1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 	POSTING_READ(GEN8_##type##_IMR(which)); \
122 	I915_WRITE(GEN8_##type##_IER(which), 0); \
123 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 	POSTING_READ(GEN8_##type##_IIR(which)); \
125 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 	POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128 
129 #define GEN5_IRQ_RESET(type) do { \
130 	I915_WRITE(type##IMR, 0xffffffff); \
131 	POSTING_READ(type##IMR); \
132 	I915_WRITE(type##IER, 0); \
133 	I915_WRITE(type##IIR, 0xffffffff); \
134 	POSTING_READ(type##IIR); \
135 	I915_WRITE(type##IIR, 0xffffffff); \
136 	POSTING_READ(type##IIR); \
137 } while (0)
138 
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
gen5_assert_iir_is_zero(struct drm_i915_private * dev_priv,u32 reg)142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143 {
144 	u32 val = I915_READ(reg);
145 
146 	if (val == 0)
147 		return;
148 
149 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150 	     reg, val);
151 	I915_WRITE(reg, 0xffffffff);
152 	POSTING_READ(reg);
153 	I915_WRITE(reg, 0xffffffff);
154 	POSTING_READ(reg);
155 }
156 
157 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
158 	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
159 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
160 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
161 	POSTING_READ(GEN8_##type##_IMR(which)); \
162 } while (0)
163 
164 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
165 	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
166 	I915_WRITE(type##IER, (ier_val)); \
167 	I915_WRITE(type##IMR, (imr_val)); \
168 	POSTING_READ(type##IMR); \
169 } while (0)
170 
171 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
172 
173 /* For display hotplug interrupt */
174 static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private * dev_priv,uint32_t mask,uint32_t bits)175 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176 				     uint32_t mask,
177 				     uint32_t bits)
178 {
179 	uint32_t val;
180 
181 	assert_spin_locked(&dev_priv->irq_lock);
182 	WARN_ON(bits & ~mask);
183 
184 	val = I915_READ(PORT_HOTPLUG_EN);
185 	val &= ~mask;
186 	val |= bits;
187 	I915_WRITE(PORT_HOTPLUG_EN, val);
188 }
189 
190 /**
191  * i915_hotplug_interrupt_update - update hotplug interrupt enable
192  * @dev_priv: driver private
193  * @mask: bits to update
194  * @bits: bits to enable
195  * NOTE: the HPD enable bits are modified both inside and outside
196  * of an interrupt context. To avoid that read-modify-write cycles
197  * interfer, these bits are protected by a spinlock. Since this
198  * function is usually not called from a context where the lock is
199  * held already, this function acquires the lock itself. A non-locking
200  * version is also available.
201  */
i915_hotplug_interrupt_update(struct drm_i915_private * dev_priv,uint32_t mask,uint32_t bits)202 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203 				   uint32_t mask,
204 				   uint32_t bits)
205 {
206 	spin_lock_irq(&dev_priv->irq_lock);
207 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208 	spin_unlock_irq(&dev_priv->irq_lock);
209 }
210 
211 /**
212  * ilk_update_display_irq - update DEIMR
213  * @dev_priv: driver private
214  * @interrupt_mask: mask of interrupt bits to update
215  * @enabled_irq_mask: mask of interrupt bits to enable
216  */
ilk_update_display_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)217 static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218 				   uint32_t interrupt_mask,
219 				   uint32_t enabled_irq_mask)
220 {
221 	uint32_t new_val;
222 
223 	assert_spin_locked(&dev_priv->irq_lock);
224 
225 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
226 
227 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
228 		return;
229 
230 	new_val = dev_priv->irq_mask;
231 	new_val &= ~interrupt_mask;
232 	new_val |= (~enabled_irq_mask & interrupt_mask);
233 
234 	if (new_val != dev_priv->irq_mask) {
235 		dev_priv->irq_mask = new_val;
236 		I915_WRITE(DEIMR, dev_priv->irq_mask);
237 		POSTING_READ(DEIMR);
238 	}
239 }
240 
241 void
ironlake_enable_display_irq(struct drm_i915_private * dev_priv,u32 mask)242 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243 {
244 	ilk_update_display_irq(dev_priv, mask, mask);
245 }
246 
247 void
ironlake_disable_display_irq(struct drm_i915_private * dev_priv,u32 mask)248 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249 {
250 	ilk_update_display_irq(dev_priv, mask, 0);
251 }
252 
253 /**
254  * ilk_update_gt_irq - update GTIMR
255  * @dev_priv: driver private
256  * @interrupt_mask: mask of interrupt bits to update
257  * @enabled_irq_mask: mask of interrupt bits to enable
258  */
ilk_update_gt_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)259 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	assert_spin_locked(&dev_priv->irq_lock);
264 
265 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
266 
267 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 		return;
269 
270 	dev_priv->gt_irq_mask &= ~interrupt_mask;
271 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273 	POSTING_READ(GTIMR);
274 }
275 
gen5_enable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)276 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	ilk_update_gt_irq(dev_priv, mask, mask);
279 }
280 
gen5_disable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)281 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	ilk_update_gt_irq(dev_priv, mask, 0);
284 }
285 
gen6_pm_iir(struct drm_i915_private * dev_priv)286 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
287 {
288 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
289 }
290 
gen6_pm_imr(struct drm_i915_private * dev_priv)291 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
292 {
293 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
294 }
295 
gen6_pm_ier(struct drm_i915_private * dev_priv)296 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
297 {
298 	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
299 }
300 
301 /**
302   * snb_update_pm_irq - update GEN6_PMIMR
303   * @dev_priv: driver private
304   * @interrupt_mask: mask of interrupt bits to update
305   * @enabled_irq_mask: mask of interrupt bits to enable
306   */
snb_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)307 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
308 			      uint32_t interrupt_mask,
309 			      uint32_t enabled_irq_mask)
310 {
311 	uint32_t new_val;
312 
313 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
314 
315 	assert_spin_locked(&dev_priv->irq_lock);
316 
317 	new_val = dev_priv->pm_irq_mask;
318 	new_val &= ~interrupt_mask;
319 	new_val |= (~enabled_irq_mask & interrupt_mask);
320 
321 	if (new_val != dev_priv->pm_irq_mask) {
322 		dev_priv->pm_irq_mask = new_val;
323 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324 		POSTING_READ(gen6_pm_imr(dev_priv));
325 	}
326 }
327 
gen6_enable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)328 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
329 {
330 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331 		return;
332 
333 	snb_update_pm_irq(dev_priv, mask, mask);
334 }
335 
__gen6_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)336 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337 				  uint32_t mask)
338 {
339 	snb_update_pm_irq(dev_priv, mask, 0);
340 }
341 
gen6_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)342 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
343 {
344 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345 		return;
346 
347 	__gen6_disable_pm_irq(dev_priv, mask);
348 }
349 
gen6_reset_rps_interrupts(struct drm_device * dev)350 void gen6_reset_rps_interrupts(struct drm_device *dev)
351 {
352 	struct drm_i915_private *dev_priv = dev->dev_private;
353 	uint32_t reg = gen6_pm_iir(dev_priv);
354 
355 	spin_lock_irq(&dev_priv->irq_lock);
356 	I915_WRITE(reg, dev_priv->pm_rps_events);
357 	I915_WRITE(reg, dev_priv->pm_rps_events);
358 	POSTING_READ(reg);
359 	dev_priv->rps.pm_iir = 0;
360 	spin_unlock_irq(&dev_priv->irq_lock);
361 }
362 
gen6_enable_rps_interrupts(struct drm_device * dev)363 void gen6_enable_rps_interrupts(struct drm_device *dev)
364 {
365 	struct drm_i915_private *dev_priv = dev->dev_private;
366 
367 	spin_lock_irq(&dev_priv->irq_lock);
368 
369 	WARN_ON(dev_priv->rps.pm_iir);
370 	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371 	dev_priv->rps.interrupts_enabled = true;
372 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373 				dev_priv->pm_rps_events);
374 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375 
376 	spin_unlock_irq(&dev_priv->irq_lock);
377 }
378 
gen6_sanitize_rps_pm_mask(struct drm_i915_private * dev_priv,u32 mask)379 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380 {
381 	/*
382 	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
384 	 *
385 	 * TODO: verify if this can be reproduced on VLV,CHV.
386 	 */
387 	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388 		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389 
390 	if (INTEL_INFO(dev_priv)->gen >= 8)
391 		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392 
393 	return mask;
394 }
395 
gen6_disable_rps_interrupts(struct drm_device * dev)396 void gen6_disable_rps_interrupts(struct drm_device *dev)
397 {
398 	struct drm_i915_private *dev_priv = dev->dev_private;
399 
400 	spin_lock_irq(&dev_priv->irq_lock);
401 	dev_priv->rps.interrupts_enabled = false;
402 	spin_unlock_irq(&dev_priv->irq_lock);
403 
404 	cancel_work_sync(&dev_priv->rps.work);
405 
406 	spin_lock_irq(&dev_priv->irq_lock);
407 
408 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
409 
410 	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411 	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412 				~dev_priv->pm_rps_events);
413 
414 	spin_unlock_irq(&dev_priv->irq_lock);
415 
416 	synchronize_irq(dev->irq);
417 }
418 
419 /**
420   * bdw_update_port_irq - update DE port interrupt
421   * @dev_priv: driver private
422   * @interrupt_mask: mask of interrupt bits to update
423   * @enabled_irq_mask: mask of interrupt bits to enable
424   */
bdw_update_port_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)425 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
426 				uint32_t interrupt_mask,
427 				uint32_t enabled_irq_mask)
428 {
429 	uint32_t new_val;
430 	uint32_t old_val;
431 
432 	assert_spin_locked(&dev_priv->irq_lock);
433 
434 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
435 
436 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
437 		return;
438 
439 	old_val = I915_READ(GEN8_DE_PORT_IMR);
440 
441 	new_val = old_val;
442 	new_val &= ~interrupt_mask;
443 	new_val |= (~enabled_irq_mask & interrupt_mask);
444 
445 	if (new_val != old_val) {
446 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
447 		POSTING_READ(GEN8_DE_PORT_IMR);
448 	}
449 }
450 
451 /**
452  * ibx_display_interrupt_update - update SDEIMR
453  * @dev_priv: driver private
454  * @interrupt_mask: mask of interrupt bits to update
455  * @enabled_irq_mask: mask of interrupt bits to enable
456  */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)457 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
458 				  uint32_t interrupt_mask,
459 				  uint32_t enabled_irq_mask)
460 {
461 	uint32_t sdeimr = I915_READ(SDEIMR);
462 	sdeimr &= ~interrupt_mask;
463 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
464 
465 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
466 
467 	assert_spin_locked(&dev_priv->irq_lock);
468 
469 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
470 		return;
471 
472 	I915_WRITE(SDEIMR, sdeimr);
473 	POSTING_READ(SDEIMR);
474 }
475 
476 static void
__i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)477 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
478 		       u32 enable_mask, u32 status_mask)
479 {
480 	u32 reg = PIPESTAT(pipe);
481 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
482 
483 	assert_spin_locked(&dev_priv->irq_lock);
484 	WARN_ON(!intel_irqs_enabled(dev_priv));
485 
486 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
487 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
488 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
489 		      pipe_name(pipe), enable_mask, status_mask))
490 		return;
491 
492 	if ((pipestat & enable_mask) == enable_mask)
493 		return;
494 
495 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
496 
497 	/* Enable the interrupt, clear any pending status */
498 	pipestat |= enable_mask | status_mask;
499 	I915_WRITE(reg, pipestat);
500 	POSTING_READ(reg);
501 }
502 
503 static void
__i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)504 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
505 		        u32 enable_mask, u32 status_mask)
506 {
507 	u32 reg = PIPESTAT(pipe);
508 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
509 
510 	assert_spin_locked(&dev_priv->irq_lock);
511 	WARN_ON(!intel_irqs_enabled(dev_priv));
512 
513 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
514 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
515 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
516 		      pipe_name(pipe), enable_mask, status_mask))
517 		return;
518 
519 	if ((pipestat & enable_mask) == 0)
520 		return;
521 
522 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
523 
524 	pipestat &= ~enable_mask;
525 	I915_WRITE(reg, pipestat);
526 	POSTING_READ(reg);
527 }
528 
vlv_get_pipestat_enable_mask(struct drm_device * dev,u32 status_mask)529 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
530 {
531 	u32 enable_mask = status_mask << 16;
532 
533 	/*
534 	 * On pipe A we don't support the PSR interrupt yet,
535 	 * on pipe B and C the same bit MBZ.
536 	 */
537 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
538 		return 0;
539 	/*
540 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
541 	 * A the same bit is for perf counters which we don't use either.
542 	 */
543 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
544 		return 0;
545 
546 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
547 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
548 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
549 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
550 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
551 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
552 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
553 
554 	return enable_mask;
555 }
556 
557 void
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)558 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
559 		     u32 status_mask)
560 {
561 	u32 enable_mask;
562 
563 	if (IS_VALLEYVIEW(dev_priv->dev))
564 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
565 							   status_mask);
566 	else
567 		enable_mask = status_mask << 16;
568 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
569 }
570 
571 void
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)572 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
573 		      u32 status_mask)
574 {
575 	u32 enable_mask;
576 
577 	if (IS_VALLEYVIEW(dev_priv->dev))
578 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
579 							   status_mask);
580 	else
581 		enable_mask = status_mask << 16;
582 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
583 }
584 
585 /**
586  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
587  * @dev: drm device
588  */
i915_enable_asle_pipestat(struct drm_device * dev)589 static void i915_enable_asle_pipestat(struct drm_device *dev)
590 {
591 	struct drm_i915_private *dev_priv = dev->dev_private;
592 
593 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
594 		return;
595 
596 	spin_lock_irq(&dev_priv->irq_lock);
597 
598 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
599 	if (INTEL_INFO(dev)->gen >= 4)
600 		i915_enable_pipestat(dev_priv, PIPE_A,
601 				     PIPE_LEGACY_BLC_EVENT_STATUS);
602 
603 	spin_unlock_irq(&dev_priv->irq_lock);
604 }
605 
606 /*
607  * This timing diagram depicts the video signal in and
608  * around the vertical blanking period.
609  *
610  * Assumptions about the fictitious mode used in this example:
611  *  vblank_start >= 3
612  *  vsync_start = vblank_start + 1
613  *  vsync_end = vblank_start + 2
614  *  vtotal = vblank_start + 3
615  *
616  *           start of vblank:
617  *           latch double buffered registers
618  *           increment frame counter (ctg+)
619  *           generate start of vblank interrupt (gen4+)
620  *           |
621  *           |          frame start:
622  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
623  *           |          may be shifted forward 1-3 extra lines via PIPECONF
624  *           |          |
625  *           |          |  start of vsync:
626  *           |          |  generate vsync interrupt
627  *           |          |  |
628  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
629  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
630  * ----va---> <-----------------vb--------------------> <--------va-------------
631  *       |          |       <----vs----->                     |
632  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
633  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
634  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
635  *       |          |                                         |
636  *       last visible pixel                                   first visible pixel
637  *                  |                                         increment frame counter (gen3/4)
638  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
639  *
640  * x  = horizontal active
641  * _  = horizontal blanking
642  * hs = horizontal sync
643  * va = vertical active
644  * vb = vertical blanking
645  * vs = vertical sync
646  * vbs = vblank_start (number)
647  *
648  * Summary:
649  * - most events happen at the start of horizontal sync
650  * - frame start happens at the start of horizontal blank, 1-4 lines
651  *   (depending on PIPECONF settings) after the start of vblank
652  * - gen3/4 pixel and frame counter are synchronized with the start
653  *   of horizontal active on the first line of vertical active
654  */
655 
i8xx_get_vblank_counter(struct drm_device * dev,unsigned int pipe)656 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
657 {
658 	/* Gen2 doesn't have a hardware frame counter */
659 	return 0;
660 }
661 
662 /* Called from drm generic code, passed a 'crtc', which
663  * we use as a pipe index
664  */
i915_get_vblank_counter(struct drm_device * dev,unsigned int pipe)665 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
666 {
667 	struct drm_i915_private *dev_priv = dev->dev_private;
668 	unsigned long high_frame;
669 	unsigned long low_frame;
670 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
671 	struct intel_crtc *intel_crtc =
672 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
673 	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
674 
675 	htotal = mode->crtc_htotal;
676 	hsync_start = mode->crtc_hsync_start;
677 	vbl_start = mode->crtc_vblank_start;
678 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
679 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
680 
681 	/* Convert to pixel count */
682 	vbl_start *= htotal;
683 
684 	/* Start of vblank event occurs at start of hsync */
685 	vbl_start -= htotal - hsync_start;
686 
687 	high_frame = PIPEFRAME(pipe);
688 	low_frame = PIPEFRAMEPIXEL(pipe);
689 
690 	/*
691 	 * High & low register fields aren't synchronized, so make sure
692 	 * we get a low value that's stable across two reads of the high
693 	 * register.
694 	 */
695 	do {
696 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
697 		low   = I915_READ(low_frame);
698 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699 	} while (high1 != high2);
700 
701 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
702 	pixel = low & PIPE_PIXEL_MASK;
703 	low >>= PIPE_FRAME_LOW_SHIFT;
704 
705 	/*
706 	 * The frame counter increments at beginning of active.
707 	 * Cook up a vblank counter by also checking the pixel
708 	 * counter against vblank start.
