0, 8 459 .endif 460 { 461 st sp, r0 462 addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC 463 } 464 mfspr r0, SPR_EX_CONTEXT_K_1 465 { 466 st sp, r0 467 addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1 468 /* 469 * Use r0 for syscalls so it's a temporary; use r1 for interrupts 470 * so that it gets passed through unchanged to the handler routine. 471 * Note that the .if conditional confusingly spans bundles. 472 */ 473 .ifc \processing,handle_syscall 474 movei r0, \vecnum 475 } 476 { 477 st sp, r0 478 .else 479 movei r1, \vecnum 480 } 481 { 482 st sp, r1 483 .endif 484 addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM 485 } 486 mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */ 487 { 488 st sp, r0 489 addi sp, sp, -PTREGS_OFFSET_REG(0) - 8 490 } 491 { 492 st sp, zero /* write zero into "Next SP" frame pointer */ 493 addi sp, sp, -8 /* leave SP pointing at bottom of frame */ 494 } 495 .ifc \processing,handle_syscall 496 j handle_syscall 497 .else 498 /* Capture per-interrupt SPR context to registers. */ 499 .ifc \c_routine, do_page_fault 500 mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */ 501 mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */ 502 .else 503 .ifc \vecnum, INT_ILL_TRANS 504 mfspr r2, ILL_VA_PC 505 .else 506 .ifc \vecnum, INT_DOUBLE_FAULT 507 mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */ 508 .else 509 .ifc \c_routine, do_trap 510 mfspr r2, GPV_REASON 511 .else 512 .ifc \c_routine, handle_perf_interrupt 513 mfspr r2, PERF_COUNT_STS 514 .else 515 .ifc \c_routine, handle_perf_interrupt 516 mfspr r2, AUX_PERF_COUNT_STS 517 .endif 518 .ifc \c_routine, do_nmi 519 mfspr r2, SPR_SYSTEM_SAVE_K_2 /* nmi type */ 520 .else 521 .endif 522 .endif 523 .endif 524 .endif 525 .endif 526 .endif 527 /* Put function pointer in r0 */ 528 moveli r0, hw2_last(\c_routine) 529 shl16insli r0, r0, hw1(\c_routine) 530 { 531 shl16insli r0, r0, hw0(\c_routine) 532 j \processing 533 } 534 .endif 535 ENDPROC(intvec_\vecname) 536 537#ifdef __COLLECT_LINKER_FEEDBACK__ 538 .pushsection .text.intvec_feedback,"ax" 539 .org (\vecnum << 5) 540 FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8) 541 jrp lr 542 .popsection 543#endif 544 545 .endm 546 547 548 /* 549 * Save the rest of the registers that we didn't save in the actual 550 * vector itself. We can't use r0-r10 inclusive here. 551 */ 552 .macro finish_interrupt_save, function 553 554 /* If it's a syscall, save a proper orig_r0, otherwise just zero. */ 555 PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0) 556 { 557 .ifc \function,handle_syscall 558 st r52, r0 559 .else 560 st r52, zero 561 .endif 562 PTREGS_PTR(r52, PTREGS_OFFSET_TP) 563 } 564 st r52, tp 565 { 566 mfspr tp, CMPEXCH_VALUE 567 PTREGS_PTR(r52, PTREGS_OFFSET_CMPEXCH) 568 } 569 570 /* 571 * For ordinary syscalls, we save neither caller- nor callee- 572 * save registers, since the syscall invoker doesn't expect the 573 * caller-saves to be saved, and the called kernel functions will 574 * take care of saving the callee-saves for us. 575 * 576 * For interrupts we save just the caller-save registers. Saving 577 * them is required (since the "caller" can't save them). Again, 578 * the called kernel functions will restore the callee-save 579 * registers for us appropriately. 580 * 581 * On return, we normally restore nothing special for syscalls, 582 * and just the caller-save registers for interrupts. 583 * 584 * However, there are some important caveats to all this: 585 * 586 * - We always save a few callee-save registers to give us 587 * some scratchpad registers to carry across function calls. 588 * 589 * - fork/vfork/etc require us to save all the callee-save 590 * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below. 591 * 592 * - We always save r0..r5 and r10 for syscalls, since we need 593 * to reload them a bit later for the actual kernel call, and 594 * since we might need them for -ERESTARTNOINTR, etc. 595 * 596 * - Before invoking a signal handler, we save the unsaved 597 * callee-save registers so they are visible to the 598 * signal handler or any ptracer. 599 * 600 * - If the unsaved callee-save registers are modified, we set 601 * a bit in pt_regs so we know to reload them from pt_regs 602 * and not just rely on the kernel function unwinding. 