1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/bpf.h>
16 #include <linux/filter.h>
17 #include <net/netlink.h>
18 #include <linux/file.h>
19 #include <linux/vmalloc.h>
20 
21 /* bpf_check() is a static code analyzer that walks eBPF program
22  * instruction by instruction and updates register/stack state.
23  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
24  *
25  * The first pass is depth-first-search to check that the program is a DAG.
26  * It rejects the following programs:
27  * - larger than BPF_MAXINSNS insns
28  * - if loop is present (detected via back-edge)
29  * - unreachable insns exist (shouldn't be a forest. program = one function)
30  * - out of bounds or malformed jumps
31  * The second pass is all possible path descent from the 1st insn.
32  * Since it's analyzing all pathes through the program, the length of the
33  * analysis is limited to 32k insn, which may be hit even if total number of
34  * insn is less then 4K, but there are too many branches that change stack/regs.
35  * Number of 'branches to be analyzed' is limited to 1k
36  *
37  * On entry to each instruction, each register has a type, and the instruction
38  * changes the types of the registers depending on instruction semantics.
39  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
40  * copied to R1.
41  *
42  * All registers are 64-bit.
43  * R0 - return register
44  * R1-R5 argument passing registers
45  * R6-R9 callee saved registers
46  * R10 - frame pointer read-only
47  *
48  * At the start of BPF program the register R1 contains a pointer to bpf_context
49  * and has type PTR_TO_CTX.
50  *
51  * Verifier tracks arithmetic operations on pointers in case:
52  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54  * 1st insn copies R10 (which has FRAME_PTR) type into R1
55  * and 2nd arithmetic instruction is pattern matched to recognize
56  * that it wants to construct a pointer to some element within stack.
57  * So after 2nd insn, the register R1 has type PTR_TO_STACK
58  * (and -20 constant is saved for further stack bounds checking).
59  * Meaning that this reg is a pointer to stack plus known immediate constant.
60  *
61  * Most of the time the registers have UNKNOWN_VALUE type, which
62  * means the register has some value, but it's not a valid pointer.
63  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
64  *
65  * When verifier sees load or store instructions the type of base register
66  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67  * types recognized by check_mem_access() function.
68  *
69  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70  * and the range of [ptr, ptr + map's value_size) is accessible.
71  *
72  * registers used to pass values to function calls are checked against
73  * function argument constraints.
74  *
75  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76  * It means that the register type passed to this function must be
77  * PTR_TO_STACK and it will be used inside the function as
78  * 'pointer to map element key'
79  *
80  * For example the argument constraints for bpf_map_lookup_elem():
81  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82  *   .arg1_type = ARG_CONST_MAP_PTR,
83  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
84  *
85  * ret_type says that this function returns 'pointer to map elem value or null'
86  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87  * 2nd argument should be a pointer to stack, which will be used inside
88  * the helper function as a pointer to map element key.
89  *
90  * On the kernel side the helper function looks like:
91  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
92  * {
93  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94  *    void *key = (void *) (unsigned long) r2;
95  *    void *value;
96  *
97  *    here kernel can access 'key' and 'map' pointers safely, knowing that
98  *    [key, key + map->key_size) bytes are valid and were initialized on
99  *    the stack of eBPF program.
100  * }
101  *
102  * Corresponding eBPF program may look like:
103  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
104  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
106  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107  * here verifier looks at prototype of map_lookup_elem() and sees:
108  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
110  *
111  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113  * and were initialized prior to this call.
114  * If it's ok, then verifier allows this BPF_CALL insn and looks at
115  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117  * returns ether pointer to map value or NULL.
118  *
119  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120  * insn, the register holding that pointer in the true branch changes state to
121  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122  * branch. See check_cond_jmp_op().
123  *
124  * After the call R0 is set to return type of the function and registers R1-R5
125  * are set to NOT_INIT to indicate that they are no longer readable.
126  */
127 
128 /* types of values stored in eBPF registers */
129 enum bpf_reg_type {
130 	NOT_INIT = 0,		 /* nothing was written into register */
131 	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
132 	PTR_TO_CTX,		 /* reg points to bpf_context */
133 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
134 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
135 	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
136 	FRAME_PTR,		 /* reg == frame_pointer */
137 	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
138 	CONST_IMM,		 /* constant integer value */
139 };
140 
141 struct reg_state {
142 	enum bpf_reg_type type;
143 	union {
144 		/* valid when type == CONST_IMM | PTR_TO_STACK */
145 		int imm;
146 
147 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148 		 *   PTR_TO_MAP_VALUE_OR_NULL
149 		 */
150 		struct bpf_map *map_ptr;
151 	};
152 };
153 
154 enum bpf_stack_slot_type {
155 	STACK_INVALID,    /* nothing was stored in this stack slot */
156 	STACK_SPILL,      /* register spilled into stack */
157 	STACK_MISC	  /* BPF program wrote some data into this slot */
158 };
159 
160 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
161 
162 /* state of the program:
163  * type of all registers and stack info
164  */
165 struct verifier_state {
166 	struct reg_state regs[MAX_BPF_REG];
167 	u8 stack_slot_type[MAX_BPF_STACK];
168 	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
169 };
170 
171 /* linked list of verifier states used to prune search */
172 struct verifier_state_list {
173 	struct verifier_state state;
174 	struct verifier_state_list *next;
175 };
176 
177 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
178 struct verifier_stack_elem {
179 	/* verifer state is 'st'
180 	 * before processing instruction 'insn_idx'
181 	 * and after processing instruction 'prev_insn_idx'
182 	 */
183 	struct verifier_state st;
184 	int insn_idx;
185 	int prev_insn_idx;
186 	struct verifier_stack_elem *next;
187 };
188 
189 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
190 
191 /* single container for all structs
192  * one verifier_env per bpf_check() call
193  */
194 struct verifier_env {
195 	struct bpf_prog *prog;		/* eBPF program being verified */
196 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
197 	int stack_size;			/* number of states to be processed */
198 	struct verifier_state cur_state; /* current verifier state */
199 	struct verifier_state_list **explored_states; /* search pruning optimization */
200 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
201 	u32 used_map_cnt;		/* number of used maps */
202 	bool allow_ptr_leaks;
203 };
204 
205 /* verbose verifier prints what it's seeing
206  * bpf_check() is called under lock, so no race to access these global vars
207  */
208 static u32 log_level, log_size, log_len;
209 static char *log_buf;
210 
211 static DEFINE_MUTEX(bpf_verifier_lock);
212 
213 /* log_level controls verbosity level of eBPF verifier.
214  * verbose() is used to dump the verification trace to the log, so the user
215  * can figure out what's wrong with the program
216  */
verbose(const char * fmt,...)217 static __printf(1, 2) void verbose(const char *fmt, ...)
218 {
219 	va_list args;
220 
221 	if (log_level == 0 || log_len >= log_size - 1)
222 		return;
223 
224 	va_start(args, fmt);
225 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
226 	va_end(args);
227 }
228 
229 /* string representation of 'enum bpf_reg_type' */
230 static const char * const reg_type_str[] = {
231 	[NOT_INIT]		= "?",
232 	[UNKNOWN_VALUE]		= "inv",
233 	[PTR_TO_CTX]		= "ctx",
234 	[CONST_PTR_TO_MAP]	= "map_ptr",
235 	[PTR_TO_MAP_VALUE]	= "map_value",
236 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
237 	[FRAME_PTR]		= "fp",
238 	[PTR_TO_STACK]		= "fp",
239 	[CONST_IMM]		= "imm",
240 };
241 
print_verifier_state(struct verifier_env * env)242 static void print_verifier_state(struct verifier_env *env)
243 {
244 	enum bpf_reg_type t;
245 	int i;
246 
247 	for (i = 0; i < MAX_BPF_REG; i++) {
248 		t = env->cur_state.regs[i].type;
249 		if (t == NOT_INIT)
250 			continue;
251 		verbose(" R%d=%s", i, reg_type_str[t]);
252 		if (t == CONST_IMM || t == PTR_TO_STACK)
253 			verbose("%d", env->cur_state.regs[i].imm);