709 	 */
710 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
711 }
712 
g4x_get_vblank_counter(struct drm_device * dev,unsigned int pipe)713 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
714 {
715 	struct drm_i915_private *dev_priv = dev->dev_private;
716 
717 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
718 }
719 
720 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
721 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
722 
__intel_get_crtc_scanline(struct intel_crtc * crtc)723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725 	struct drm_device *dev = crtc->base.dev;
726 	struct drm_i915_private *dev_priv = dev->dev_private;
727 	const struct drm_display_mode *mode = &crtc->base.hwmode;
728 	enum pipe pipe = crtc->pipe;
729 	int position, vtotal;
730 
731 	vtotal = mode->crtc_vtotal;
732 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733 		vtotal /= 2;
734 
735 	if (IS_GEN2(dev))
736 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737 	else
738 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739 
740 	/*
741 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
742 	 * read it just before the start of vblank.  So try it again
743 	 * so we don't accidentally end up spanning a vblank frame
744 	 * increment, causing the pipe_update_end() code to squak at us.
745 	 *
746 	 * The nature of this problem means we can't simply check the ISR
747 	 * bit and return the vblank start value; nor can we use the scanline
748 	 * debug register in the transcoder as it appears to have the same
749 	 * problem.  We may need to extend this to include other platforms,
750 	 * but so far testing only shows the problem on HSW.
751 	 */
752 	if (HAS_DDI(dev) && !position) {
753 		int i, temp;
754 
755 		for (i = 0; i < 100; i++) {
756 			udelay(1);
757 			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758 				DSL_LINEMASK_GEN3;
759 			if (temp != position) {
760 				position = temp;
761 				break;
762 			}
763 		}
764 	}
765 
766 	/*
767 	 * See update_scanline_offset() for the details on the
768 	 * scanline_offset adjustment.
769 	 */
770 	return (position + crtc->scanline_offset) % vtotal;
771 }
772 
i915_get_crtc_scanoutpos(struct drm_device * dev,unsigned int pipe,unsigned int flags,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774 				    unsigned int flags, int *vpos, int *hpos,
775 				    ktime_t *stime, ktime_t *etime,
776 				    const struct drm_display_mode *mode)
777 {
778 	struct drm_i915_private *dev_priv = dev->dev_private;
779 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781 	int position;
782 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783 	bool in_vbl = true;
784 	int ret = 0;
785 	unsigned long irqflags;
786 
787 	if (WARN_ON(!mode->crtc_clock)) {
788 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789 				 "pipe %c\n", pipe_name(pipe));
790 		return 0;
791 	}
792 
793 	htotal = mode->crtc_htotal;
794 	hsync_start = mode->crtc_hsync_start;
795 	vtotal = mode->crtc_vtotal;
796 	vbl_start = mode->crtc_vblank_start;
797 	vbl_end = mode->crtc_vblank_end;
798 
799 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
801 		vbl_end /= 2;
802 		vtotal /= 2;
803 	}
804 
805 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806 
807 	/*
808 	 * Lock uncore.lock, as we will do multiple timing critical raw
809 	 * register reads, potentially with preemption disabled, so the
810 	 * following code must not block on uncore.lock.
811 	 */
812 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813 
814 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815 
816 	/* Get optional system timestamp before query. */
817 	if (stime)
818 		*stime = ktime_get();
819 
820 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
821 		/* No obvious pixelcount register. Only query vertical
822 		 * scanout position from Display scan line register.
823 		 */
824 		position = __intel_get_crtc_scanline(intel_crtc);
825 	} else {
826 		/* Have access to pixelcount since start of frame.
827 		 * We can split this into vertical and horizontal
828 		 * scanout position.
829 		 */
830 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831 
832 		/* convert to pixel counts */
833 		vbl_start *= htotal;
834 		vbl_end *= htotal;
835 		vtotal *= htotal;
836 
837 		/*
838 		 * In interlaced modes, the pixel counter counts all pixels,
839 		 * so one field will have htotal more pixels. In order to avoid
840 		 * the reported position from jumping backwards when the pixel
841 		 * counter is beyond the length of the shorter field, just
842 		 * clamp the position the length of the shorter field. This
843 		 * matches how the scanline counter based position works since
844 		 * the scanline counter doesn't count the two half lines.
845 		 */
846 		if (position >= vtotal)
847 			position = vtotal - 1;
848 
849 		/*
850 		 * Start of vblank interrupt is triggered at start of hsync,
851 		 * just prior to the first active line of vblank. However we
852 		 * consider lines to start at the leading edge of horizontal
853 		 * active. So, should we get here before we've crossed into
854 		 * the horizontal active of the first line in vblank, we would
855 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856 		 * always add htotal-hsync_start to the current pixel position.
857 		 */
858 		position = (position + htotal - hsync_start) % vtotal;
859 	}
860 
861 	/* Get optional system timestamp after query. */
862 	if (etime)
863 		*etime = ktime_get();
864 
865 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866 
867 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868 
869 	in_vbl = position >= vbl_start && position < vbl_end;
870 
871 	/*
872 	 * While in vblank, position will be negative
873 	 * counting up towards 0 at vbl_end. And outside
874 	 * vblank, position will be positive counting
875 	 * up since vbl_end.
876 	 */
877 	if (position >= vbl_start)
878 		position -= vbl_end;
879 	else
880 		position += vtotal - vbl_end;
881 
882 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
883 		*vpos = position;
884 		*hpos = 0;
885 	} else {
886 		*vpos = position / htotal;
887 		*hpos = position - (*vpos * htotal);
888 	}
889 
890 	/* In vblank? */
891 	if (in_vbl)
892 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
893 
894 	return ret;
895 }
896 
intel_get_crtc_scanline(struct intel_crtc * crtc)897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
900 	unsigned long irqflags;
901 	int position;
902 
903 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904 	position = __intel_get_crtc_scanline(crtc);
905 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906 
907 	return position;
908 }
909 
i915_get_vblank_timestamp(struct drm_device * dev,unsigned int pipe,int * max_error,struct timeval * vblank_time,unsigned flags)910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911 			      int *max_error,
912 			      struct timeval *vblank_time,
913 			      unsigned flags)
914 {
915 	struct drm_crtc *crtc;
916 
917 	if (pipe >= INTEL_INFO(dev)->num_pipes) {
918 		DRM_ERROR("Invalid crtc %u\n", pipe);
919 		return -EINVAL;
920 	}
921 
922 	/* Get drm_crtc to timestamp: */
923 	crtc = intel_get_crtc_for_pipe(dev, pipe);
924 	if (crtc == NULL) {
925 		DRM_ERROR("Invalid crtc %u\n", pipe);
926 		return -EINVAL;
927 	}
928 
929 	if (!crtc->hwmode.crtc_clock) {
930 		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931 		return -EBUSY;
932 	}
933 
934 	/* Helper routine in DRM core does all the work: */
935 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936 						     vblank_time, flags,
937 						     &crtc->hwmode);
938 }
939 
ironlake_rps_change_irq_handler(struct drm_device * dev)940 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
941 {
942 	struct drm_i915_private *dev_priv = dev->dev_private;
943 	u32 busy_up, busy_down, max_avg, min_avg;
944 	u8 new_delay;
945 
946 	spin_lock(&mchdev_lock);
947 
948 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
949 
950 	new_delay = dev_priv->ips.cur_delay;
951 
952 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
953 	busy_up = I915_READ(RCPREVBSYTUPAVG);
954 	busy_down = I915_READ(RCPREVBSYTDNAVG);
955 	max_avg = I915_READ(RCBMAXAVG);
956 	min_avg = I915_READ(RCBMINAVG);
957 
958 	/* Handle RCS change request from hw */
959 	if (busy_up > max_avg) {
960 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
961 			new_delay = dev_priv->ips.cur_delay - 1;
962 		if (new_delay < dev_priv->ips.max_delay)
963 			new_delay = dev_priv->ips.max_delay;
964 	} else if (busy_down < min_avg) {
965 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
966 			new_delay = dev_priv->ips.cur_delay + 1;
967 		if (new_delay > dev_priv->ips.min_delay)
968 			new_delay = dev_priv->ips.min_delay;
969 	}
970 
971 	if (ironlake_set_drps(dev, new_delay))
972 		dev_priv->ips.cur_delay = new_delay;
973 
974 	spin_unlock(&mchdev_lock);
975 
976 	return;
977 }
978 
notify_ring(struct intel_engine_cs * ring)979 static void notify_ring(struct intel_engine_cs *ring)
980 {
981 	if (!intel_ring_initialized(ring))
982 		return;
983 
984 	trace_i915_gem_request_notify(ring);
985 
986 	wake_up_all(&ring->irq_queue);
987 }
988 
vlv_c0_read(struct drm_i915_private * dev_priv,struct intel_rps_ei * ei)989 static void vlv_c0_read(struct drm_i915_private *dev_priv,
990 			struct intel_rps_ei *ei)
991 {
992 	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
993 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
994 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
995 }
996 
vlv_c0_above(struct drm_i915_private * dev_priv,const struct intel_rps_ei * old,const struct intel_rps_ei * now,int threshold)997 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
998 			 const struct intel_rps_ei *old,
999 			 const struct intel_rps_ei *now,
1000 			 int threshold)
1001 {
1002 	u64 time, c0;
1003 	unsigned int mul = 100;
1004 
1005 	if (old->cz_clock == 0)
1006 		return false;
1007 
1008 	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1009 		mul <<= 8;
1010 
1011 	time = now->cz_clock - old->cz_clock;
1012 	time *= threshold * dev_priv->czclk_freq;
1013 
1014 	/* Workload can be split between render + media, e.g. SwapBuffers
1015 	 * being blitted in X after being rendered in mesa. To account for
1016 	 * this we need to combine both engines into our activity counter.
1017 	 */
1018 	c0 = now->render_c0 - old->render_c0;
1019 	c0 += now->media_c0 - old->media_c0;
1020 	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1021 
1022 	return c0 >= time;
1023 }
1024 
gen6_rps_reset_ei(struct drm_i915_private * dev_priv)1025 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1026 {
1027 	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1028 	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1029 }
1030 
vlv_wa_c0_ei(struct drm_i915_private * dev_priv,u32 pm_iir)1031 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1032 {
1033 	struct intel_rps_ei now;
1034 	u32 events = 0;
1035 
1036 	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1037 		return 0;
1038 
1039 	vlv_c0_read(dev_priv, &now);
1040 	if (now.cz_clock == 0)
1041 		return 0;
1042 
1043 	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1044 		if (!vlv_c0_above(dev_priv,
1045 				  &dev_priv->rps.down_ei, &now,
1046 				  dev_priv->rps.down_threshold))
1047 			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1048 		dev_priv->rps.down_ei = now;
1049 	}
1050 
1051 	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1052 		if (vlv_c0_above(dev_priv,
1053 				 &dev_priv->rps.up_ei, &now,
1054 				 dev_priv->rps.up_threshold))
1055 			events |= GEN6_PM_RP_UP_THRESHOLD;
1056 		dev_priv->rps.up_ei = now;
1057 	}
1058 
1059 	return events;
1060 }
1061 
any_waiters(struct drm_i915_private * dev_priv)1062 static bool any_waiters(struct drm_i915_private *dev_priv)
1063 {
1064 	struct intel_engine_cs *ring;
1065 	int i;
1066 
1067 	for_each_ring(ring, dev_priv, i)
1068 		if (ring->irq_refcount)
1069 			return true;
1070 
1071 	return false;
1072 }
1073 
gen6_pm_rps_work(struct work_struct * work)1074 static void gen6_pm_rps_work(struct work_struct *work)
1075 {
1076 	struct drm_i915_private *dev_priv =
1077 		container_of(work, struct drm_i915_private, rps.work);
1078 	bool client_boost;
1079 	int new_delay, adj, min, max;
1080 	u32 pm_iir;
1081 
1082 	spin_lock_irq(&dev_priv->irq_lock);
1083 	/* Speed up work cancelation during disabling rps interrupts. */
1084 	if (!dev_priv->rps.interrupts_enabled) {
1085 		spin_unlock_irq(&dev_priv->irq_lock);
1086 		return;
1087 	}
1088 	pm_iir = dev_priv->rps.pm_iir;
1089 	dev_priv->rps.pm_iir = 0;
1090 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1091 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1092 	client_boost = dev_priv->rps.client_boost;
1093 	dev_priv->rps.client_boost = false;
1094 	spin_unlock_irq(&dev_priv->irq_lock);
1095 
1096 	/* Make sure we didn't queue anything we're not going to process. */
1097 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1098 
1099 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1100 		return;
1101 
1102 	mutex_lock(&dev_priv->rps.hw_lock);
1103 
1104 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1105 
1106 	adj = dev_priv->rps.last_adj;
1107 	new_delay = dev_priv->rps.cur_freq;
1108 	min = dev_priv->rps.min_freq_softlimit;
1109 	max = dev_priv->rps.max_freq_softlimit;
1110 
1111 	if (client_boost) {
1112 		new_delay = dev_priv->rps.max_freq_softlimit;
1113 		adj = 0;
1114 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1115 		if (adj > 0)
1116 			adj *= 2;
1117 		else /* CHV needs even encode values */
1118 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1119 		/*
1120 		 * For better performance, jump directly
1121 		 * to RPe if we're below it.
1122 		 */
1123 		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1124 			new_delay = dev_priv->rps.efficient_freq;
1125 			adj = 0;
1126 		}
1127 	} else if (any_waiters(dev_priv)) {
1128 		adj = 0;
1129 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1130 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1131 			new_delay = dev_priv->rps.efficient_freq;
1132 		else
1133 			new_delay = dev_priv->rps.min_freq_softlimit;
1134 		adj = 0;
1135 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1136 		if (adj < 0)
1137 			adj *= 2;
1138 		else /* CHV needs even encode values */
1139 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1140 	} else { /* unknown event */
1141 		adj = 0;
1142 	}
1143 
1144 	dev_priv->rps.last_adj = adj;
1145 
1146 	/* sysfs frequency interfaces may have snuck in while servicing the
1147 	 * interrupt
1148 	 */
1149 	new_delay += adj;
1150 	new_delay = clamp_t(int, new_delay, min, max);
1151 
1152 	intel_set_rps(dev_priv->dev, new_delay);
1153 
1154 	mutex_unlock(&dev_priv->rps.hw_lock);
1155 }
1156 
1157 
1158 /**
1159  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1160  * occurred.
1161  * @work: workqueue struct
1162  *
1163  * Doesn't actually do anything except notify userspace. As a consequence of
1164  * this event, userspace should try to remap the bad rows since statistically
1165  * it is likely the same row is more likely to go bad again.
1166  */
ivybridge_parity_work(struct work_struct * work)1167 static void ivybridge_parity_work(struct work_struct *work)
1168 {
1169 	struct drm_i915_private *dev_priv =
1170 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1171 	u32 error_status, row, bank, subbank;
1172 	char *parity_event[6];
1173 	uint32_t misccpctl;
1174 	uint8_t slice = 0;
1175 
1176 	/* We must turn off DOP level clock gating to access the L3 registers.
1177 	 * In order to prevent a get/put style interface, acquire struct mutex
1178 	 * any time we access those registers.