603 * (Done for ptrace register writes and SA_SIGINFO handler.) 604 */ 605 { 606 st r52, tp 607 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33)) 608 } 609 wh64 r52 /* cache line 4 */ 610 push_reg r33, r52 611 push_reg r32, r52 612 push_reg r31, r52 613 .ifc \function,handle_syscall 614 push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30) 615 push_reg TREG_SYSCALL_NR_NAME, r52, \ 616 PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL 617 .else 618 619 push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30) 620 wh64 r52 /* cache line 3 */ 621 push_reg r29, r52 622 push_reg r28, r52 623 push_reg r27, r52 624 push_reg r26, r52 625 push_reg r25, r52 626 push_reg r24, r52 627 push_reg r23, r52 628 push_reg r22, r52 629 wh64 r52 /* cache line 2 */ 630 push_reg r21, r52 631 push_reg r20, r52 632 push_reg r19, r52 633 push_reg r18, r52 634 push_reg r17, r52 635 push_reg r16, r52 636 push_reg r15, r52 637 push_reg r14, r52 638 wh64 r52 /* cache line 1 */ 639 push_reg r13, r52 640 push_reg r12, r52 641 push_reg r11, r52 642 push_reg r10, r52 643 push_reg r9, r52 644 push_reg r8, r52 645 push_reg r7, r52 646 push_reg r6, r52 647 648 .endif 649 650 push_reg r5, r52 651 st r52, r4 652 653 /* 654 * If we will be returning to the kernel, we will need to 655 * reset the interrupt masks to the state they had before. 656 * Set DISABLE_IRQ in flags iff we came from kernel pl with 657 * irqs disabled. 658 */ 659 mfspr r32, SPR_EX_CONTEXT_K_1 660 { 661 IS_KERNEL_EX1(r22, r22) 662 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS) 663 } 664 beqzt r32, 1f /* zero if from user space */ 665 IRQS_DISABLED(r32) /* zero if irqs enabled */ 666#if PT_FLAGS_DISABLE_IRQ != 1 667# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix 668#endif 6691: 670 .ifnc \function,handle_syscall 671 /* Record the fact that we saved the caller-save registers above. */ 672 ori r32, r32, PT_FLAGS_CALLER_SAVES 673 .endif 674 st r21, r32 675 676 /* 677 * we've captured enough state to the stack (including in 678 * particular our EX_CONTEXT state) that we can now release 679 * the interrupt critical section and replace it with our 680 * standard "interrupts disabled" mask value. This allows 681 * synchronous interrupts (and profile interrupts) to punch 682 * through from this point onwards. 683 * 684 * It's important that no code before this point touch memory 685 * other than our own stack (to keep the invariant that this 686 * is all that gets touched under ICS), and that no code after 687 * this point reference any interrupt-specific SPR, in particular 688 * the EX_CONTEXT_K_ values. 689 */ 690 .ifc \function,handle_nmi 691 IRQ_DISABLE_ALL(r20) 692 .else 693 IRQ_DISABLE(r20, r21) 694 .endif 695 mtspr INTERRUPT_CRITICAL_SECTION, zero 696 697 /* Load tp with our per-cpu offset. */ 698#ifdef CONFIG_SMP 699 { 700 mfspr r20, SPR_SYSTEM_SAVE_K_0 701 moveli r21, hw2_last(__per_cpu_offset) 702 } 703 { 704 shl16insli r21, r21, hw1(__per_cpu_offset) 705 bfextu r20, r20, CPU_SHIFT, 63 706 } 707 shl16insli r21, r21, hw0(__per_cpu_offset) 708 shl3add r20, r20, r21 709 ld tp, r20 710#else 711 move tp, zero 712#endif 713 714#ifdef __COLLECT_LINKER_FEEDBACK__ 715 /* 716 * Notify the feedback routines that we were in the 717 * appropriate fixed interrupt vector area. Note that we 718 * still have ICS set at this point, so we can't invoke any 719 * atomic operations or we will panic. The feedback 720 * routines internally preserve r0..r10 and r30 up. 721 */ 722 .ifnc \function,handle_syscall 723 shli r20, r1, 5 724 .else 725 moveli r20, INT_SWINT_1 << 5 726 .endif 727 moveli r21, hw2_last(intvec_feedback) 728 shl16insli r21, r21, hw1(intvec_feedback) 729 shl16insli r21, r21, hw0(intvec_feedback) 730 add r20, r20, r21 731 jalr r20 732 733 /* And now notify the feedback routines that we are here. */ 734 FEEDBACK_ENTER(\function) 735#endif 736 737 /* 738 * Prepare the first 256 stack bytes to be rapidly accessible 739 * without having to fetch the background data. 740 */ 741 addi r52, sp, -64 742 { 743 wh64 r52 744 addi r52, r52, -64 745 } 746 { 747 wh64 r52 748 addi r52, r52, -64 749 } 750 { 751 wh64 r52 752 addi r52, r52, -64 753 } 754 wh64 r52 755 756#ifdef CONFIG_TRACE_IRQFLAGS 757 .ifnc \function,handle_nmi 758 /* 759 * We finally have enough state set up to notify the irq 760 * tracing code that irqs were disabled on entry to the handler. 