254 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
255 			 t == PTR_TO_MAP_VALUE_OR_NULL)
256 			verbose("(ks=%d,vs=%d)",
257 				env->cur_state.regs[i].map_ptr->key_size,
258 				env->cur_state.regs[i].map_ptr->value_size);
259 	}
260 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
261 		if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
262 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
263 				reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
264 	}
265 	verbose("\n");
266 }
267 
268 static const char *const bpf_class_string[] = {
269 	[BPF_LD]    = "ld",
270 	[BPF_LDX]   = "ldx",
271 	[BPF_ST]    = "st",
272 	[BPF_STX]   = "stx",
273 	[BPF_ALU]   = "alu",
274 	[BPF_JMP]   = "jmp",
275 	[BPF_RET]   = "BUG",
276 	[BPF_ALU64] = "alu64",
277 };
278 
279 static const char *const bpf_alu_string[16] = {
280 	[BPF_ADD >> 4]  = "+=",
281 	[BPF_SUB >> 4]  = "-=",
282 	[BPF_MUL >> 4]  = "*=",
283 	[BPF_DIV >> 4]  = "/=",
284 	[BPF_OR  >> 4]  = "|=",
285 	[BPF_AND >> 4]  = "&=",
286 	[BPF_LSH >> 4]  = "<<=",
287 	[BPF_RSH >> 4]  = ">>=",
288 	[BPF_NEG >> 4]  = "neg",
289 	[BPF_MOD >> 4]  = "%=",
290 	[BPF_XOR >> 4]  = "^=",
291 	[BPF_MOV >> 4]  = "=",
292 	[BPF_ARSH >> 4] = "s>>=",
293 	[BPF_END >> 4]  = "endian",
294 };
295 
296 static const char *const bpf_ldst_string[] = {
297 	[BPF_W >> 3]  = "u32",
298 	[BPF_H >> 3]  = "u16",
299 	[BPF_B >> 3]  = "u8",
300 	[BPF_DW >> 3] = "u64",
301 };
302 
303 static const char *const bpf_jmp_string[16] = {
304 	[BPF_JA >> 4]   = "jmp",
305 	[BPF_JEQ >> 4]  = "==",
306 	[BPF_JGT >> 4]  = ">",
307 	[BPF_JGE >> 4]  = ">=",
308 	[BPF_JSET >> 4] = "&",
309 	[BPF_JNE >> 4]  = "!=",
310 	[BPF_JSGT >> 4] = "s>",
311 	[BPF_JSGE >> 4] = "s>=",
312 	[BPF_CALL >> 4] = "call",
313 	[BPF_EXIT >> 4] = "exit",
314 };
315 
print_bpf_insn(struct bpf_insn * insn)316 static void print_bpf_insn(struct bpf_insn *insn)
317 {
318 	u8 class = BPF_CLASS(insn->code);
319 
320 	if (class == BPF_ALU || class == BPF_ALU64) {
321 		if (BPF_SRC(insn->code) == BPF_X)
322 			verbose("(%02x) %sr%d %s %sr%d\n",
323 				insn->code, class == BPF_ALU ? "(u32) " : "",
324 				insn->dst_reg,
325 				bpf_alu_string[BPF_OP(insn->code) >> 4],
326 				class == BPF_ALU ? "(u32) " : "",
327 				insn->src_reg);
328 		else
329 			verbose("(%02x) %sr%d %s %s%d\n",
330 				insn->code, class == BPF_ALU ? "(u32) " : "",
331 				insn->dst_reg,
332 				bpf_alu_string[BPF_OP(insn->code) >> 4],
333 				class == BPF_ALU ? "(u32) " : "",
334 				insn->imm);
335 	} else if (class == BPF_STX) {
336 		if (BPF_MODE(insn->code) == BPF_MEM)
337 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
338 				insn->code,
339 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
340 				insn->dst_reg,
341 				insn->off, insn->src_reg);
342 		else if (BPF_MODE(insn->code) == BPF_XADD)
343 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
344 				insn->code,
345 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
346 				insn->dst_reg, insn->off,
347 				insn->src_reg);
348 		else
349 			verbose("BUG_%02x\n", insn->code);
350 	} else if (class == BPF_ST) {
351 		if (BPF_MODE(insn->code) != BPF_MEM) {
352 			verbose("BUG_st_%02x\n", insn->code);
353 			return;
354 		}
355 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
356 			insn->code,
357 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
358 			insn->dst_reg,
359 			insn->off, insn->imm);
360 	} else if (class == BPF_LDX) {
361 		if (BPF_MODE(insn->code) != BPF_MEM) {
362 			verbose("BUG_ldx_%02x\n", insn->code);
363 			return;
364 		}
365 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
366 			insn->code, insn->dst_reg,
367 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
368 			insn->src_reg, insn->off);
369 	} else if (class == BPF_LD) {
370 		if (BPF_MODE(insn->code) == BPF_ABS) {
371 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
372 				insn->code,
373 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
374 				insn->imm);
375 		} else if (BPF_MODE(insn->code) == BPF_IND) {
376 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
377 				insn->code,
378 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
379 				insn->src_reg, insn->imm);
380 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
381 			verbose("(%02x) r%d = 0x%x\n",
382 				insn->code, insn->dst_reg, insn->imm);
383 		} else {
384 			verbose("BUG_ld_%02x\n", insn->code);
385 			return;
386 		}
387 	} else if (class == BPF_JMP) {
388 		u8 opcode = BPF_OP(insn->code);
389 
390 		if (opcode == BPF_CALL) {
391 			verbose("(%02x) call %d\n", insn->code, insn->imm);
392 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
393 			verbose("(%02x) goto pc%+d\n",
394 				insn->code, insn->off);
395 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
396 			verbose("(%02x) exit\n", insn->code);
397 		} else if (BPF_SRC(insn->code) == BPF_X) {
398 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
399 				insn->code, insn->dst_reg,
400 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
401 				insn->src_reg, insn->off);
402 		} else {
403 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
404 				insn->code, insn->dst_reg,
405 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
406 				insn->imm, insn->off);
407 		}
408 	} else {
409 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
410 	}
411 }
412 
pop_stack(struct verifier_env * env,int * prev_insn_idx)413 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
414 {
415 	struct verifier_stack_elem *elem;
416 	int insn_idx;
417 
418 	if (env->head == NULL)
419 		return -1;
420 
421 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
422 	insn_idx = env->head->insn_idx;
423 	if (prev_insn_idx)
424 		*prev_insn_idx = env->head->prev_insn_idx;
425 	elem = env->head->next;
426 	kfree(env->head);
427 	env->head = elem;
428 	env->stack_size--;
429 	return insn_idx;
430 }
431 
push_stack(struct verifier_env * env,int insn_idx,int prev_insn_idx)432 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
433 					 int prev_insn_idx)
434 {
435 	struct verifier_stack_elem *elem;
436 
437 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
438 	if (!elem)
439 		goto err;
440 
441 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
442 	elem->insn_idx = insn_idx;
443 	elem->prev_insn_idx = prev_insn_idx;
444 	elem->next = env->head;
445 	env->head = elem;
446 	env->stack_size++;
447 	if (env->stack_size > 1024) {
448 		verbose("BPF program is too complex\n");
449 		goto err;
450 	}
451 	return &elem->st;
452 err:
453 	/* pop all elements and return */
454 	while (pop_stack(env, NULL) >= 0);
455 	return NULL;
456 }
457 
458 #define CALLER_SAVED_REGS 6
459 static const int caller_saved[CALLER_SAVED_REGS] = {
460 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
461 };
462 
init_reg_state(struct reg_state * regs)463 static void init_reg_state(struct reg_state *regs)
464 {
465 	int i;
466 
467 	for (i = 0; i < MAX_BPF_REG; i++) {
468 		regs[i].type = NOT_INIT;
469 		regs[i].imm = 0;
470 		regs[i].map_ptr = NULL;
471 	}
472 
473 	/* frame pointer */
474 	regs[BPF_REG_FP].type = FRAME_PTR;
475 
476 	/* 1st arg to a function */
477 	regs[BPF_REG_1].type = PTR_TO_CTX;
478 }
479 
mark_reg_unknown_value(struct reg_state * regs,u32 regno)480 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
481 {
482 	BUG_ON(regno >= MAX_BPF_REG);
483 	regs[regno].type = UNKNOWN_VALUE;
484 	regs[regno].imm = 0;
485 	regs[regno].map_ptr = NULL;
486 }
487 
488 enum reg_arg_type {
489 	SRC_OP,		/* register is used as source operand */
490 	DST_OP,		/* register is used as destination operand */
491 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
492 };
493 
check_reg_arg(struct reg_state * regs,u32 regno,enum reg_arg_type t)494 static int check_reg_arg(struct reg_state *regs, u32 regno,
495 			 enum reg_arg_type t)
496 {
497 	if (regno >= MAX_BPF_REG) {
498 		verbose("R%d is invalid\n", regno);
499 		return -EINVAL;
500 	}
501 
502 	if (t == SRC_OP) {
503 		/* check whether register used as source operand can be read */
504 		if (regs[regno].type == NOT_INIT) {
505 			verbose("R%d !read_ok\n", regno);
506 			return -EACCES;
507 		}
508 	} else {
509 		/* check whether register used as dest operand can be written to */
510 		if (regno == BPF_REG_FP) {
511 			verbose("frame pointer is read only\n");
512 			return -EACCES;
513 		}
514 		if (t == DST_OP)
515 			mark_reg_unknown_value(regs, regno);
516 	}
517 	return 0;
518 }
519 
bpf_size_to_bytes(int bpf_size)520 static int bpf_size_to_bytes(int bpf_size)
521 {
522 	if (bpf_size == BPF_W)
523 		return 4;
524 	else if (bpf_size == BPF_H)
525 		return 2;
526 	else if (bpf_size == BPF_B)
527 		return 1;
528 	else if (bpf_size == BPF_DW)
529 		return 8;
530 	else
531 		return -EINVAL;
532 }
533 
is_spillable_regtype(enum bpf_reg_type type)534 static bool is_spillable_regtype(enum bpf_reg_type type)
535 {
536 	switch (type) {
537 	case PTR_TO_MAP_VALUE:
538 	case PTR_TO_MAP_VALUE_OR_NULL:
539 	case PTR_TO_STACK:
540 	case PTR_TO_CTX:
541 	case FRAME_PTR:
542 	case CONST_PTR_TO_MAP:
543 		return true;
544 	default:
545 		return false;
546 	}
547 }
548 
549 /* check_stack_read/write functions track spill/fill of registers,
550  * stack boundary and alignment are checked in check_mem_access()
551  */
