1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56 
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63 
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65 
66 /* See "Frequency meter" comments, below. */
67 
68 struct fmeter {
69 	int cnt;		/* unprocessed events count */
70 	int val;		/* most recent output value */
71 	time_t time;		/* clock (secs) when val computed */
72 	spinlock_t lock;	/* guards read or write of above */
73 };
74 
75 struct cpuset {
76 	struct cgroup_subsys_state css;
77 
78 	unsigned long flags;		/* "unsigned long" so bitops work */
79 
80 	/*
81 	 * On default hierarchy:
82 	 *
83 	 * The user-configured masks can only be changed by writing to
84 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 	 * parent masks.
86 	 *
87 	 * The effective masks is the real masks that apply to the tasks
88 	 * in the cpuset. They may be changed if the configured masks are
89 	 * changed or hotplug happens.
90 	 *
91 	 * effective_mask == configured_mask & parent's effective_mask,
92 	 * and if it ends up empty, it will inherit the parent's mask.
93 	 *
94 	 *
95 	 * On legacy hierachy:
96 	 *
97 	 * The user-configured masks are always the same with effective masks.
98 	 */
99 
100 	/* user-configured CPUs and Memory Nodes allow to tasks */
101 	cpumask_var_t cpus_allowed;
102 	nodemask_t mems_allowed;
103 
104 	/* effective CPUs and Memory Nodes allow to tasks */
105 	cpumask_var_t effective_cpus;
106 	nodemask_t effective_mems;
107 
108 	/*
109 	 * This is old Memory Nodes tasks took on.
110 	 *
111 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 	 * - A new cpuset's old_mems_allowed is initialized when some
113 	 *   task is moved into it.
114 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
116 	 *   then old_mems_allowed is updated to mems_allowed.
117 	 */
118 	nodemask_t old_mems_allowed;
119 
120 	struct fmeter fmeter;		/* memory_pressure filter */
121 
122 	/*
123 	 * Tasks are being attached to this cpuset.  Used to prevent
124 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 	 */
126 	int attach_in_progress;
127 
128 	/* partition number for rebuild_sched_domains() */
129 	int pn;
130 
131 	/* for custom sched domain */
132 	int relax_domain_level;
133 };
134 
css_cs(struct cgroup_subsys_state * css)135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 	return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139 
140 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 	return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145 
parent_cs(struct cpuset * cs)146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 	return css_cs(cs->css.parent);
149 }
150 
151 #ifdef CONFIG_NUMA
task_has_mempolicy(struct task_struct * task)152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 	return task->mempolicy;
155 }
156 #else
task_has_mempolicy(struct task_struct * task)157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 	return false;
160 }
161 #endif
162 
163 
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 	CS_ONLINE,
167 	CS_CPU_EXCLUSIVE,
168 	CS_MEM_EXCLUSIVE,
169 	CS_MEM_HARDWALL,
170 	CS_MEMORY_MIGRATE,
171 	CS_SCHED_LOAD_BALANCE,
172 	CS_SPREAD_PAGE,
173 	CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175 
176 /* convenient tests for these bits */
is_cpuset_online(const struct cpuset * cs)177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 	return test_bit(CS_ONLINE, &cs->flags);
180 }
181 
is_cpu_exclusive(const struct cpuset * cs)182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186 
is_mem_exclusive(const struct cpuset * cs)187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191 
is_mem_hardwall(const struct cpuset * cs)192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196 
is_sched_load_balance(const struct cpuset * cs)197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201 
is_memory_migrate(const struct cpuset * cs)202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206 
is_spread_page(const struct cpuset * cs)207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211 
is_spread_slab(const struct cpuset * cs)212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216 
217 static struct cpuset top_cpuset = {
218 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 		  (1 << CS_MEM_EXCLUSIVE)),
220 };
221 
222 /**
223  * cpuset_for_each_child - traverse online children of a cpuset
224  * @child_cs: loop cursor pointing to the current child
225  * @pos_css: used for iteration
226  * @parent_cs: target cpuset to walk children of
227  *
228  * Walk @child_cs through the online children of @parent_cs.  Must be used
229  * with RCU read locked.
230  */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
232 	css_for_each_child((pos_css), &(parent_cs)->css)		\
233 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234 
235 /**
236  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237  * @des_cs: loop cursor pointing to the current descendant
238  * @pos_css: used for iteration
239  * @root_cs: target cpuset to walk ancestor of
240  *
241  * Walk @des_cs through the online descendants of @root_cs.  Must be used
242  * with RCU read locked.  The caller may modify @pos_css by calling
243  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
244  * iteration and the first node to be visited.
245  */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
247 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
248 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249 
250 /*
251  * There are two global locks guarding cpuset structures - cpuset_mutex and
252  * callback_lock. We also require taking task_lock() when dereferencing a
253  * task's cpuset pointer. See "The task_lock() exception", at the end of this
254  * comment.
255  *
256  * A task must hold both locks to modify cpusets.  If a task holds
257  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258  * is the only task able to also acquire callback_lock and be able to
259  * modify cpusets.  It can perform various checks on the cpuset structure
260  * first, knowing nothing will change.  It can also allocate memory while
261  * just holding cpuset_mutex.  While it is performing these checks, various
262  * callback routines can briefly acquire callback_lock to query cpusets.
263  * Once it is ready to make the changes, it takes callback_lock, blocking
264  * everyone else.
265  *
266  * Calls to the kernel memory allocator can not be made while holding
267  * callback_lock, as that would risk double tripping on callback_lock
268  * from one of the callbacks into the cpuset code from within
269  * __alloc_pages().
270  *
271  * If a task is only holding callback_lock, then it has read-only
272  * access to cpusets.
273  *
274  * Now, the task_struct fields mems_allowed and mempolicy may be changed
275  * by other task, we use alloc_lock in the task_struct fields to protect
276  * them.
277  *
278  * The cpuset_common_file_read() handlers only hold callback_lock across
279  * small pieces of code, such as when reading out possibly multi-word
280  * cpumasks and nodemasks.
281  *
282  * Accessing a task's cpuset should be done in accordance with the
283  * guidelines for accessing subsystem state in kernel/cgroup.c
284  */
285 
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
288 
289 /*
290  * CPU / memory hotplug is handled asynchronously.
291  */
292 static void cpuset_hotplug_workfn(struct work_struct *work);
293 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294 
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296 
297 /*
298  * This is ugly, but preserves the userspace API for existing cpuset
299  * users. If someone tries to mount the "cpuset" filesystem, we
300  * silently switch it to mount "cgroup" instead
301  */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)302 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 			 int flags, const char *unused_dev_name, void *data)
304 {
305 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
306 	struct dentry *ret = ERR_PTR(-ENODEV);
307 	if (cgroup_fs) {
308 		char mountopts[] =
309 			"cpuset,noprefix,"
310 			"release_agent=/sbin/cpuset_release_agent";
311 		ret = cgroup_fs->mount(cgroup_fs, flags,
312 					   unused_dev_name, mountopts);
313 		put_filesystem(cgroup_fs);
314 	}
315 	return ret;
316 }
317 
318 static struct file_system_type cpuset_fs_type = {
319 	.name = "cpuset",
320 	.mount = cpuset_mount,
321 };
322 
323 /*
324  * Return in pmask the portion of a cpusets's cpus_allowed that
325  * are online.  If none are online, walk up the cpuset hierarchy
326  * until we find one that does have some online cpus.  The top
327  * cpuset always has some cpus online.
328  *
329  * One way or another, we guarantee to return some non-empty subset
330  * of cpu_online_mask.
331  *
332  * Call with callback_lock or cpuset_mutex held.
333  */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)334 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 {
336 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
337 		cs = parent_cs(cs);
338 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
339 }
340 
341 /*
342  * Return in *pmask the portion of a cpusets's mems_allowed that
343  * are online, with memory.  If none are online with memory, walk
344  * up the cpuset hierarchy until we find one that does have some
345  * online mems.  The top cpuset always has some mems online.
346  *
347  * One way or another, we guarantee to return some non-empty subset
348  * of node_states[N_MEMORY].
349  *
350  * Call with callback_lock or cpuset_mutex held.
351  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)352 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
353 {
354 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
355 		cs = parent_cs(cs);
356 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
357 }
358 
359 /*
360  * update task's spread flag if cpuset's page/slab spread flag is set
361  *
362  * Call with callback_lock or cpuset_mutex held.
363  */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)364 static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 					struct task_struct *tsk)
366 {
367 	if (is_spread_page(cs))
368 		task_set_spread_page(tsk);
369 	else
370 		task_clear_spread_page(tsk);
371 
372 	if (is_spread_slab(cs))
373 		task_set_spread_slab(tsk);
374 	else
375 		task_clear_spread_slab(tsk);
376 }
377 
378 /*
379  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
380  *
381  * One cpuset is a subset of another if all its allowed CPUs and
382  * Memory Nodes are a subset of the other, and its exclusive flags
383  * are only set if the other's are set.  Call holding cpuset_mutex.
384  */
385 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)386 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
387 {
388 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
389 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
390 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
391 		is_mem_exclusive(p) <= is_mem_exclusive(q);
392 }
393 
394 /**
395  * alloc_trial_cpuset - allocate a trial cpuset
396  * @cs: the cpuset that the trial cpuset duplicates
397  */
alloc_trial_cpuset(struct cpuset * cs)398 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399 {
400 	struct cpuset *trial;
401 
402 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
403 	if (!trial)
404 		return NULL;
405 
406 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
407 		goto free_cs;
408 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
409 		goto free_cpus;
410 
411 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
412 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413 	return trial;
414 
415 free_cpus:
416 	free_cpumask_var(trial->cpus_allowed);
417 free_cs:
418 	kfree(trial);
419 	return NULL;
420 }
421 
422 /**
423  * free_trial_cpuset - free the trial cpuset
424  * @trial: the trial cpuset to be freed
425  */
free_trial_cpuset(struct cpuset * trial)426 static void free_trial_cpuset(struct cpuset *trial)
427 {
428 	free_cpumask_var(trial->effective_cpus);
429 	free_cpumask_var(trial->cpus_allowed);
430 	kfree(trial);
431 }
432 
433 /*
434  * validate_change() - Used to validate that any proposed cpuset change
435  *		       follows the structural rules for cpusets.
436  *
437  * If we replaced the flag and mask values of the current cpuset
438  * (cur) with those values in the trial cpuset (trial), would
439  * our various subset and exclusive rules still be valid?  Presumes
440  * cpuset_mutex held.