761 * The TRACE_IRQS_OFF call clobbers registers r0-r29. 762 * For syscalls, we already have the register state saved away 763 * on the stack, so we don't bother to do any register saves here, 764 * and later we pop the registers back off the kernel stack. 765 * For interrupt handlers, save r0-r3 in callee-saved registers. 766 */ 767 .ifnc \function,handle_syscall 768 { move r30, r0; move r31, r1 } 769 { move r32, r2; move r33, r3 } 770 .endif 771 TRACE_IRQS_OFF 772 .ifnc \function,handle_syscall 773 { move r0, r30; move r1, r31 } 774 { move r2, r32; move r3, r33 } 775 .endif 776 .endif 777#endif 778 779 .endm 780 781 /* 782 * Redispatch a downcall. 783 */ 784 .macro dc_dispatch vecnum, vecname 785 .org (\vecnum << 8) 786intvec_\vecname: 787 j _hv_downcall_dispatch 788 ENDPROC(intvec_\vecname) 789 .endm 790 791 /* 792 * Common code for most interrupts. The C function we're eventually 793 * going to is in r0, and the faultnum is in r1; the original 794 * values for those registers are on the stack. 795 */ 796 .pushsection .text.handle_interrupt,"ax" 797handle_interrupt: 798 finish_interrupt_save handle_interrupt 799 800 /* Jump to the C routine; it should enable irqs as soon as possible. */ 801 { 802 jalr r0 803 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) 804 } 805 FEEDBACK_REENTER(handle_interrupt) 806 { 807 movei r30, 0 /* not an NMI */ 808 j interrupt_return 809 } 810 STD_ENDPROC(handle_interrupt) 811 812/* 813 * This routine takes a boolean in r30 indicating if this is an NMI. 814 * If so, we also expect a boolean in r31 indicating whether to 815 * re-enable the oprofile interrupts. 816 * 817 * Note that .Lresume_userspace is jumped to directly in several 818 * places, and we need to make sure r30 is set correctly in those 819 * callers as well. 820 */ 821STD_ENTRY(interrupt_return) 822 /* If we're resuming to kernel space, don't check thread flags. */ 823 { 824 bnez r30, .Lrestore_all /* NMIs don't special-case user-space */ 825 PTREGS_PTR(r29, PTREGS_OFFSET_EX1) 826 } 827 ld r29, r29 828 IS_KERNEL_EX1(r29, r29) 829 { 830 beqzt r29, .Lresume_userspace 831 move r29, sp 832 } 833 834#ifdef CONFIG_PREEMPT 835 /* Returning to kernel space. Check if we need preemption. */ 836 EXTRACT_THREAD_INFO(r29) 837 addli r28, r29, THREAD_INFO_FLAGS_OFFSET 838 { 839 ld r28, r28 840 addli r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET 841 } 842 { 843 andi r28, r28, _TIF_NEED_RESCHED 844 ld4s r29, r29 845 } 846 beqzt r28, 1f 847 bnez r29, 1f 848 /* Disable interrupts explicitly for preemption. */ 849 IRQ_DISABLE(r20,r21) 850 TRACE_IRQS_OFF 851 jal preempt_schedule_irq 852 FEEDBACK_REENTER(interrupt_return) 8531: 854#endif 855 856 /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */ 857 { 858 moveli r27, hw2_last(_cpu_idle_nap) 859 PTREGS_PTR(r29, PTREGS_OFFSET_PC) 860 } 861 { 862 ld r28, r29 863 shl16insli r27, r27, hw1(_cpu_idle_nap) 864 } 865 { 866 shl16insli r27, r27, hw0(_cpu_idle_nap) 867 } 868 { 869 cmpeq r27, r27, r28 870 } 871 { 872 blbc r27, .Lrestore_all 873 addi r28, r28, 8 874 } 875 st r29, r28 876 j .Lrestore_all 877 878.Lresume_userspace: 879 FEEDBACK_REENTER(interrupt_return) 880 881 /* 882 * Use r33 to hold whether we have already loaded the callee-saves 883 * into ptregs. We don't want to do it twice in this loop, since 884 * then we'd clobber whatever changes are made by ptrace, etc. 885 */ 886 { 887 movei r33, 0 888 move r32, sp 889 } 890 891 /* Get base of stack in r32. */ 892 EXTRACT_THREAD_INFO(r32) 893 894.Lretry_work_pending: 895 /* 896 * Disable interrupts so as to make sure we don't 897 * miss an interrupt that sets any of the thread flags (like 898 * need_resched or sigpending) between sampling and the iret. 899 * Routines like schedule() or do_signal() may re-enable 900 * interrupts before returning. 