1179 	 */
1180 	mutex_lock(&dev_priv->dev->struct_mutex);
1181 
1182 	/* If we've screwed up tracking, just let the interrupt fire again */
1183 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 		goto out;
1185 
1186 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 	POSTING_READ(GEN7_MISCCPCTL);
1189 
1190 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 		u32 reg;
1192 
1193 		slice--;
1194 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195 			break;
1196 
1197 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198 
1199 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200 
1201 		error_status = I915_READ(reg);
1202 		row = GEN7_PARITY_ERROR_ROW(error_status);
1203 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205 
1206 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 		POSTING_READ(reg);
1208 
1209 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 		parity_event[5] = NULL;
1215 
1216 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217 				   KOBJ_CHANGE, parity_event);
1218 
1219 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 			  slice, row, bank, subbank);
1221 
1222 		kfree(parity_event[4]);
1223 		kfree(parity_event[3]);
1224 		kfree(parity_event[2]);
1225 		kfree(parity_event[1]);
1226 	}
1227 
1228 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229 
1230 out:
1231 	WARN_ON(dev_priv->l3_parity.which_slice);
1232 	spin_lock_irq(&dev_priv->irq_lock);
1233 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234 	spin_unlock_irq(&dev_priv->irq_lock);
1235 
1236 	mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238 
ivybridge_parity_error_irq_handler(struct drm_device * dev,u32 iir)1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241 	struct drm_i915_private *dev_priv = dev->dev_private;
1242 
1243 	if (!HAS_L3_DPF(dev))
1244 		return;
1245 
1246 	spin_lock(&dev_priv->irq_lock);
1247 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248 	spin_unlock(&dev_priv->irq_lock);
1249 
1250 	iir &= GT_PARITY_ERROR(dev);
1251 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252 		dev_priv->l3_parity.which_slice |= 1 << 1;
1253 
1254 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255 		dev_priv->l3_parity.which_slice |= 1 << 0;
1256 
1257 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259 
ilk_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261 			       struct drm_i915_private *dev_priv,
1262 			       u32 gt_iir)
1263 {
1264 	if (gt_iir &
1265 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 		notify_ring(&dev_priv->ring[RCS]);
1267 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268 		notify_ring(&dev_priv->ring[VCS]);
1269 }
1270 
snb_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272 			       struct drm_i915_private *dev_priv,
1273 			       u32 gt_iir)
1274 {
1275 
1276 	if (gt_iir &
1277 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278 		notify_ring(&dev_priv->ring[RCS]);
1279 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 		notify_ring(&dev_priv->ring[VCS]);
1281 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 		notify_ring(&dev_priv->ring[BCS]);
1283 
1284 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 		      GT_BSD_CS_ERROR_INTERRUPT |
1286 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1287 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1288 
1289 	if (gt_iir & GT_PARITY_ERROR(dev))
1290 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1291 }
1292 
gen8_gt_irq_handler(struct drm_i915_private * dev_priv,u32 master_ctl)1293 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1294 				       u32 master_ctl)
1295 {
1296 	irqreturn_t ret = IRQ_NONE;
1297 
1298 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1299 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1300 		if (tmp) {
1301 			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1302 			ret = IRQ_HANDLED;
1303 
1304 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1305 				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1306 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1307 				notify_ring(&dev_priv->ring[RCS]);
1308 
1309 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1310 				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1311 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1312 				notify_ring(&dev_priv->ring[BCS]);
1313 		} else
1314 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1315 	}
1316 
1317 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1318 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1319 		if (tmp) {
1320 			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1321 			ret = IRQ_HANDLED;
1322 
1323 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1324 				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1325 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1326 				notify_ring(&dev_priv->ring[VCS]);
1327 
1328 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1329 				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1330 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1331 				notify_ring(&dev_priv->ring[VCS2]);
1332 		} else
1333 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1334 	}
1335 
1336 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1337 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1338 		if (tmp) {
1339 			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1340 			ret = IRQ_HANDLED;
1341 
1342 			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1343 				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1344 			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1345 				notify_ring(&dev_priv->ring[VECS]);
1346 		} else
1347 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1348 	}
1349 
1350 	if (master_ctl & GEN8_GT_PM_IRQ) {
1351 		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1352 		if (tmp & dev_priv->pm_rps_events) {
1353 			I915_WRITE_FW(GEN8_GT_IIR(2),
1354 				      tmp & dev_priv->pm_rps_events);
1355 			ret = IRQ_HANDLED;
1356 			gen6_rps_irq_handler(dev_priv, tmp);
1357 		} else
1358 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1359 	}
1360 
1361 	return ret;
1362 }
1363 
bxt_port_hotplug_long_detect(enum port port,u32 val)1364 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1365 {
1366 	switch (port) {
1367 	case PORT_A:
1368 		return val & PORTA_HOTPLUG_LONG_DETECT;
1369 	case PORT_B:
1370 		return val & PORTB_HOTPLUG_LONG_DETECT;
1371 	case PORT_C:
1372 		return val & PORTC_HOTPLUG_LONG_DETECT;
1373 	default:
1374 		return false;
1375 	}
1376 }
1377 
spt_port_hotplug2_long_detect(enum port port,u32 val)1378 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1379 {
1380 	switch (port) {
1381 	case PORT_E:
1382 		return val & PORTE_HOTPLUG_LONG_DETECT;
1383 	default:
1384 		return false;
1385 	}
1386 }
1387 
spt_port_hotplug_long_detect(enum port port,u32 val)1388 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1389 {
1390 	switch (port) {
1391 	case PORT_A:
1392 		return val & PORTA_HOTPLUG_LONG_DETECT;
1393 	case PORT_B:
1394 		return val & PORTB_HOTPLUG_LONG_DETECT;
1395 	case PORT_C:
1396 		return val & PORTC_HOTPLUG_LONG_DETECT;
1397 	case PORT_D:
1398 		return val & PORTD_HOTPLUG_LONG_DETECT;
1399 	default:
1400 		return false;
1401 	}
1402 }
1403 
ilk_port_hotplug_long_detect(enum port port,u32 val)1404 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1405 {
1406 	switch (port) {
1407 	case PORT_A:
1408 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1409 	default:
1410 		return false;
1411 	}
1412 }
1413 
pch_port_hotplug_long_detect(enum port port,u32 val)1414 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1415 {
1416 	switch (port) {
1417 	case PORT_B:
1418 		return val & PORTB_HOTPLUG_LONG_DETECT;
1419 	case PORT_C:
1420 		return val & PORTC_HOTPLUG_LONG_DETECT;
1421 	case PORT_D:
1422 		return val & PORTD_HOTPLUG_LONG_DETECT;
1423 	default:
1424 		return false;
1425 	}
1426 }
1427 
i9xx_port_hotplug_long_detect(enum port port,u32 val)1428 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1429 {
1430 	switch (port) {
1431 	case PORT_B:
1432 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1433 	case PORT_C:
1434 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1435 	case PORT_D:
1436 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1437 	default:
1438 		return false;
1439 	}
1440 }
1441 
1442 /*
1443  * Get a bit mask of pins that have triggered, and which ones may be long.
1444  * This can be called multiple times with the same masks to accumulate
1445  * hotplug detection results from several registers.
1446  *
1447  * Note that the caller is expected to zero out the masks initially.
1448  */
intel_get_hpd_pins(u32 * pin_mask,u32 * long_mask,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 hpd[HPD_NUM_PINS],bool long_pulse_detect (enum port port,u32 val))1449 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1450 			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1451 			     const u32 hpd[HPD_NUM_PINS],
1452 			     bool long_pulse_detect(enum port port, u32 val))
1453 {
1454 	enum port port;
1455 	int i;
1456 
1457 	for_each_hpd_pin(i) {
1458 		if ((hpd[i] & hotplug_trigger) == 0)
1459 			continue;
1460 
1461 		*pin_mask |= BIT(i);
1462 
1463 		if (!intel_hpd_pin_to_port(i, &port))
1464 			continue;
1465 
1466 		if (long_pulse_detect(port, dig_hotplug_reg))
1467 			*long_mask |= BIT(i);
1468 	}
1469 
1470 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1471 			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1472 
1473 }
1474 
gmbus_irq_handler(struct drm_device * dev)1475 static void gmbus_irq_handler(struct drm_device *dev)
1476 {
1477 	struct drm_i915_private *dev_priv = dev->dev_private;
1478 
1479 	wake_up_all(&dev_priv->gmbus_wait_queue);
1480 }
1481 
dp_aux_irq_handler(struct drm_device * dev)1482 static void dp_aux_irq_handler(struct drm_device *dev)
1483 {
1484 	struct drm_i915_private *dev_priv = dev->dev_private;
1485 
1486 	wake_up_all(&dev_priv->gmbus_wait_queue);
1487 }
1488 
1489 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1490 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1491 					 uint32_t crc0, uint32_t crc1,
1492 					 uint32_t crc2, uint32_t crc3,
1493 					 uint32_t crc4)
1494 {
1495 	struct drm_i915_private *dev_priv = dev->dev_private;
1496 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1497 	struct intel_pipe_crc_entry *entry;
1498 	int head, tail;
1499 
1500 	spin_lock(&pipe_crc->lock);
1501 
1502 	if (!pipe_crc->entries) {
1503 		spin_unlock(&pipe_crc->lock);
1504 		DRM_DEBUG_KMS("spurious interrupt\n");
1505 		return;
1506 	}
1507 
1508 	head = pipe_crc->head;
1509 	tail = pipe_crc->tail;
1510 
1511 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1512 		spin_unlock(&pipe_crc->lock);
1513 		DRM_ERROR("CRC buffer overflowing\n");
1514 		return;
1515 	}
1516 
1517 	entry = &pipe_crc->entries[head];
1518 
1519 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1520 	entry->crc[0] = crc0;
1521 	entry->crc[1] = crc1;
1522 	entry->crc[2] = crc2;
1523 	entry->crc[3] = crc3;
1524 	entry->crc[4] = crc4;
1525 
1526 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1527 	pipe_crc->head = head;
1528 
1529 	spin_unlock(&pipe_crc->lock);
1530 
1531 	wake_up_interruptible(&pipe_crc->wq);
1532 }
1533 #else
1534 static inline void
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1535 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1536 			     uint32_t crc0, uint32_t crc1,
1537 			     uint32_t crc2, uint32_t crc3,
1538 			     uint32_t crc4) {}
1539 #endif
1540 
1541 
hsw_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1542 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1543 {
1544 	struct drm_i915_private *dev_priv = dev->dev_private;
1545 
1546 	display_pipe_crc_irq_handler(dev, pipe,
1547 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1548 				     0, 0, 0, 0);
1549 }
1550 
ivb_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1551 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1552 {
1553 	struct drm_i915_private *dev_priv = dev->dev_private;
1554 
1555 	display_pipe_crc_irq_handler(dev, pipe,
1556 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1557 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1558 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1559 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1560 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1561 }
1562 
i9xx_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1563 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1564 {
1565 	struct drm_i915_private *dev_priv = dev->dev_private;
1566 	uint32_t res1, res2;
1567 
1568 	if (INTEL_INFO(dev)->gen >= 3)
1569 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1570 	else
1571 		res1 = 0;
1572 
1573 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1574 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1575 	else
1576 		res2 = 0;
1577 
1578 	display_pipe_crc_irq_handler(dev, pipe,
1579 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1580 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1581 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1582 				     res1, res2);
1583 }
1584 
1585 /* The RPS events need forcewake, so we add them to a work queue and mask their
1586  * IMR bits until the work is done. Other interrupts can be processed without
1587  * the work queue. */
gen6_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1588 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1589 {
1590 	if (pm_iir & dev_priv->pm_rps_events) {
1591 		spin_lock(&dev_priv->irq_lock);
1592 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1593 		if (dev_priv->rps.interrupts_enabled) {
1594 			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1595 			queue_work(dev_priv->wq, &dev_priv->rps.work);
1596 		}
1597 		spin_unlock(&dev_priv->irq_lock);
1598 	}
1599 
1600 	if (INTEL_INFO(dev_priv)->gen >= 8)
1601 		return;
1602 
1603 	if (HAS_VEBOX(dev_priv->dev)) {
1604 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1605 			notify_ring(&dev_priv->ring[VECS]);
1606 
1607 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1608 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1609 	}
1610 }
1611 
intel_pipe_handle_vblank(struct drm_device * dev,enum pipe pipe)1612 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1613 {
1614 	if (!drm_handle_vblank(dev, pipe))
1615 		return false;
1616 
1617 	return true;
1618 }
1619 
valleyview_pipestat_irq_handler(struct drm_device * dev,u32 iir)1620 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1621 {
1622 	struct drm_i915_private *dev_priv = dev->dev_private;
1623 	u32 pipe_stats[I915_MAX_PIPES] = { };
1624 	int pipe;
1625 
1626 	spin_lock(&dev_priv->irq_lock);
1627 	for_each_pipe(dev_priv, pipe) {
1628 		int reg;
1629 		u32 mask, iir_bit = 0;
1630 
1631 		/*
1632 		 * PIPESTAT bits get signalled even when the interrupt is
1633 		 * disabled with the mask bits, and some of the status bits do
1634 		 * not generate interrupts at all (like the underrun bit). Hence
1635 		 * we need to be careful that we only handle what we want to
1636 		 * handle.
1637 		 */
1638 
1639 		/* fifo underruns are filterered in the underrun handler. */
1640 		mask = PIPE_FIFO_UNDERRUN_STATUS;
1641 
1642 		switch (pipe) {
1643 		case PIPE_A:
1644 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1645 			break;
1646 		case PIPE_B:
1647 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1648 			break;
1649 		case PIPE_C:
1650 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1651 			break;
1652 		}
1653 		if (iir & iir_bit)
1654 			mask |= dev_priv->pipestat_irq_mask[pipe];
1655 
1656 		if (!mask)
1657 			continue;
1658 
1659 		reg = PIPESTAT(pipe);
1660 		mask |= PIPESTAT_INT_ENABLE_MASK;
1661 		pipe_stats[pipe] = I915_READ(reg) & mask;
1662 
1663 		/*
1664 		 * Clear the PIPE*STAT regs before the IIR
1665 		 */
1666 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1667 					PIPESTAT_INT_STATUS_MASK))
1668 			I915_WRITE(reg, pipe_stats[pipe]);
1669 	}
1670 	spin_unlock(&dev_priv->irq_lock);
1671 
1672 	for_each_pipe(dev_priv, pipe) {
1673 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1674 		    intel_pipe_handle_vblank(dev, pipe))
1675 			intel_check_page_flip(dev, pipe);
1676 
1677 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1678 			intel_prepare_page_flip(dev, pipe);
1679 			intel_finish_page_flip(dev, pipe);
1680 		}
1681 
1682 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1683 			i9xx_pipe_crc_irq_handler(dev, pipe);
1684 
1685 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1686 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1687 	}
1688 
1689 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1690 		gmbus_irq_handler(dev);
1691 }
1692 
i9xx_hpd_irq_handler(struct drm_device * dev)1693 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1694 {
1695 	struct drm_i915_private *dev_priv = dev->dev_private;
1696 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1697 	u32 pin_mask = 0, long_mask = 0;
1698 
1699 	if (!hotplug_status)
1700 		return;
1701 
1702 	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1703 	/*
1704 	 * Make sure hotplug status is cleared before we clear IIR, or else we
1705 	 * may miss hotplug events.