441  *
442  * 'cur' is the address of an actual, in-use cpuset.  Operations
443  * such as list traversal that depend on the actual address of the
444  * cpuset in the list must use cur below, not trial.
445  *
446  * 'trial' is the address of bulk structure copy of cur, with
447  * perhaps one or more of the fields cpus_allowed, mems_allowed,
448  * or flags changed to new, trial values.
449  *
450  * Return 0 if valid, -errno if not.
451  */
452 
validate_change(struct cpuset * cur,struct cpuset * trial)453 static int validate_change(struct cpuset *cur, struct cpuset *trial)
454 {
455 	struct cgroup_subsys_state *css;
456 	struct cpuset *c, *par;
457 	int ret;
458 
459 	rcu_read_lock();
460 
461 	/* Each of our child cpusets must be a subset of us */
462 	ret = -EBUSY;
463 	cpuset_for_each_child(c, css, cur)
464 		if (!is_cpuset_subset(c, trial))
465 			goto out;
466 
467 	/* Remaining checks don't apply to root cpuset */
468 	ret = 0;
469 	if (cur == &top_cpuset)
470 		goto out;
471 
472 	par = parent_cs(cur);
473 
474 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
475 	ret = -EACCES;
476 	if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
477 		goto out;
478 
479 	/*
480 	 * If either I or some sibling (!= me) is exclusive, we can't
481 	 * overlap
482 	 */
483 	ret = -EINVAL;
484 	cpuset_for_each_child(c, css, par) {
485 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
486 		    c != cur &&
487 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
488 			goto out;
489 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
490 		    c != cur &&
491 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
492 			goto out;
493 	}
494 
495 	/*
496 	 * Cpusets with tasks - existing or newly being attached - can't
497 	 * be changed to have empty cpus_allowed or mems_allowed.
498 	 */
499 	ret = -ENOSPC;
500 	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
501 		if (!cpumask_empty(cur->cpus_allowed) &&
502 		    cpumask_empty(trial->cpus_allowed))
503 			goto out;
504 		if (!nodes_empty(cur->mems_allowed) &&
505 		    nodes_empty(trial->mems_allowed))
506 			goto out;
507 	}
508 
509 	/*
510 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
511 	 * tasks.
512 	 */
513 	ret = -EBUSY;
514 	if (is_cpu_exclusive(cur) &&
515 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
516 				       trial->cpus_allowed))
517 		goto out;
518 
519 	ret = 0;
520 out:
521 	rcu_read_unlock();
522 	return ret;
523 }
524 
525 #ifdef CONFIG_SMP
526 /*
527  * Helper routine for generate_sched_domains().
528  * Do cpusets a, b have overlapping effective cpus_allowed masks?
529  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)530 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
531 {
532 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
533 }
534 
535 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)536 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
537 {
538 	if (dattr->relax_domain_level < c->relax_domain_level)
539 		dattr->relax_domain_level = c->relax_domain_level;
540 	return;
541 }
542 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)543 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
544 				    struct cpuset *root_cs)
545 {
546 	struct cpuset *cp;
547 	struct cgroup_subsys_state *pos_css;
548 
549 	rcu_read_lock();
550 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
551 		/* skip the whole subtree if @cp doesn't have any CPU */
552 		if (cpumask_empty(cp->cpus_allowed)) {
553 			pos_css = css_rightmost_descendant(pos_css);
554 			continue;
555 		}
556 
557 		if (is_sched_load_balance(cp))
558 			update_domain_attr(dattr, cp);
559 	}
560 	rcu_read_unlock();
561 }
562 
563 /*
564  * generate_sched_domains()
565  *
566  * This function builds a partial partition of the systems CPUs
567  * A 'partial partition' is a set of non-overlapping subsets whose
568  * union is a subset of that set.
569  * The output of this function needs to be passed to kernel/sched/core.c
570  * partition_sched_domains() routine, which will rebuild the scheduler's
571  * load balancing domains (sched domains) as specified by that partial
572  * partition.
573  *
574  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
575  * for a background explanation of this.
576  *
577  * Does not return errors, on the theory that the callers of this
578  * routine would rather not worry about failures to rebuild sched
579  * domains when operating in the severe memory shortage situations
580  * that could cause allocation failures below.
581  *
582  * Must be called with cpuset_mutex held.
583  *
584  * The three key local variables below are:
585  *    q  - a linked-list queue of cpuset pointers, used to implement a
586  *	   top-down scan of all cpusets.  This scan loads a pointer
587  *	   to each cpuset marked is_sched_load_balance into the
588  *	   array 'csa'.  For our purposes, rebuilding the schedulers
589  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
590  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
591  *	   that need to be load balanced, for convenient iterative
592  *	   access by the subsequent code that finds the best partition,
593  *	   i.e the set of domains (subsets) of CPUs such that the
594  *	   cpus_allowed of every cpuset marked is_sched_load_balance
595  *	   is a subset of one of these domains, while there are as
596  *	   many such domains as possible, each as small as possible.
597  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
598  *	   the kernel/sched/core.c routine partition_sched_domains() in a
599  *	   convenient format, that can be easily compared to the prior
600  *	   value to determine what partition elements (sched domains)
601  *	   were changed (added or removed.)
602  *
603  * Finding the best partition (set of domains):
604  *	The triple nested loops below over i, j, k scan over the
605  *	load balanced cpusets (using the array of cpuset pointers in
606  *	csa[]) looking for pairs of cpusets that have overlapping
607  *	cpus_allowed, but which don't have the same 'pn' partition
608  *	number and gives them in the same partition number.  It keeps
609  *	looping on the 'restart' label until it can no longer find
610  *	any such pairs.
611  *
612  *	The union of the cpus_allowed masks from the set of
613  *	all cpusets having the same 'pn' value then form the one
614  *	element of the partition (one sched domain) to be passed to
615  *	partition_sched_domains().
616  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)617 static int generate_sched_domains(cpumask_var_t **domains,
618 			struct sched_domain_attr **attributes)
619 {
620 	struct cpuset *cp;	/* scans q */
621 	struct cpuset **csa;	/* array of all cpuset ptrs */
622 	int csn;		/* how many cpuset ptrs in csa so far */
623 	int i, j, k;		/* indices for partition finding loops */
624 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
625 	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
626 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
627 	int ndoms = 0;		/* number of sched domains in result */
628 	int nslot;		/* next empty doms[] struct cpumask slot */
629 	struct cgroup_subsys_state *pos_css;
630 
631 	doms = NULL;
632 	dattr = NULL;
633 	csa = NULL;
634 
635 	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
636 		goto done;
637 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
638 
639 	/* Special case for the 99% of systems with one, full, sched domain */
640 	if (is_sched_load_balance(&top_cpuset)) {
641 		ndoms = 1;
642 		doms = alloc_sched_domains(ndoms);
643 		if (!doms)
644 			goto done;
645 
646 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
647 		if (dattr) {
648 			*dattr = SD_ATTR_INIT;
649 			update_domain_attr_tree(dattr, &top_cpuset);
650 		}
651 		cpumask_and(doms[0], top_cpuset.effective_cpus,
652 				     non_isolated_cpus);
653 
654 		goto done;
655 	}
656 
657 	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
658 	if (!csa)
659 		goto done;
660 	csn = 0;
661 
662 	rcu_read_lock();
663 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
664 		if (cp == &top_cpuset)
665 			continue;
666 		/*
667 		 * Continue traversing beyond @cp iff @cp has some CPUs and
668 		 * isn't load balancing.  The former is obvious.  The
669 		 * latter: All child cpusets contain a subset of the
670 		 * parent's cpus, so just skip them, and then we call
671 		 * update_domain_attr_tree() to calc relax_domain_level of
672 		 * the corresponding sched domain.
673 		 */
674 		if (!cpumask_empty(cp->cpus_allowed) &&
675 		    !(is_sched_load_balance(cp) &&
676 		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
677 			continue;
678 
679 		if (is_sched_load_balance(cp))
680 			csa[csn++] = cp;
681 
682 		/* skip @cp's subtree */
683 		pos_css = css_rightmost_descendant(pos_css);
684 	}
685 	rcu_read_unlock();
686 
687 	for (i = 0; i < csn; i++)
688 		csa[i]->pn = i;
689 	ndoms = csn;
690 
691 restart:
692 	/* Find the best partition (set of sched domains) */
693 	for (i = 0; i < csn; i++) {
694 		struct cpuset *a = csa[i];
695 		int apn = a->pn;
696 
697 		for (j = 0; j < csn; j++) {
698 			struct cpuset *b = csa[j];
699 			int bpn = b->pn;
700 
701 			if (apn != bpn && cpusets_overlap(a, b)) {
702 				for (k = 0; k < csn; k++) {
703 					struct cpuset *c = csa[k];
704 
705 					if (c->pn == bpn)
706 						c->pn = apn;
707 				}
708 				ndoms--;	/* one less element */
709 				goto restart;
710 			}
711 		}
712 	}
713 
714 	/*
715 	 * Now we know how many domains to create.
716 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
717 	 */
718 	doms = alloc_sched_domains(ndoms);
719 	if (!doms)
720 		goto done;
721 
722 	/*
723 	 * The rest of the code, including the scheduler, can deal with
724 	 * dattr==NULL case. No need to abort if alloc fails.
725 	 */
726 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
727 
728 	for (nslot = 0, i = 0; i < csn; i++) {
729 		struct cpuset *a = csa[i];
730 		struct cpumask *dp;
731 		int apn = a->pn;
732 
733 		if (apn < 0) {
734 			/* Skip completed partitions */
735 			continue;
736 		}
737 
738 		dp = doms[nslot];
739 
740 		if (nslot == ndoms) {
741 			static int warnings = 10;
742 			if (warnings) {
743 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
744 					nslot, ndoms, csn, i, apn);
745 				warnings--;
746 			}
747 			continue;
748 		}
749 
750 		cpumask_clear(dp);
751 		if (dattr)
752 			*(dattr + nslot) = SD_ATTR_INIT;
753 		for (j = i; j < csn; j++) {
754 			struct cpuset *b = csa[j];
755 
756 			if (apn == b->pn) {
757 				cpumask_or(dp, dp, b->effective_cpus);
758 				cpumask_and(dp, dp, non_isolated_cpus);
759 				if (dattr)
760 					update_domain_attr_tree(dattr + nslot, b);
761 
762 				/* Done with this partition */
763 				b->pn = -1;
764 			}
765 		}
766 		nslot++;
767 	}
768 	BUG_ON(nslot != ndoms);
769 
770 done:
771 	free_cpumask_var(non_isolated_cpus);
772 	kfree(csa);
773 
774 	/*
775 	 * Fallback to the default domain if kmalloc() failed.