901 */ 902 IRQ_DISABLE(r20, r21) 903 TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */ 904 905 906 /* Check to see if there is any work to do before returning to user. */ 907 { 908 addi r29, r32, THREAD_INFO_FLAGS_OFFSET 909 moveli r1, hw1_last(_TIF_ALLWORK_MASK) 910 } 911 { 912 ld r29, r29 913 shl16insli r1, r1, hw0(_TIF_ALLWORK_MASK) 914 } 915 and r1, r29, r1 916 beqzt r1, .Lrestore_all 917 918 /* 919 * Make sure we have all the registers saved for signal 920 * handling or notify-resume. Call out to C code to figure out 921 * exactly what we need to do for each flag bit, then if 922 * necessary, reload the flags and recheck. 923 */ 924 { 925 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) 926 bnez r33, 1f 927 } 928 push_extra_callee_saves r0 929 movei r33, 1 9301: jal do_work_pending 931 bnez r0, .Lretry_work_pending 932 933 /* 934 * In the NMI case we 935 * omit the call to single_process_check_nohz, which normally checks 936 * to see if we should start or stop the scheduler tick, because 937 * we can't call arbitrary Linux code from an NMI context. 938 * We always call the homecache TLB deferral code to re-trigger 939 * the deferral mechanism. 940 * 941 * The other chunk of responsibility this code has is to reset the 942 * interrupt masks appropriately to reset irqs and NMIs. We have 943 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the 944 * lockdep-type stuff, but we can't set ICS until afterwards, since 945 * ICS can only be used in very tight chunks of code to avoid 946 * tripping over various assertions that it is off. 947 */ 948.Lrestore_all: 949 PTREGS_PTR(r0, PTREGS_OFFSET_EX1) 950 { 951 ld r0, r0 952 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS) 953 } 954 { 955 IS_KERNEL_EX1(r0, r0) 956 ld r32, r32 957 } 958 bnez r0, 1f 959 j 2f 960#if PT_FLAGS_DISABLE_IRQ != 1 961# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use blbct below 962#endif 9631: blbct r32, 2f 964 IRQ_DISABLE(r20,r21) 965 TRACE_IRQS_OFF 966 movei r0, 1 967 mtspr INTERRUPT_CRITICAL_SECTION, r0 968 beqzt r30, .Lrestore_regs 969 j 3f 9702: TRACE_IRQS_ON 971 IRQ_ENABLE_LOAD(r20, r21) 972 movei r0, 1 973 mtspr INTERRUPT_CRITICAL_SECTION, r0 974 IRQ_ENABLE_APPLY(r20, r21) 975 beqzt r30, .Lrestore_regs 9763: 977 978#if INT_PERF_COUNT + 1 != INT_AUX_PERF_COUNT 979# error Bad interrupt assumption 980#endif 981 { 982 movei r0, 3 /* two adjacent bits for the PERF_COUNT mask */ 983 beqz r31, .Lrestore_regs 984 } 985 shli r0, r0, INT_PERF_COUNT 986 mtspr SPR_INTERRUPT_MASK_RESET_K, r0 987 988 /* 989 * We now commit to returning from this interrupt, since we will be 990 * doing things like setting EX_CONTEXT SPRs and unwinding the stack 991 * frame. No calls should be made to any other code after this point. 992 * This code should only be entered with ICS set. 993 * r32 must still be set to ptregs.flags. 994 * We launch loads to each cache line separately first, so we can 995 * get some parallelism out of the memory subsystem. 996 * We start zeroing caller-saved registers throughout, since 997 * that will save some cycles if this turns out to be a syscall. 998 */ 999.Lrestore_regs: 1000 1001 /* 1002 * Rotate so we have one high bit and one low bit to test. 1003 * - low bit says whether to restore all the callee-saved registers, 1004 * or just r30-r33, and r52 up. 1005 * - high bit (i.e. sign bit) says whether to restore all the 1006 * caller-saved registers, or just r0. 1007 */ 1008#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4 1009# error Rotate trick does not work :-) 1010#endif 1011 { 1012 rotli r20, r32, 62 1013 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0)) 1014 } 1015 1016 /* 1017 * Load cache lines 0, 4, 6 and 7, in that order, then use 1018 * the last loaded value, which makes it likely that the other 1019 * cache lines have also loaded, at which point we should be 1020 * able to safely read all the remaining words on those cache 1021 * lines without waiting for the memory subsystem. 