check_stack_write(struct verifier_state * state,int off,int size,int value_regno)552 static int check_stack_write(struct verifier_state *state, int off, int size,
553 			     int value_regno)
554 {
555 	int i;
556 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
557 	 * so it's aligned access and [off, off + size) are within stack limits
558 	 */
559 
560 	if (value_regno >= 0 &&
561 	    is_spillable_regtype(state->regs[value_regno].type)) {
562 
563 		/* register containing pointer is being spilled into stack */
564 		if (size != BPF_REG_SIZE) {
565 			verbose("invalid size of register spill\n");
566 			return -EACCES;
567 		}
568 
569 		/* save register state */
570 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
571 			state->regs[value_regno];
572 
573 		for (i = 0; i < BPF_REG_SIZE; i++)
574 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
575 	} else {
576 		/* regular write of data into stack */
577 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
578 			(struct reg_state) {};
579 
580 		for (i = 0; i < size; i++)
581 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
582 	}
583 	return 0;
584 }
585 
check_stack_read(struct verifier_state * state,int off,int size,int value_regno)586 static int check_stack_read(struct verifier_state *state, int off, int size,
587 			    int value_regno)
588 {
589 	u8 *slot_type;
590 	int i;
591 
592 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
593 
594 	if (slot_type[0] == STACK_SPILL) {
595 		if (size != BPF_REG_SIZE) {
596 			verbose("invalid size of register spill\n");
597 			return -EACCES;
598 		}
599 		for (i = 1; i < BPF_REG_SIZE; i++) {
600 			if (slot_type[i] != STACK_SPILL) {
601 				verbose("corrupted spill memory\n");
602 				return -EACCES;
603 			}
604 		}
605 
606 		if (value_regno >= 0)
607 			/* restore register state from stack */
608 			state->regs[value_regno] =
609 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
610 		return 0;
611 	} else {
612 		for (i = 0; i < size; i++) {
613 			if (slot_type[i] != STACK_MISC) {
614 				verbose("invalid read from stack off %d+%d size %d\n",
615 					off, i, size);
616 				return -EACCES;
617 			}
618 		}
619 		if (value_regno >= 0)
620 			/* have read misc data from the stack */
621 			mark_reg_unknown_value(state->regs, value_regno);
622 		return 0;
623 	}
624 }
625 
626 /* check read/write into map element returned by bpf_map_lookup_elem() */
check_map_access(struct verifier_env * env,u32 regno,int off,int size)627 static int check_map_access(struct verifier_env *env, u32 regno, int off,
628 			    int size)
629 {
630 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
631 
632 	if (off < 0 || off + size > map->value_size) {
633 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
634 			map->value_size, off, size);
635 		return -EACCES;
636 	}
637 	return 0;
638 }
639 
640 /* check access to 'struct bpf_context' fields */
check_ctx_access(struct verifier_env * env,int off,int size,enum bpf_access_type t)641 static int check_ctx_access(struct verifier_env *env, int off, int size,
642 			    enum bpf_access_type t)
643 {
644 	if (env->prog->aux->ops->is_valid_access &&
645 	    env->prog->aux->ops->is_valid_access(off, size, t))
646 		return 0;
647 
648 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
649 	return -EACCES;
650 }
651 
is_pointer_value(struct verifier_env * env,int regno)652 static bool is_pointer_value(struct verifier_env *env, int regno)
653 {
654 	if (env->allow_ptr_leaks)
655 		return false;
656 
657 	switch (env->cur_state.regs[regno].type) {
658 	case UNKNOWN_VALUE:
659 	case CONST_IMM:
660 		return false;
661 	default:
662 		return true;
663 	}
664 }
665 
666 /* check whether memory at (regno + off) is accessible for t = (read | write)
667  * if t==write, value_regno is a register which value is stored into memory
668  * if t==read, value_regno is a register which will receive the value from memory
669  * if t==write && value_regno==-1, some unknown value is stored into memory
670  * if t==read && value_regno==-1, don't care what we read from memory
671  */
check_mem_access(struct verifier_env * env,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno)672 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
673 			    int bpf_size, enum bpf_access_type t,
674 			    int value_regno)
675 {
676 	struct verifier_state *state = &env->cur_state;
677 	int size, err = 0;
678 
679 	if (state->regs[regno].type == PTR_TO_STACK)
680 		off += state->regs[regno].imm;
681 
682 	size = bpf_size_to_bytes(bpf_size);
683 	if (size < 0)
684 		return size;
685 
686 	if (off % size != 0) {
687 		verbose("misaligned access off %d size %d\n", off, size);
688 		return -EACCES;
689 	}
690 
691 	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
692 		if (t == BPF_WRITE && value_regno >= 0 &&
693 		    is_pointer_value(env, value_regno)) {
694 			verbose("R%d leaks addr into map\n", value_regno);
695 			return -EACCES;
696 		}
697 		err = check_map_access(env, regno, off, size);
698 		if (!err && t == BPF_READ && value_regno >= 0)
699 			mark_reg_unknown_value(state->regs, value_regno);
700 
701 	} else if (state->regs[regno].type == PTR_TO_CTX) {
702 		if (t == BPF_WRITE && value_regno >= 0 &&
703 		    is_pointer_value(env, value_regno)) {
704 			verbose("R%d leaks addr into ctx\n", value_regno);
705 			return -EACCES;
706 		}
707 		err = check_ctx_access(env, off, size, t);
708 		if (!err && t == BPF_READ && value_regno >= 0)
709 			mark_reg_unknown_value(state->regs, value_regno);
710 
711 	} else if (state->regs[regno].type == FRAME_PTR ||
712 		   state->regs[regno].type == PTR_TO_STACK) {
713 		if (off >= 0 || off < -MAX_BPF_STACK) {
714 			verbose("invalid stack off=%d size=%d\n", off, size);
715 			return -EACCES;
716 		}
717 		if (t == BPF_WRITE) {
718 			if (!env->allow_ptr_leaks &&
719 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
720 			    size != BPF_REG_SIZE) {
721 				verbose("attempt to corrupt spilled pointer on stack\n");
722 				return -EACCES;
723 			}
724 			err = check_stack_write(state, off, size, value_regno);
725 		} else {
726 			err = check_stack_read(state, off, size, value_regno);
727 		}
728 	} else {
729 		verbose("R%d invalid mem access '%s'\n",
730 			regno, reg_type_str[state->regs[regno].type]);
731 		return -EACCES;
732 	}
733 	return err;
734 }
735 
check_xadd(struct verifier_env * env,struct bpf_insn * insn)736 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
737 {
738 	struct reg_state *regs = env->cur_state.regs;
739 	int err;
740 
741 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
742 	    insn->imm != 0) {
743 		verbose("BPF_XADD uses reserved fields\n");
744 		return -EINVAL;
745 	}
746 
747 	/* check src1 operand */
748 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
749 	if (err)
750 		return err;
751 
752 	/* check src2 operand */
753 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
754 	if (err)
755 		return err;
756 
757 	/* check whether atomic_add can read the memory */
758 	err = check_mem_access(env, insn->dst_reg, insn->off,
759 			       BPF_SIZE(insn->code), BPF_READ, -1);
760 	if (err)
761 		return err;
762 
763 	/* check whether atomic_add can write into the same memory */
764 	return check_mem_access(env, insn->dst_reg, insn->off,
765 				BPF_SIZE(insn->code), BPF_WRITE, -1);
766 }
767 
768 /* when register 'regno' is passed into function that will read 'access_size'
769  * bytes from that pointer, make sure that it's within stack boundary
770  * and all elements of stack are initialized
771  */
check_stack_boundary(struct verifier_env * env,int regno,int access_size)772 static int check_stack_boundary(struct verifier_env *env,
773 				int regno, int access_size)
774 {
775 	struct verifier_state *state = &env->cur_state;
776 	struct reg_state *regs = state->regs;
777 	int off, i;
778 
779 	if (regs[regno].type != PTR_TO_STACK)
780 		return -EACCES;
781 
782 	off = regs[regno].imm;
783 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
784 	    access_size <= 0) {
785 		verbose("invalid stack type R%d off=%d access_size=%d\n",
786 			regno, off, access_size);
787 		return -EACCES;
788 	}
789 
790 	for (i = 0; i < access_size; i++) {
791 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
792 			verbose("invalid indirect read from stack off %d+%d size %d\n",
793 				off, i, access_size);
794 			return -EACCES;
795 		}
796 	}
797 	return 0;
798 }
799 
check_func_arg(struct verifier_env * env,u32 regno,enum bpf_arg_type arg_type,struct bpf_map ** mapp)800 static int check_func_arg(struct verifier_env *env, u32 regno,
801 			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
802 {
803 	struct reg_state *reg = env->cur_state.regs + regno;
804 	enum bpf_reg_type expected_type;
805 	int err = 0;
806 
807 	if (arg_type == ARG_DONTCARE)
808 		return 0;
809 
810 	if (reg->type == NOT_INIT) {
811 		verbose("R%d !read_ok\n", regno);
812 		return -EACCES;
813 	}
814 
815 	if (arg_type == ARG_ANYTHING) {
816 		if (is_pointer_value(env, regno)) {
817 			verbose("R%d leaks addr into helper function\n", regno);
818 			return -EACCES;
819 		}
820 		return 0;
821 	}
822 
823 	if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
824 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
825 		expected_type = PTR_TO_STACK;