776 	 * See comments in partition_sched_domains().
777 	 */
778 	if (doms == NULL)
779 		ndoms = 1;
780 
781 	*domains    = doms;
782 	*attributes = dattr;
783 	return ndoms;
784 }
785 
786 /*
787  * Rebuild scheduler domains.
788  *
789  * If the flag 'sched_load_balance' of any cpuset with non-empty
790  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
791  * which has that flag enabled, or if any cpuset with a non-empty
792  * 'cpus' is removed, then call this routine to rebuild the
793  * scheduler's dynamic sched domains.
794  *
795  * Call with cpuset_mutex held.  Takes get_online_cpus().
796  */
rebuild_sched_domains_locked(void)797 static void rebuild_sched_domains_locked(void)
798 {
799 	struct sched_domain_attr *attr;
800 	cpumask_var_t *doms;
801 	int ndoms;
802 
803 	lockdep_assert_held(&cpuset_mutex);
804 	get_online_cpus();
805 
806 	/*
807 	 * We have raced with CPU hotplug. Don't do anything to avoid
808 	 * passing doms with offlined cpu to partition_sched_domains().
809 	 * Anyways, hotplug work item will rebuild sched domains.
810 	 */
811 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
812 		goto out;
813 
814 	/* Generate domain masks and attrs */
815 	ndoms = generate_sched_domains(&doms, &attr);
816 
817 	/* Have scheduler rebuild the domains */
818 	partition_sched_domains(ndoms, doms, attr);
819 out:
820 	put_online_cpus();
821 }
822 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)823 static void rebuild_sched_domains_locked(void)
824 {
825 }
826 #endif /* CONFIG_SMP */
827 
rebuild_sched_domains(void)828 void rebuild_sched_domains(void)
829 {
830 	mutex_lock(&cpuset_mutex);
831 	rebuild_sched_domains_locked();
832 	mutex_unlock(&cpuset_mutex);
833 }
834 
835 /**
836  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
837  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
838  *
839  * Iterate through each task of @cs updating its cpus_allowed to the
840  * effective cpuset's.  As this function is called with cpuset_mutex held,
841  * cpuset membership stays stable.
842  */
update_tasks_cpumask(struct cpuset * cs)843 static void update_tasks_cpumask(struct cpuset *cs)
844 {
845 	struct css_task_iter it;
846 	struct task_struct *task;
847 
848 	css_task_iter_start(&cs->css, &it);
849 	while ((task = css_task_iter_next(&it)))
850 		set_cpus_allowed_ptr(task, cs->effective_cpus);
851 	css_task_iter_end(&it);
852 }
853 
854 /*
855  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
856  * @cs: the cpuset to consider
857  * @new_cpus: temp variable for calculating new effective_cpus
858  *
859  * When congifured cpumask is changed, the effective cpumasks of this cpuset
860  * and all its descendants need to be updated.
861  *
862  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
863  *
864  * Called with cpuset_mutex held
865  */
update_cpumasks_hier(struct cpuset * cs,struct cpumask * new_cpus)866 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
867 {
868 	struct cpuset *cp;
869 	struct cgroup_subsys_state *pos_css;
870 	bool need_rebuild_sched_domains = false;
871 
872 	rcu_read_lock();
873 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
874 		struct cpuset *parent = parent_cs(cp);
875 
876 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
877 
878 		/*
879 		 * If it becomes empty, inherit the effective mask of the
880 		 * parent, which is guaranteed to have some CPUs.
881 		 */
882 		if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
883 			cpumask_copy(new_cpus, parent->effective_cpus);
884 
885 		/* Skip the whole subtree if the cpumask remains the same. */
886 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
887 			pos_css = css_rightmost_descendant(pos_css);
888 			continue;
889 		}
890 
891 		if (!css_tryget_online(&cp->css))
892 			continue;
893 		rcu_read_unlock();
894 
895 		spin_lock_irq(&callback_lock);
896 		cpumask_copy(cp->effective_cpus, new_cpus);
897 		spin_unlock_irq(&callback_lock);
898 
899 		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
900 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
901 
902 		update_tasks_cpumask(cp);
903 
904 		/*
905 		 * If the effective cpumask of any non-empty cpuset is changed,
906 		 * we need to rebuild sched domains.
907 		 */
908 		if (!cpumask_empty(cp->cpus_allowed) &&
909 		    is_sched_load_balance(cp))
910 			need_rebuild_sched_domains = true;
911 
912 		rcu_read_lock();
913 		css_put(&cp->css);
914 	}
915 	rcu_read_unlock();
916 
917 	if (need_rebuild_sched_domains)
918 		rebuild_sched_domains_locked();
919 }
920 
921 /**
922  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
923  * @cs: the cpuset to consider
924  * @trialcs: trial cpuset
925  * @buf: buffer of cpu numbers written to this cpuset
926  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)927 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
928 			  const char *buf)
929 {
930 	int retval;
931 
932 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
933 	if (cs == &top_cpuset)
934 		return -EACCES;
935 
936 	/*
937 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
938 	 * Since cpulist_parse() fails on an empty mask, we special case
939 	 * that parsing.  The validate_change() call ensures that cpusets
940 	 * with tasks have cpus.
941 	 */
942 	if (!*buf) {
943 		cpumask_clear(trialcs->cpus_allowed);
944 	} else {
945 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
946 		if (retval < 0)
947 			return retval;
948 
949 		if (!cpumask_subset(trialcs->cpus_allowed,
950 				    top_cpuset.cpus_allowed))
951 			return -EINVAL;
952 	}
953 
954 	/* Nothing to do if the cpus didn't change */
955 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
956 		return 0;
957 
958 	retval = validate_change(cs, trialcs);
959 	if (retval < 0)
960 		return retval;
961 
962 	spin_lock_irq(&callback_lock);
963 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
964 	spin_unlock_irq(&callback_lock);
965 
966 	/* use trialcs->cpus_allowed as a temp variable */
967 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
968 	return 0;
969 }
970 
971 /*
972  * cpuset_migrate_mm
973  *
974  *    Migrate memory region from one set of nodes to another.
975  *
976  *    Temporarilly set tasks mems_allowed to target nodes of migration,
977  *    so that the migration code can allocate pages on these nodes.
978  *
979  *    While the mm_struct we are migrating is typically from some
980  *    other task, the task_struct mems_allowed that we are hacking
981  *    is for our current task, which must allocate new pages for that
982  *    migrating memory region.
983  */
984 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)985 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
986 							const nodemask_t *to)
987 {
988 	struct task_struct *tsk = current;
989 
990 	tsk->mems_allowed = *to;
991 
992 	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
993 
994 	rcu_read_lock();
995 	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
996 	rcu_read_unlock();
997 }
998 
999 /*
1000  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1001  * @tsk: the task to change
1002  * @newmems: new nodes that the task will be set
1003  *
1004  * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1005  * we structure updates as setting all new allowed nodes, then clearing newly
1006  * disallowed ones.
1007  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1008 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1009 					nodemask_t *newmems)
1010 {
1011 	bool need_loop;
1012 
1013 	/*
1014 	 * Allow tasks that have access to memory reserves because they have
1015 	 * been OOM killed to get memory anywhere.
1016 	 */
1017 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
1018 		return;
1019 	if (current->flags & PF_EXITING) /* Let dying task have memory */
1020 		return;
1021 
1022 	task_lock(tsk);
1023 	/*
1024 	 * Determine if a loop is necessary if another thread is doing
1025 	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1026 	 * tsk does not have a mempolicy, then an empty nodemask will not be
1027 	 * possible when mems_allowed is larger than a word.
1028 	 */
1029 	need_loop = task_has_mempolicy(tsk) ||
1030 			!nodes_intersects(*newmems, tsk->mems_allowed);
1031 
1032 	if (need_loop) {
1033 		local_irq_disable();
1034 		write_seqcount_begin(&tsk->mems_allowed_seq);
1035 	}
1036 
1037 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1038 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1039 
1040 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1041 	tsk->mems_allowed = *newmems;
1042 
1043 	if (need_loop) {
1044 		write_seqcount_end(&tsk->mems_allowed_seq);
1045 		local_irq_enable();
1046 	}
1047 
1048 	task_unlock(tsk);
1049 }
1050 
1051 static void *cpuset_being_rebound;
1052 
1053 /**
1054  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1055  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1056  *
1057  * Iterate through each task of @cs updating its mems_allowed to the
1058  * effective cpuset's.  As this function is called with cpuset_mutex held,
1059  * cpuset membership stays stable.
1060  */
update_tasks_nodemask(struct cpuset * cs)1061 static void update_tasks_nodemask(struct cpuset *cs)
1062 {
1063 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1064 	struct css_task_iter it;
1065 	struct task_struct *task;
1066 
1067 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1068 
1069 	guarantee_online_mems(cs, &newmems);
1070 
1071 	/*
1072 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1073 	 * take while holding tasklist_lock.  Forks can happen - the
1074 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1075 	 * and rebind their vma mempolicies too.  Because we still hold
1076 	 * the global cpuset_mutex, we know that no other rebind effort
1077 	 * will be contending for the global variable cpuset_being_rebound.
1078 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1079 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1080 	 */
1081 	css_task_iter_start(&cs->css, &it);
1082 	while ((task = css_task_iter_next(&it))) {
1083 		struct mm_struct *mm;
1084 		bool migrate;
1085 
1086 		cpuset_change_task_nodemask(task, &newmems);
1087 
1088 		mm = get_task_mm(task);
1089 		if (!mm)
1090 			continue;
1091 
1092 		migrate = is_memory_migrate(cs);
1093 
1094 		mpol_rebind_mm(mm, &cs->mems_allowed);
1095 		if (migrate)
1096 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1097 		mmput(mm);
1098 	}
1099 	css_task_iter_end(&it);
1100 
1101 	/*
1102 	 * All the tasks' nodemasks have been updated, update
1103 	 * cs->old_mems_allowed.
1104 	 */
1105 	cs->old_mems_allowed = newmems;
1106 
1107 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1108 	cpuset_being_rebound = NULL;
1109 }
1110 
1111 /*
1112  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1113  * @cs: the cpuset to consider
1114  * @new_mems: a temp variable for calculating new effective_mems
1115  *
1116  * When configured nodemask is changed, the effective nodemasks of this cpuset
1117  * and all its descendants need to be updated.