1022 */ 1023 pop_reg r0, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0) 1024 pop_reg r30, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_REG(30) 1025 pop_reg_zero r52, r3, sp, PTREGS_OFFSET_CMPEXCH - PTREGS_OFFSET_REG(52) 1026 pop_reg_zero r21, r27, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_CMPEXCH 1027 pop_reg_zero lr, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_EX1 1028 { 1029 mtspr CMPEXCH_VALUE, r21 1030 move r4, zero 1031 } 1032 pop_reg r21, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_PC 1033 { 1034 mtspr SPR_EX_CONTEXT_K_1, lr 1035 IS_KERNEL_EX1(lr, lr) 1036 } 1037 { 1038 mtspr SPR_EX_CONTEXT_K_0, r21 1039 move r5, zero 1040 } 1041 1042 /* Restore callee-saveds that we actually use. */ 1043 pop_reg_zero r31, r6 1044 pop_reg_zero r32, r7 1045 pop_reg_zero r33, r8, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33) 1046 1047 /* 1048 * If we modified other callee-saveds, restore them now. 1049 * This is rare, but could be via ptrace or signal handler. 1050 */ 1051 { 1052 move r9, zero 1053 blbs r20, .Lrestore_callees 1054 } 1055.Lcontinue_restore_regs: 1056 1057 /* Check if we're returning from a syscall. */ 1058 { 1059 move r10, zero 1060 bltzt r20, 1f /* no, so go restore callee-save registers */ 1061 } 1062 1063 /* 1064 * Check if we're returning to userspace. 1065 * Note that if we're not, we don't worry about zeroing everything. 1066 */ 1067 { 1068 addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29) 1069 bnez lr, .Lkernel_return 1070 } 1071 1072 /* 1073 * On return from syscall, we've restored r0 from pt_regs, but we 1074 * clear the remainder of the caller-saved registers. We could 1075 * restore the syscall arguments, but there's not much point, 1076 * and it ensures user programs aren't trying to use the 1077 * caller-saves if we clear them, as well as avoiding leaking 1078 * kernel pointers into userspace. 1079 */ 1080 pop_reg_zero lr, r11, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR 1081 pop_reg_zero tp, r12, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP 1082 { 1083 ld sp, sp 1084 move r13, zero 1085 move r14, zero 1086 } 1087 { move r15, zero; move r16, zero } 1088 { move r17, zero; move r18, zero } 1089 { move r19, zero; move r20, zero } 1090 { move r21, zero; move r22, zero } 1091 { move r23, zero; move r24, zero } 1092 { move r25, zero; move r26, zero } 1093 1094 /* Set r1 to errno if we are returning an error, otherwise zero. */ 1095 { 1096 moveli r29, 4096 1097 sub r1, zero, r0 1098 } 1099 { 1100 move r28, zero 1101 cmpltu r29, r1, r29 1102 } 1103 { 1104 mnz r1, r29, r1 1105 move r29, zero 1106 } 1107 iret 1108 1109 /* 1110 * Not a syscall, so restore caller-saved registers. 1111 * First kick off loads for cache lines 1-3, which we're touching 1112 * for the first time here. 1113 */ 1114 .align 64 11151: pop_reg r29, sp, PTREGS_OFFSET_REG(21) - PTREGS_OFFSET_REG(29) 1116 pop_reg r21, sp, PTREGS_OFFSET_REG(13) - PTREGS_OFFSET_REG(21) 1117 pop_reg r13, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(13) 1118 pop_reg r1 1119 pop_reg r2 1120 pop_reg r3 1121 pop_reg r4 1122 pop_reg r5 1123 pop_reg r6 1124 pop_reg r7 1125 pop_reg r8 1126 pop_reg r9 1127 pop_reg r10 1128 pop_reg r11 1129 pop_reg r12, sp, 16 1130 /* r13 already restored above */ 1131 pop_reg r14 1132 pop_reg r15 1133 pop_reg r16 1134 pop_reg r17 1135 pop_reg r18 1136 pop_reg r19 1137 pop_reg r20, sp, 16 1138 /* r21 already restored above */ 1139 pop_reg r22 1140 pop_reg r23 1141 pop_reg r24 1142 pop_reg r25 1143 pop_reg r26 1144 pop_reg r27 1145 pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28) 1146 /* r29 already restored above */ 1147 bnez lr, .Lkernel_return 1148 pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR 1149 pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP 1150 ld sp, sp 1151 iret 1152 1153 /* 1154 * We can't restore tp when in kernel mode, since a thread might 1155 * have migrated from another cpu and brought a stale tp value. 1156 */ 1157.Lkernel_return: 1158 pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR 1159 ld sp, sp 1160 iret 1161 1162 /* Restore callee-saved registers from r34 to r51. */ 1163.Lrestore_callees: 1164 addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29) 1165 pop_reg r34 1166 pop_reg r35 1167 pop_reg r36 1168 pop_reg r37 1169 pop_reg r38 1170 pop_reg r39 1171 pop_reg r40 1172 pop_reg r41 1173 pop_reg r42 1174 pop_reg r43 1175 pop_reg r44 1176 pop_reg r45 1177 pop_reg r46 1178 pop_reg r47 1179 pop_reg r48 1180 pop_reg r49 1181 pop_reg r50 1182 pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51) 1183 j .Lcontinue_restore_regs 1184 STD_ENDPROC(interrupt_return) 1185 1186 /* 1187 * "NMI" interrupts mask ALL interrupts before calling the 1188 * handler, and don't check thread flags, etc., on the way 1189 * back out. In general, the only things we do here for NMIs 1190 * are register save/restore and dataplane kernel-TLB management. 