826 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
827 		expected_type = CONST_IMM;
828 	} else if (arg_type == ARG_CONST_MAP_PTR) {
829 		expected_type = CONST_PTR_TO_MAP;
830 	} else if (arg_type == ARG_PTR_TO_CTX) {
831 		expected_type = PTR_TO_CTX;
832 	} else {
833 		verbose("unsupported arg_type %d\n", arg_type);
834 		return -EFAULT;
835 	}
836 
837 	if (reg->type != expected_type) {
838 		verbose("R%d type=%s expected=%s\n", regno,
839 			reg_type_str[reg->type], reg_type_str[expected_type]);
840 		return -EACCES;
841 	}
842 
843 	if (arg_type == ARG_CONST_MAP_PTR) {
844 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
845 		*mapp = reg->map_ptr;
846 
847 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
848 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
849 		 * check that [key, key + map->key_size) are within
850 		 * stack limits and initialized
851 		 */
852 		if (!*mapp) {
853 			/* in function declaration map_ptr must come before
854 			 * map_key, so that it's verified and known before
855 			 * we have to check map_key here. Otherwise it means
856 			 * that kernel subsystem misconfigured verifier
857 			 */
858 			verbose("invalid map_ptr to access map->key\n");
859 			return -EACCES;
860 		}
861 		err = check_stack_boundary(env, regno, (*mapp)->key_size);
862 
863 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
864 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
865 		 * check [value, value + map->value_size) validity
866 		 */
867 		if (!*mapp) {
868 			/* kernel subsystem misconfigured verifier */
869 			verbose("invalid map_ptr to access map->value\n");
870 			return -EACCES;
871 		}
872 		err = check_stack_boundary(env, regno, (*mapp)->value_size);
873 
874 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
875 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
876 		 * from stack pointer 'buf'. Check it
877 		 * note: regno == len, regno - 1 == buf
878 		 */
879 		if (regno == 0) {
880 			/* kernel subsystem misconfigured verifier */
881 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
882 			return -EACCES;
883 		}
884 		err = check_stack_boundary(env, regno - 1, reg->imm);
885 	}
886 
887 	return err;
888 }
889 
check_map_func_compatibility(struct bpf_map * map,int func_id)890 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
891 {
892 	if (!map)
893 		return 0;
894 
895 	/* We need a two way check, first is from map perspective ... */
896 	switch (map->map_type) {
897 	case BPF_MAP_TYPE_PROG_ARRAY:
898 		if (func_id != BPF_FUNC_tail_call)
899 			goto error;
900 		break;
901 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
902 		if (func_id != BPF_FUNC_perf_event_read &&
903 		    func_id != BPF_FUNC_perf_event_output)
904 			goto error;
905 		break;
906 	default:
907 		break;
908 	}
909 
910 	/* ... and second from the function itself. */
911 	switch (func_id) {
912 	case BPF_FUNC_tail_call:
913 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
914 			goto error;
915 		break;
916 	case BPF_FUNC_perf_event_read:
917 	case BPF_FUNC_perf_event_output:
918 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
919 			goto error;
920 		break;
921 	default:
922 		break;
923 	}
924 
925 	return 0;
926 error:
927 	verbose("cannot pass map_type %d into func %d\n",
928 		map->map_type, func_id);
929 	return -EINVAL;
930 }
931 
check_call(struct verifier_env * env,int func_id)932 static int check_call(struct verifier_env *env, int func_id)
933 {
934 	struct verifier_state *state = &env->cur_state;
935 	const struct bpf_func_proto *fn = NULL;
936 	struct reg_state *regs = state->regs;
937 	struct bpf_map *map = NULL;
938 	struct reg_state *reg;
939 	int i, err;
940 
941 	/* find function prototype */
942 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
943 		verbose("invalid func %d\n", func_id);
944 		return -EINVAL;
945 	}
946 
947 	if (env->prog->aux->ops->get_func_proto)
948 		fn = env->prog->aux->ops->get_func_proto(func_id);
949 
950 	if (!fn) {
951 		verbose("unknown func %d\n", func_id);
952 		return -EINVAL;
953 	}
954 
955 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
956 	if (!env->prog->gpl_compatible && fn->gpl_only) {
957 		verbose("cannot call GPL only function from proprietary program\n");
958 		return -EINVAL;
959 	}
960 
961 	/* check args */
962 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
963 	if (err)
964 		return err;
965 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
966 	if (err)
967 		return err;
968 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
969 	if (err)
970 		return err;
971 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
972 	if (err)
973 		return err;
974 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
975 	if (err)
976 		return err;
977 
978 	/* reset caller saved regs */
979 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
980 		reg = regs + caller_saved[i];
981 		reg->type = NOT_INIT;
982 		reg->imm = 0;
983 	}
984 
985 	/* update return register */
986 	if (fn->ret_type == RET_INTEGER) {
987 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
988 	} else if (fn->ret_type == RET_VOID) {
989 		regs[BPF_REG_0].type = NOT_INIT;
990 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
991 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
992 		/* remember map_ptr, so that check_map_access()
993 		 * can check 'value_size' boundary of memory access
994 		 * to map element returned from bpf_map_lookup_elem()
995 		 */
996 		if (map == NULL) {
997 			verbose("kernel subsystem misconfigured verifier\n");
998 			return -EINVAL;
999 		}
1000 		regs[BPF_REG_0].map_ptr = map;
1001 	} else {
1002 		verbose("unknown return type %d of func %d\n",
1003 			fn->ret_type, func_id);
1004 		return -EINVAL;
1005 	}
1006 
1007 	err = check_map_func_compatibility(map, func_id);
1008 	if (err)
1009 		return err;
1010 
1011 	return 0;
1012 }
1013 
1014 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct verifier_env * env,struct bpf_insn * insn)1015 static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1016 {
1017 	struct reg_state *regs = env->cur_state.regs;
1018 	u8 opcode = BPF_OP(insn->code);
1019 	int err;
1020 
1021 	if (opcode == BPF_END || opcode == BPF_NEG) {
1022 		if (opcode == BPF_NEG) {
1023 			if (BPF_SRC(insn->code) != 0 ||
1024 			    insn->src_reg != BPF_REG_0 ||
1025 			    insn->off != 0 || insn->imm != 0) {
1026 				verbose("BPF_NEG uses reserved fields\n");
1027 				return -EINVAL;
1028 			}
1029 		} else {
1030 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1031 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1032 				verbose("BPF_END uses reserved fields\n");
1033 				return -EINVAL;
1034 			}
1035 		}
1036 
1037 		/* check src operand */
1038 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1039 		if (err)
1040 			return err;
1041 
1042 		if (is_pointer_value(env, insn->dst_reg)) {
1043 			verbose("R%d pointer arithmetic prohibited\n",
1044 				insn->dst_reg);
1045 			return -EACCES;
1046 		}
1047 
1048 		/* check dest operand */
1049 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1050 		if (err)
1051 			return err;
1052 
1053 	} else if (opcode == BPF_MOV) {
1054 
1055 		if (BPF_SRC(insn->code) == BPF_X) {
1056 			if (insn->imm != 0 || insn->off != 0) {
1057 				verbose("BPF_MOV uses reserved fields\n");
1058 				return -EINVAL;
1059 			}
1060 
1061 			/* check src operand */
1062 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1063 			if (err)
1064 				return err;
1065 		} else {
1066 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1067 				verbose("BPF_MOV uses reserved fields\n");
1068 				return -EINVAL;
1069 			}
1070 		}
1071 
1072 		/* check dest operand */
1073 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1074 		if (err)
1075 			return err;
1076 
1077 		if (BPF_SRC(insn->code) == BPF_X) {
1078 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1079 				/* case: R1 = R2
1080 				 * copy register state to dest reg
1081 				 */
1082 				regs[insn->dst_reg] = regs[insn->src_reg];
1083 			} else {
1084 				if (is_pointer_value(env, insn->src_reg)) {
1085 					verbose("R%d partial copy of pointer\n",
1086 						insn->src_reg);
1087 					return -EACCES;
1088 				}
1089 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1090 				regs[insn->dst_reg].map_ptr = NULL;
1091 			}
1092 		} else {
1093 			/* case: R = imm
1094 			 * remember the value we stored into this reg
1095 			 */
1096 			regs[insn->dst_reg].type = CONST_IMM;
1097 			regs[insn->dst_reg].imm = insn->imm;
1098 		}
1099 
1100 	} else if (opcode > BPF_END) {
1101 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1102 		return -EINVAL;
1103 
1104 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1105 
1106 		bool stack_relative = false;
1107 
1108 		if (BPF_SRC(insn->code) == BPF_X) {
1109 			if (insn->imm != 0 || insn->off != 0) {
1110 				verbose("BPF_ALU uses reserved fields\n");
1111 				return -EINVAL;
1112 			}
1113 			/* check src1 operand */
1114 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1115 			if (err)
1116 				return err;
1117 		} else {
1118 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1119 				verbose("BPF_ALU uses reserved fields\n");
1120 				return -EINVAL;
1121 			}
1122 		}
1123 
1124 		/* check src2 operand */