1118  *
1119  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1120  *
1121  * Called with cpuset_mutex held
1122  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1123 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1124 {
1125 	struct cpuset *cp;
1126 	struct cgroup_subsys_state *pos_css;
1127 
1128 	rcu_read_lock();
1129 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1130 		struct cpuset *parent = parent_cs(cp);
1131 
1132 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1133 
1134 		/*
1135 		 * If it becomes empty, inherit the effective mask of the
1136 		 * parent, which is guaranteed to have some MEMs.
1137 		 */
1138 		if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
1139 			*new_mems = parent->effective_mems;
1140 
1141 		/* Skip the whole subtree if the nodemask remains the same. */
1142 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1143 			pos_css = css_rightmost_descendant(pos_css);
1144 			continue;
1145 		}
1146 
1147 		if (!css_tryget_online(&cp->css))
1148 			continue;
1149 		rcu_read_unlock();
1150 
1151 		spin_lock_irq(&callback_lock);
1152 		cp->effective_mems = *new_mems;
1153 		spin_unlock_irq(&callback_lock);
1154 
1155 		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1156 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1157 
1158 		update_tasks_nodemask(cp);
1159 
1160 		rcu_read_lock();
1161 		css_put(&cp->css);
1162 	}
1163 	rcu_read_unlock();
1164 }
1165 
1166 /*
1167  * Handle user request to change the 'mems' memory placement
1168  * of a cpuset.  Needs to validate the request, update the
1169  * cpusets mems_allowed, and for each task in the cpuset,
1170  * update mems_allowed and rebind task's mempolicy and any vma
1171  * mempolicies and if the cpuset is marked 'memory_migrate',
1172  * migrate the tasks pages to the new memory.
1173  *
1174  * Call with cpuset_mutex held. May take callback_lock during call.
1175  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1176  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1177  * their mempolicies to the cpusets new mems_allowed.
1178  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1179 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1180 			   const char *buf)
1181 {
1182 	int retval;
1183 
1184 	/*
1185 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1186 	 * it's read-only
1187 	 */
1188 	if (cs == &top_cpuset) {
1189 		retval = -EACCES;
1190 		goto done;
1191 	}
1192 
1193 	/*
1194 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1195 	 * Since nodelist_parse() fails on an empty mask, we special case
1196 	 * that parsing.  The validate_change() call ensures that cpusets
1197 	 * with tasks have memory.
1198 	 */
1199 	if (!*buf) {
1200 		nodes_clear(trialcs->mems_allowed);
1201 	} else {
1202 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1203 		if (retval < 0)
1204 			goto done;
1205 
1206 		if (!nodes_subset(trialcs->mems_allowed,
1207 				  top_cpuset.mems_allowed)) {
1208 			retval = -EINVAL;
1209 			goto done;
1210 		}
1211 	}
1212 
1213 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1214 		retval = 0;		/* Too easy - nothing to do */
1215 		goto done;
1216 	}
1217 	retval = validate_change(cs, trialcs);
1218 	if (retval < 0)
1219 		goto done;
1220 
1221 	spin_lock_irq(&callback_lock);
1222 	cs->mems_allowed = trialcs->mems_allowed;
1223 	spin_unlock_irq(&callback_lock);
1224 
1225 	/* use trialcs->mems_allowed as a temp variable */
1226 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1227 done:
1228 	return retval;
1229 }
1230 
current_cpuset_is_being_rebound(void)1231 int current_cpuset_is_being_rebound(void)
1232 {
1233 	int ret;
1234 
1235 	rcu_read_lock();
1236 	ret = task_cs(current) == cpuset_being_rebound;
1237 	rcu_read_unlock();
1238 
1239 	return ret;
1240 }
1241 
update_relax_domain_level(struct cpuset * cs,s64 val)1242 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1243 {
1244 #ifdef CONFIG_SMP
1245 	if (val < -1 || val >= sched_domain_level_max)
1246 		return -EINVAL;
1247 #endif
1248 
1249 	if (val != cs->relax_domain_level) {
1250 		cs->relax_domain_level = val;
1251 		if (!cpumask_empty(cs->cpus_allowed) &&
1252 		    is_sched_load_balance(cs))
1253 			rebuild_sched_domains_locked();
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1261  * @cs: the cpuset in which each task's spread flags needs to be changed
1262  *
1263  * Iterate through each task of @cs updating its spread flags.  As this
1264  * function is called with cpuset_mutex held, cpuset membership stays
1265  * stable.
1266  */
update_tasks_flags(struct cpuset * cs)1267 static void update_tasks_flags(struct cpuset *cs)
1268 {
1269 	struct css_task_iter it;
1270 	struct task_struct *task;
1271 
1272 	css_task_iter_start(&cs->css, &it);
1273 	while ((task = css_task_iter_next(&it)))
1274 		cpuset_update_task_spread_flag(cs, task);
1275 	css_task_iter_end(&it);
1276 }
1277 
1278 /*
1279  * update_flag - read a 0 or a 1 in a file and update associated flag
1280  * bit:		the bit to update (see cpuset_flagbits_t)
1281  * cs:		the cpuset to update
1282  * turning_on: 	whether the flag is being set or cleared
1283  *
1284  * Call with cpuset_mutex held.
1285  */
1286 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1287 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1288 		       int turning_on)
1289 {
1290 	struct cpuset *trialcs;
1291 	int balance_flag_changed;
1292 	int spread_flag_changed;
1293 	int err;
1294 
1295 	trialcs = alloc_trial_cpuset(cs);
1296 	if (!trialcs)
1297 		return -ENOMEM;
1298 
1299 	if (turning_on)
1300 		set_bit(bit, &trialcs->flags);
1301 	else
1302 		clear_bit(bit, &trialcs->flags);
1303 
1304 	err = validate_change(cs, trialcs);
1305 	if (err < 0)
1306 		goto out;
1307 
1308 	balance_flag_changed = (is_sched_load_balance(cs) !=
1309 				is_sched_load_balance(trialcs));
1310 
1311 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1312 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1313 
1314 	spin_lock_irq(&callback_lock);
1315 	cs->flags = trialcs->flags;
1316 	spin_unlock_irq(&callback_lock);
1317 
1318 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1319 		rebuild_sched_domains_locked();
1320 
1321 	if (spread_flag_changed)
1322 		update_tasks_flags(cs);
1323 out:
1324 	free_trial_cpuset(trialcs);
1325 	return err;
1326 }
1327 
1328 /*
1329  * Frequency meter - How fast is some event occurring?
1330  *
1331  * These routines manage a digitally filtered, constant time based,
1332  * event frequency meter.  There are four routines:
1333  *   fmeter_init() - initialize a frequency meter.
1334  *   fmeter_markevent() - called each time the event happens.
1335  *   fmeter_getrate() - returns the recent rate of such events.
1336  *   fmeter_update() - internal routine used to update fmeter.
1337  *
1338  * A common data structure is passed to each of these routines,
1339  * which is used to keep track of the state required to manage the
1340  * frequency meter and its digital filter.
1341  *
1342  * The filter works on the number of events marked per unit time.
1343  * The filter is single-pole low-pass recursive (IIR).  The time unit
1344  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1345  * simulate 3 decimal digits of precision (multiplied by 1000).
1346  *
1347  * With an FM_COEF of 933, and a time base of 1 second, the filter
1348  * has a half-life of 10 seconds, meaning that if the events quit
1349  * happening, then the rate returned from the fmeter_getrate()
1350  * will be cut in half each 10 seconds, until it converges to zero.
1351  *
1352  * It is not worth doing a real infinitely recursive filter.  If more
1353  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1354  * just compute FM_MAXTICKS ticks worth, by which point the level
1355  * will be stable.
1356  *
1357  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1358  * arithmetic overflow in the fmeter_update() routine.
1359  *
1360  * Given the simple 32 bit integer arithmetic used, this meter works
1361  * best for reporting rates between one per millisecond (msec) and
1362  * one per 32 (approx) seconds.  At constant rates faster than one
1363  * per msec it maxes out at values just under 1,000,000.  At constant
1364  * rates between one per msec, and one per second it will stabilize
1365  * to a value N*1000, where N is the rate of events per second.
1366  * At constant rates between one per second and one per 32 seconds,
1367  * it will be choppy, moving up on the seconds that have an event,
1368  * and then decaying until the next event.  At rates slower than
1369  * about one in 32 seconds, it decays all the way back to zero between
1370  * each event.
1371  */
1372 
1373 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1374 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1375 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1376 #define FM_SCALE 1000		/* faux fixed point scale */
1377 
1378 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1379 static void fmeter_init(struct fmeter *fmp)
1380 {
1381 	fmp->cnt = 0;
1382 	fmp->val = 0;
1383 	fmp->time = 0;
1384 	spin_lock_init(&fmp->lock);
1385 }
1386 
1387 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1388 static void fmeter_update(struct fmeter *fmp)
1389 {
1390 	time_t now = get_seconds();
1391 	time_t ticks = now - fmp->time;
1392 
1393 	if (ticks == 0)
1394 		return;
1395 
1396 	ticks = min(FM_MAXTICKS, ticks);
1397 	while (ticks-- > 0)
1398 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1399 	fmp->time = now;
1400 
1401 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1402 	fmp->cnt = 0;
1403 }
1404 
1405 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1406 static void fmeter_markevent(struct fmeter *fmp)
1407 {
1408 	spin_lock(&fmp->lock);
1409 	fmeter_update(fmp);
1410 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1411 	spin_unlock(&fmp->lock);
1412 }
1413 
1414 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1415 static int fmeter_getrate(struct fmeter *fmp)
1416 {
1417 	int val;
1418 
1419 	spin_lock(&fmp->lock);
1420 	fmeter_update(fmp);
1421 	val = fmp->val;
1422 	spin_unlock(&fmp->lock);
1423 	return val;
1424 }
1425 
1426 static struct cpuset *cpuset_attach_old_cs;
1427 
1428 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)1429 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1430 			     struct cgroup_taskset *tset)
1431 {
1432 	struct cpuset *cs = css_cs(css);
1433 	struct task_struct *task;
1434 	int ret;
1435 
1436 	/* used later by cpuset_attach() */
1437 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1438 
1439 	mutex_lock(&cpuset_mutex);
1440 
1441 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1442 	ret = -ENOSPC;
1443 	if (!cgroup_on_dfl(css->cgroup) &&
1444 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1445 		goto out_unlock;
1446 
1447 	cgroup_taskset_for_each(task, tset) {
1448 		ret = task_can_attach(task, cs->cpus_allowed);
1449 		if (ret)
1450 			goto out_unlock;
1451 		ret = security_task_setscheduler(task);
1452 		if (ret)
1453 			goto out_unlock;
1454 	}
1455 
1456 	/*
1457 	 * Mark attach is in progress.  This makes validate_change() fail
1458 	 * changes which zero cpus/mems_allowed.