1191 * We don't (for example) deal with start/stop of the sched tick. 1192 */ 1193 .pushsection .text.handle_nmi,"ax" 1194handle_nmi: 1195 finish_interrupt_save handle_nmi 1196 { 1197 jalr r0 1198 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) 1199 } 1200 FEEDBACK_REENTER(handle_nmi) 1201 { 1202 movei r30, 1 1203 cmpeq r31, r0, zero 1204 } 1205 j interrupt_return 1206 STD_ENDPROC(handle_nmi) 1207 1208 /* 1209 * Parallel code for syscalls to handle_interrupt. 1210 */ 1211 .pushsection .text.handle_syscall,"ax" 1212handle_syscall: 1213 finish_interrupt_save handle_syscall 1214 1215 /* Enable irqs. */ 1216 TRACE_IRQS_ON 1217 IRQ_ENABLE(r20, r21) 1218 1219 /* Bump the counter for syscalls made on this tile. */ 1220 moveli r20, hw2_last(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) 1221 shl16insli r20, r20, hw1(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) 1222 shl16insli r20, r20, hw0(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) 1223 add r20, r20, tp 1224 ld4s r21, r20 1225 { 1226 addi r21, r21, 1 1227 move r31, sp 1228 } 1229 { 1230 st4 r20, r21 1231 EXTRACT_THREAD_INFO(r31) 1232 } 1233 1234 /* Trace syscalls, if requested. */ 1235 addi r31, r31, THREAD_INFO_FLAGS_OFFSET 1236 { 1237 ld r30, r31 1238 moveli r32, _TIF_SYSCALL_ENTRY_WORK 1239 } 1240 and r30, r30, r32 1241 { 1242 addi r30, r31, THREAD_INFO_STATUS_OFFSET - THREAD_INFO_FLAGS_OFFSET 1243 beqzt r30, .Lrestore_syscall_regs 1244 } 1245 { 1246 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) 1247 jal do_syscall_trace_enter 1248 } 1249 FEEDBACK_REENTER(handle_syscall) 1250 bltz r0, .Lsyscall_sigreturn_skip 1251 1252 /* 1253 * We always reload our registers from the stack at this 1254 * point. They might be valid, if we didn't build with 1255 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not 1256 * doing syscall tracing, but there are enough cases now that it 1257 * seems simplest just to do the reload unconditionally. 1258 */ 1259.Lrestore_syscall_regs: 1260 { 1261 ld r30, r30 1262 PTREGS_PTR(r11, PTREGS_OFFSET_REG(0)) 1263 } 1264 pop_reg r0, r11 1265 pop_reg r1, r11 1266 pop_reg r2, r11 1267 pop_reg r3, r11 1268 pop_reg r4, r11 1269 pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5) 1270 { 1271 ld TREG_SYSCALL_NR_NAME, r11 1272 moveli r21, __NR_syscalls 1273 } 1274 1275 /* Ensure that the syscall number is within the legal range. */ 1276 { 1277 moveli r20, hw2(sys_call_table) 1278#ifdef CONFIG_COMPAT 1279 blbs r30, .Lcompat_syscall 1280#endif 1281 } 1282 { 1283 cmpltu r21, TREG_SYSCALL_NR_NAME, r21 1284 shl16insli r20, r20, hw1(sys_call_table) 1285 } 1286 { 1287 blbc r21, .Linvalid_syscall 1288 shl16insli r20, r20, hw0(sys_call_table) 1289 } 1290.Lload_syscall_pointer: 1291 shl3add r20, TREG_SYSCALL_NR_NAME, r20 1292 ld r20, r20 1293 1294 /* Jump to syscall handler. */ 1295 jalr r20 1296.Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */ 1297 1298 /* 1299 * Write our r0 onto the stack so it gets restored instead 1300 * of whatever the user had there before. 1301 * In compat mode, sign-extend r0 before storing it. 1302 */ 1303 { 1304 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) 1305 blbct r30, 1f 1306 } 1307 addxi r0, r0, 0 13081: st r29, r0 1309 1310.Lsyscall_sigreturn_skip: 1311 FEEDBACK_REENTER(handle_syscall) 1312 1313 /* Do syscall trace again, if requested. */ 1314 { 1315 ld r30, r31 1316 moveli r32, _TIF_SYSCALL_EXIT_WORK 1317 } 1318 and r0, r30, r32 1319 { 1320 andi r0, r30, _TIF_SINGLESTEP 1321 beqzt r0, 1f 1322 } 1323 { 1324 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) 1325 jal do_syscall_trace_exit 1326 } 1327 FEEDBACK_REENTER(handle_syscall) 1328 andi r0, r30, _TIF_SINGLESTEP 1329 13301: beqzt r0, 2f 1331 1332 /* Single stepping -- notify ptrace. */ 1333 { 1334 movei r0, SIGTRAP 1335 jal ptrace_notify 1336 } 1337 FEEDBACK_REENTER(handle_syscall) 1338 13392: { 1340 movei r30, 0 /* not an NMI */ 1341 j .Lresume_userspace /* jump into middle of interrupt_return */ 1342 } 1343 1344#ifdef CONFIG_COMPAT 1345.Lcompat_syscall: 1346 /* 1347 * Load the base of the compat syscall table in r20, and 1348 * range-check the syscall number (duplicated from 64-bit path). 