1125 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1126 		if (err)
1127 			return err;
1128 
1129 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1130 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1131 			verbose("div by zero\n");
1132 			return -EINVAL;
1133 		}
1134 
1135 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1136 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1137 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1138 
1139 			if (insn->imm < 0 || insn->imm >= size) {
1140 				verbose("invalid shift %d\n", insn->imm);
1141 				return -EINVAL;
1142 			}
1143 		}
1144 
1145 		/* pattern match 'bpf_add Rx, imm' instruction */
1146 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1147 		    regs[insn->dst_reg].type == FRAME_PTR &&
1148 		    BPF_SRC(insn->code) == BPF_K) {
1149 			stack_relative = true;
1150 		} else if (is_pointer_value(env, insn->dst_reg)) {
1151 			verbose("R%d pointer arithmetic prohibited\n",
1152 				insn->dst_reg);
1153 			return -EACCES;
1154 		} else if (BPF_SRC(insn->code) == BPF_X &&
1155 			   is_pointer_value(env, insn->src_reg)) {
1156 			verbose("R%d pointer arithmetic prohibited\n",
1157 				insn->src_reg);
1158 			return -EACCES;
1159 		}
1160 
1161 		/* check dest operand */
1162 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1163 		if (err)
1164 			return err;
1165 
1166 		if (stack_relative) {
1167 			regs[insn->dst_reg].type = PTR_TO_STACK;
1168 			regs[insn->dst_reg].imm = insn->imm;
1169 		}
1170 	}
1171 
1172 	return 0;
1173 }
1174 
check_cond_jmp_op(struct verifier_env * env,struct bpf_insn * insn,int * insn_idx)1175 static int check_cond_jmp_op(struct verifier_env *env,
1176 			     struct bpf_insn *insn, int *insn_idx)
1177 {
1178 	struct reg_state *regs = env->cur_state.regs;
1179 	struct verifier_state *other_branch;
1180 	u8 opcode = BPF_OP(insn->code);
1181 	int err;
1182 
1183 	if (opcode > BPF_EXIT) {
1184 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1185 		return -EINVAL;
1186 	}
1187 
1188 	if (BPF_SRC(insn->code) == BPF_X) {
1189 		if (insn->imm != 0) {
1190 			verbose("BPF_JMP uses reserved fields\n");
1191 			return -EINVAL;
1192 		}
1193 
1194 		/* check src1 operand */
1195 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1196 		if (err)
1197 			return err;
1198 
1199 		if (is_pointer_value(env, insn->src_reg)) {
1200 			verbose("R%d pointer comparison prohibited\n",
1201 				insn->src_reg);
1202 			return -EACCES;
1203 		}
1204 	} else {
1205 		if (insn->src_reg != BPF_REG_0) {
1206 			verbose("BPF_JMP uses reserved fields\n");
1207 			return -EINVAL;
1208 		}
1209 	}
1210 
1211 	/* check src2 operand */
1212 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1213 	if (err)
1214 		return err;
1215 
1216 	/* detect if R == 0 where R was initialized to zero earlier */
1217 	if (BPF_SRC(insn->code) == BPF_K &&
1218 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1219 	    regs[insn->dst_reg].type == CONST_IMM &&
1220 	    regs[insn->dst_reg].imm == insn->imm) {
1221 		if (opcode == BPF_JEQ) {
1222 			/* if (imm == imm) goto pc+off;
1223 			 * only follow the goto, ignore fall-through
1224 			 */
1225 			*insn_idx += insn->off;
1226 			return 0;
1227 		} else {
1228 			/* if (imm != imm) goto pc+off;
1229 			 * only follow fall-through branch, since
1230 			 * that's where the program will go
1231 			 */
1232 			return 0;
1233 		}
1234 	}
1235 
1236 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1237 	if (!other_branch)
1238 		return -EFAULT;
1239 
1240 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1241 	if (BPF_SRC(insn->code) == BPF_K &&
1242 	    insn->imm == 0 && (opcode == BPF_JEQ ||
1243 			       opcode == BPF_JNE) &&
1244 	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1245 		if (opcode == BPF_JEQ) {
1246 			/* next fallthrough insn can access memory via
1247 			 * this register
1248 			 */
1249 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1250 			/* branch targer cannot access it, since reg == 0 */
1251 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1252 			other_branch->regs[insn->dst_reg].imm = 0;
1253 		} else {
1254 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1255 			regs[insn->dst_reg].type = CONST_IMM;
1256 			regs[insn->dst_reg].imm = 0;
1257 		}
1258 	} else if (is_pointer_value(env, insn->dst_reg)) {
1259 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1260 		return -EACCES;
1261 	} else if (BPF_SRC(insn->code) == BPF_K &&
1262 		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1263 
1264 		if (opcode == BPF_JEQ) {
1265 			/* detect if (R == imm) goto
1266 			 * and in the target state recognize that R = imm
1267 			 */
1268 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1269 			other_branch->regs[insn->dst_reg].imm = insn->imm;
1270 		} else {
1271 			/* detect if (R != imm) goto
1272 			 * and in the fall-through state recognize that R = imm
1273 			 */
1274 			regs[insn->dst_reg].type = CONST_IMM;
1275 			regs[insn->dst_reg].imm = insn->imm;
1276 		}
1277 	}
1278 	if (log_level)
1279 		print_verifier_state(env);
1280 	return 0;
1281 }
1282 
1283 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
ld_imm64_to_map_ptr(struct bpf_insn * insn)1284 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1285 {
1286 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1287 
1288 	return (struct bpf_map *) (unsigned long) imm64;
1289 }
1290 
1291 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct verifier_env * env,struct bpf_insn * insn)1292 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1293 {
1294 	struct reg_state *regs = env->cur_state.regs;
1295 	int err;
1296 
1297 	if (BPF_SIZE(insn->code) != BPF_DW) {
1298 		verbose("invalid BPF_LD_IMM insn\n");
1299 		return -EINVAL;
1300 	}
1301 	if (insn->off != 0) {
1302 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1303 		return -EINVAL;
1304 	}
1305 
1306 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1307 	if (err)
1308 		return err;
1309 
1310 	if (insn->src_reg == 0)
1311 		/* generic move 64-bit immediate into a register */
1312 		return 0;
1313 
1314 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1315 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1316 
1317 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1318 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1319 	return 0;
1320 }
1321 
may_access_skb(enum bpf_prog_type type)1322 static bool may_access_skb(enum bpf_prog_type type)
1323 {
1324 	switch (type) {
1325 	case BPF_PROG_TYPE_SOCKET_FILTER:
1326 	case BPF_PROG_TYPE_SCHED_CLS:
1327 	case BPF_PROG_TYPE_SCHED_ACT:
1328 		return true;
1329 	default:
1330 		return false;
1331 	}
1332 }
1333 
1334 /* verify safety of LD_ABS|LD_IND instructions:
1335  * - they can only appear in the programs where ctx == skb
1336  * - since they are wrappers of function calls, they scratch R1-R5 registers,
1337  *   preserve R6-R9, and store return value into R0
1338  *
1339  * Implicit input:
1340  *   ctx == skb == R6 == CTX
1341  *
1342  * Explicit input:
1343  *   SRC == any register
1344  *   IMM == 32-bit immediate
1345  *
1346  * Output:
1347  *   R0 - 8/16/32-bit skb data converted to cpu endianness
1348  */
check_ld_abs(struct verifier_env * env,struct bpf_insn * insn)1349 static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1350 {
1351 	struct reg_state *regs = env->cur_state.regs;
1352 	u8 mode = BPF_MODE(insn->code);
1353 	struct reg_state *reg;
1354 	int i, err;
1355 
1356 	if (!may_access_skb(env->prog->type)) {
1357 		verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1358 		return -EINVAL;
1359 	}
1360 
1361 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1362 	    BPF_SIZE(insn->code) == BPF_DW ||
1363 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1364 		verbose("BPF_LD_ABS uses reserved fields\n");
1365 		return -EINVAL;
1366 	}
1367 
1368 	/* check whether implicit source operand (register R6) is readable */
1369 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1370 	if (err)
1371 		return err;
1372 
1373 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1374 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1375 		return -EINVAL;
1376 	}
1377 
1378 	if (mode == BPF_IND) {
1379 		/* check explicit source operand */
1380 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1381 		if (err)
1382 			return err;
1383 	}
1384 
1385 	/* reset caller saved regs to unreadable */
1386 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1387 		reg = regs + caller_saved[i];
1388 		reg->type = NOT_INIT;
1389 		reg->imm = 0;
1390 	}
1391 
1392 	/* mark destination R0 register as readable, since it contains
1393 	 * the value fetched from the packet
1394 	 */
1395 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1396 	return 0;
1397 }
1398 
1399 /* non-recursive DFS pseudo code
1400  * 1  procedure DFS-iterative(G,v):
1401  * 2      label v as discovered
1402  * 3      let S be a stack
1403  * 4      S.push(v)
1404  * 5      while S is not empty
1405  * 6            t <- S.pop()
1406  * 7            if t is what we're looking for:
1407  * 8                return t
1408  * 9            for all edges e in G.adjacentEdges(t) do
1409  * 10               if edge e is already labelled
1410  * 11                   continue with the next edge