1706 	 */
1707 	POSTING_READ(PORT_HOTPLUG_STAT);
1708 
1709 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1710 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1711 
1712 		if (hotplug_trigger) {
1713 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1714 					   hotplug_trigger, hpd_status_g4x,
1715 					   i9xx_port_hotplug_long_detect);
1716 
1717 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1718 		}
1719 
1720 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1721 			dp_aux_irq_handler(dev);
1722 	} else {
1723 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1724 
1725 		if (hotplug_trigger) {
1726 			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1727 					   hotplug_trigger, hpd_status_i915,
1728 					   i9xx_port_hotplug_long_detect);
1729 			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1730 		}
1731 	}
1732 }
1733 
valleyview_irq_handler(int irq,void * arg)1734 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1735 {
1736 	struct drm_device *dev = arg;
1737 	struct drm_i915_private *dev_priv = dev->dev_private;
1738 	u32 iir, gt_iir, pm_iir;
1739 	irqreturn_t ret = IRQ_NONE;
1740 
1741 	if (!intel_irqs_enabled(dev_priv))
1742 		return IRQ_NONE;
1743 
1744 	while (true) {
1745 		/* Find, clear, then process each source of interrupt */
1746 
1747 		gt_iir = I915_READ(GTIIR);
1748 		if (gt_iir)
1749 			I915_WRITE(GTIIR, gt_iir);
1750 
1751 		pm_iir = I915_READ(GEN6_PMIIR);
1752 		if (pm_iir)
1753 			I915_WRITE(GEN6_PMIIR, pm_iir);
1754 
1755 		iir = I915_READ(VLV_IIR);
1756 		if (iir) {
1757 			/* Consume port before clearing IIR or we'll miss events */
1758 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1759 				i9xx_hpd_irq_handler(dev);
1760 			I915_WRITE(VLV_IIR, iir);
1761 		}
1762 
1763 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1764 			goto out;
1765 
1766 		ret = IRQ_HANDLED;
1767 
1768 		if (gt_iir)
1769 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1770 		if (pm_iir)
1771 			gen6_rps_irq_handler(dev_priv, pm_iir);
1772 		/* Call regardless, as some status bits might not be
1773 		 * signalled in iir */
1774 		valleyview_pipestat_irq_handler(dev, iir);
1775 	}
1776 
1777 out:
1778 	return ret;
1779 }
1780 
cherryview_irq_handler(int irq,void * arg)1781 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1782 {
1783 	struct drm_device *dev = arg;
1784 	struct drm_i915_private *dev_priv = dev->dev_private;
1785 	u32 master_ctl, iir;
1786 	irqreturn_t ret = IRQ_NONE;
1787 
1788 	if (!intel_irqs_enabled(dev_priv))
1789 		return IRQ_NONE;
1790 
1791 	for (;;) {
1792 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1793 		iir = I915_READ(VLV_IIR);
1794 
1795 		if (master_ctl == 0 && iir == 0)
1796 			break;
1797 
1798 		ret = IRQ_HANDLED;
1799 
1800 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1801 
1802 		/* Find, clear, then process each source of interrupt */
1803 
1804 		if (iir) {
1805 			/* Consume port before clearing IIR or we'll miss events */
1806 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1807 				i9xx_hpd_irq_handler(dev);
1808 			I915_WRITE(VLV_IIR, iir);
1809 		}
1810 
1811 		gen8_gt_irq_handler(dev_priv, master_ctl);
1812 
1813 		/* Call regardless, as some status bits might not be
1814 		 * signalled in iir */
1815 		valleyview_pipestat_irq_handler(dev, iir);
1816 
1817 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1818 		POSTING_READ(GEN8_MASTER_IRQ);
1819 	}
1820 
1821 	return ret;
1822 }
1823 
ibx_hpd_irq_handler(struct drm_device * dev,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])1824 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1825 				const u32 hpd[HPD_NUM_PINS])
1826 {
1827 	struct drm_i915_private *dev_priv = to_i915(dev);
1828 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1829 
1830 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1831 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1832 
1833 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1834 			   dig_hotplug_reg, hpd,
1835 			   pch_port_hotplug_long_detect);
1836 
1837 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1838 }
1839 
ibx_irq_handler(struct drm_device * dev,u32 pch_iir)1840 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1841 {
1842 	struct drm_i915_private *dev_priv = dev->dev_private;
1843 	int pipe;
1844 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1845 
1846 	if (hotplug_trigger)
1847 		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1848 
1849 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1850 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1851 			       SDE_AUDIO_POWER_SHIFT);
1852 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1853 				 port_name(port));
1854 	}
1855 
1856 	if (pch_iir & SDE_AUX_MASK)
1857 		dp_aux_irq_handler(dev);
1858 
1859 	if (pch_iir & SDE_GMBUS)
1860 		gmbus_irq_handler(dev);
1861 
1862 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1863 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1864 
1865 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1866 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1867 
1868 	if (pch_iir & SDE_POISON)
1869 		DRM_ERROR("PCH poison interrupt\n");
1870 
1871 	if (pch_iir & SDE_FDI_MASK)
1872 		for_each_pipe(dev_priv, pipe)
1873 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1874 					 pipe_name(pipe),
1875 					 I915_READ(FDI_RX_IIR(pipe)));
1876 
1877 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1878 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1879 
1880 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1881 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1882 
1883 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1884 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1885 
1886 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1887 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1888 }
1889 
ivb_err_int_handler(struct drm_device * dev)1890 static void ivb_err_int_handler(struct drm_device *dev)
1891 {
1892 	struct drm_i915_private *dev_priv = dev->dev_private;
1893 	u32 err_int = I915_READ(GEN7_ERR_INT);
1894 	enum pipe pipe;
1895 
1896 	if (err_int & ERR_INT_POISON)
1897 		DRM_ERROR("Poison interrupt\n");
1898 
1899 	for_each_pipe(dev_priv, pipe) {
1900 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1901 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1902 
1903 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1904 			if (IS_IVYBRIDGE(dev))
1905 				ivb_pipe_crc_irq_handler(dev, pipe);
1906 			else
1907 				hsw_pipe_crc_irq_handler(dev, pipe);
1908 		}
1909 	}
1910 
1911 	I915_WRITE(GEN7_ERR_INT, err_int);
1912 }
1913 
cpt_serr_int_handler(struct drm_device * dev)1914 static void cpt_serr_int_handler(struct drm_device *dev)
1915 {
1916 	struct drm_i915_private *dev_priv = dev->dev_private;
1917 	u32 serr_int = I915_READ(SERR_INT);
1918 
1919 	if (serr_int & SERR_INT_POISON)
1920 		DRM_ERROR("PCH poison interrupt\n");
1921 
1922 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1923 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1924 
1925 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1926 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1927 
1928 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1929 		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1930 
1931 	I915_WRITE(SERR_INT, serr_int);
1932 }
1933 
cpt_irq_handler(struct drm_device * dev,u32 pch_iir)1934 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1935 {
1936 	struct drm_i915_private *dev_priv = dev->dev_private;
1937 	int pipe;
1938 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1939 
1940 	if (hotplug_trigger)
1941 		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1942 
1943 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1944 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1945 			       SDE_AUDIO_POWER_SHIFT_CPT);
1946 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1947 				 port_name(port));
1948 	}
1949 
1950 	if (pch_iir & SDE_AUX_MASK_CPT)
1951 		dp_aux_irq_handler(dev);
1952 
1953 	if (pch_iir & SDE_GMBUS_CPT)
1954 		gmbus_irq_handler(dev);
1955 
1956 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1957 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1958 
1959 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1960 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1961 
1962 	if (pch_iir & SDE_FDI_MASK_CPT)
1963 		for_each_pipe(dev_priv, pipe)
1964 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1965 					 pipe_name(pipe),
1966 					 I915_READ(FDI_RX_IIR(pipe)));
1967 
1968 	if (pch_iir & SDE_ERROR_CPT)
1969 		cpt_serr_int_handler(dev);
1970 }
1971 
spt_irq_handler(struct drm_device * dev,u32 pch_iir)1972 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1973 {
1974 	struct drm_i915_private *dev_priv = dev->dev_private;
1975 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1976 		~SDE_PORTE_HOTPLUG_SPT;
1977 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1978 	u32 pin_mask = 0, long_mask = 0;
1979 
1980 	if (hotplug_trigger) {
1981 		u32 dig_hotplug_reg;
1982 
1983 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1984 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1985 
1986 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987 				   dig_hotplug_reg, hpd_spt,
1988 				   spt_port_hotplug_long_detect);
1989 	}
1990 
1991 	if (hotplug2_trigger) {
1992 		u32 dig_hotplug_reg;
1993 
1994 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1995 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1996 
1997 		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1998 				   dig_hotplug_reg, hpd_spt,
1999 				   spt_port_hotplug2_long_detect);
2000 	}
2001 
2002 	if (pin_mask)
2003 		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2004 
2005 	if (pch_iir & SDE_GMBUS_CPT)
2006 		gmbus_irq_handler(dev);
2007 }
2008 
ilk_hpd_irq_handler(struct drm_device * dev,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2009 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2010 				const u32 hpd[HPD_NUM_PINS])
2011 {
2012 	struct drm_i915_private *dev_priv = to_i915(dev);
2013 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2014 
2015 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2016 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2017 
2018 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2019 			   dig_hotplug_reg, hpd,
2020 			   ilk_port_hotplug_long_detect);
2021 
2022 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2023 }
2024 
ilk_display_irq_handler(struct drm_device * dev,u32 de_iir)2025 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2026 {
2027 	struct drm_i915_private *dev_priv = dev->dev_private;
2028 	enum pipe pipe;
2029 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2030 
2031 	if (hotplug_trigger)
2032 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2033 
2034 	if (de_iir & DE_AUX_CHANNEL_A)
2035 		dp_aux_irq_handler(dev);
2036 
2037 	if (de_iir & DE_GSE)
2038 		intel_opregion_asle_intr(dev);
2039 
2040 	if (de_iir & DE_POISON)
2041 		DRM_ERROR("Poison interrupt\n");
2042 
2043 	for_each_pipe(dev_priv, pipe) {
2044 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2045 		    intel_pipe_handle_vblank(dev, pipe))
2046 			intel_check_page_flip(dev, pipe);
2047 
2048 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2049 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2050 
2051 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2052 			i9xx_pipe_crc_irq_handler(dev, pipe);
2053 
2054 		/* plane/pipes map 1:1 on ilk+ */
2055 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2056 			intel_prepare_page_flip(dev, pipe);
2057 			intel_finish_page_flip_plane(dev, pipe);
2058 		}
2059 	}
2060 
2061 	/* check event from PCH */
2062 	if (de_iir & DE_PCH_EVENT) {
2063 		u32 pch_iir = I915_READ(SDEIIR);
2064 
2065 		if (HAS_PCH_CPT(dev))
2066 			cpt_irq_handler(dev, pch_iir);
2067 		else
2068 			ibx_irq_handler(dev, pch_iir);
2069 
2070 		/* should clear PCH hotplug event before clear CPU irq */
2071 		I915_WRITE(SDEIIR, pch_iir);
2072 	}
2073 
2074 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2075 		ironlake_rps_change_irq_handler(dev);
2076 }
2077 
ivb_display_irq_handler(struct drm_device * dev,u32 de_iir)2078 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2079 {
2080 	struct drm_i915_private *dev_priv = dev->dev_private;
2081 	enum pipe pipe;
2082 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2083 
2084 	if (hotplug_trigger)
2085 		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2086 
2087 	if (de_iir & DE_ERR_INT_IVB)
2088 		ivb_err_int_handler(dev);
2089 
2090 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2091 		dp_aux_irq_handler(dev);
2092 
2093 	if (de_iir & DE_GSE_IVB)
2094 		intel_opregion_asle_intr(dev);
2095 
2096 	for_each_pipe(dev_priv, pipe) {
2097 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2098 		    intel_pipe_handle_vblank(dev, pipe))
2099 			intel_check_page_flip(dev, pipe);
2100 
2101 		/* plane/pipes map 1:1 on ilk+ */
2102 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2103 			intel_prepare_page_flip(dev, pipe);
2104 			intel_finish_page_flip_plane(dev, pipe);
2105 		}
2106 	}
2107 
2108 	/* check event from PCH */
2109 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2110 		u32 pch_iir = I915_READ(SDEIIR);
2111 
2112 		cpt_irq_handler(dev, pch_iir);
2113 
2114 		/* clear PCH hotplug event before clear CPU irq */
2115 		I915_WRITE(SDEIIR, pch_iir);
2116 	}
2117 }
2118 
2119 /*
2120  * To handle irqs with the minimum potential races with fresh interrupts, we:
2121  * 1 - Disable Master Interrupt Control.
2122  * 2 - Find the source(s) of the interrupt.
2123  * 3 - Clear the Interrupt Identity bits (IIR).
2124  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2125  * 5 - Re-enable Master Interrupt Control.
2126  */
ironlake_irq_handler(int irq,void * arg)2127 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2128 {
2129 	struct drm_device *dev = arg;
2130 	struct drm_i915_private *dev_priv = dev->dev_private;
2131 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2132 	irqreturn_t ret = IRQ_NONE;
2133 
2134 	if (!intel_irqs_enabled(dev_priv))
2135 		return IRQ_NONE;
2136 
2137 	/* We get interrupts on unclaimed registers, so check for this before we
2138 	 * do any I915_{READ,WRITE}. */
2139 	intel_uncore_check_errors(dev);
2140 
2141 	/* disable master interrupt before clearing iir  */
2142 	de_ier = I915_READ(DEIER);
2143 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2144 	POSTING_READ(DEIER);
2145 
2146 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2147 	 * interrupts will will be stored on its back queue, and then we'll be
2148 	 * able to process them after we restore SDEIER (as soon as we restore
2149 	 * it, we'll get an interrupt if SDEIIR still has something to process
2150 	 * due to its back queue). */
2151 	if (!HAS_PCH_NOP(dev)) {
2152 		sde_ier = I915_READ(SDEIER);
2153 		I915_WRITE(SDEIER, 0);
2154 		POSTING_READ(SDEIER);
2155 	}
2156 
2157 	/* Find, clear, then process each source of interrupt */
2158 
2159 	gt_iir = I915_READ(GTIIR);
2160 	if (gt_iir) {
2161 		I915_WRITE(GTIIR, gt_iir);
2162 		ret = IRQ_HANDLED;
2163 		if (INTEL_INFO(dev)->gen >= 6)
2164 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2165 		else
2166 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2167 	}
2168 
2169 	de_iir = I915_READ(DEIIR);
2170 	if (de_iir) {
2171 		I915_WRITE(DEIIR, de_iir);
2172 		ret = IRQ_HANDLED;
2173 		if (INTEL_INFO(dev)->gen >= 7)
2174 			ivb_display_irq_handler(dev, de_iir);
2175 		else
2176 			ilk_display_irq_handler(dev, de_iir);
2177 	}
2178 
2179 	if (INTEL_INFO(dev)->gen >= 6) {
2180 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2181 		if (pm_iir) {
2182 			I915_WRITE(GEN6_PMIIR, pm_iir);
2183 			ret = IRQ_HANDLED;
2184 			gen6_rps_irq_handler(dev_priv, pm_iir);
2185 		}
2186 	}
2187 
2188 	I915_WRITE(DEIER, de_ier);
2189 	POSTING_READ(DEIER);
2190 	if (!HAS_PCH_NOP(dev)) {
2191 		I915_WRITE(SDEIER, sde_ier);
2192 		POSTING_READ(SDEIER);
2193 	}
2194 
2195 	return ret;
2196 }
2197 
bxt_hpd_irq_handler(struct drm_device * dev,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2198 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2199 				const u32 hpd[HPD_NUM_PINS])
2200 {
2201 	struct drm_i915_private *dev_priv = to_i915(dev);
2202 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2203 
2204 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2205 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2206 
2207 	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2208 			   dig_hotplug_reg, hpd,
2209 			   bxt_port_hotplug_long_detect);
2210 
2211 	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2212 }
2213 
gen8_irq_handler(int irq,void * arg)2214 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2215 {
2216 	struct drm_device *dev = arg;
2217 	struct drm_i915_private *dev_priv = dev->dev_private;
2218 	u32 master_ctl;
2219 	irqreturn_t ret = IRQ_NONE;
2220 	uint32_t tmp = 0;
2221 	enum pipe pipe;
2222 	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2223 
2224 	if (!intel_irqs_enabled(dev_priv))
2225 		return IRQ_NONE;
2226 
2227 	if (INTEL_INFO(dev_priv)->gen >= 9)
2228 		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2229 			GEN9_AUX_CHANNEL_D;
2230 
2231 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2232 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2233 	if (!master_ctl)
2234 		return IRQ_NONE;
2235 
2236 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2237 
2238 	/* Find, clear, then process each source of interrupt */
2239 
2240 	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2241 
2242 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2243 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2244 		if (tmp) {
2245 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2246 			ret = IRQ_HANDLED;
2247 			if (tmp & GEN8_DE_MISC_GSE)
2248 				intel_opregion_asle_intr(dev);
2249 			else
2250 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2251 		}
2252 		else
2253 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2254 	}
2255 
2256 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2257 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2258 		if (tmp) {
2259 			bool found = false;
2260 			u32 hotplug_trigger = 0;
2261 
2262 			if (IS_BROXTON(dev_priv))
2263 				hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2264 			else if (IS_BROADWELL(dev_priv))
2265 				hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2266 
2267 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2268 			ret = IRQ_HANDLED;
2269 
2270 			if (tmp & aux_mask) {
2271 				dp_aux_irq_handler(dev);
2272 				found = true;
2273 			}
2274 
2275 			if (hotplug_trigger) {
2276 				if (IS_BROXTON(dev))
2277 					bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2278 				else
2279 					ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2280 				found = true;
2281 			}
2282 
2283 			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2284 				gmbus_irq_handler(dev);
2285 				found = true;
2286 			}
2287 
2288 			if (!found)
2289 				DRM_ERROR("Unexpected DE Port interrupt\n");
2290 		}
2291 		else
2292 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2293 	}
2294 
2295 	for_each_pipe(dev_priv, pipe) {
2296 		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2297 
2298 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2299 			continue;
2300 
2301 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2302 		if (pipe_iir) {
2303 			ret = IRQ_HANDLED;
2304 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2305 
2306 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2307 			    intel_pipe_handle_vblank(dev, pipe))
2308 				intel_check_page_flip(dev, pipe);
2309 
2310 			if (INTEL_INFO(dev_priv)->gen >= 9)
2311 				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2312 			else
2313 				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2314 
2315 			if (flip_done) {
2316 				intel_prepare_page_flip(dev, pipe);
2317 				intel_finish_page_flip_plane(dev, pipe);
2318 			}
2319 
2320 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2321 				hsw_pipe_crc_irq_handler(dev, pipe);
2322 
2323 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2324 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2325 								    pipe);
2326 
2327 
2328 			if (INTEL_INFO(dev_priv)->gen >= 9)
2329 				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2330 			else
2331 				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2332 
2333 			if (fault_errors)
2334 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2335 					  pipe_name(pipe),
2336 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2337 		} else
2338 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2339 	}
2340 
2341 	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2342 	    master_ctl & GEN8_DE_PCH_IRQ) {
2343 		/*
2344 		 * FIXME(BDW): Assume for now that the new interrupt handling
2345 		 * scheme also closed the SDE interrupt handling race we've seen
2346 		 * on older pch-split platforms. But this needs testing.
2347 		 */
2348 		u32 pch_iir = I915_READ(SDEIIR);
2349 		if (pch_iir) {
2350 			I915_WRITE(SDEIIR, pch_iir);
2351 			ret = IRQ_HANDLED;
2352 
2353 			if (HAS_PCH_SPT(dev_priv))
2354 				spt_irq_handler(dev, pch_iir);
2355 			else
2356 				cpt_irq_handler(dev, pch_iir);
2357 		} else {
2358 			/*
2359 			 * Like on previous PCH there seems to be something
2360 			 * fishy going on with forwarding PCH interrupts.
2361 			 */
2362 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2363 		}
2364 	}
2365 
2366 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2367 	POSTING_READ_FW(GEN8_MASTER_IRQ);
2368 
2369 	return ret;
2370 }
2371 
i915_error_wake_up(struct drm_i915_private * dev_priv,bool reset_completed)2372 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2373 			       bool reset_completed)
2374 {
2375 	struct intel_engine_cs *ring;
2376 	int i;
2377 
2378 	/*
2379 	 * Notify all waiters for GPU completion events that reset state has
2380 	 * been changed, and that they need to restart their wait after
2381 	 * checking for potential errors (and bail out to drop locks if there is
2382 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2383 	 */
2384 
2385 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2386 	for_each_ring(ring, dev_priv, i)
2387 		wake_up_all(&ring->irq_queue);
2388 
2389 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2390 	wake_up_all(&dev_priv->pending_flip_queue);
2391 
2392 	/*
2393 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2394 	 * reset state is cleared.
2395 	 */
2396 	if (reset_completed)
2397 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2398 }
2399 
2400 /**
2401  * i915_reset_and_wakeup - do process context error handling work
2402  * @dev: drm device
2403  *
2404  * Fire an error uevent so userspace can see that a hang or error
2405  * was detected.
2406  */
i915_reset_and_wakeup(struct drm_device * dev)2407 static void i915_reset_and_wakeup(struct drm_device *dev)
2408 {
2409 	struct drm_i915_private *dev_priv = to_i915(dev);
2410 	struct i915_gpu_error *error = &dev_priv->gpu_error;
2411 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2412 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2413 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2414 	int ret;
2415 
2416 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2417 
2418 	/*
2419 	 * Note that there's only one work item which does gpu resets, so we
2420 	 * need not worry about concurrent gpu resets potentially incrementing
2421 	 * error->reset_counter twice. We only need to take care of another
2422 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2423 	 * quick check for that is good enough: schedule_work ensures the
2424 	 * correct ordering between hang detection and this work item, and since
2425 	 * the reset in-progress bit is only ever set by code outside of this
2426 	 * work we don't need to worry about any other races.
2427 	 */
2428 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2429 		DRM_DEBUG_DRIVER("resetting chip\n");
2430 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2431 				   reset_event);
2432 
2433 		/*
2434 		 * In most cases it's guaranteed that we get here with an RPM
2435 		 * reference held, for example because there is a pending GPU
2436 		 * request that won't finish until the reset is done. This
2437 		 * isn't the case at least when we get here by doing a
2438 		 * simulated reset via debugs, so get an RPM reference.