1349 * Sign-extend all the user's passed arguments to make them consistent. 1350 * Also save the original "r(n)" values away in "r(11+n)" in 1351 * case the syscall table entry wants to validate them. 1352 */ 1353 moveli r20, hw2(compat_sys_call_table) 1354 { 1355 cmpltu r21, TREG_SYSCALL_NR_NAME, r21 1356 shl16insli r20, r20, hw1(compat_sys_call_table) 1357 } 1358 { 1359 blbc r21, .Linvalid_syscall 1360 shl16insli r20, r20, hw0(compat_sys_call_table) 1361 } 1362 { move r11, r0; addxi r0, r0, 0 } 1363 { move r12, r1; addxi r1, r1, 0 } 1364 { move r13, r2; addxi r2, r2, 0 } 1365 { move r14, r3; addxi r3, r3, 0 } 1366 { move r15, r4; addxi r4, r4, 0 } 1367 { move r16, r5; addxi r5, r5, 0 } 1368 j .Lload_syscall_pointer 1369#endif 1370 1371.Linvalid_syscall: 1372 /* Report an invalid syscall back to the user program */ 1373 { 1374 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) 1375 movei r28, -ENOSYS 1376 } 1377 st r29, r28 1378 { 1379 movei r30, 0 /* not an NMI */ 1380 j .Lresume_userspace /* jump into middle of interrupt_return */ 1381 } 1382 STD_ENDPROC(handle_syscall) 1383 1384 /* Return the address for oprofile to suppress in backtraces. */ 1385STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall) 1386 lnk r0 1387 { 1388 addli r0, r0, .Lhandle_syscall_link - . 1389 jrp lr 1390 } 1391 STD_ENDPROC(handle_syscall_link_address) 1392 1393STD_ENTRY(ret_from_fork) 1394 jal sim_notify_fork 1395 jal schedule_tail 1396 FEEDBACK_REENTER(ret_from_fork) 1397 { 1398 movei r30, 0 /* not an NMI */ 1399 j .Lresume_userspace /* jump into middle of interrupt_return */ 1400 } 1401 STD_ENDPROC(ret_from_fork) 1402 1403STD_ENTRY(ret_from_kernel_thread) 1404 jal sim_notify_fork 1405 jal schedule_tail 1406 FEEDBACK_REENTER(ret_from_fork) 1407 { 1408 move r0, r31 1409 jalr r30 1410 } 1411 FEEDBACK_REENTER(ret_from_kernel_thread) 1412 { 1413 movei r30, 0 /* not an NMI */ 1414 j .Lresume_userspace /* jump into middle of interrupt_return */ 1415 } 1416 STD_ENDPROC(ret_from_kernel_thread) 1417 1418/* Various stub interrupt handlers and syscall handlers */ 1419 1420STD_ENTRY_LOCAL(_kernel_double_fault) 1421 mfspr r1, SPR_EX_CONTEXT_K_0 1422 move r2, lr 1423 move r3, sp 1424 move r4, r52 1425 addi sp, sp, -C_ABI_SAVE_AREA_SIZE 1426 j kernel_double_fault 1427 STD_ENDPROC(_kernel_double_fault) 1428 1429STD_ENTRY_LOCAL(bad_intr) 1430 mfspr r2, SPR_EX_CONTEXT_K_0 1431 panic "Unhandled interrupt %#x: PC %#lx" 1432 STD_ENDPROC(bad_intr) 1433 1434/* 1435 * Special-case sigreturn to not write r0 to the stack on return. 1436 * This is technically more efficient, but it also avoids difficulties 1437 * in the 64-bit OS when handling 32-bit compat code, since we must not 1438 * sign-extend r0 for the sigreturn return-value case. 1439 */ 1440#define PTREGS_SYSCALL_SIGRETURN(x, reg) \ 1441 STD_ENTRY(_##x); \ 1442 addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \ 1443 { \ 1444 PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \ 1445 j x \ 1446 }; \ 1447 STD_ENDPROC(_##x) 1448 1449PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0) 1450#ifdef CONFIG_COMPAT 1451PTREGS_SYSCALL_SIGRETURN(compat_sys_rt_sigreturn, r0) 1452#endif 1453 1454/* Save additional callee-saves to pt_regs and jump to standard function. */ 1455STD_ENTRY(_sys_clone) 1456 push_extra_callee_saves r4 1457 j sys_clone 1458 STD_ENDPROC(_sys_clone) 1459 1460 /* 1461 * Recover r3, r2, r1 and r0 here saved by unalign fast vector. 1462 * The vector area limit is 32 bundles, so we handle the reload here. 1463 * r0, r1, r2 are in thread_info from low to high memory in order. 1464 * r3 points to location the original r3 was saved. 