1459 	 */
1460 	cs->attach_in_progress++;
1461 	ret = 0;
1462 out_unlock:
1463 	mutex_unlock(&cpuset_mutex);
1464 	return ret;
1465 }
1466 
cpuset_cancel_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)1467 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1468 				 struct cgroup_taskset *tset)
1469 {
1470 	mutex_lock(&cpuset_mutex);
1471 	css_cs(css)->attach_in_progress--;
1472 	mutex_unlock(&cpuset_mutex);
1473 }
1474 
1475 /*
1476  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1477  * but we can't allocate it dynamically there.  Define it global and
1478  * allocate from cpuset_init().
1479  */
1480 static cpumask_var_t cpus_attach;
1481 
cpuset_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)1482 static void cpuset_attach(struct cgroup_subsys_state *css,
1483 			  struct cgroup_taskset *tset)
1484 {
1485 	/* static buf protected by cpuset_mutex */
1486 	static nodemask_t cpuset_attach_nodemask_to;
1487 	struct mm_struct *mm;
1488 	struct task_struct *task;
1489 	struct task_struct *leader = cgroup_taskset_first(tset);
1490 	struct cpuset *cs = css_cs(css);
1491 	struct cpuset *oldcs = cpuset_attach_old_cs;
1492 
1493 	mutex_lock(&cpuset_mutex);
1494 
1495 	/* prepare for attach */
1496 	if (cs == &top_cpuset)
1497 		cpumask_copy(cpus_attach, cpu_possible_mask);
1498 	else
1499 		guarantee_online_cpus(cs, cpus_attach);
1500 
1501 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1502 
1503 	cgroup_taskset_for_each(task, tset) {
1504 		/*
1505 		 * can_attach beforehand should guarantee that this doesn't
1506 		 * fail.  TODO: have a better way to handle failure here
1507 		 */
1508 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1509 
1510 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1511 		cpuset_update_task_spread_flag(cs, task);
1512 	}
1513 
1514 	/*
1515 	 * Change mm, possibly for multiple threads in a threadgroup. This is
1516 	 * expensive and may sleep.
1517 	 */
1518 	cpuset_attach_nodemask_to = cs->effective_mems;
1519 	mm = get_task_mm(leader);
1520 	if (mm) {
1521 		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1522 
1523 		/*
1524 		 * old_mems_allowed is the same with mems_allowed here, except
1525 		 * if this task is being moved automatically due to hotplug.
1526 		 * In that case @mems_allowed has been updated and is empty,
1527 		 * so @old_mems_allowed is the right nodesets that we migrate
1528 		 * mm from.
1529 		 */
1530 		if (is_memory_migrate(cs)) {
1531 			cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1532 					  &cpuset_attach_nodemask_to);
1533 		}
1534 		mmput(mm);
1535 	}
1536 
1537 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1538 
1539 	cs->attach_in_progress--;
1540 	if (!cs->attach_in_progress)
1541 		wake_up(&cpuset_attach_wq);
1542 
1543 	mutex_unlock(&cpuset_mutex);
1544 }
1545 
1546 /* The various types of files and directories in a cpuset file system */
1547 
1548 typedef enum {
1549 	FILE_MEMORY_MIGRATE,
1550 	FILE_CPULIST,
1551 	FILE_MEMLIST,
1552 	FILE_EFFECTIVE_CPULIST,
1553 	FILE_EFFECTIVE_MEMLIST,
1554 	FILE_CPU_EXCLUSIVE,
1555 	FILE_MEM_EXCLUSIVE,
1556 	FILE_MEM_HARDWALL,
1557 	FILE_SCHED_LOAD_BALANCE,
1558 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1559 	FILE_MEMORY_PRESSURE_ENABLED,
1560 	FILE_MEMORY_PRESSURE,
1561 	FILE_SPREAD_PAGE,
1562 	FILE_SPREAD_SLAB,
1563 } cpuset_filetype_t;
1564 
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1565 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1566 			    u64 val)
1567 {
1568 	struct cpuset *cs = css_cs(css);
1569 	cpuset_filetype_t type = cft->private;
1570 	int retval = 0;
1571 
1572 	mutex_lock(&cpuset_mutex);
1573 	if (!is_cpuset_online(cs)) {
1574 		retval = -ENODEV;
1575 		goto out_unlock;
1576 	}
1577 
1578 	switch (type) {
1579 	case FILE_CPU_EXCLUSIVE:
1580 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1581 		break;
1582 	case FILE_MEM_EXCLUSIVE:
1583 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1584 		break;
1585 	case FILE_MEM_HARDWALL:
1586 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1587 		break;
1588 	case FILE_SCHED_LOAD_BALANCE:
1589 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1590 		break;
1591 	case FILE_MEMORY_MIGRATE:
1592 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1593 		break;
1594 	case FILE_MEMORY_PRESSURE_ENABLED:
1595 		cpuset_memory_pressure_enabled = !!val;
1596 		break;
1597 	case FILE_MEMORY_PRESSURE:
1598 		retval = -EACCES;
1599 		break;
1600 	case FILE_SPREAD_PAGE:
1601 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1602 		break;
1603 	case FILE_SPREAD_SLAB:
1604 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1605 		break;
1606 	default:
1607 		retval = -EINVAL;
1608 		break;
1609 	}
1610 out_unlock:
1611 	mutex_unlock(&cpuset_mutex);
1612 	return retval;
1613 }
1614 
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)1615 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1616 			    s64 val)
1617 {
1618 	struct cpuset *cs = css_cs(css);
1619 	cpuset_filetype_t type = cft->private;
1620 	int retval = -ENODEV;
1621 
1622 	mutex_lock(&cpuset_mutex);
1623 	if (!is_cpuset_online(cs))
1624 		goto out_unlock;
1625 
1626 	switch (type) {
1627 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1628 		retval = update_relax_domain_level(cs, val);
1629 		break;
1630 	default:
1631 		retval = -EINVAL;
1632 		break;
1633 	}
1634 out_unlock:
1635 	mutex_unlock(&cpuset_mutex);
1636 	return retval;
1637 }
1638 
1639 /*
1640  * Common handling for a write to a "cpus" or "mems" file.
1641  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1642 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1643 				    char *buf, size_t nbytes, loff_t off)
1644 {
1645 	struct cpuset *cs = css_cs(of_css(of));
1646 	struct cpuset *trialcs;
1647 	int retval = -ENODEV;
1648 
1649 	buf = strstrip(buf);
1650 
1651 	/*
1652 	 * CPU or memory hotunplug may leave @cs w/o any execution
1653 	 * resources, in which case the hotplug code asynchronously updates
1654 	 * configuration and transfers all tasks to the nearest ancestor
1655 	 * which can execute.
1656 	 *
1657 	 * As writes to "cpus" or "mems" may restore @cs's execution
1658 	 * resources, wait for the previously scheduled operations before
1659 	 * proceeding, so that we don't end up keep removing tasks added
1660 	 * after execution capability is restored.
1661 	 *
1662 	 * cpuset_hotplug_work calls back into cgroup core via
1663 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1664 	 * operation like this one can lead to a deadlock through kernfs
1665 	 * active_ref protection.  Let's break the protection.  Losing the
1666 	 * protection is okay as we check whether @cs is online after
1667 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1668 	 * hierarchies.
1669 	 */
1670 	css_get(&cs->css);
1671 	kernfs_break_active_protection(of->kn);
1672 	flush_work(&cpuset_hotplug_work);
1673 
1674 	mutex_lock(&cpuset_mutex);
1675 	if (!is_cpuset_online(cs))
1676 		goto out_unlock;
1677 
1678 	trialcs = alloc_trial_cpuset(cs);
1679 	if (!trialcs) {
1680 		retval = -ENOMEM;
1681 		goto out_unlock;
1682 	}
1683 
1684 	switch (of_cft(of)->private) {
1685 	case FILE_CPULIST:
1686 		retval = update_cpumask(cs, trialcs, buf);
1687 		break;
1688 	case FILE_MEMLIST:
1689 		retval = update_nodemask(cs, trialcs, buf);
1690 		break;
1691 	default:
1692 		retval = -EINVAL;
1693 		break;
1694 	}
1695 
1696 	free_trial_cpuset(trialcs);
1697 out_unlock:
1698 	mutex_unlock(&cpuset_mutex);
1699 	kernfs_unbreak_active_protection(of->kn);
1700 	css_put(&cs->css);
1701 	return retval ?: nbytes;
1702 }
1703 
1704 /*
1705  * These ascii lists should be read in a single call, by using a user
1706  * buffer large enough to hold the entire map.  If read in smaller
1707  * chunks, there is no guarantee of atomicity.  Since the display format
1708  * used, list of ranges of sequential numbers, is variable length,
1709  * and since these maps can change value dynamically, one could read
1710  * gibberish by doing partial reads while a list was changing.