2439 		 */
2440 		intel_runtime_pm_get(dev_priv);
2441 
2442 		intel_prepare_reset(dev);
2443 
2444 		/*
2445 		 * All state reset _must_ be completed before we update the
2446 		 * reset counter, for otherwise waiters might miss the reset
2447 		 * pending state and not properly drop locks, resulting in
2448 		 * deadlocks with the reset work.
2449 		 */
2450 		ret = i915_reset(dev);
2451 
2452 		intel_finish_reset(dev);
2453 
2454 		intel_runtime_pm_put(dev_priv);
2455 
2456 		if (ret == 0) {
2457 			/*
2458 			 * After all the gem state is reset, increment the reset
2459 			 * counter and wake up everyone waiting for the reset to
2460 			 * complete.
2461 			 *
2462 			 * Since unlock operations are a one-sided barrier only,
2463 			 * we need to insert a barrier here to order any seqno
2464 			 * updates before
2465 			 * the counter increment.
2466 			 */
2467 			smp_mb__before_atomic();
2468 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2469 
2470 			kobject_uevent_env(&dev->primary->kdev->kobj,
2471 					   KOBJ_CHANGE, reset_done_event);
2472 		} else {
2473 			atomic_or(I915_WEDGED, &error->reset_counter);
2474 		}
2475 
2476 		/*
2477 		 * Note: The wake_up also serves as a memory barrier so that
2478 		 * waiters see the update value of the reset counter atomic_t.
2479 		 */
2480 		i915_error_wake_up(dev_priv, true);
2481 	}
2482 }
2483 
i915_report_and_clear_eir(struct drm_device * dev)2484 static void i915_report_and_clear_eir(struct drm_device *dev)
2485 {
2486 	struct drm_i915_private *dev_priv = dev->dev_private;
2487 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2488 	u32 eir = I915_READ(EIR);
2489 	int pipe, i;
2490 
2491 	if (!eir)
2492 		return;
2493 
2494 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2495 
2496 	i915_get_extra_instdone(dev, instdone);
2497 
2498 	if (IS_G4X(dev)) {
2499 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2500 			u32 ipeir = I915_READ(IPEIR_I965);
2501 
2502 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2503 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2504 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2505 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2506 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2507 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2508 			I915_WRITE(IPEIR_I965, ipeir);
2509 			POSTING_READ(IPEIR_I965);
2510 		}
2511 		if (eir & GM45_ERROR_PAGE_TABLE) {
2512 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2513 			pr_err("page table error\n");
2514 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2515 			I915_WRITE(PGTBL_ER, pgtbl_err);
2516 			POSTING_READ(PGTBL_ER);
2517 		}
2518 	}
2519 
2520 	if (!IS_GEN2(dev)) {
2521 		if (eir & I915_ERROR_PAGE_TABLE) {
2522 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2523 			pr_err("page table error\n");
2524 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2525 			I915_WRITE(PGTBL_ER, pgtbl_err);
2526 			POSTING_READ(PGTBL_ER);
2527 		}
2528 	}
2529 
2530 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2531 		pr_err("memory refresh error:\n");
2532 		for_each_pipe(dev_priv, pipe)
2533 			pr_err("pipe %c stat: 0x%08x\n",
2534 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2535 		/* pipestat has already been acked */
2536 	}
2537 	if (eir & I915_ERROR_INSTRUCTION) {
2538 		pr_err("instruction error\n");
2539 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2540 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2541 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2542 		if (INTEL_INFO(dev)->gen < 4) {
2543 			u32 ipeir = I915_READ(IPEIR);
2544 
2545 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2546 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2547 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2548 			I915_WRITE(IPEIR, ipeir);
2549 			POSTING_READ(IPEIR);
2550 		} else {
2551 			u32 ipeir = I915_READ(IPEIR_I965);
2552 
2553 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2554 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2555 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2556 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2557 			I915_WRITE(IPEIR_I965, ipeir);
2558 			POSTING_READ(IPEIR_I965);
2559 		}
2560 	}
2561 
2562 	I915_WRITE(EIR, eir);
2563 	POSTING_READ(EIR);
2564 	eir = I915_READ(EIR);
2565 	if (eir) {
2566 		/*
2567 		 * some errors might have become stuck,
2568 		 * mask them.
2569 		 */
2570 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2571 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2572 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2573 	}
2574 }
2575 
2576 /**
2577  * i915_handle_error - handle a gpu error
2578  * @dev: drm device
2579  *
2580  * Do some basic checking of register state at error time and
2581  * dump it to the syslog.  Also call i915_capture_error_state() to make
2582  * sure we get a record and make it available in debugfs.  Fire a uevent
2583  * so userspace knows something bad happened (should trigger collection
2584  * of a ring dump etc.).
2585  */
i915_handle_error(struct drm_device * dev,bool wedged,const char * fmt,...)2586 void i915_handle_error(struct drm_device *dev, bool wedged,
2587 		       const char *fmt, ...)
2588 {
2589 	struct drm_i915_private *dev_priv = dev->dev_private;
2590 	va_list args;
2591 	char error_msg[80];
2592 
2593 	va_start(args, fmt);
2594 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2595 	va_end(args);
2596 
2597 	i915_capture_error_state(dev, wedged, error_msg);
2598 	i915_report_and_clear_eir(dev);
2599 
2600 	if (wedged) {
2601 		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2602 				&dev_priv->gpu_error.reset_counter);
2603 
2604 		/*
2605 		 * Wakeup waiting processes so that the reset function
2606 		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2607 		 * various locks. By bumping the reset counter first, the woken
2608 		 * processes will see a reset in progress and back off,
2609 		 * releasing their locks and then wait for the reset completion.
2610 		 * We must do this for _all_ gpu waiters that might hold locks
2611 		 * that the reset work needs to acquire.
2612 		 *
2613 		 * Note: The wake_up serves as the required memory barrier to
2614 		 * ensure that the waiters see the updated value of the reset
2615 		 * counter atomic_t.
2616 		 */
2617 		i915_error_wake_up(dev_priv, false);
2618 	}
2619 
2620 	i915_reset_and_wakeup(dev);
2621 }
2622 
2623 /* Called from drm generic code, passed 'crtc' which
2624  * we use as a pipe index
2625  */
i915_enable_vblank(struct drm_device * dev,unsigned int pipe)2626 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2627 {
2628 	struct drm_i915_private *dev_priv = dev->dev_private;
2629 	unsigned long irqflags;
2630 
2631 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2632 	if (INTEL_INFO(dev)->gen >= 4)
2633 		i915_enable_pipestat(dev_priv, pipe,
2634 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2635 	else
2636 		i915_enable_pipestat(dev_priv, pipe,
2637 				     PIPE_VBLANK_INTERRUPT_STATUS);
2638 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639 
2640 	return 0;
2641 }
2642 
ironlake_enable_vblank(struct drm_device * dev,unsigned int pipe)2643 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2644 {
2645 	struct drm_i915_private *dev_priv = dev->dev_private;
2646 	unsigned long irqflags;
2647 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2648 						     DE_PIPE_VBLANK(pipe);
2649 
2650 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2651 	ironlake_enable_display_irq(dev_priv, bit);
2652 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2653 
2654 	return 0;
2655 }
2656 
valleyview_enable_vblank(struct drm_device * dev,unsigned int pipe)2657 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2658 {
2659 	struct drm_i915_private *dev_priv = dev->dev_private;
2660 	unsigned long irqflags;
2661 
2662 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2663 	i915_enable_pipestat(dev_priv, pipe,
2664 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2665 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2666 
2667 	return 0;
2668 }
2669 
gen8_enable_vblank(struct drm_device * dev,unsigned int pipe)2670 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2671 {
2672 	struct drm_i915_private *dev_priv = dev->dev_private;
2673 	unsigned long irqflags;
2674 
2675 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2676 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2677 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2678 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2679 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2680 	return 0;
2681 }
2682 
2683 /* Called from drm generic code, passed 'crtc' which
2684  * we use as a pipe index
2685  */
i915_disable_vblank(struct drm_device * dev,unsigned int pipe)2686 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2687 {
2688 	struct drm_i915_private *dev_priv = dev->dev_private;
2689 	unsigned long irqflags;
2690 
2691 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2692 	i915_disable_pipestat(dev_priv, pipe,
2693 			      PIPE_VBLANK_INTERRUPT_STATUS |
2694 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2695 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2696 }
2697 
ironlake_disable_vblank(struct drm_device * dev,unsigned int pipe)2698 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2699 {
2700 	struct drm_i915_private *dev_priv = dev->dev_private;
2701 	unsigned long irqflags;
2702 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2703 						     DE_PIPE_VBLANK(pipe);
2704 
2705 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2706 	ironlake_disable_display_irq(dev_priv, bit);
2707 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2708 }
2709 
valleyview_disable_vblank(struct drm_device * dev,unsigned int pipe)2710 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2711 {
2712 	struct drm_i915_private *dev_priv = dev->dev_private;
2713 	unsigned long irqflags;
2714 
2715 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2716 	i915_disable_pipestat(dev_priv, pipe,
2717 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2718 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2719 }
2720 
gen8_disable_vblank(struct drm_device * dev,unsigned int pipe)2721 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2722 {
2723 	struct drm_i915_private *dev_priv = dev->dev_private;
2724 	unsigned long irqflags;
2725 
2726 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2728 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2729 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2730 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731 }
2732 
2733 static bool
ring_idle(struct intel_engine_cs * ring,u32 seqno)2734 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2735 {
2736 	return (list_empty(&ring->request_list) ||
2737 		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2738 }
2739 
2740 static bool
ipehr_is_semaphore_wait(struct drm_device * dev,u32 ipehr)2741 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2742 {
2743 	if (INTEL_INFO(dev)->gen >= 8) {
2744 		return (ipehr >> 23) == 0x1c;
2745 	} else {
2746 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2747 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2748 				 MI_SEMAPHORE_REGISTER);
2749 	}
2750 }
2751 
2752 static struct intel_engine_cs *
semaphore_wait_to_signaller_ring(struct intel_engine_cs * ring,u32 ipehr,u64 offset)2753 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2754 {
2755 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2756 	struct intel_engine_cs *signaller;
2757 	int i;
2758 
2759 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2760 		for_each_ring(signaller, dev_priv, i) {
2761 			if (ring == signaller)
2762 				continue;
2763 
2764 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2765 				return signaller;
2766 		}
2767 	} else {
2768 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2769 
2770 		for_each_ring(signaller, dev_priv, i) {
2771 			if(ring == signaller)
2772 				continue;
2773 
2774 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2775 				return signaller;
2776 		}
2777 	}
2778 
2779 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2780 		  ring->id, ipehr, offset);
2781 
2782 	return NULL;
2783 }
2784 
2785 static struct intel_engine_cs *
semaphore_waits_for(struct intel_engine_cs * ring,u32 * seqno)2786 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2787 {
2788 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2789 	u32 cmd, ipehr, head;
2790 	u64 offset = 0;
2791 	int i, backwards;
2792 
2793 	/*
2794 	 * This function does not support execlist mode - any attempt to
2795 	 * proceed further into this function will result in a kernel panic
2796 	 * when dereferencing ring->buffer, which is not set up in execlist
2797 	 * mode.
2798 	 *
2799 	 * The correct way of doing it would be to derive the currently
2800 	 * executing ring buffer from the current context, which is derived
2801 	 * from the currently running request. Unfortunately, to get the
2802 	 * current request we would have to grab the struct_mutex before doing
2803 	 * anything else, which would be ill-advised since some other thread
2804 	 * might have grabbed it already and managed to hang itself, causing
2805 	 * the hang checker to deadlock.
2806 	 *
2807 	 * Therefore, this function does not support execlist mode in its
2808 	 * current form. Just return NULL and move on.
2809 	 */
2810 	if (ring->buffer == NULL)
2811 		return NULL;
2812 
2813 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2814 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2815 		return NULL;
2816 
2817 	/*
2818 	 * HEAD is likely pointing to the dword after the actual command,
2819 	 * so scan backwards until we find the MBOX. But limit it to just 3
2820 	 * or 4 dwords depending on the semaphore wait command size.
2821 	 * Note that we don't care about ACTHD here since that might
2822 	 * point at at batch, and semaphores are always emitted into the
2823 	 * ringbuffer itself.
2824 	 */
2825 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2826 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2827 
2828 	for (i = backwards; i; --i) {
2829 		/*
2830 		 * Be paranoid and presume the hw has gone off into the wild -
2831 		 * our ring is smaller than what the hardware (and hence
2832 		 * HEAD_ADDR) allows. Also handles wrap-around.
2833 		 */
2834 		head &= ring->buffer->size - 1;
2835 
2836 		/* This here seems to blow up */
2837 		cmd = ioread32(ring->buffer->virtual_start + head);
2838 		if (cmd == ipehr)
2839 			break;
2840 
2841 		head -= 4;
2842 	}
2843 
2844 	if (!i)
2845 		return NULL;
2846 
2847 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2848 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2849 		offset = ioread32(ring->buffer->virtual_start + head + 12);
2850 		offset <<= 32;
2851 		offset = ioread32(ring->buffer->virtual_start + head + 8);
2852 	}
2853 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2854 }
2855 
semaphore_passed(struct intel_engine_cs * ring)2856 static int semaphore_passed(struct intel_engine_cs *ring)
2857 {
2858 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2859 	struct intel_engine_cs *signaller;
2860 	u32 seqno;
2861 
2862 	ring->hangcheck.deadlock++;
2863 
2864 	signaller = semaphore_waits_for(ring, &seqno);
2865 	if (signaller == NULL)
2866 		return -1;
2867 
2868 	/* Prevent pathological recursion due to driver bugs */
2869 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2870 		return -1;
2871 
2872 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2873 		return 1;
2874 
2875 	/* cursory check for an unkickable deadlock */
2876 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2877 	    semaphore_passed(signaller) < 0)
2878 		return -1;
2879 
2880 	return 0;
2881 }
2882 
semaphore_clear_deadlocks(struct drm_i915_private * dev_priv)2883 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2884 {
2885 	struct intel_engine_cs *ring;
2886 	int i;
2887 
2888 	for_each_ring(ring, dev_priv, i)
2889 		ring->hangcheck.deadlock = 0;
2890 }
2891 
2892 static enum intel_ring_hangcheck_action
ring_stuck(struct intel_engine_cs * ring,u64 acthd)2893 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2894 {
2895 	struct drm_device *dev = ring->dev;
2896 	struct drm_i915_private *dev_priv = dev->dev_private;
2897 	u32 tmp;
2898 
2899 	if (acthd != ring->hangcheck.acthd) {
2900 		if (acthd > ring->hangcheck.max_acthd) {
2901 			ring->hangcheck.max_acthd = acthd;
2902 			return HANGCHECK_ACTIVE;
2903 		}
2904 
2905 		return HANGCHECK_ACTIVE_LOOP;
2906 	}
2907 
2908 	if (IS_GEN2(dev))
2909 		return HANGCHECK_HUNG;
2910 
2911 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2912 	 * If so we can simply poke the RB_WAIT bit
2913 	 * and break the hang. This should work on
2914 	 * all but the second generation chipsets.
2915 	 */
2916 	tmp = I915_READ_CTL(ring);
2917 	if (tmp & RING_WAIT) {
2918 		i915_handle_error(dev, false,
2919 				  "Kicking stuck wait on %s",
2920 				  ring->name);
2921 		I915_WRITE_CTL(ring, tmp);
2922 		return HANGCHECK_KICK;
2923 	}
2924 
2925 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2926 		switch (semaphore_passed(ring)) {
2927 		default:
2928 			return HANGCHECK_HUNG;
2929 		case 1:
2930 			i915_handle_error(dev, false,
2931 					  "Kicking stuck semaphore on %s",
2932 					  ring->name);
2933 			I915_WRITE_CTL(ring, tmp);
2934 			return HANGCHECK_KICK;
2935 		case 0:
2936 			return HANGCHECK_WAIT;
2937 		}
2938 	}
2939 
2940 	return HANGCHECK_HUNG;
2941 }
2942 
2943 /*
2944  * This is called when the chip hasn't reported back with completed
2945  * batchbuffers in a long time. We keep track per ring seqno progress and
2946  * if there are no progress, hangcheck score for that ring is increased.
2947  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2948  * we kick the ring. If we see no progress on three subsequent calls
2949  * we assume chip is wedged and try to fix it by resetting the chip.