1411  * 12               w <- G.adjacentVertex(t,e)
1412  * 13               if vertex w is not discovered and not explored
1413  * 14                   label e as tree-edge
1414  * 15                   label w as discovered
1415  * 16                   S.push(w)
1416  * 17                   continue at 5
1417  * 18               else if vertex w is discovered
1418  * 19                   label e as back-edge
1419  * 20               else
1420  * 21                   // vertex w is explored
1421  * 22                   label e as forward- or cross-edge
1422  * 23           label t as explored
1423  * 24           S.pop()
1424  *
1425  * convention:
1426  * 0x10 - discovered
1427  * 0x11 - discovered and fall-through edge labelled
1428  * 0x12 - discovered and fall-through and branch edges labelled
1429  * 0x20 - explored
1430  */
1431 
1432 enum {
1433 	DISCOVERED = 0x10,
1434 	EXPLORED = 0x20,
1435 	FALLTHROUGH = 1,
1436 	BRANCH = 2,
1437 };
1438 
1439 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1440 
1441 static int *insn_stack;	/* stack of insns to process */
1442 static int cur_stack;	/* current stack index */
1443 static int *insn_state;
1444 
1445 /* t, w, e - match pseudo-code above:
1446  * t - index of current instruction
1447  * w - next instruction
1448  * e - edge
1449  */
push_insn(int t,int w,int e,struct verifier_env * env)1450 static int push_insn(int t, int w, int e, struct verifier_env *env)
1451 {
1452 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1453 		return 0;
1454 
1455 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1456 		return 0;
1457 
1458 	if (w < 0 || w >= env->prog->len) {
1459 		verbose("jump out of range from insn %d to %d\n", t, w);
1460 		return -EINVAL;
1461 	}
1462 
1463 	if (e == BRANCH)
1464 		/* mark branch target for state pruning */
1465 		env->explored_states[w] = STATE_LIST_MARK;
1466 
1467 	if (insn_state[w] == 0) {
1468 		/* tree-edge */
1469 		insn_state[t] = DISCOVERED | e;
1470 		insn_state[w] = DISCOVERED;
1471 		if (cur_stack >= env->prog->len)
1472 			return -E2BIG;
1473 		insn_stack[cur_stack++] = w;
1474 		return 1;
1475 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1476 		verbose("back-edge from insn %d to %d\n", t, w);
1477 		return -EINVAL;
1478 	} else if (insn_state[w] == EXPLORED) {
1479 		/* forward- or cross-edge */
1480 		insn_state[t] = DISCOVERED | e;
1481 	} else {
1482 		verbose("insn state internal bug\n");
1483 		return -EFAULT;
1484 	}
1485 	return 0;
1486 }
1487 
1488 /* non-recursive depth-first-search to detect loops in BPF program
1489  * loop == back-edge in directed graph
1490  */
check_cfg(struct verifier_env * env)1491 static int check_cfg(struct verifier_env *env)
1492 {
1493 	struct bpf_insn *insns = env->prog->insnsi;
1494 	int insn_cnt = env->prog->len;
1495 	int ret = 0;
1496 	int i, t;
1497 
1498 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1499 	if (!insn_state)
1500 		return -ENOMEM;
1501 
1502 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1503 	if (!insn_stack) {
1504 		kfree(insn_state);
1505 		return -ENOMEM;
1506 	}
1507 
1508 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1509 	insn_stack[0] = 0; /* 0 is the first instruction */
1510 	cur_stack = 1;
1511 
1512 peek_stack:
1513 	if (cur_stack == 0)
1514 		goto check_state;
1515 	t = insn_stack[cur_stack - 1];
1516 
1517 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1518 		u8 opcode = BPF_OP(insns[t].code);
1519 
1520 		if (opcode == BPF_EXIT) {
1521 			goto mark_explored;
1522 		} else if (opcode == BPF_CALL) {
1523 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1524 			if (ret == 1)
1525 				goto peek_stack;
1526 			else if (ret < 0)
1527 				goto err_free;
1528 		} else if (opcode == BPF_JA) {
1529 			if (BPF_SRC(insns[t].code) != BPF_K) {
1530 				ret = -EINVAL;
1531 				goto err_free;
1532 			}
1533 			/* unconditional jump with single edge */
1534 			ret = push_insn(t, t + insns[t].off + 1,
1535 					FALLTHROUGH, env);
1536 			if (ret == 1)
1537 				goto peek_stack;
1538 			else if (ret < 0)
1539 				goto err_free;
1540 			/* tell verifier to check for equivalent states
1541 			 * after every call and jump
1542 			 */
1543 			if (t + 1 < insn_cnt)
1544 				env->explored_states[t + 1] = STATE_LIST_MARK;
1545 		} else {
1546 			/* conditional jump with two edges */
1547 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1548 			if (ret == 1)
1549 				goto peek_stack;
1550 			else if (ret < 0)
1551 				goto err_free;
1552 
1553 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1554 			if (ret == 1)
1555 				goto peek_stack;
1556 			else if (ret < 0)
1557 				goto err_free;
1558 		}
1559 	} else {
1560 		/* all other non-branch instructions with single
1561 		 * fall-through edge
1562 		 */
1563 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1564 		if (ret == 1)
1565 			goto peek_stack;
1566 		else if (ret < 0)
1567 			goto err_free;
1568 	}
1569 
1570 mark_explored:
1571 	insn_state[t] = EXPLORED;
1572 	if (cur_stack-- <= 0) {
1573 		verbose("pop stack internal bug\n");
1574 		ret = -EFAULT;
1575 		goto err_free;
1576 	}
1577 	goto peek_stack;
1578 
1579 check_state:
1580 	for (i = 0; i < insn_cnt; i++) {
1581 		if (insn_state[i] != EXPLORED) {
1582 			verbose("unreachable insn %d\n", i);
1583 			ret = -EINVAL;
1584 			goto err_free;
1585 		}
1586 	}
1587 	ret = 0; /* cfg looks good */
1588 
1589 err_free:
1590 	kfree(insn_state);
1591 	kfree(insn_stack);
1592 	return ret;
1593 }
1594 
1595 /* compare two verifier states
1596  *
1597  * all states stored in state_list are known to be valid, since
1598  * verifier reached 'bpf_exit' instruction through them
1599  *
1600  * this function is called when verifier exploring different branches of
1601  * execution popped from the state stack. If it sees an old state that has
1602  * more strict register state and more strict stack state then this execution
1603  * branch doesn't need to be explored further, since verifier already
1604  * concluded that more strict state leads to valid finish.
1605  *
1606  * Therefore two states are equivalent if register state is more conservative
1607  * and explored stack state is more conservative than the current one.
1608  * Example:
1609  *       explored                   current
1610  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1611  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1612  *
1613  * In other words if current stack state (one being explored) has more
1614  * valid slots than old one that already passed validation, it means
1615  * the verifier can stop exploring and conclude that current state is valid too
1616  *
1617  * Similarly with registers. If explored state has register type as invalid
1618  * whereas register type in current state is meaningful, it means that
1619  * the current state will reach 'bpf_exit' instruction safely
1620  */
states_equal(struct verifier_state * old,struct verifier_state * cur)1621 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1622 {
1623 	int i;
1624 
1625 	for (i = 0; i < MAX_BPF_REG; i++) {
1626 		if (memcmp(&old->regs[i], &cur->regs[i],
1627 			   sizeof(old->regs[0])) != 0) {
1628 			if (old->regs[i].type == NOT_INIT ||
1629 			    (old->regs[i].type == UNKNOWN_VALUE &&
1630 			     cur->regs[i].type != NOT_INIT))
1631 				continue;
1632 			return false;
1633 		}
1634 	}
1635 
1636 	for (i = 0; i < MAX_BPF_STACK; i++) {
1637 		if (old->stack_slot_type[i] == STACK_INVALID)
1638 			continue;
1639 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1640 			/* Ex: old explored (safe) state has STACK_SPILL in
1641 			 * this stack slot, but current has has STACK_MISC ->
1642 			 * this verifier states are not equivalent,
1643 			 * return false to continue verification of this path
1644 			 */
1645 			return false;
1646 		if (i % BPF_REG_SIZE)
1647 			continue;
1648 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1649 			   &cur->spilled_regs[i / BPF_REG_SIZE],
1650 			   sizeof(old->spilled_regs[0])))
1651 			/* when explored and current stack slot types are
1652 			 * the same, check that stored pointers types
1653 			 * are the same as well.
1654 			 * Ex: explored safe path could have stored
1655 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1656 			 * but current path has stored:
1657 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1658 			 * such verifier states are not equivalent.
1659 			 * return false to continue verification of this path
1660 			 */
1661 			return false;
1662 		else
1663 			continue;
1664 	}
1665 	return true;
1666 }
1667 
is_state_visited(struct verifier_env * env,int insn_idx)1668 static int is_state_visited(struct verifier_env *env, int insn_idx)
1669 {
1670 	struct verifier_state_list *new_sl;
1671 	struct verifier_state_list *sl;
1672 
1673 	sl = env->explored_states[insn_idx];
1674 	if (!sl)
1675 		/* this 'insn_idx' instruction wasn't marked, so we will not
1676 		 * be doing state search here
1677 		 */
1678 		return 0;
1679 
1680 	while (sl != STATE_LIST_MARK) {
1681 		if (states_equal(&sl->state, &env->cur_state))
1682 			/* reached equivalent register/stack state,
1683 			 * prune the search
1684 			 */
1685 			return 1;
1686 		sl = sl->next;
1687 	}
1688 
1689 	/* there were no equivalent states, remember current one.