1711  */
cpuset_common_seq_show(struct seq_file * sf,void * v)1712 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1713 {
1714 	struct cpuset *cs = css_cs(seq_css(sf));
1715 	cpuset_filetype_t type = seq_cft(sf)->private;
1716 	int ret = 0;
1717 
1718 	spin_lock_irq(&callback_lock);
1719 
1720 	switch (type) {
1721 	case FILE_CPULIST:
1722 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1723 		break;
1724 	case FILE_MEMLIST:
1725 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1726 		break;
1727 	case FILE_EFFECTIVE_CPULIST:
1728 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1729 		break;
1730 	case FILE_EFFECTIVE_MEMLIST:
1731 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1732 		break;
1733 	default:
1734 		ret = -EINVAL;
1735 	}
1736 
1737 	spin_unlock_irq(&callback_lock);
1738 	return ret;
1739 }
1740 
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)1741 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1742 {
1743 	struct cpuset *cs = css_cs(css);
1744 	cpuset_filetype_t type = cft->private;
1745 	switch (type) {
1746 	case FILE_CPU_EXCLUSIVE:
1747 		return is_cpu_exclusive(cs);
1748 	case FILE_MEM_EXCLUSIVE:
1749 		return is_mem_exclusive(cs);
1750 	case FILE_MEM_HARDWALL:
1751 		return is_mem_hardwall(cs);
1752 	case FILE_SCHED_LOAD_BALANCE:
1753 		return is_sched_load_balance(cs);
1754 	case FILE_MEMORY_MIGRATE:
1755 		return is_memory_migrate(cs);
1756 	case FILE_MEMORY_PRESSURE_ENABLED:
1757 		return cpuset_memory_pressure_enabled;
1758 	case FILE_MEMORY_PRESSURE:
1759 		return fmeter_getrate(&cs->fmeter);
1760 	case FILE_SPREAD_PAGE:
1761 		return is_spread_page(cs);
1762 	case FILE_SPREAD_SLAB:
1763 		return is_spread_slab(cs);
1764 	default:
1765 		BUG();
1766 	}
1767 
1768 	/* Unreachable but makes gcc happy */
1769 	return 0;
1770 }
1771 
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)1772 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1773 {
1774 	struct cpuset *cs = css_cs(css);
1775 	cpuset_filetype_t type = cft->private;
1776 	switch (type) {
1777 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1778 		return cs->relax_domain_level;
1779 	default:
1780 		BUG();
1781 	}
1782 
1783 	/* Unrechable but makes gcc happy */
1784 	return 0;
1785 }
1786 
1787 
1788 /*
1789  * for the common functions, 'private' gives the type of file
1790  */
1791 
1792 static struct cftype files[] = {
1793 	{
1794 		.name = "cpus",
1795 		.seq_show = cpuset_common_seq_show,
1796 		.write = cpuset_write_resmask,
1797 		.max_write_len = (100U + 6 * NR_CPUS),
1798 		.private = FILE_CPULIST,
1799 	},
1800 
1801 	{
1802 		.name = "mems",
1803 		.seq_show = cpuset_common_seq_show,
1804 		.write = cpuset_write_resmask,
1805 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1806 		.private = FILE_MEMLIST,
1807 	},
1808 
1809 	{
1810 		.name = "effective_cpus",
1811 		.seq_show = cpuset_common_seq_show,
1812 		.private = FILE_EFFECTIVE_CPULIST,
1813 	},
1814 
1815 	{
1816 		.name = "effective_mems",
1817 		.seq_show = cpuset_common_seq_show,
1818 		.private = FILE_EFFECTIVE_MEMLIST,
1819 	},
1820 
1821 	{
1822 		.name = "cpu_exclusive",
1823 		.read_u64 = cpuset_read_u64,
1824 		.write_u64 = cpuset_write_u64,
1825 		.private = FILE_CPU_EXCLUSIVE,
1826 	},
1827 
1828 	{
1829 		.name = "mem_exclusive",
1830 		.read_u64 = cpuset_read_u64,
1831 		.write_u64 = cpuset_write_u64,
1832 		.private = FILE_MEM_EXCLUSIVE,
1833 	},
1834 
1835 	{
1836 		.name = "mem_hardwall",
1837 		.read_u64 = cpuset_read_u64,
1838 		.write_u64 = cpuset_write_u64,
1839 		.private = FILE_MEM_HARDWALL,
1840 	},
1841 
1842 	{
1843 		.name = "sched_load_balance",
1844 		.read_u64 = cpuset_read_u64,
1845 		.write_u64 = cpuset_write_u64,
1846 		.private = FILE_SCHED_LOAD_BALANCE,
1847 	},
1848 
1849 	{
1850 		.name = "sched_relax_domain_level",
1851 		.read_s64 = cpuset_read_s64,
1852 		.write_s64 = cpuset_write_s64,
1853 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1854 	},
1855 
1856 	{
1857 		.name = "memory_migrate",
1858 		.read_u64 = cpuset_read_u64,
1859 		.write_u64 = cpuset_write_u64,
1860 		.private = FILE_MEMORY_MIGRATE,
1861 	},
1862 
1863 	{
1864 		.name = "memory_pressure",
1865 		.read_u64 = cpuset_read_u64,
1866 		.write_u64 = cpuset_write_u64,
1867 		.private = FILE_MEMORY_PRESSURE,
1868 		.mode = S_IRUGO,
1869 	},
1870 
1871 	{
1872 		.name = "memory_spread_page",
1873 		.read_u64 = cpuset_read_u64,
1874 		.write_u64 = cpuset_write_u64,
1875 		.private = FILE_SPREAD_PAGE,
1876 	},
1877 
1878 	{
1879 		.name = "memory_spread_slab",
1880 		.read_u64 = cpuset_read_u64,
1881 		.write_u64 = cpuset_write_u64,
1882 		.private = FILE_SPREAD_SLAB,
1883 	},
1884 
1885 	{
1886 		.name = "memory_pressure_enabled",
1887 		.flags = CFTYPE_ONLY_ON_ROOT,
1888 		.read_u64 = cpuset_read_u64,
1889 		.write_u64 = cpuset_write_u64,
1890 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1891 	},
1892 
1893 	{ }	/* terminate */
1894 };
1895 
1896 /*
1897  *	cpuset_css_alloc - allocate a cpuset css
1898  *	cgrp:	control group that the new cpuset will be part of
1899  */
1900 
1901 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)1902 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1903 {
1904 	struct cpuset *cs;
1905 
1906 	if (!parent_css)
1907 		return &top_cpuset.css;
1908 
1909 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1910 	if (!cs)
1911 		return ERR_PTR(-ENOMEM);
1912 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1913 		goto free_cs;
1914 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1915 		goto free_cpus;
1916 
1917 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1918 	cpumask_clear(cs->cpus_allowed);
1919 	nodes_clear(cs->mems_allowed);
1920 	cpumask_clear(cs->effective_cpus);
1921 	nodes_clear(cs->effective_mems);
1922 	fmeter_init(&cs->fmeter);
1923 	cs->relax_domain_level = -1;
1924 
1925 	return &cs->css;
1926 
1927 free_cpus:
1928 	free_cpumask_var(cs->cpus_allowed);
1929 free_cs:
1930 	kfree(cs);
1931 	return ERR_PTR(-ENOMEM);
1932 }
1933 
cpuset_css_online(struct cgroup_subsys_state * css)1934 static int cpuset_css_online(struct cgroup_subsys_state *css)
1935 {
1936 	struct cpuset *cs = css_cs(css);
1937 	struct cpuset *parent = parent_cs(cs);
1938 	struct cpuset *tmp_cs;
1939 	struct cgroup_subsys_state *pos_css;
1940 
1941 	if (!parent)
1942 		return 0;
1943 
1944 	mutex_lock(&cpuset_mutex);
1945 
1946 	set_bit(CS_ONLINE, &cs->flags);
1947 	if (is_spread_page(parent))
1948 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1949 	if (is_spread_slab(parent))
1950 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1951 
1952 	cpuset_inc();
1953 
1954 	spin_lock_irq(&callback_lock);
1955 	if (cgroup_on_dfl(cs->css.cgroup)) {
1956 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1957 		cs->effective_mems = parent->effective_mems;
1958 	}
1959 	spin_unlock_irq(&callback_lock);
1960 
1961 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1962 		goto out_unlock;
1963 
1964 	/*
1965 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1966 	 * set.  This flag handling is implemented in cgroup core for
1967 	 * histrical reasons - the flag may be specified during mount.
1968 	 *
1969 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1970 	 * refuse to clone the configuration - thereby refusing the task to
1971 	 * be entered, and as a result refusing the sys_unshare() or
1972 	 * clone() which initiated it.  If this becomes a problem for some
1973 	 * users who wish to allow that scenario, then this could be
1974 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1975 	 * (and likewise for mems) to the new cgroup.
1976 	 */
1977 	rcu_read_lock();
1978 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1979 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1980 			rcu_read_unlock();
1981 			goto out_unlock;
1982 		}
1983 	}
1984 	rcu_read_unlock();
1985 
1986 	spin_lock_irq(&callback_lock);
1987 	cs->mems_allowed = parent->mems_allowed;
1988 	cs->effective_mems = parent->mems_allowed;
1989 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1990 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
1991 	spin_unlock_irq(&callback_lock);
1992 out_unlock:
1993 	mutex_unlock(&cpuset_mutex);
1994 	return 0;
1995 }
1996 
1997 /*
1998  * If the cpuset being removed has its flag 'sched_load_balance'
1999  * enabled, then simulate turning sched_load_balance off, which
2000  * will call rebuild_sched_domains_locked().
2001  */
2002 
cpuset_css_offline(struct cgroup_subsys_state * css)2003 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2004 {
2005 	struct cpuset *cs = css_cs(css);
2006 
2007 	mutex_lock(&cpuset_mutex);
2008 
2009 	if (is_sched_load_balance(cs))
2010 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2011 
2012 	cpuset_dec();
2013 	clear_bit(CS_ONLINE, &cs->flags);
2014 
2015 	mutex_unlock(&cpuset_mutex);
2016 }
2017 
cpuset_css_free(struct cgroup_subsys_state * css)2018 static void cpuset_css_free(struct cgroup_subsys_state *css)
2019 {
2020 	struct cpuset *cs = css_cs(css);
2021 
2022 	free_cpumask_var(cs->effective_cpus);
2023 	free_cpumask_var(cs->cpus_allowed);
2024 	kfree(cs);
2025 }
2026 
cpuset_bind(struct cgroup_subsys_state * root_css)2027 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2028 {
2029 	mutex_lock(&cpuset_mutex);
2030 	spin_lock_irq(&callback_lock);
2031 
2032 	if (cgroup_on_dfl(root_css->cgroup)) {
2033 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2034 		top_cpuset.mems_allowed = node_possible_map;
2035 	} else {
2036 		cpumask_copy(top_cpuset.cpus_allowed,
2037 			     top_cpuset.effective_cpus);
2038 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2039 	}
2040 
2041 	spin_unlock_irq(&callback_lock);
2042 	mutex_unlock(&cpuset_mutex);
2043 }
2044 
2045 struct cgroup_subsys cpuset_cgrp_subsys = {
2046 	.css_alloc	= cpuset_css_alloc,
2047 	.css_online	= cpuset_css_online,
2048 	.css_offline	= cpuset_css_offline,
2049 	.css_free	= cpuset_css_free,
2050 	.can_attach	= cpuset_can_attach,
2051 	.cancel_attach	= cpuset_cancel_attach,
2052 	.attach		= cpuset_attach,
2053 	.bind		= cpuset_bind,
2054 	.legacy_cftypes	= files,
2055 	.early_init	= 1,
2056 };
2057 
2058 /**
2059  * cpuset_init - initialize cpusets at system boot
2060  *
2061  * Description: Initialize top_cpuset and the cpuset internal file system,
2062  **/
2063 
cpuset_init(void)2064 int __init cpuset_init(void)
2065 {
2066 	int err = 0;
2067 
2068 	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2069 		BUG();
2070 	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2071 		BUG();
2072 
2073 	cpumask_setall(top_cpuset.cpus_allowed);
2074 	nodes_setall(top_cpuset.mems_allowed);
2075 	cpumask_setall(top_cpuset.effective_cpus);
2076 	nodes_setall(top_cpuset.effective_mems);
2077 
2078 	fmeter_init(&top_cpuset.fmeter);
2079 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2080 	top_cpuset.relax_domain_level = -1;
2081 
2082 	err = register_filesystem(&cpuset_fs_type);
2083 	if (err < 0)
2084 		return err;
2085 
2086 	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2087 		BUG();
2088 
2089 	return 0;
2090 }
2091 
2092 /*
2093  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2094  * or memory nodes, we need to walk over the cpuset hierarchy,
2095  * removing that CPU or node from all cpusets.  If this removes the
2096  * last CPU or node from a cpuset, then move the tasks in the empty
2097  * cpuset to its next-highest non-empty parent.