2950  */
i915_hangcheck_elapsed(struct work_struct * work)2951 static void i915_hangcheck_elapsed(struct work_struct *work)
2952 {
2953 	struct drm_i915_private *dev_priv =
2954 		container_of(work, typeof(*dev_priv),
2955 			     gpu_error.hangcheck_work.work);
2956 	struct drm_device *dev = dev_priv->dev;
2957 	struct intel_engine_cs *ring;
2958 	int i;
2959 	int busy_count = 0, rings_hung = 0;
2960 	bool stuck[I915_NUM_RINGS] = { 0 };
2961 #define BUSY 1
2962 #define KICK 5
2963 #define HUNG 20
2964 
2965 	if (!i915.enable_hangcheck)
2966 		return;
2967 
2968 	for_each_ring(ring, dev_priv, i) {
2969 		u64 acthd;
2970 		u32 seqno;
2971 		bool busy = true;
2972 
2973 		semaphore_clear_deadlocks(dev_priv);
2974 
2975 		seqno = ring->get_seqno(ring, false);
2976 		acthd = intel_ring_get_active_head(ring);
2977 
2978 		if (ring->hangcheck.seqno == seqno) {
2979 			if (ring_idle(ring, seqno)) {
2980 				ring->hangcheck.action = HANGCHECK_IDLE;
2981 
2982 				if (waitqueue_active(&ring->irq_queue)) {
2983 					/* Issue a wake-up to catch stuck h/w. */
2984 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2985 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2986 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2987 								  ring->name);
2988 						else
2989 							DRM_INFO("Fake missed irq on %s\n",
2990 								 ring->name);
2991 						wake_up_all(&ring->irq_queue);
2992 					}
2993 					/* Safeguard against driver failure */
2994 					ring->hangcheck.score += BUSY;
2995 				} else
2996 					busy = false;
2997 			} else {
2998 				/* We always increment the hangcheck score
2999 				 * if the ring is busy and still processing
3000 				 * the same request, so that no single request
3001 				 * can run indefinitely (such as a chain of
3002 				 * batches). The only time we do not increment
3003 				 * the hangcheck score on this ring, if this
3004 				 * ring is in a legitimate wait for another
3005 				 * ring. In that case the waiting ring is a
3006 				 * victim and we want to be sure we catch the
3007 				 * right culprit. Then every time we do kick
3008 				 * the ring, add a small increment to the
3009 				 * score so that we can catch a batch that is
3010 				 * being repeatedly kicked and so responsible
3011 				 * for stalling the machine.
3012 				 */
3013 				ring->hangcheck.action = ring_stuck(ring,
3014 								    acthd);
3015 
3016 				switch (ring->hangcheck.action) {
3017 				case HANGCHECK_IDLE:
3018 				case HANGCHECK_WAIT:
3019 				case HANGCHECK_ACTIVE:
3020 					break;
3021 				case HANGCHECK_ACTIVE_LOOP:
3022 					ring->hangcheck.score += BUSY;
3023 					break;
3024 				case HANGCHECK_KICK:
3025 					ring->hangcheck.score += KICK;
3026 					break;
3027 				case HANGCHECK_HUNG:
3028 					ring->hangcheck.score += HUNG;
3029 					stuck[i] = true;
3030 					break;
3031 				}
3032 			}
3033 		} else {
3034 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3035 
3036 			/* Gradually reduce the count so that we catch DoS
3037 			 * attempts across multiple batches.
3038 			 */
3039 			if (ring->hangcheck.score > 0)
3040 				ring->hangcheck.score--;
3041 
3042 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3043 		}
3044 
3045 		ring->hangcheck.seqno = seqno;
3046 		ring->hangcheck.acthd = acthd;
3047 		busy_count += busy;
3048 	}
3049 
3050 	for_each_ring(ring, dev_priv, i) {
3051 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3052 			DRM_INFO("%s on %s\n",
3053 				 stuck[i] ? "stuck" : "no progress",
3054 				 ring->name);
3055 			rings_hung++;
3056 		}
3057 	}
3058 
3059 	if (rings_hung)
3060 		return i915_handle_error(dev, true, "Ring hung");
3061 
3062 	if (busy_count)
3063 		/* Reset timer case chip hangs without another request
3064 		 * being added */
3065 		i915_queue_hangcheck(dev);
3066 }
3067 
i915_queue_hangcheck(struct drm_device * dev)3068 void i915_queue_hangcheck(struct drm_device *dev)
3069 {
3070 	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3071 
3072 	if (!i915.enable_hangcheck)
3073 		return;
3074 
3075 	/* Don't continually defer the hangcheck so that it is always run at
3076 	 * least once after work has been scheduled on any ring. Otherwise,
3077 	 * we will ignore a hung ring if a second ring is kept busy.
3078 	 */
3079 
3080 	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3081 			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3082 }
3083 
ibx_irq_reset(struct drm_device * dev)3084 static void ibx_irq_reset(struct drm_device *dev)
3085 {
3086 	struct drm_i915_private *dev_priv = dev->dev_private;
3087 
3088 	if (HAS_PCH_NOP(dev))
3089 		return;
3090 
3091 	GEN5_IRQ_RESET(SDE);
3092 
3093 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3094 		I915_WRITE(SERR_INT, 0xffffffff);
3095 }
3096 
3097 /*
3098  * SDEIER is also touched by the interrupt handler to work around missed PCH
3099  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3100  * instead we unconditionally enable all PCH interrupt sources here, but then
3101  * only unmask them as needed with SDEIMR.
3102  *
3103  * This function needs to be called before interrupts are enabled.
3104  */
ibx_irq_pre_postinstall(struct drm_device * dev)3105 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3106 {
3107 	struct drm_i915_private *dev_priv = dev->dev_private;
3108 
3109 	if (HAS_PCH_NOP(dev))
3110 		return;
3111 
3112 	WARN_ON(I915_READ(SDEIER) != 0);
3113 	I915_WRITE(SDEIER, 0xffffffff);
3114 	POSTING_READ(SDEIER);
3115 }
3116 
gen5_gt_irq_reset(struct drm_device * dev)3117 static void gen5_gt_irq_reset(struct drm_device *dev)
3118 {
3119 	struct drm_i915_private *dev_priv = dev->dev_private;
3120 
3121 	GEN5_IRQ_RESET(GT);
3122 	if (INTEL_INFO(dev)->gen >= 6)
3123 		GEN5_IRQ_RESET(GEN6_PM);
3124 }
3125 
3126 /* drm_dma.h hooks
3127 */
ironlake_irq_reset(struct drm_device * dev)3128 static void ironlake_irq_reset(struct drm_device *dev)
3129 {
3130 	struct drm_i915_private *dev_priv = dev->dev_private;
3131 
3132 	I915_WRITE(HWSTAM, 0xffffffff);
3133 
3134 	GEN5_IRQ_RESET(DE);
3135 	if (IS_GEN7(dev))
3136 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3137 
3138 	gen5_gt_irq_reset(dev);
3139 
3140 	ibx_irq_reset(dev);
3141 }
3142 
vlv_display_irq_reset(struct drm_i915_private * dev_priv)3143 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3144 {
3145 	enum pipe pipe;
3146 
3147 	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3148 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3149 
3150 	for_each_pipe(dev_priv, pipe)
3151 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3152 
3153 	GEN5_IRQ_RESET(VLV_);
3154 }
3155 
valleyview_irq_preinstall(struct drm_device * dev)3156 static void valleyview_irq_preinstall(struct drm_device *dev)
3157 {
3158 	struct drm_i915_private *dev_priv = dev->dev_private;
3159 
3160 	/* VLV magic */
3161 	I915_WRITE(VLV_IMR, 0);
3162 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3163 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3164 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3165 
3166 	gen5_gt_irq_reset(dev);
3167 
3168 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3169 
3170 	vlv_display_irq_reset(dev_priv);
3171 }
3172 
gen8_gt_irq_reset(struct drm_i915_private * dev_priv)3173 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3174 {
3175 	GEN8_IRQ_RESET_NDX(GT, 0);
3176 	GEN8_IRQ_RESET_NDX(GT, 1);
3177 	GEN8_IRQ_RESET_NDX(GT, 2);
3178 	GEN8_IRQ_RESET_NDX(GT, 3);
3179 }
3180 
gen8_irq_reset(struct drm_device * dev)3181 static void gen8_irq_reset(struct drm_device *dev)
3182 {
3183 	struct drm_i915_private *dev_priv = dev->dev_private;
3184 	int pipe;
3185 
3186 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3187 	POSTING_READ(GEN8_MASTER_IRQ);
3188 
3189 	gen8_gt_irq_reset(dev_priv);
3190 
3191 	for_each_pipe(dev_priv, pipe)
3192 		if (intel_display_power_is_enabled(dev_priv,
3193 						   POWER_DOMAIN_PIPE(pipe)))
3194 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3195 
3196 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3197 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3198 	GEN5_IRQ_RESET(GEN8_PCU_);
3199 
3200 	if (HAS_PCH_SPLIT(dev))
3201 		ibx_irq_reset(dev);
3202 }
3203 
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv,unsigned int pipe_mask)3204 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3205 				     unsigned int pipe_mask)
3206 {
3207 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3208 
3209 	spin_lock_irq(&dev_priv->irq_lock);
3210 	if (pipe_mask & 1 << PIPE_A)
3211 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3212 				  dev_priv->de_irq_mask[PIPE_A],
3213 				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3214 	if (pipe_mask & 1 << PIPE_B)
3215 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3216 				  dev_priv->de_irq_mask[PIPE_B],
3217 				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3218 	if (pipe_mask & 1 << PIPE_C)
3219 		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3220 				  dev_priv->de_irq_mask[PIPE_C],
3221 				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3222 	spin_unlock_irq(&dev_priv->irq_lock);
3223 }
3224 
cherryview_irq_preinstall(struct drm_device * dev)3225 static void cherryview_irq_preinstall(struct drm_device *dev)
3226 {
3227 	struct drm_i915_private *dev_priv = dev->dev_private;
3228 
3229 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3230 	POSTING_READ(GEN8_MASTER_IRQ);
3231 
3232 	gen8_gt_irq_reset(dev_priv);
3233 
3234 	GEN5_IRQ_RESET(GEN8_PCU_);
3235 
3236 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3237 
3238 	vlv_display_irq_reset(dev_priv);
3239 }
3240 
intel_hpd_enabled_irqs(struct drm_device * dev,const u32 hpd[HPD_NUM_PINS])3241 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3242 				  const u32 hpd[HPD_NUM_PINS])
3243 {
3244 	struct drm_i915_private *dev_priv = to_i915(dev);
3245 	struct intel_encoder *encoder;
3246 	u32 enabled_irqs = 0;
3247 
3248 	for_each_intel_encoder(dev, encoder)
3249 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3250 			enabled_irqs |= hpd[encoder->hpd_pin];
3251 
3252 	return enabled_irqs;
3253 }
3254 
ibx_hpd_irq_setup(struct drm_device * dev)3255 static void ibx_hpd_irq_setup(struct drm_device *dev)
3256 {
3257 	struct drm_i915_private *dev_priv = dev->dev_private;
3258 	u32 hotplug_irqs, hotplug, enabled_irqs;
3259 
3260 	if (HAS_PCH_IBX(dev)) {
3261 		hotplug_irqs = SDE_HOTPLUG_MASK;
3262 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3263 	} else {
3264 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3265 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3266 	}
3267 
3268 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3269 
3270 	/*
3271 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3272 	 * duration to 2ms (which is the minimum in the Display Port spec).
3273 	 * The pulse duration bits are reserved on LPT+.
3274 	 */
3275 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3276 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3277 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3278 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3279 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3280 	/*
3281 	 * When CPU and PCH are on the same package, port A
3282 	 * HPD must be enabled in both north and south.
3283 	 */
3284 	if (HAS_PCH_LPT_LP(dev))
3285 		hotplug |= PORTA_HOTPLUG_ENABLE;
3286 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3287 }
3288 
spt_hpd_irq_setup(struct drm_device * dev)3289 static void spt_hpd_irq_setup(struct drm_device *dev)
3290 {
3291 	struct drm_i915_private *dev_priv = dev->dev_private;
3292 	u32 hotplug_irqs, hotplug, enabled_irqs;
3293 
3294 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3295 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3296 
3297 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3298 
3299 	/* Enable digital hotplug on the PCH */
3300 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3301 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3302 		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3303 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3304 
3305 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3306 	hotplug |= PORTE_HOTPLUG_ENABLE;
3307 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3308 }
3309 
ilk_hpd_irq_setup(struct drm_device * dev)3310 static void ilk_hpd_irq_setup(struct drm_device *dev)
3311 {
3312 	struct drm_i915_private *dev_priv = dev->dev_private;
3313 	u32 hotplug_irqs, hotplug, enabled_irqs;
3314 
3315 	if (INTEL_INFO(dev)->gen >= 8) {
3316 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3317 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3318 
3319 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3320 	} else if (INTEL_INFO(dev)->gen >= 7) {
3321 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3322 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3323 
3324 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3325 	} else {
3326 		hotplug_irqs = DE_DP_A_HOTPLUG;
3327 		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3328 
3329 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3330 	}
3331 
3332 	/*
3333 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3334 	 * duration to 2ms (which is the minimum in the Display Port spec)
3335 	 * The pulse duration bits are reserved on HSW+.
3336 	 */
3337 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3338 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3339 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3340 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3341 
3342 	ibx_hpd_irq_setup(dev);
3343 }
3344 
bxt_hpd_irq_setup(struct drm_device * dev)3345 static void bxt_hpd_irq_setup(struct drm_device *dev)
3346 {
3347 	struct drm_i915_private *dev_priv = dev->dev_private;
3348 	u32 hotplug_irqs, hotplug, enabled_irqs;
3349 
3350 	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3351 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3352 
3353 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3354 
3355 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3356 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3357 		PORTA_HOTPLUG_ENABLE;
3358 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3359 }
3360 
ibx_irq_postinstall(struct drm_device * dev)3361 static void ibx_irq_postinstall(struct drm_device *dev)
3362 {
3363 	struct drm_i915_private *dev_priv = dev->dev_private;
3364 	u32 mask;
3365 
3366 	if (HAS_PCH_NOP(dev))
3367 		return;
3368 
3369 	if (HAS_PCH_IBX(dev))
3370 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3371 	else
3372 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3373 
3374 	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3375 	I915_WRITE(SDEIMR, ~mask);
3376 }
3377 
gen5_gt_irq_postinstall(struct drm_device * dev)3378 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3379 {
3380 	struct drm_i915_private *dev_priv = dev->dev_private;
3381 	u32 pm_irqs, gt_irqs;
3382 
3383 	pm_irqs = gt_irqs = 0;
3384 
3385 	dev_priv->gt_irq_mask = ~0;
3386 	if (HAS_L3_DPF(dev)) {
3387 		/* L3 parity interrupt is always unmasked. */
3388 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3389 		gt_irqs |= GT_PARITY_ERROR(dev);
3390 	}
3391 
3392 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3393 	if (IS_GEN5(dev)) {
3394 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3395 			   ILK_BSD_USER_INTERRUPT;
3396 	} else {
3397 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3398 	}
3399 
3400 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3401 
3402 	if (INTEL_INFO(dev)->gen >= 6) {
3403 		/*
3404 		 * RPS interrupts will get enabled/disabled on demand when RPS
3405 		 * itself is enabled/disabled.
3406 		 */
3407 		if (HAS_VEBOX(dev))
3408 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3409 
3410 		dev_priv->pm_irq_mask = 0xffffffff;
3411 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3412 	}
3413 }
3414 
ironlake_irq_postinstall(struct drm_device * dev)3415 static int ironlake_irq_postinstall(struct drm_device *dev)
3416 {
3417 	struct drm_i915_private *dev_priv = dev->dev_private;
3418 	u32 display_mask, extra_mask;
3419 
3420 	if (INTEL_INFO(dev)->gen >= 7) {
3421 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3422 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3423 				DE_PLANEB_FLIP_DONE_IVB |
3424 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3425 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3426 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3427 			      DE_DP_A_HOTPLUG_IVB);
3428 	} else {
3429 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3430 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3431 				DE_AUX_CHANNEL_A |
3432 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3433 				DE_POISON);
3434 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3435 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3436 			      DE_DP_A_HOTPLUG);
3437 	}
3438 
3439 	dev_priv->irq_mask = ~display_mask;
3440 
3441 	I915_WRITE(HWSTAM, 0xeffe);
3442 
3443 	ibx_irq_pre_postinstall(dev);
3444 
3445 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3446 
3447 	gen5_gt_irq_postinstall(dev);
3448 
3449 	ibx_irq_postinstall(dev);
3450 
3451 	if (IS_IRONLAKE_M(dev)) {
3452 		/* Enable PCU event interrupts
3453 		 *
3454 		 * spinlocking not required here for correctness since interrupt
3455 		 * setup is guaranteed to run in single-threaded context. But we
3456 		 * need it to make the assert_spin_locked happy. */
3457 		spin_lock_irq(&dev_priv->irq_lock);
3458 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3459 		spin_unlock_irq(&dev_priv->irq_lock);
3460 	}
3461 
3462 	return 0;
3463 }
3464 
valleyview_display_irqs_install(struct drm_i915_private * dev_priv)3465 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3466 {
3467 	u32 pipestat_mask;
3468 	u32 iir_mask;
3469 	enum pipe pipe;
3470 
3471 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3472 			PIPE_FIFO_UNDERRUN_STATUS;
3473 
3474 	for_each_pipe(dev_priv, pipe)
3475 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3476 	POSTING_READ(PIPESTAT(PIPE_A));
3477 
3478 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3479 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3480 
3481 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3482 	for_each_pipe(dev_priv, pipe)
3483 		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3484 
3485 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3486 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3487 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3488 	if (IS_CHERRYVIEW(dev_priv))
3489 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3490 	dev_priv->irq_mask &= ~iir_mask;
3491 
3492 	I915_WRITE(VLV_IIR, iir_mask);
3493 	I915_WRITE(VLV_IIR, iir_mask);
3494 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3495 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3496 	POSTING_READ(VLV_IMR);
3497 }
3498 
valleyview_display_irqs_uninstall(struct drm_i915_private * dev_priv)3499 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3500 {
3501 	u32 pipestat_mask;
3502 	u32 iir_mask;
3503 	enum pipe pipe;
3504 
3505 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3506 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3507 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3508 	if (IS_CHERRYVIEW(dev_priv))
3509 		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3510 
3511 	dev_priv->irq_mask |= iir_mask;
3512 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3513 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3514 	I915_WRITE(VLV_IIR, iir_mask);
3515 	I915_WRITE(VLV_IIR, iir_mask);
3516 	POSTING_READ(VLV_IIR);
3517 
3518 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3519 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3520 
3521 	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3522 	for_each_pipe(dev_priv, pipe)
3523 		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3524 
3525 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3526 			PIPE_FIFO_UNDERRUN_STATUS;
3527 
3528 	for_each_pipe(dev_priv, pipe)
3529 		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3530 	POSTING_READ(PIPESTAT(PIPE_A));
3531 }
3532 
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3533 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3534 {
3535 	assert_spin_locked(&dev_priv->irq_lock);
3536 
3537 	if (dev_priv->display_irqs_enabled)
3538 		return;
3539 
3540 	dev_priv->display_irqs_enabled = true;
3541 
3542 	if (intel_irqs_enabled(dev_priv))
3543 		valleyview_display_irqs_install(dev_priv);
3544 }
3545 
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3546 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3547 {
3548 	assert_spin_locked(&dev_priv->irq_lock);
3549 
3550 	if (!dev_priv->display_irqs_enabled)
3551 		return;
3552 
3553 	dev_priv->display_irqs_enabled = false;
3554 
3555 	if (intel_irqs_enabled(dev_priv))
3556 		valleyview_display_irqs_uninstall(dev_priv);
3557 }
3558 
vlv_display_irq_postinstall(struct drm_i915_private * dev_priv)3559 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561 	dev_priv->irq_mask = ~0;
3562 
3563 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3564 	POSTING_READ(PORT_HOTPLUG_EN);
3565 
3566 	I915_WRITE(VLV_IIR, 0xffffffff);
3567 	I915_WRITE(VLV_IIR, 0xffffffff);
3568 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3569 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3570 	POSTING_READ(VLV_IMR);
3571 
3572 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3573 	 * just to make the assert_spin_locked check happy. */
3574 	spin_lock_irq(&dev_priv->irq_lock);
3575 	if (dev_priv->display_irqs_enabled)
3576 		valleyview_display_irqs_install(dev_priv);
3577 	spin_unlock_irq(&dev_priv->irq_lock);
3578 }
3579 
valleyview_irq_postinstall(struct drm_device * dev)3580 static int valleyview_irq_postinstall(struct drm_device *dev)
3581 {
3582 	struct drm_i915_private *dev_priv = dev->dev_private;
3583 
3584 	vlv_display_irq_postinstall(dev_priv);
3585 
3586 	gen5_gt_irq_postinstall(dev);
3587 
3588 	/* ack & enable invalid PTE error interrupts */
3589 #if 0 /* FIXME: add support to irq handler for checking these bits */
3590 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3591 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3592 #endif
3593 
3594 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3595 
3596 	return 0;
3597 }
3598 
gen8_gt_irq_postinstall(struct drm_i915_private * dev_priv)3599 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3600 {
3601 	/* These are interrupts we'll toggle with the ring mask register */
3602 	uint32_t gt_interrupts[] = {
3603 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3604 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3605 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3606 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3607 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3608 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3609 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3610 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3611 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3612 		0,
3613 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3614 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3615 		};
3616 
3617 	dev_priv->pm_irq_mask = 0xffffffff;
3618 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3619 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3620 	/*
3621 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3622 	 * is enabled/disabled.