1690 	 * technically the current state is not proven to be safe yet,
1691 	 * but it will either reach bpf_exit (which means it's safe) or
1692 	 * it will be rejected. Since there are no loops, we won't be
1693 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1694 	 */
1695 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1696 	if (!new_sl)
1697 		return -ENOMEM;
1698 
1699 	/* add new state to the head of linked list */
1700 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1701 	new_sl->next = env->explored_states[insn_idx];
1702 	env->explored_states[insn_idx] = new_sl;
1703 	return 0;
1704 }
1705 
do_check(struct verifier_env * env)1706 static int do_check(struct verifier_env *env)
1707 {
1708 	struct verifier_state *state = &env->cur_state;
1709 	struct bpf_insn *insns = env->prog->insnsi;
1710 	struct reg_state *regs = state->regs;
1711 	int insn_cnt = env->prog->len;
1712 	int insn_idx, prev_insn_idx = 0;
1713 	int insn_processed = 0;
1714 	bool do_print_state = false;
1715 
1716 	init_reg_state(regs);
1717 	insn_idx = 0;
1718 	for (;;) {
1719 		struct bpf_insn *insn;
1720 		u8 class;
1721 		int err;
1722 
1723 		if (insn_idx >= insn_cnt) {
1724 			verbose("invalid insn idx %d insn_cnt %d\n",
1725 				insn_idx, insn_cnt);
1726 			return -EFAULT;
1727 		}
1728 
1729 		insn = &insns[insn_idx];
1730 		class = BPF_CLASS(insn->code);
1731 
1732 		if (++insn_processed > 32768) {
1733 			verbose("BPF program is too large. Proccessed %d insn\n",
1734 				insn_processed);
1735 			return -E2BIG;
1736 		}
1737 
1738 		err = is_state_visited(env, insn_idx);
1739 		if (err < 0)
1740 			return err;
1741 		if (err == 1) {
1742 			/* found equivalent state, can prune the search */
1743 			if (log_level) {
1744 				if (do_print_state)
1745 					verbose("\nfrom %d to %d: safe\n",
1746 						prev_insn_idx, insn_idx);
1747 				else
1748 					verbose("%d: safe\n", insn_idx);
1749 			}
1750 			goto process_bpf_exit;
1751 		}
1752 
1753 		if (log_level && do_print_state) {
1754 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1755 			print_verifier_state(env);
1756 			do_print_state = false;
1757 		}
1758 
1759 		if (log_level) {
1760 			verbose("%d: ", insn_idx);
1761 			print_bpf_insn(insn);
1762 		}
1763 
1764 		if (class == BPF_ALU || class == BPF_ALU64) {
1765 			err = check_alu_op(env, insn);
1766 			if (err)
1767 				return err;
1768 
1769 		} else if (class == BPF_LDX) {
1770 			enum bpf_reg_type src_reg_type;
1771 
1772 			/* check for reserved fields is already done */
1773 
1774 			/* check src operand */
1775 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1776 			if (err)
1777 				return err;
1778 
1779 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1780 			if (err)
1781 				return err;
1782 
1783 			src_reg_type = regs[insn->src_reg].type;
1784 
1785 			/* check that memory (src_reg + off) is readable,
1786 			 * the state of dst_reg will be updated by this func
1787 			 */
1788 			err = check_mem_access(env, insn->src_reg, insn->off,
1789 					       BPF_SIZE(insn->code), BPF_READ,
1790 					       insn->dst_reg);
1791 			if (err)
1792 				return err;
1793 
1794 			if (BPF_SIZE(insn->code) != BPF_W) {
1795 				insn_idx++;
1796 				continue;
1797 			}
1798 
1799 			if (insn->imm == 0) {
1800 				/* saw a valid insn
1801 				 * dst_reg = *(u32 *)(src_reg + off)
1802 				 * use reserved 'imm' field to mark this insn
1803 				 */
1804 				insn->imm = src_reg_type;
1805 
1806 			} else if (src_reg_type != insn->imm &&
1807 				   (src_reg_type == PTR_TO_CTX ||
1808 				    insn->imm == PTR_TO_CTX)) {
1809 				/* ABuser program is trying to use the same insn
1810 				 * dst_reg = *(u32*) (src_reg + off)
1811 				 * with different pointer types:
1812 				 * src_reg == ctx in one branch and
1813 				 * src_reg == stack|map in some other branch.
1814 				 * Reject it.
1815 				 */
1816 				verbose("same insn cannot be used with different pointers\n");
1817 				return -EINVAL;
1818 			}
1819 
1820 		} else if (class == BPF_STX) {
1821 			enum bpf_reg_type dst_reg_type;
1822 
1823 			if (BPF_MODE(insn->code) == BPF_XADD) {
1824 				err = check_xadd(env, insn);
1825 				if (err)
1826 					return err;
1827 				insn_idx++;
1828 				continue;
1829 			}
1830 
1831 			/* check src1 operand */
1832 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1833 			if (err)
1834 				return err;
1835 			/* check src2 operand */
1836 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1837 			if (err)
1838 				return err;
1839 
1840 			dst_reg_type = regs[insn->dst_reg].type;
1841 
1842 			/* check that memory (dst_reg + off) is writeable */
1843 			err = check_mem_access(env, insn->dst_reg, insn->off,
1844 					       BPF_SIZE(insn->code), BPF_WRITE,
1845 					       insn->src_reg);
1846 			if (err)
1847 				return err;
1848 
1849 			if (insn->imm == 0) {
1850 				insn->imm = dst_reg_type;
1851 			} else if (dst_reg_type != insn->imm &&
1852 				   (dst_reg_type == PTR_TO_CTX ||
1853 				    insn->imm == PTR_TO_CTX)) {
1854 				verbose("same insn cannot be used with different pointers\n");
1855 				return -EINVAL;
1856 			}
1857 
1858 		} else if (class == BPF_ST) {
1859 			if (BPF_MODE(insn->code) != BPF_MEM ||
1860 			    insn->src_reg != BPF_REG_0) {
1861 				verbose("BPF_ST uses reserved fields\n");
1862 				return -EINVAL;
1863 			}
1864 			/* check src operand */
1865 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1866 			if (err)
1867 				return err;
1868 
1869 			/* check that memory (dst_reg + off) is writeable */
1870 			err = check_mem_access(env, insn->dst_reg, insn->off,
1871 					       BPF_SIZE(insn->code), BPF_WRITE,
1872 					       -1);
1873 			if (err)
1874 				return err;
1875 
1876 		} else if (class == BPF_JMP) {
1877 			u8 opcode = BPF_OP(insn->code);
1878 
1879 			if (opcode == BPF_CALL) {
1880 				if (BPF_SRC(insn->code) != BPF_K ||
1881 				    insn->off != 0 ||
1882 				    insn->src_reg != BPF_REG_0 ||
1883 				    insn->dst_reg != BPF_REG_0) {
1884 					verbose("BPF_CALL uses reserved fields\n");
1885 					return -EINVAL;
1886 				}
1887 
1888 				err = check_call(env, insn->imm);
1889 				if (err)
1890 					return err;
1891 
1892 			} else if (opcode == BPF_JA) {
1893 				if (BPF_SRC(insn->code) != BPF_K ||
1894 				    insn->imm != 0 ||
1895 				    insn->src_reg != BPF_REG_0 ||
1896 				    insn->dst_reg != BPF_REG_0) {
1897 					verbose("BPF_JA uses reserved fields\n");
1898 					return -EINVAL;
1899 				}
1900 
1901 				insn_idx += insn->off + 1;
1902 				continue;
1903 
1904 			} else if (opcode == BPF_EXIT) {
1905 				if (BPF_SRC(insn->code) != BPF_K ||
1906 				    insn->imm != 0 ||
1907 				    insn->src_reg != BPF_REG_0 ||
1908 				    insn->dst_reg != BPF_REG_0) {
1909 					verbose("BPF_EXIT uses reserved fields\n");
1910 					return -EINVAL;
1911 				}
1912 
1913 				/* eBPF calling convetion is such that R0 is used
1914 				 * to return the value from eBPF program.
1915 				 * Make sure that it's readable at this time
1916 				 * of bpf_exit, which means that program wrote
1917 				 * something into it earlier
1918 				 */
1919 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1920 				if (err)
1921 					return err;
1922 
1923 				if (is_pointer_value(env, BPF_REG_0)) {
1924 					verbose("R0 leaks addr as return value\n");
1925 					return -EACCES;
1926 				}
1927 
1928 process_bpf_exit:
1929 				insn_idx = pop_stack(env, &prev_insn_idx);
1930 				if (insn_idx < 0) {
1931 					break;
1932 				} else {
1933 					do_print_state = true;
1934 					continue;
1935 				}
1936 			} else {
1937 				err = check_cond_jmp_op(env, insn, &insn_idx);
1938 				if (err)
1939 					return err;
1940 			}
1941 		} else if (class == BPF_LD) {
1942 			u8 mode = BPF_MODE(insn->code);
1943 
1944 			if (mode == BPF_ABS || mode == BPF_IND) {
1945 				err = check_ld_abs(env, insn);
1946 				if (err)
1947 					return err;
1948 
1949 			} else if (mode == BPF_IMM) {
1950 				err = check_ld_imm(env, insn);
1951 				if (err)
1952 					return err;
1953 
1954 				insn_idx++;
1955 			} else {
1956 				verbose("invalid BPF_LD mode\n");
1957 				return -EINVAL;
1958 			}
1959 		} else {
1960 			verbose("unknown insn class %d\n", class);
1961 			return -EINVAL;
1962 		}
1963 
1964 		insn_idx++;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 /* look for pseudo eBPF instructions that access map FDs and
1971  * replace them with actual map pointers
1972  */
replace_map_fd_with_map_ptr(struct verifier_env * env)1973 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
1974 {
1975 	struct bpf_insn *insn = env->prog->insnsi;
1976 	int insn_cnt = env->prog->len;
1977 	int i, j;
1978 
1979 	for (i = 0; i < insn_cnt; i++, insn++) {
1980 		if (BPF_CLASS(insn->code) == BPF_LDX &&
1981 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
1982 			verbose("BPF_LDX uses reserved fields\n");
1983 			return -EINVAL;
1984 		}
1985 
1986 		if (BPF_CLASS(insn->code) == BPF_STX &&
1987 		    ((BPF_MODE(insn->code) != BPF_MEM &&
1988 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
1989 			verbose("BPF_STX uses reserved fields\n");
1990 			return -EINVAL;
1991 		}
1992 
1993 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
1994 			struct bpf_map *map;
1995 			struct fd f;
1996 
1997 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
1998 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
1999 			    insn[1].off != 0) {
2000 				verbose("invalid bpf_ld_imm64 insn\n");
2001 				return -EINVAL;
2002 			}
2003 
2004 			if (insn->src_reg == 0)
2005 				/* valid generic load 64-bit imm */
2006 				goto next_insn;
2007 
2008 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2009 				verbose("unrecognized bpf_ld_imm64 insn\n");
2010 				return -EINVAL;
2011 			}
2012 
2013 			f = fdget(insn->imm);
2014 			map = __bpf_map_get(f);
2015 			if (IS_ERR(map)) {
2016 				verbose("fd %d is not pointing to valid bpf_map\n",
2017 					insn->imm);
2018 				return PTR_ERR(map);
2019 			}
2020 
2021 			/* store map pointer inside BPF_LD_IMM64 instruction */
2022 			insn[0].imm = (u32) (unsigned long) map;
2023 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2024 
2025 			/* check whether we recorded this map already */
2026 			for (j = 0; j < env->used_map_cnt; j++)
2027 				if (env->used_maps[j] == map) {
2028 					fdput(f);
2029 					goto next_insn;
2030 				}
2031 
2032 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2033 				fdput(f);
2034 				return -E2BIG;
2035 			}
2036 
2037 			/* hold the map. If the program is rejected by verifier,
2038 			 * the map will be released by release_maps() or it
2039 			 * will be used by the valid program until it's unloaded
2040 			 * and all maps are released in free_bpf_prog_info()
2041 			 */
2042 			map = bpf_map_inc(map, false);
2043 			if (IS_ERR(map)) {
2044 				fdput(f);
2045 				return PTR_ERR(map);
2046 			}
2047 			env->used_maps[env->used_map_cnt++] = map;
2048 
2049 			fdput(f);
2050 next_insn:
2051 			insn++;
2052 			i++;
2053 		}
2054 	}
2055 
2056 	/* now all pseudo BPF_LD_IMM64 instructions load valid
2057 	 * 'struct bpf_map *' into a register instead of user map_fd.