2098  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2099 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2100 {
2101 	struct cpuset *parent;
2102 
2103 	/*
2104 	 * Find its next-highest non-empty parent, (top cpuset
2105 	 * has online cpus, so can't be empty).
2106 	 */
2107 	parent = parent_cs(cs);
2108 	while (cpumask_empty(parent->cpus_allowed) ||
2109 			nodes_empty(parent->mems_allowed))
2110 		parent = parent_cs(parent);
2111 
2112 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2113 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2114 		pr_cont_cgroup_name(cs->css.cgroup);
2115 		pr_cont("\n");
2116 	}
2117 }
2118 
2119 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2120 hotplug_update_tasks_legacy(struct cpuset *cs,
2121 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2122 			    bool cpus_updated, bool mems_updated)
2123 {
2124 	bool is_empty;
2125 
2126 	spin_lock_irq(&callback_lock);
2127 	cpumask_copy(cs->cpus_allowed, new_cpus);
2128 	cpumask_copy(cs->effective_cpus, new_cpus);
2129 	cs->mems_allowed = *new_mems;
2130 	cs->effective_mems = *new_mems;
2131 	spin_unlock_irq(&callback_lock);
2132 
2133 	/*
2134 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2135 	 * as the tasks will be migratecd to an ancestor.
2136 	 */
2137 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2138 		update_tasks_cpumask(cs);
2139 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2140 		update_tasks_nodemask(cs);
2141 
2142 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2143 		   nodes_empty(cs->mems_allowed);
2144 
2145 	mutex_unlock(&cpuset_mutex);
2146 
2147 	/*
2148 	 * Move tasks to the nearest ancestor with execution resources,
2149 	 * This is full cgroup operation which will also call back into
2150 	 * cpuset. Should be done outside any lock.
2151 	 */
2152 	if (is_empty)
2153 		remove_tasks_in_empty_cpuset(cs);
2154 
2155 	mutex_lock(&cpuset_mutex);
2156 }
2157 
2158 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2159 hotplug_update_tasks(struct cpuset *cs,
2160 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2161 		     bool cpus_updated, bool mems_updated)
2162 {
2163 	if (cpumask_empty(new_cpus))
2164 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2165 	if (nodes_empty(*new_mems))
2166 		*new_mems = parent_cs(cs)->effective_mems;
2167 
2168 	spin_lock_irq(&callback_lock);
2169 	cpumask_copy(cs->effective_cpus, new_cpus);
2170 	cs->effective_mems = *new_mems;
2171 	spin_unlock_irq(&callback_lock);
2172 
2173 	if (cpus_updated)
2174 		update_tasks_cpumask(cs);
2175 	if (mems_updated)
2176 		update_tasks_nodemask(cs);
2177 }
2178 
2179 /**
2180  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2181  * @cs: cpuset in interest
2182  *
2183  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2184  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2185  * all its tasks are moved to the nearest ancestor with both resources.
2186  */
cpuset_hotplug_update_tasks(struct cpuset * cs)2187 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2188 {
2189 	static cpumask_t new_cpus;
2190 	static nodemask_t new_mems;
2191 	bool cpus_updated;
2192 	bool mems_updated;
2193 retry:
2194 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2195 
2196 	mutex_lock(&cpuset_mutex);
2197 
2198 	/*
2199 	 * We have raced with task attaching. We wait until attaching
2200 	 * is finished, so we won't attach a task to an empty cpuset.
2201 	 */
2202 	if (cs->attach_in_progress) {
2203 		mutex_unlock(&cpuset_mutex);
2204 		goto retry;
2205 	}
2206 
2207 	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2208 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2209 
2210 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2211 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2212 
2213 	if (cgroup_on_dfl(cs->css.cgroup))
2214 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2215 				     cpus_updated, mems_updated);
2216 	else
2217 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2218 					    cpus_updated, mems_updated);
2219 
2220 	mutex_unlock(&cpuset_mutex);
2221 }
2222 
2223 /**
2224  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2225  *
2226  * This function is called after either CPU or memory configuration has
2227  * changed and updates cpuset accordingly.  The top_cpuset is always
2228  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2229  * order to make cpusets transparent (of no affect) on systems that are
2230  * actively using CPU hotplug but making no active use of cpusets.
2231  *
2232  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2233  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2234  * all descendants.
2235  *
2236  * Note that CPU offlining during suspend is ignored.  We don't modify
2237  * cpusets across suspend/resume cycles at all.
2238  */
cpuset_hotplug_workfn(struct work_struct * work)2239 static void cpuset_hotplug_workfn(struct work_struct *work)
2240 {
2241 	static cpumask_t new_cpus;
2242 	static nodemask_t new_mems;
2243 	bool cpus_updated, mems_updated;
2244 	bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2245 
2246 	mutex_lock(&cpuset_mutex);
2247 
2248 	/* fetch the available cpus/mems and find out which changed how */
2249 	cpumask_copy(&new_cpus, cpu_active_mask);
2250 	new_mems = node_states[N_MEMORY];
2251 
2252 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2253 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2254 
2255 	/* synchronize cpus_allowed to cpu_active_mask */
2256 	if (cpus_updated) {
2257 		spin_lock_irq(&callback_lock);
2258 		if (!on_dfl)
2259 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2260 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2261 		spin_unlock_irq(&callback_lock);
2262 		/* we don't mess with cpumasks of tasks in top_cpuset */
2263 	}
2264 
2265 	/* synchronize mems_allowed to N_MEMORY */
2266 	if (mems_updated) {
2267 		spin_lock_irq(&callback_lock);
2268 		if (!on_dfl)
2269 			top_cpuset.mems_allowed = new_mems;
2270 		top_cpuset.effective_mems = new_mems;
2271 		spin_unlock_irq(&callback_lock);
2272 		update_tasks_nodemask(&top_cpuset);
2273 	}
2274 
2275 	mutex_unlock(&cpuset_mutex);
2276 
2277 	/* if cpus or mems changed, we need to propagate to descendants */
2278 	if (cpus_updated || mems_updated) {
2279 		struct cpuset *cs;
2280 		struct cgroup_subsys_state *pos_css;
2281 
2282 		rcu_read_lock();
2283 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2284 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2285 				continue;
2286 			rcu_read_unlock();
2287 
2288 			cpuset_hotplug_update_tasks(cs);
2289 
2290 			rcu_read_lock();
2291 			css_put(&cs->css);
2292 		}
2293 		rcu_read_unlock();
2294 	}
2295 
2296 	/* rebuild sched domains if cpus_allowed has changed */
2297 	if (cpus_updated)
2298 		rebuild_sched_domains();
2299 }
2300 
cpuset_update_active_cpus(bool cpu_online)2301 void cpuset_update_active_cpus(bool cpu_online)
2302 {
2303 	/*
2304 	 * We're inside cpu hotplug critical region which usually nests
2305 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2306 	 * to a work item to avoid reverse locking order.
2307 	 *
2308 	 * We still need to do partition_sched_domains() synchronously;
2309 	 * otherwise, the scheduler will get confused and put tasks to the
2310 	 * dead CPU.  Fall back to the default single domain.
2311 	 * cpuset_hotplug_workfn() will rebuild it as necessary.
2312 	 */
2313 	partition_sched_domains(1, NULL, NULL);
2314 	schedule_work(&cpuset_hotplug_work);
2315 }
2316 
2317 /*
2318  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2319  * Call this routine anytime after node_states[N_MEMORY] changes.
2320  * See cpuset_update_active_cpus() for CPU hotplug handling.
2321  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2322 static int cpuset_track_online_nodes(struct notifier_block *self,
2323 				unsigned long action, void *arg)
2324 {
2325 	schedule_work(&cpuset_hotplug_work);
2326 	return NOTIFY_OK;
2327 }
2328 
2329 static struct notifier_block cpuset_track_online_nodes_nb = {
2330 	.notifier_call = cpuset_track_online_nodes,
2331 	.priority = 10,		/* ??! */
2332 };
2333 
2334 /**
2335  * cpuset_init_smp - initialize cpus_allowed
2336  *
2337  * Description: Finish top cpuset after cpu, node maps are initialized
2338  */
cpuset_init_smp(void)2339 void __init cpuset_init_smp(void)
2340 {
2341 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2342 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2343 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2344 
2345 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2346 	top_cpuset.effective_mems = node_states[N_MEMORY];
2347 
2348 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2349 }
2350 
2351 /**
2352  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2353  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2354  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2355  *
2356  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2357  * attached to the specified @tsk.  Guaranteed to return some non-empty
2358  * subset of cpu_online_mask, even if this means going outside the
2359  * tasks cpuset.
2360  **/
2361 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2362 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2363 {
2364 	unsigned long flags;
2365 
2366 	spin_lock_irqsave(&callback_lock, flags);
2367 	rcu_read_lock();
2368 	guarantee_online_cpus(task_cs(tsk), pmask);
2369 	rcu_read_unlock();
2370 	spin_unlock_irqrestore(&callback_lock, flags);
2371 }
2372 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2373 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2374 {
2375 	rcu_read_lock();
2376 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2377 	rcu_read_unlock();
2378 
2379 	/*
2380 	 * We own tsk->cpus_allowed, nobody can change it under us.