3623 	 */
3624 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3625 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3626 }
3627 
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3628 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3629 {
3630 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3631 	uint32_t de_pipe_enables;
3632 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3633 	u32 de_port_enables;
3634 	enum pipe pipe;
3635 
3636 	if (INTEL_INFO(dev_priv)->gen >= 9) {
3637 		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3638 				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3639 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3640 				  GEN9_AUX_CHANNEL_D;
3641 		if (IS_BROXTON(dev_priv))
3642 			de_port_masked |= BXT_DE_PORT_GMBUS;
3643 	} else {
3644 		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3645 				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3646 	}
3647 
3648 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3649 					   GEN8_PIPE_FIFO_UNDERRUN;
3650 
3651 	de_port_enables = de_port_masked;
3652 	if (IS_BROXTON(dev_priv))
3653 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3654 	else if (IS_BROADWELL(dev_priv))
3655 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3656 
3657 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3658 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3659 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3660 
3661 	for_each_pipe(dev_priv, pipe)
3662 		if (intel_display_power_is_enabled(dev_priv,
3663 				POWER_DOMAIN_PIPE(pipe)))
3664 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3665 					  dev_priv->de_irq_mask[pipe],
3666 					  de_pipe_enables);
3667 
3668 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3669 }
3670 
gen8_irq_postinstall(struct drm_device * dev)3671 static int gen8_irq_postinstall(struct drm_device *dev)
3672 {
3673 	struct drm_i915_private *dev_priv = dev->dev_private;
3674 
3675 	if (HAS_PCH_SPLIT(dev))
3676 		ibx_irq_pre_postinstall(dev);
3677 
3678 	gen8_gt_irq_postinstall(dev_priv);
3679 	gen8_de_irq_postinstall(dev_priv);
3680 
3681 	if (HAS_PCH_SPLIT(dev))
3682 		ibx_irq_postinstall(dev);
3683 
3684 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3685 	POSTING_READ(GEN8_MASTER_IRQ);
3686 
3687 	return 0;
3688 }
3689 
cherryview_irq_postinstall(struct drm_device * dev)3690 static int cherryview_irq_postinstall(struct drm_device *dev)
3691 {
3692 	struct drm_i915_private *dev_priv = dev->dev_private;
3693 
3694 	vlv_display_irq_postinstall(dev_priv);
3695 
3696 	gen8_gt_irq_postinstall(dev_priv);
3697 
3698 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3699 	POSTING_READ(GEN8_MASTER_IRQ);
3700 
3701 	return 0;
3702 }
3703 
gen8_irq_uninstall(struct drm_device * dev)3704 static void gen8_irq_uninstall(struct drm_device *dev)
3705 {
3706 	struct drm_i915_private *dev_priv = dev->dev_private;
3707 
3708 	if (!dev_priv)
3709 		return;
3710 
3711 	gen8_irq_reset(dev);
3712 }
3713 
vlv_display_irq_uninstall(struct drm_i915_private * dev_priv)3714 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3715 {
3716 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3717 	 * just to make the assert_spin_locked check happy. */
3718 	spin_lock_irq(&dev_priv->irq_lock);
3719 	if (dev_priv->display_irqs_enabled)
3720 		valleyview_display_irqs_uninstall(dev_priv);
3721 	spin_unlock_irq(&dev_priv->irq_lock);
3722 
3723 	vlv_display_irq_reset(dev_priv);
3724 
3725 	dev_priv->irq_mask = ~0;
3726 }
3727 
valleyview_irq_uninstall(struct drm_device * dev)3728 static void valleyview_irq_uninstall(struct drm_device *dev)
3729 {
3730 	struct drm_i915_private *dev_priv = dev->dev_private;
3731 
3732 	if (!dev_priv)
3733 		return;
3734 
3735 	I915_WRITE(VLV_MASTER_IER, 0);
3736 
3737 	gen5_gt_irq_reset(dev);
3738 
3739 	I915_WRITE(HWSTAM, 0xffffffff);
3740 
3741 	vlv_display_irq_uninstall(dev_priv);
3742 }
3743 
cherryview_irq_uninstall(struct drm_device * dev)3744 static void cherryview_irq_uninstall(struct drm_device *dev)
3745 {
3746 	struct drm_i915_private *dev_priv = dev->dev_private;
3747 
3748 	if (!dev_priv)
3749 		return;
3750 
3751 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3752 	POSTING_READ(GEN8_MASTER_IRQ);
3753 
3754 	gen8_gt_irq_reset(dev_priv);
3755 
3756 	GEN5_IRQ_RESET(GEN8_PCU_);
3757 
3758 	vlv_display_irq_uninstall(dev_priv);
3759 }
3760 
ironlake_irq_uninstall(struct drm_device * dev)3761 static void ironlake_irq_uninstall(struct drm_device *dev)
3762 {
3763 	struct drm_i915_private *dev_priv = dev->dev_private;
3764 
3765 	if (!dev_priv)
3766 		return;
3767 
3768 	ironlake_irq_reset(dev);
3769 }
3770 
i8xx_irq_preinstall(struct drm_device * dev)3771 static void i8xx_irq_preinstall(struct drm_device * dev)
3772 {
3773 	struct drm_i915_private *dev_priv = dev->dev_private;
3774 	int pipe;
3775 
3776 	for_each_pipe(dev_priv, pipe)
3777 		I915_WRITE(PIPESTAT(pipe), 0);
3778 	I915_WRITE16(IMR, 0xffff);
3779 	I915_WRITE16(IER, 0x0);
3780 	POSTING_READ16(IER);
3781 }
3782 
i8xx_irq_postinstall(struct drm_device * dev)3783 static int i8xx_irq_postinstall(struct drm_device *dev)
3784 {
3785 	struct drm_i915_private *dev_priv = dev->dev_private;
3786 
3787 	I915_WRITE16(EMR,
3788 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3789 
3790 	/* Unmask the interrupts that we always want on. */
3791 	dev_priv->irq_mask =
3792 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3793 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3794 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3795 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3796 	I915_WRITE16(IMR, dev_priv->irq_mask);
3797 
3798 	I915_WRITE16(IER,
3799 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3800 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3801 		     I915_USER_INTERRUPT);
3802 	POSTING_READ16(IER);
3803 
3804 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3805 	 * just to make the assert_spin_locked check happy. */
3806 	spin_lock_irq(&dev_priv->irq_lock);
3807 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3808 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3809 	spin_unlock_irq(&dev_priv->irq_lock);
3810 
3811 	return 0;
3812 }
3813 
3814 /*
3815  * Returns true when a page flip has completed.
3816  */
i8xx_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)3817 static bool i8xx_handle_vblank(struct drm_device *dev,
3818 			       int plane, int pipe, u32 iir)
3819 {
3820 	struct drm_i915_private *dev_priv = dev->dev_private;
3821 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3822 
3823 	if (!intel_pipe_handle_vblank(dev, pipe))
3824 		return false;
3825 
3826 	if ((iir & flip_pending) == 0)
3827 		goto check_page_flip;
3828 
3829 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3830 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3831 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3832 	 * the flip is completed (no longer pending). Since this doesn't raise
3833 	 * an interrupt per se, we watch for the change at vblank.
3834 	 */
3835 	if (I915_READ16(ISR) & flip_pending)
3836 		goto check_page_flip;
3837 
3838 	intel_prepare_page_flip(dev, plane);
3839 	intel_finish_page_flip(dev, pipe);
3840 	return true;
3841 
3842 check_page_flip:
3843 	intel_check_page_flip(dev, pipe);
3844 	return false;
3845 }
3846 
i8xx_irq_handler(int irq,void * arg)3847 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3848 {
3849 	struct drm_device *dev = arg;
3850 	struct drm_i915_private *dev_priv = dev->dev_private;
3851 	u16 iir, new_iir;
3852 	u32 pipe_stats[2];
3853 	int pipe;
3854 	u16 flip_mask =
3855 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3856 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3857 
3858 	if (!intel_irqs_enabled(dev_priv))
3859 		return IRQ_NONE;
3860 
3861 	iir = I915_READ16(IIR);
3862 	if (iir == 0)
3863 		return IRQ_NONE;
3864 
3865 	while (iir & ~flip_mask) {
3866 		/* Can't rely on pipestat interrupt bit in iir as it might
3867 		 * have been cleared after the pipestat interrupt was received.
3868 		 * It doesn't set the bit in iir again, but it still produces
3869 		 * interrupts (for non-MSI).
3870 		 */
3871 		spin_lock(&dev_priv->irq_lock);
3872 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3873 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3874 
3875 		for_each_pipe(dev_priv, pipe) {
3876 			int reg = PIPESTAT(pipe);
3877 			pipe_stats[pipe] = I915_READ(reg);
3878 
3879 			/*
3880 			 * Clear the PIPE*STAT regs before the IIR
3881 			 */
3882 			if (pipe_stats[pipe] & 0x8000ffff)
3883 				I915_WRITE(reg, pipe_stats[pipe]);
3884 		}
3885 		spin_unlock(&dev_priv->irq_lock);
3886 
3887 		I915_WRITE16(IIR, iir & ~flip_mask);
3888 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3889 
3890 		if (iir & I915_USER_INTERRUPT)
3891 			notify_ring(&dev_priv->ring[RCS]);
3892 
3893 		for_each_pipe(dev_priv, pipe) {
3894 			int plane = pipe;
3895 			if (HAS_FBC(dev))
3896 				plane = !plane;
3897 
3898 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3899 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3900 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3901 
3902 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3903 				i9xx_pipe_crc_irq_handler(dev, pipe);
3904 
3905 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3906 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3907 								    pipe);
3908 		}
3909 
3910 		iir = new_iir;
3911 	}
3912 
3913 	return IRQ_HANDLED;
3914 }
3915 
i8xx_irq_uninstall(struct drm_device * dev)3916 static void i8xx_irq_uninstall(struct drm_device * dev)
3917 {
3918 	struct drm_i915_private *dev_priv = dev->dev_private;
3919 	int pipe;
3920 
3921 	for_each_pipe(dev_priv, pipe) {
3922 		/* Clear enable bits; then clear status bits */
3923 		I915_WRITE(PIPESTAT(pipe), 0);
3924 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3925 	}
3926 	I915_WRITE16(IMR, 0xffff);
3927 	I915_WRITE16(IER, 0x0);
3928 	I915_WRITE16(IIR, I915_READ16(IIR));
3929 }
3930 
i915_irq_preinstall(struct drm_device * dev)3931 static void i915_irq_preinstall(struct drm_device * dev)
3932 {
3933 	struct drm_i915_private *dev_priv = dev->dev_private;
3934 	int pipe;
3935 
3936 	if (I915_HAS_HOTPLUG(dev)) {
3937 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3938 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3939 	}
3940 
3941 	I915_WRITE16(HWSTAM, 0xeffe);
3942 	for_each_pipe(dev_priv, pipe)
3943 		I915_WRITE(PIPESTAT(pipe), 0);
3944 	I915_WRITE(IMR, 0xffffffff);
3945 	I915_WRITE(IER, 0x0);
3946 	POSTING_READ(IER);
3947 }
3948 
i915_irq_postinstall(struct drm_device * dev)3949 static int i915_irq_postinstall(struct drm_device *dev)
3950 {
3951 	struct drm_i915_private *dev_priv = dev->dev_private;
3952 	u32 enable_mask;
3953 
3954 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3955 
3956 	/* Unmask the interrupts that we always want on. */
3957 	dev_priv->irq_mask =
3958 		~(I915_ASLE_INTERRUPT |
3959 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3960 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3961 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3962 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3963 
3964 	enable_mask =
3965 		I915_ASLE_INTERRUPT |
3966 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3967 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3968 		I915_USER_INTERRUPT;
3969 
3970 	if (I915_HAS_HOTPLUG(dev)) {
3971 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3972 		POSTING_READ(PORT_HOTPLUG_EN);
3973 
3974 		/* Enable in IER... */
3975 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3976 		/* and unmask in IMR */
3977 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3978 	}
3979 
3980 	I915_WRITE(IMR, dev_priv->irq_mask);
3981 	I915_WRITE(IER, enable_mask);
3982 	POSTING_READ(IER);
3983 
3984 	i915_enable_asle_pipestat(dev);
3985 
3986 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3987 	 * just to make the assert_spin_locked check happy. */
3988 	spin_lock_irq(&dev_priv->irq_lock);
3989 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3990 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3991 	spin_unlock_irq(&dev_priv->irq_lock);
3992 
3993 	return 0;
3994 }
3995 
3996 /*
3997  * Returns true when a page flip has completed.
3998  */
i915_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)3999 static bool i915_handle_vblank(struct drm_device *dev,
4000 			       int plane, int pipe, u32 iir)
4001 {
4002 	struct drm_i915_private *dev_priv = dev->dev_private;
4003 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4004 
4005 	if (!intel_pipe_handle_vblank(dev, pipe))
4006 		return false;
4007 
4008 	if ((iir & flip_pending) == 0)
4009 		goto check_page_flip;
4010 
4011 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4012 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4013 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4014 	 * the flip is completed (no longer pending). Since this doesn't raise
4015 	 * an interrupt per se, we watch for the change at vblank.
4016 	 */
4017 	if (I915_READ(ISR) & flip_pending)
4018 		goto check_page_flip;
4019 
4020 	intel_prepare_page_flip(dev, plane);
4021 	intel_finish_page_flip(dev, pipe);
4022 	return true;
4023 
4024 check_page_flip:
4025 	intel_check_page_flip(dev, pipe);
4026 	return false;
4027 }
4028 
i915_irq_handler(int irq,void * arg)4029 static irqreturn_t i915_irq_handler(int irq, void *arg)
4030 {
4031 	struct drm_device *dev = arg;
4032 	struct drm_i915_private *dev_priv = dev->dev_private;
4033 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4034 	u32 flip_mask =
4035 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4036 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4037 	int pipe, ret = IRQ_NONE;
4038 
4039 	if (!intel_irqs_enabled(dev_priv))
4040 		return IRQ_NONE;
4041 
4042 	iir = I915_READ(IIR);
4043 	do {
4044 		bool irq_received = (iir & ~flip_mask) != 0;
4045 		bool blc_event = false;
4046 
4047 		/* Can't rely on pipestat interrupt bit in iir as it might
4048 		 * have been cleared after the pipestat interrupt was received.
4049 		 * It doesn't set the bit in iir again, but it still produces
4050 		 * interrupts (for non-MSI).