2058 	 * These pointers will be used later by verifier to validate map access.
2059 	 */
2060 	return 0;
2061 }
2062 
2063 /* drop refcnt of maps used by the rejected program */
release_maps(struct verifier_env * env)2064 static void release_maps(struct verifier_env *env)
2065 {
2066 	int i;
2067 
2068 	for (i = 0; i < env->used_map_cnt; i++)
2069 		bpf_map_put(env->used_maps[i]);
2070 }
2071 
2072 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct verifier_env * env)2073 static void convert_pseudo_ld_imm64(struct verifier_env *env)
2074 {
2075 	struct bpf_insn *insn = env->prog->insnsi;
2076 	int insn_cnt = env->prog->len;
2077 	int i;
2078 
2079 	for (i = 0; i < insn_cnt; i++, insn++)
2080 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2081 			insn->src_reg = 0;
2082 }
2083 
adjust_branches(struct bpf_prog * prog,int pos,int delta)2084 static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
2085 {
2086 	struct bpf_insn *insn = prog->insnsi;
2087 	int insn_cnt = prog->len;
2088 	int i;
2089 
2090 	for (i = 0; i < insn_cnt; i++, insn++) {
2091 		if (BPF_CLASS(insn->code) != BPF_JMP ||
2092 		    BPF_OP(insn->code) == BPF_CALL ||
2093 		    BPF_OP(insn->code) == BPF_EXIT)
2094 			continue;
2095 
2096 		/* adjust offset of jmps if necessary */
2097 		if (i < pos && i + insn->off + 1 > pos)
2098 			insn->off += delta;
2099 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
2100 			insn->off -= delta;
2101 	}
2102 }
2103 
2104 /* convert load instructions that access fields of 'struct __sk_buff'
2105  * into sequence of instructions that access fields of 'struct sk_buff'
2106  */
convert_ctx_accesses(struct verifier_env * env)2107 static int convert_ctx_accesses(struct verifier_env *env)
2108 {
2109 	struct bpf_insn *insn = env->prog->insnsi;
2110 	int insn_cnt = env->prog->len;
2111 	struct bpf_insn insn_buf[16];
2112 	struct bpf_prog *new_prog;
2113 	u32 cnt;
2114 	int i;
2115 	enum bpf_access_type type;
2116 
2117 	if (!env->prog->aux->ops->convert_ctx_access)
2118 		return 0;
2119 
2120 	for (i = 0; i < insn_cnt; i++, insn++) {
2121 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2122 			type = BPF_READ;
2123 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2124 			type = BPF_WRITE;
2125 		else
2126 			continue;
2127 
2128 		if (insn->imm != PTR_TO_CTX) {
2129 			/* clear internal mark */
2130 			insn->imm = 0;
2131 			continue;
2132 		}
2133 
2134 		cnt = env->prog->aux->ops->
2135 			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2136 					   insn->off, insn_buf, env->prog);
2137 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2138 			verbose("bpf verifier is misconfigured\n");
2139 			return -EINVAL;
2140 		}
2141 
2142 		if (cnt == 1) {
2143 			memcpy(insn, insn_buf, sizeof(*insn));
2144 			continue;
2145 		}
2146 
2147 		/* several new insns need to be inserted. Make room for them */
2148 		insn_cnt += cnt - 1;
2149 		new_prog = bpf_prog_realloc(env->prog,
2150 					    bpf_prog_size(insn_cnt),
2151 					    GFP_USER);
2152 		if (!new_prog)
2153 			return -ENOMEM;
2154 
2155 		new_prog->len = insn_cnt;
2156 
2157 		memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2158 			sizeof(*insn) * (insn_cnt - i - cnt));
2159 
2160 		/* copy substitute insns in place of load instruction */
2161 		memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2162 
2163 		/* adjust branches in the whole program */
2164 		adjust_branches(new_prog, i, cnt - 1);
2165 
2166 		/* keep walking new program and skip insns we just inserted */
2167 		env->prog = new_prog;
2168 		insn = new_prog->insnsi + i + cnt - 1;
2169 		i += cnt - 1;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
free_states(struct verifier_env * env)2175 static void free_states(struct verifier_env *env)
2176 {
2177 	struct verifier_state_list *sl, *sln;
2178 	int i;
2179 
2180 	if (!env->explored_states)
2181 		return;
2182 
2183 	for (i = 0; i < env->prog->len; i++) {
2184 		sl = env->explored_states[i];
2185 
2186 		if (sl)
2187 			while (sl != STATE_LIST_MARK) {
2188 				sln = sl->next;
2189 				kfree(sl);
2190 				sl = sln;
2191 			}
2192 	}
2193 
2194 	kfree(env->explored_states);
2195 }
2196 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr)2197 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2198 {
2199 	char __user *log_ubuf = NULL;
2200 	struct verifier_env *env;
2201 	int ret = -EINVAL;
2202 
2203 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2204 		return -E2BIG;
2205 
2206 	/* 'struct verifier_env' can be global, but since it's not small,
2207 	 * allocate/free it every time bpf_check() is called
2208 	 */
2209 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2210 	if (!env)
2211 		return -ENOMEM;
2212 
2213 	env->prog = *prog;
2214 
2215 	/* grab the mutex to protect few globals used by verifier */
2216 	mutex_lock(&bpf_verifier_lock);
2217 
2218 	if (attr->log_level || attr->log_buf || attr->log_size) {
2219 		/* user requested verbose verifier output
2220 		 * and supplied buffer to store the verification trace
2221 		 */
2222 		log_level = attr->log_level;
2223 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2224 		log_size = attr->log_size;
2225 		log_len = 0;
2226 
2227 		ret = -EINVAL;
2228 		/* log_* values have to be sane */
2229 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2230 		    log_level == 0 || log_ubuf == NULL)
2231 			goto free_env;
2232 
2233 		ret = -ENOMEM;
2234 		log_buf = vmalloc(log_size);
2235 		if (!log_buf)
2236 			goto free_env;
2237 	} else {
2238 		log_level = 0;
2239 	}
2240 
2241 	ret = replace_map_fd_with_map_ptr(env);
2242 	if (ret < 0)
2243 		goto skip_full_check;
2244 
2245 	env->explored_states = kcalloc(env->prog->len,
2246 				       sizeof(struct verifier_state_list *),
2247 				       GFP_USER);
2248 	ret = -ENOMEM;
2249 	if (!env->explored_states)
2250 		goto skip_full_check;
2251 
2252 	ret = check_cfg(env);
2253 	if (ret < 0)
2254 		goto skip_full_check;
2255 
2256 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2257 
2258 	ret = do_check(env);
2259 
2260 skip_full_check:
2261 	while (pop_stack(env, NULL) >= 0);
2262 	free_states(env);
2263 
2264 	if (ret == 0)
2265 		/* program is valid, convert *(u32*)(ctx + off) accesses */
2266 		ret = convert_ctx_accesses(env);
2267 
2268 	if (log_level && log_len >= log_size - 1) {
2269 		BUG_ON(log_len >= log_size);
2270 		/* verifier log exceeded user supplied buffer */
2271 		ret = -ENOSPC;
2272 		/* fall through to return what was recorded */
2273 	}
2274 
2275 	/* copy verifier log back to user space including trailing zero */
2276 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2277 		ret = -EFAULT;
2278 		goto free_log_buf;
2279 	}
2280 
2281 	if (ret == 0 && env->used_map_cnt) {
2282 		/* if program passed verifier, update used_maps in bpf_prog_info */
2283 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2284 							  sizeof(env->used_maps[0]),
2285 							  GFP_KERNEL);
2286 
2287 		if (!env->prog->aux->used_maps) {
2288 			ret = -ENOMEM;
2289 			goto free_log_buf;
2290 		}
2291 
2292 		memcpy(env->prog->aux->used_maps, env->used_maps,
2293 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2294 		env->prog->aux->used_map_cnt = env->used_map_cnt;
2295 
2296 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2297 		 * bpf_ld_imm64 instructions
2298 		 */
2299 		convert_pseudo_ld_imm64(env);
2300 	}
2301 
2302 free_log_buf:
2303 	if (log_level)
2304 		vfree(log_buf);
2305 free_env:
2306 	if (!env->prog->aux->used_maps)
2307 		/* if we didn't copy map pointers into bpf_prog_info, release
2308 		 * them now. Otherwise free_bpf_prog_info() will release them.
2309 		 */
2310 		release_maps(env);
2311 	*prog = env->prog;
2312 	kfree(env);
2313 	mutex_unlock(&bpf_verifier_lock);
2314 	return ret;
2315 }
2316