2381 	 *
2382 	 * But we used cs && cs->cpus_allowed lockless and thus can
2383 	 * race with cgroup_attach_task() or update_cpumask() and get
2384 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2385 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2386 	 * which takes task_rq_lock().
2387 	 *
2388 	 * If we are called after it dropped the lock we must see all
2389 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2390 	 * set any mask even if it is not right from task_cs() pov,
2391 	 * the pending set_cpus_allowed_ptr() will fix things.
2392 	 *
2393 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2394 	 * if required.
2395 	 */
2396 }
2397 
cpuset_init_current_mems_allowed(void)2398 void __init cpuset_init_current_mems_allowed(void)
2399 {
2400 	nodes_setall(current->mems_allowed);
2401 }
2402 
2403 /**
2404  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2405  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2406  *
2407  * Description: Returns the nodemask_t mems_allowed of the cpuset
2408  * attached to the specified @tsk.  Guaranteed to return some non-empty
2409  * subset of node_states[N_MEMORY], even if this means going outside the
2410  * tasks cpuset.
2411  **/
2412 
cpuset_mems_allowed(struct task_struct * tsk)2413 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2414 {
2415 	nodemask_t mask;
2416 	unsigned long flags;
2417 
2418 	spin_lock_irqsave(&callback_lock, flags);
2419 	rcu_read_lock();
2420 	guarantee_online_mems(task_cs(tsk), &mask);
2421 	rcu_read_unlock();
2422 	spin_unlock_irqrestore(&callback_lock, flags);
2423 
2424 	return mask;
2425 }
2426 
2427 /**
2428  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2429  * @nodemask: the nodemask to be checked
2430  *
2431  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2432  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2433 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2434 {
2435 	return nodes_intersects(*nodemask, current->mems_allowed);
2436 }
2437 
2438 /*
2439  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2440  * mem_hardwall ancestor to the specified cpuset.  Call holding
2441  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2442  * (an unusual configuration), then returns the root cpuset.
2443  */
nearest_hardwall_ancestor(struct cpuset * cs)2444 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2445 {
2446 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2447 		cs = parent_cs(cs);
2448 	return cs;
2449 }
2450 
2451 /**
2452  * cpuset_node_allowed - Can we allocate on a memory node?
2453  * @node: is this an allowed node?
2454  * @gfp_mask: memory allocation flags
2455  *
2456  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2457  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2458  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2459  * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2460  * Otherwise, no.
2461  *
2462  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2463  * and do not allow allocations outside the current tasks cpuset
2464  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2465  * GFP_KERNEL allocations are not so marked, so can escape to the
2466  * nearest enclosing hardwalled ancestor cpuset.
2467  *
2468  * Scanning up parent cpusets requires callback_lock.  The
2469  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2470  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2471  * current tasks mems_allowed came up empty on the first pass over
2472  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2473  * cpuset are short of memory, might require taking the callback_lock.
2474  *
2475  * The first call here from mm/page_alloc:get_page_from_freelist()
2476  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2477  * so no allocation on a node outside the cpuset is allowed (unless
2478  * in interrupt, of course).
2479  *
2480  * The second pass through get_page_from_freelist() doesn't even call
2481  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2482  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2483  * in alloc_flags.  That logic and the checks below have the combined
2484  * affect that:
2485  *	in_interrupt - any node ok (current task context irrelevant)
2486  *	GFP_ATOMIC   - any node ok
2487  *	TIF_MEMDIE   - any node ok
2488  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2489  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2490  */
__cpuset_node_allowed(int node,gfp_t gfp_mask)2491 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2492 {
2493 	struct cpuset *cs;		/* current cpuset ancestors */
2494 	int allowed;			/* is allocation in zone z allowed? */
2495 	unsigned long flags;
2496 
2497 	if (in_interrupt())
2498 		return 1;
2499 	if (node_isset(node, current->mems_allowed))
2500 		return 1;
2501 	/*
2502 	 * Allow tasks that have access to memory reserves because they have
2503 	 * been OOM killed to get memory anywhere.
2504 	 */
2505 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2506 		return 1;
2507 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2508 		return 0;
2509 
2510 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2511 		return 1;
2512 
2513 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2514 	spin_lock_irqsave(&callback_lock, flags);
2515 
2516 	rcu_read_lock();
2517 	cs = nearest_hardwall_ancestor(task_cs(current));
2518 	allowed = node_isset(node, cs->mems_allowed);
2519 	rcu_read_unlock();
2520 
2521 	spin_unlock_irqrestore(&callback_lock, flags);
2522 	return allowed;
2523 }
2524 
2525 /**
2526  * cpuset_mem_spread_node() - On which node to begin search for a file page
2527  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2528  *
2529  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2530  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2531  * and if the memory allocation used cpuset_mem_spread_node()
2532  * to determine on which node to start looking, as it will for
2533  * certain page cache or slab cache pages such as used for file
2534  * system buffers and inode caches, then instead of starting on the
2535  * local node to look for a free page, rather spread the starting
2536  * node around the tasks mems_allowed nodes.
2537  *
2538  * We don't have to worry about the returned node being offline
2539  * because "it can't happen", and even if it did, it would be ok.
2540  *
2541  * The routines calling guarantee_online_mems() are careful to
2542  * only set nodes in task->mems_allowed that are online.  So it
2543  * should not be possible for the following code to return an
2544  * offline node.  But if it did, that would be ok, as this routine
2545  * is not returning the node where the allocation must be, only
2546  * the node where the search should start.  The zonelist passed to
2547  * __alloc_pages() will include all nodes.  If the slab allocator
2548  * is passed an offline node, it will fall back to the local node.
2549  * See kmem_cache_alloc_node().
2550  */
2551 
cpuset_spread_node(int * rotor)2552 static int cpuset_spread_node(int *rotor)
2553 {
2554 	int node;
2555 
2556 	node = next_node(*rotor, current->mems_allowed);
2557 	if (node == MAX_NUMNODES)
2558 		node = first_node(current->mems_allowed);
2559 	*rotor = node;
2560 	return node;
2561 }
2562 
cpuset_mem_spread_node(void)2563 int cpuset_mem_spread_node(void)
2564 {
2565 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2566 		current->cpuset_mem_spread_rotor =
2567 			node_random(&current->mems_allowed);
2568 
2569 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2570 }
2571 
cpuset_slab_spread_node(void)2572 int cpuset_slab_spread_node(void)
2573 {
2574 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2575 		current->cpuset_slab_spread_rotor =
2576 			node_random(&current->mems_allowed);
2577 
2578 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2579 }
2580 
2581 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2582 
2583 /**
2584  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2585  * @tsk1: pointer to task_struct of some task.
2586  * @tsk2: pointer to task_struct of some other task.
2587  *
2588  * Description: Return true if @tsk1's mems_allowed intersects the
2589  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2590  * one of the task's memory usage might impact the memory available
2591  * to the other.
2592  **/
2593 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2594 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2595 				   const struct task_struct *tsk2)
2596 {
2597 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2598 }
2599 
2600 /**
2601  * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2602  * @tsk: pointer to task_struct of some task.
2603  *
2604  * Description: Prints @task's name, cpuset name, and cached copy of its
2605  * mems_allowed to the kernel log.
2606  */
cpuset_print_task_mems_allowed(struct task_struct * tsk)2607 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2608 {
2609 	struct cgroup *cgrp;
2610 
2611 	rcu_read_lock();
2612 
2613 	cgrp = task_cs(tsk)->css.cgroup;
2614 	pr_info("%s cpuset=", tsk->comm);
2615 	pr_cont_cgroup_name(cgrp);
2616 	pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2617 
2618 	rcu_read_unlock();
2619 }
2620 
2621 /*
2622  * Collection of memory_pressure is suppressed unless
2623  * this flag is enabled by writing "1" to the special
2624  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2625  */
2626 
2627 int cpuset_memory_pressure_enabled __read_mostly;
2628 
2629 /**
2630  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2631  *
2632  * Keep a running average of the rate of synchronous (direct)
2633  * page reclaim efforts initiated by tasks in each cpuset.
2634  *
2635  * This represents the rate at which some task in the cpuset
2636  * ran low on memory on all nodes it was allowed to use, and
2637  * had to enter the kernels page reclaim code in an effort to
2638  * create more free memory by tossing clean pages or swapping
2639  * or writing dirty pages.
2640  *
2641  * Display to user space in the per-cpuset read-only file
2642  * "memory_pressure".  Value displayed is an integer
2643  * representing the recent rate of entry into the synchronous
2644  * (direct) page reclaim by any task attached to the cpuset.
2645  **/
2646 
__cpuset_memory_pressure_bump(void)2647 void __cpuset_memory_pressure_bump(void)
2648 {
2649 	rcu_read_lock();
2650 	fmeter_markevent(&task_cs(current)->fmeter);
2651 	rcu_read_unlock();
2652 }
2653 
2654 #ifdef CONFIG_PROC_PID_CPUSET
2655 /*
2656  * proc_cpuset_show()
2657  *  - Print tasks cpuset path into seq_file.
2658  *  - Used for /proc/<pid>/cpuset.
2659  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2660  *    doesn't really matter if tsk->cpuset changes after we read it,
2661  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2662  *    anyway.
2663  */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)2664 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2665 		     struct pid *pid, struct task_struct *tsk)
2666 {
2667 	char *buf, *p;
2668 	struct cgroup_subsys_state *css;
2669 	int retval;
2670 
2671 	retval = -ENOMEM;
2672 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2673 	if (!buf)
2674 		goto out;
2675 
2676 	retval = -ENAMETOOLONG;
2677 	rcu_read_lock();
2678 	css = task_css(tsk, cpuset_cgrp_id);
2679 	p = cgroup_path(css->cgroup, buf, PATH_MAX);
2680 	rcu_read_unlock();
2681 	if (!p)
2682 		goto out_free;
2683 	seq_puts(m, p);
2684 	seq_putc(m, '\n');
2685 	retval = 0;
2686 out_free:
2687 	kfree(buf);
2688 out:
2689 	return retval;
2690 }
2691 #endif /* CONFIG_PROC_PID_CPUSET */
2692 
2693 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2694 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2695 {
2696 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2697 		   nodemask_pr_args(&task->mems_allowed));
2698 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2699 		   nodemask_pr_args(&task->mems_allowed));
2700 }
2701