4051 		 */
4052 		spin_lock(&dev_priv->irq_lock);
4053 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4054 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4055 
4056 		for_each_pipe(dev_priv, pipe) {
4057 			int reg = PIPESTAT(pipe);
4058 			pipe_stats[pipe] = I915_READ(reg);
4059 
4060 			/* Clear the PIPE*STAT regs before the IIR */
4061 			if (pipe_stats[pipe] & 0x8000ffff) {
4062 				I915_WRITE(reg, pipe_stats[pipe]);
4063 				irq_received = true;
4064 			}
4065 		}
4066 		spin_unlock(&dev_priv->irq_lock);
4067 
4068 		if (!irq_received)
4069 			break;
4070 
4071 		/* Consume port.  Then clear IIR or we'll miss events */
4072 		if (I915_HAS_HOTPLUG(dev) &&
4073 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4074 			i9xx_hpd_irq_handler(dev);
4075 
4076 		I915_WRITE(IIR, iir & ~flip_mask);
4077 		new_iir = I915_READ(IIR); /* Flush posted writes */
4078 
4079 		if (iir & I915_USER_INTERRUPT)
4080 			notify_ring(&dev_priv->ring[RCS]);
4081 
4082 		for_each_pipe(dev_priv, pipe) {
4083 			int plane = pipe;
4084 			if (HAS_FBC(dev))
4085 				plane = !plane;
4086 
4087 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4088 			    i915_handle_vblank(dev, plane, pipe, iir))
4089 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4090 
4091 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4092 				blc_event = true;
4093 
4094 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4095 				i9xx_pipe_crc_irq_handler(dev, pipe);
4096 
4097 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4098 				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4099 								    pipe);
4100 		}
4101 
4102 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4103 			intel_opregion_asle_intr(dev);
4104 
4105 		/* With MSI, interrupts are only generated when iir
4106 		 * transitions from zero to nonzero.  If another bit got
4107 		 * set while we were handling the existing iir bits, then
4108 		 * we would never get another interrupt.
4109 		 *
4110 		 * This is fine on non-MSI as well, as if we hit this path
4111 		 * we avoid exiting the interrupt handler only to generate
4112 		 * another one.
4113 		 *
4114 		 * Note that for MSI this could cause a stray interrupt report
4115 		 * if an interrupt landed in the time between writing IIR and
4116 		 * the posting read.  This should be rare enough to never
4117 		 * trigger the 99% of 100,000 interrupts test for disabling
4118 		 * stray interrupts.
4119 		 */
4120 		ret = IRQ_HANDLED;
4121 		iir = new_iir;
4122 	} while (iir & ~flip_mask);
4123 
4124 	return ret;
4125 }
4126 
i915_irq_uninstall(struct drm_device * dev)4127 static void i915_irq_uninstall(struct drm_device * dev)
4128 {
4129 	struct drm_i915_private *dev_priv = dev->dev_private;
4130 	int pipe;
4131 
4132 	if (I915_HAS_HOTPLUG(dev)) {
4133 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4134 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4135 	}
4136 
4137 	I915_WRITE16(HWSTAM, 0xffff);
4138 	for_each_pipe(dev_priv, pipe) {
4139 		/* Clear enable bits; then clear status bits */
4140 		I915_WRITE(PIPESTAT(pipe), 0);
4141 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4142 	}
4143 	I915_WRITE(IMR, 0xffffffff);
4144 	I915_WRITE(IER, 0x0);
4145 
4146 	I915_WRITE(IIR, I915_READ(IIR));
4147 }
4148 
i965_irq_preinstall(struct drm_device * dev)4149 static void i965_irq_preinstall(struct drm_device * dev)
4150 {
4151 	struct drm_i915_private *dev_priv = dev->dev_private;
4152 	int pipe;
4153 
4154 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4155 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4156 
4157 	I915_WRITE(HWSTAM, 0xeffe);
4158 	for_each_pipe(dev_priv, pipe)
4159 		I915_WRITE(PIPESTAT(pipe), 0);
4160 	I915_WRITE(IMR, 0xffffffff);
4161 	I915_WRITE(IER, 0x0);
4162 	POSTING_READ(IER);
4163 }
4164 
i965_irq_postinstall(struct drm_device * dev)4165 static int i965_irq_postinstall(struct drm_device *dev)
4166 {
4167 	struct drm_i915_private *dev_priv = dev->dev_private;
4168 	u32 enable_mask;
4169 	u32 error_mask;
4170 
4171 	/* Unmask the interrupts that we always want on. */
4172 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4173 			       I915_DISPLAY_PORT_INTERRUPT |
4174 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4175 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4176 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4177 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4178 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4179 
4180 	enable_mask = ~dev_priv->irq_mask;
4181 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4182 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4183 	enable_mask |= I915_USER_INTERRUPT;
4184 
4185 	if (IS_G4X(dev))
4186 		enable_mask |= I915_BSD_USER_INTERRUPT;
4187 
4188 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4189 	 * just to make the assert_spin_locked check happy. */
4190 	spin_lock_irq(&dev_priv->irq_lock);
4191 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4192 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4193 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4194 	spin_unlock_irq(&dev_priv->irq_lock);
4195 
4196 	/*
4197 	 * Enable some error detection, note the instruction error mask
4198 	 * bit is reserved, so we leave it masked.
4199 	 */
4200 	if (IS_G4X(dev)) {
4201 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4202 			       GM45_ERROR_MEM_PRIV |
4203 			       GM45_ERROR_CP_PRIV |
4204 			       I915_ERROR_MEMORY_REFRESH);
4205 	} else {
4206 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4207 			       I915_ERROR_MEMORY_REFRESH);
4208 	}
4209 	I915_WRITE(EMR, error_mask);
4210 
4211 	I915_WRITE(IMR, dev_priv->irq_mask);
4212 	I915_WRITE(IER, enable_mask);
4213 	POSTING_READ(IER);
4214 
4215 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4216 	POSTING_READ(PORT_HOTPLUG_EN);
4217 
4218 	i915_enable_asle_pipestat(dev);
4219 
4220 	return 0;
4221 }
4222 
i915_hpd_irq_setup(struct drm_device * dev)4223 static void i915_hpd_irq_setup(struct drm_device *dev)
4224 {
4225 	struct drm_i915_private *dev_priv = dev->dev_private;
4226 	u32 hotplug_en;
4227 
4228 	assert_spin_locked(&dev_priv->irq_lock);
4229 
4230 	/* Note HDMI and DP share hotplug bits */
4231 	/* enable bits are the same for all generations */
4232 	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4233 	/* Programming the CRT detection parameters tends
4234 	   to generate a spurious hotplug event about three
4235 	   seconds later.  So just do it once.
4236 	*/
4237 	if (IS_G4X(dev))
4238 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4239 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4240 
4241 	/* Ignore TV since it's buggy */
4242 	i915_hotplug_interrupt_update_locked(dev_priv,
4243 					     HOTPLUG_INT_EN_MASK |
4244 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4245 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4246 					     hotplug_en);
4247 }
4248 
i965_irq_handler(int irq,void * arg)4249 static irqreturn_t i965_irq_handler(int irq, void *arg)
4250 {
4251 	struct drm_device *dev = arg;
4252 	struct drm_i915_private *dev_priv = dev->dev_private;
4253 	u32 iir, new_iir;
4254 	u32 pipe_stats[I915_MAX_PIPES];
4255 	int ret = IRQ_NONE, pipe;
4256 	u32 flip_mask =
4257 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4258 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4259 
4260 	if (!intel_irqs_enabled(dev_priv))
4261 		return IRQ_NONE;
4262 
4263 	iir = I915_READ(IIR);
4264 
4265 	for (;;) {
4266 		bool irq_received = (iir & ~flip_mask) != 0;
4267 		bool blc_event = false;
4268 
4269 		/* Can't rely on pipestat interrupt bit in iir as it might
4270 		 * have been cleared after the pipestat interrupt was received.
4271 		 * It doesn't set the bit in iir again, but it still produces
4272 		 * interrupts (for non-MSI).
4273 		 */
4274 		spin_lock(&dev_priv->irq_lock);
4275 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4276 			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4277 
4278 		for_each_pipe(dev_priv, pipe) {
4279 			int reg = PIPESTAT(pipe);
4280 			pipe_stats[pipe] = I915_READ(reg);
4281 
4282 			/*
4283 			 * Clear the PIPE*STAT regs before the IIR
4284 			 */
4285 			if (pipe_stats[pipe] & 0x8000ffff) {
4286 				I915_WRITE(reg, pipe_stats[pipe]);
4287 				irq_received = true;
4288 			}
4289 		}
4290 		spin_unlock(&dev_priv->irq_lock);
4291 
4292 		if (!irq_received)
4293 			break;
4294 
4295 		ret = IRQ_HANDLED;
4296 
4297 		/* Consume port.  Then clear IIR or we'll miss events */
4298 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4299 			i9xx_hpd_irq_handler(dev);
4300 
4301 		I915_WRITE(IIR, iir & ~flip_mask);
4302 		new_iir = I915_READ(IIR); /* Flush posted writes */
4303 
4304 		if (iir & I915_USER_INTERRUPT)
4305 			notify_ring(&dev_priv->ring[RCS]);
4306 		if (iir & I915_BSD_USER_INTERRUPT)
4307 			notify_ring(&dev_priv->ring[VCS]);
4308 
4309 		for_each_pipe(dev_priv, pipe) {
4310 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4311 			    i915_handle_vblank(dev, pipe, pipe, iir))
4312 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4313 
4314 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4315 				blc_event = true;
4316 
4317 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4318 				i9xx_pipe_crc_irq_handler(dev, pipe);
4319 
4320 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4321 				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4322 		}
4323 
4324 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4325 			intel_opregion_asle_intr(dev);
4326 
4327 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4328 			gmbus_irq_handler(dev);
4329 
4330 		/* With MSI, interrupts are only generated when iir
4331 		 * transitions from zero to nonzero.  If another bit got
4332 		 * set while we were handling the existing iir bits, then
4333 		 * we would never get another interrupt.
4334 		 *
4335 		 * This is fine on non-MSI as well, as if we hit this path
4336 		 * we avoid exiting the interrupt handler only to generate
4337 		 * another one.
4338 		 *
4339 		 * Note that for MSI this could cause a stray interrupt report
4340 		 * if an interrupt landed in the time between writing IIR and
4341 		 * the posting read.  This should be rare enough to never
4342 		 * trigger the 99% of 100,000 interrupts test for disabling
4343 		 * stray interrupts.
4344 		 */
4345 		iir = new_iir;
4346 	}
4347 
4348 	return ret;
4349 }
4350 
i965_irq_uninstall(struct drm_device * dev)4351 static void i965_irq_uninstall(struct drm_device * dev)
4352 {
4353 	struct drm_i915_private *dev_priv = dev->dev_private;
4354 	int pipe;
4355 
4356 	if (!dev_priv)
4357 		return;
4358 
4359 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4360 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4361 
4362 	I915_WRITE(HWSTAM, 0xffffffff);
4363 	for_each_pipe(dev_priv, pipe)
4364 		I915_WRITE(PIPESTAT(pipe), 0);
4365 	I915_WRITE(IMR, 0xffffffff);
4366 	I915_WRITE(IER, 0x0);
4367 
4368 	for_each_pipe(dev_priv, pipe)
4369 		I915_WRITE(PIPESTAT(pipe),
4370 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4371 	I915_WRITE(IIR, I915_READ(IIR));
4372 }
4373 
4374 /**
4375  * intel_irq_init - initializes irq support
4376  * @dev_priv: i915 device instance
4377  *
4378  * This function initializes all the irq support including work items, timers
4379  * and all the vtables. It does not setup the interrupt itself though.
4380  */
intel_irq_init(struct drm_i915_private * dev_priv)4381 void intel_irq_init(struct drm_i915_private *dev_priv)
4382 {
4383 	struct drm_device *dev = dev_priv->dev;
4384 
4385 	intel_hpd_init_work(dev_priv);
4386 
4387 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4388 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4389 
4390 	/* Let's track the enabled rps events */
4391 	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4392 		/* WaGsvRC0ResidencyMethod:vlv */
4393 		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4394 	else
4395 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4396 
4397 	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4398 			  i915_hangcheck_elapsed);
4399 
4400 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4401 
4402 	if (IS_GEN2(dev_priv)) {
4403 		dev->max_vblank_count = 0;
4404 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4405 	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4406 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4407 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4408 	} else {
4409 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4410 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4411 	}
4412 
4413 	/*
4414 	 * Opt out of the vblank disable timer on everything except gen2.
4415 	 * Gen2 doesn't have a hardware frame counter and so depends on
4416 	 * vblank interrupts to produce sane vblank seuquence numbers.
4417 	 */
4418 	if (!IS_GEN2(dev_priv))
4419 		dev->vblank_disable_immediate = true;
4420 
4421 	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4422 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4423 
4424 	if (IS_CHERRYVIEW(dev_priv)) {
4425 		dev->driver->irq_handler = cherryview_irq_handler;
4426 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4427 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4428 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4429 		dev->driver->enable_vblank = valleyview_enable_vblank;
4430 		dev->driver->disable_vblank = valleyview_disable_vblank;
4431 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4432 	} else if (IS_VALLEYVIEW(dev_priv)) {
4433 		dev->driver->irq_handler = valleyview_irq_handler;
4434 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4435 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4436 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4437 		dev->driver->enable_vblank = valleyview_enable_vblank;
4438 		dev->driver->disable_vblank = valleyview_disable_vblank;
4439 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4440 	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4441 		dev->driver->irq_handler = gen8_irq_handler;
4442 		dev->driver->irq_preinstall = gen8_irq_reset;
4443 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4444 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4445 		dev->driver->enable_vblank = gen8_enable_vblank;
4446 		dev->driver->disable_vblank = gen8_disable_vblank;
4447 		if (IS_BROXTON(dev))
4448 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4449 		else if (HAS_PCH_SPT(dev))
4450 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4451 		else
4452 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4453 	} else if (HAS_PCH_SPLIT(dev)) {
4454 		dev->driver->irq_handler = ironlake_irq_handler;
4455 		dev->driver->irq_preinstall = ironlake_irq_reset;
4456 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4457 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4458 		dev->driver->enable_vblank = ironlake_enable_vblank;
4459 		dev->driver->disable_vblank = ironlake_disable_vblank;
4460 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4461 	} else {
4462 		if (INTEL_INFO(dev_priv)->gen == 2) {
4463 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4464 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4465 			dev->driver->irq_handler = i8xx_irq_handler;
4466 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4467 		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4468 			dev->driver->irq_preinstall = i915_irq_preinstall;
4469 			dev->driver->irq_postinstall = i915_irq_postinstall;
4470 			dev->driver->irq_uninstall = i915_irq_uninstall;
4471 			dev->driver->irq_handler = i915_irq_handler;
4472 		} else {
4473 			dev->driver->irq_preinstall = i965_irq_preinstall;
4474 			dev->driver->irq_postinstall = i965_irq_postinstall;
4475 			dev->driver->irq_uninstall = i965_irq_uninstall;
4476 			dev->driver->irq_handler = i965_irq_handler;
4477 		}
4478 		if (I915_HAS_HOTPLUG(dev_priv))
4479 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4480 		dev->driver->enable_vblank = i915_enable_vblank;
4481 		dev->driver->disable_vblank = i915_disable_vblank;
4482 	}
4483 }
4484 
4485 /**
4486  * intel_irq_install - enables the hardware interrupt
4487  * @dev_priv: i915 device instance
4488  *
4489  * This function enables the hardware interrupt handling, but leaves the hotplug
4490  * handling still disabled. It is called after intel_irq_init().
4491  *
4492  * In the driver load and resume code we need working interrupts in a few places
4493  * but don't want to deal with the hassle of concurrent probe and hotplug
4494  * workers. Hence the split into this two-stage approach.
4495  */
intel_irq_install(struct drm_i915_private * dev_priv)4496 int intel_irq_install(struct drm_i915_private *dev_priv)
4497 {
4498 	/*
4499 	 * We enable some interrupt sources in our postinstall hooks, so mark
4500 	 * interrupts as enabled _before_ actually enabling them to avoid
4501 	 * special cases in our ordering checks.
4502 	 */
4503 	dev_priv->pm.irqs_enabled = true;
4504 
4505 	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4506 }
4507 
4508 /**
4509  * intel_irq_uninstall - finilizes all irq handling
4510  * @dev_priv: i915 device instance
4511  *
4512  * This stops interrupt and hotplug handling and unregisters and frees all
4513  * resources acquired in the init functions.
4514  */
intel_irq_uninstall(struct drm_i915_private * dev_priv)4515 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4516 {
4517 	drm_irq_uninstall(dev_priv->dev);
4518 	intel_hpd_cancel_work(dev_priv);
4519 	dev_priv->pm.irqs_enabled = false;
4520 }
4521 
4522 /**
4523  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4524  * @dev_priv: i915 device instance
4525  *
4526  * This function is used to disable interrupts at runtime, both in the runtime
4527  * pm and the system suspend/resume code.
4528  */
intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)4529 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4530 {
4531 	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4532 	dev_priv->pm.irqs_enabled = false;
4533 	synchronize_irq(dev_priv->dev->irq);
4534 }
4535 
4536 /**
4537  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4538  * @dev_priv: i915 device instance
4539  *
4540  * This function is used to enable interrupts at runtime, both in the runtime
4541  * pm and the system suspend/resume code.
4542  */
intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)4543 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4544 {
4545 	dev_priv->pm.irqs_enabled = true;
4546 	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4547 	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4548 }
4549