1465 * We put this code in the __HEAD section so it can be reached 1466 * via a conditional branch from the fast path. 1467 */ 1468 __HEAD 1469hand_unalign_slow: 1470 andi sp, sp, ~1 1471hand_unalign_slow_badsp: 1472 addi r3, r3, -(3 * 8) 1473 ld_add r0, r3, 8 1474 ld_add r1, r3, 8 1475 ld r2, r3 1476hand_unalign_slow_nonuser: 1477 mfspr r3, SPR_SYSTEM_SAVE_K_1 1478 __int_hand INT_UNALIGN_DATA, UNALIGN_DATA_SLOW, int_unalign 1479 1480/* The unaligned data support needs to read all the registers. */ 1481int_unalign: 1482 push_extra_callee_saves r0 1483 j do_unaligned 1484ENDPROC(hand_unalign_slow) 1485 1486/* Fill the return address stack with nonzero entries. */ 1487STD_ENTRY(fill_ra_stack) 1488 { 1489 move r0, lr 1490 jal 1f 1491 } 14921: jal 2f 14932: jal 3f 14943: jal 4f 14954: jrp r0 1496 STD_ENDPROC(fill_ra_stack) 1497 1498 .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt 1499 .org (\vecnum << 8) 1500 __int_hand \vecnum, \vecname, \c_routine, \processing 1501 .endm 1502 1503/* Include .intrpt array of interrupt vectors */ 1504 .section ".intrpt", "ax" 1505 .global intrpt_start 1506intrpt_start: 1507 1508#ifndef CONFIG_USE_PMC 1509#define handle_perf_interrupt bad_intr 1510#endif 1511 1512#ifndef CONFIG_HARDWALL 1513#define do_hardwall_trap bad_intr 1514#endif 1515 1516 int_hand INT_MEM_ERROR, MEM_ERROR, do_trap 1517 int_hand INT_SINGLE_STEP_3, SINGLE_STEP_3, bad_intr 1518#if CONFIG_KERNEL_PL == 2 1519 int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, gx_singlestep_handle 1520 int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, bad_intr 1521#else 1522 int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, bad_intr 1523 int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, gx_singlestep_handle 1524#endif 1525 int_hand INT_SINGLE_STEP_0, SINGLE_STEP_0, bad_intr 1526 int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr 1527 int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr 1528 int_hand INT_ITLB_MISS, ITLB_MISS, do_page_fault 1529 int_hand INT_ILL, ILL, do_trap 1530 int_hand INT_GPV, GPV, do_trap 1531 int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap 1532 int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap 1533 int_hand INT_SWINT_3, SWINT_3, do_trap 1534 int_hand INT_SWINT_2, SWINT_2, do_trap 1535 int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall 1536 int_hand INT_SWINT_0, SWINT_0, do_trap 1537 int_hand INT_ILL_TRANS, ILL_TRANS, do_trap 1538 int_hand_unalign_fast INT_UNALIGN_DATA, UNALIGN_DATA 1539 int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault 1540 int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault 1541 int_hand INT_IDN_FIREWALL, IDN_FIREWALL, do_hardwall_trap 1542 int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap 1543 int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt 1544 int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr 1545 int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr 1546 int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr 1547 int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr 1548 int_hand INT_IPI_3, IPI_3, bad_intr 1549#if CONFIG_KERNEL_PL == 2 1550 int_hand INT_IPI_2, IPI_2, tile_dev_intr 1551 int_hand INT_IPI_1, IPI_1, bad_intr 1552#else 1553 int_hand INT_IPI_2, IPI_2, bad_intr 1554 int_hand INT_IPI_1, IPI_1, tile_dev_intr 1555#endif 1556 int_hand INT_IPI_0, IPI_0, bad_intr 1557 int_hand INT_PERF_COUNT, PERF_COUNT, \ 1558 handle_perf_interrupt, handle_nmi 1559 int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \ 1560 handle_perf_interrupt, handle_nmi 1561 int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr 1562#if CONFIG_KERNEL_PL == 2 1563 dc_dispatch INT_INTCTRL_2, INTCTRL_2 1564 int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr 1565#else 1566 int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr 1567 dc_dispatch INT_INTCTRL_1, INTCTRL_1 1568#endif 1569 int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr 1570 int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \ 1571 hv_message_intr 1572 int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, bad_intr 1573 int_hand INT_I_ASID, I_ASID, bad_intr 1574 int_hand INT_D_ASID, D_ASID, bad_intr 1575 int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap 1576 1577 /* Synthetic interrupt delivered only by the simulator */ 1578 int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint 1579 /* Synthetic interrupt delivered by hv */ 1580 int_hand INT_NMI_DWNCL, NMI_DWNCL, do_nmi, handle_nmi 1581