1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36 
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
page_cache_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 				     struct pipe_buffer *buf)
45 {
46 	struct page *page = buf->page;
47 	struct address_space *mapping;
48 
49 	lock_page(page);
50 
51 	mapping = page_mapping(page);
52 	if (mapping) {
53 		WARN_ON(!PageUptodate(page));
54 
55 		/*
56 		 * At least for ext2 with nobh option, we need to wait on
57 		 * writeback completing on this page, since we'll remove it
58 		 * from the pagecache.  Otherwise truncate wont wait on the
59 		 * page, allowing the disk blocks to be reused by someone else
60 		 * before we actually wrote our data to them. fs corruption
61 		 * ensues.
62 		 */
63 		wait_on_page_writeback(page);
64 
65 		if (page_has_private(page) &&
66 		    !try_to_release_page(page, GFP_KERNEL))
67 			goto out_unlock;
68 
69 		/*
70 		 * If we succeeded in removing the mapping, set LRU flag
71 		 * and return good.
72 		 */
73 		if (remove_mapping(mapping, page)) {
74 			buf->flags |= PIPE_BUF_FLAG_LRU;
75 			return 0;
76 		}
77 	}
78 
79 	/*
80 	 * Raced with truncate or failed to remove page from current
81 	 * address space, unlock and return failure.
82 	 */
83 out_unlock:
84 	unlock_page(page);
85 	return 1;
86 }
87 
page_cache_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 					struct pipe_buffer *buf)
90 {
91 	page_cache_release(buf->page);
92 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94 
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
page_cache_pipe_buf_confirm(struct pipe_inode_info * pipe,struct pipe_buffer * buf)99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 				       struct pipe_buffer *buf)
101 {
102 	struct page *page = buf->page;
103 	int err;
104 
105 	if (!PageUptodate(page)) {
106 		lock_page(page);
107 
108 		/*
109 		 * Page got truncated/unhashed. This will cause a 0-byte
110 		 * splice, if this is the first page.
111 		 */
112 		if (!page->mapping) {
113 			err = -ENODATA;
114 			goto error;
115 		}
116 
117 		/*
118 		 * Uh oh, read-error from disk.
119 		 */
120 		if (!PageUptodate(page)) {
121 			err = -EIO;
122 			goto error;
123 		}
124 
125 		/*
126 		 * Page is ok afterall, we are done.
127 		 */
128 		unlock_page(page);
129 	}
130 
131 	return 0;
132 error:
133 	unlock_page(page);
134 	return err;
135 }
136 
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 	.can_merge = 0,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
user_page_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
wakeup_pipe_readers(struct pipe_inode_info * pipe)163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 	smp_mb();
166 	if (waitqueue_active(&pipe->wait))
167 		wake_up_interruptible(&pipe->wait);
168 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170 
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:	pipe to fill
174  * @spd:	data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
splice_to_pipe(struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 		       struct splice_pipe_desc *spd)
184 {
185 	unsigned int spd_pages = spd->nr_pages;
186 	int ret, do_wakeup, page_nr;
187 
188 	if (!spd_pages)
189 		return 0;
190 
191 	ret = 0;
192 	do_wakeup = 0;
193 	page_nr = 0;
194 
195 	pipe_lock(pipe);
196 
197 	for (;;) {
198 		if (!pipe->readers) {
199 			send_sig(SIGPIPE, current, 0);
200 			if (!ret)
201 				ret = -EPIPE;
202 			break;
203 		}
204 
205 		if (pipe->nrbufs < pipe->buffers) {
206 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 			struct pipe_buffer *buf = pipe->bufs + newbuf;
208 
209 			buf->page = spd->pages[page_nr];
210 			buf->offset = spd->partial[page_nr].offset;
211 			buf->len = spd->partial[page_nr].len;
212 			buf->private = spd->partial[page_nr].private;
213 			buf->ops = spd->ops;
214 			if (spd->flags & SPLICE_F_GIFT)
215 				buf->flags |= PIPE_BUF_FLAG_GIFT;
216 
217 			pipe->nrbufs++;
218 			page_nr++;
219 			ret += buf->len;
220 
221 			if (pipe->files)
222 				do_wakeup = 1;
223 
224 			if (!--spd->nr_pages)
225 				break;
226 			if (pipe->nrbufs < pipe->buffers)
227 				continue;
228 
229 			break;
230 		}
231 
232 		if (spd->flags & SPLICE_F_NONBLOCK) {
233 			if (!ret)
234 				ret = -EAGAIN;
235 			break;
236 		}
237 
238 		if (signal_pending(current)) {
239 			if (!ret)
240 				ret = -ERESTARTSYS;
241 			break;
242 		}
243 
244 		if (do_wakeup) {
245 			smp_mb();
246 			if (waitqueue_active(&pipe->wait))
247 				wake_up_interruptible_sync(&pipe->wait);
248 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 			do_wakeup = 0;
250 		}
251 
252 		pipe->waiting_writers++;
253 		pipe_wait(pipe);
254 		pipe->waiting_writers--;
255 	}
256 
257 	pipe_unlock(pipe);
258 
259 	if (do_wakeup)
260 		wakeup_pipe_readers(pipe);
261 
262 	while (page_nr < spd_pages)
263 		spd->spd_release(spd, page_nr++);
264 
265 	return ret;
266 }
267 
spd_release_page(struct splice_pipe_desc * spd,unsigned int i)268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270 	page_cache_release(spd->pages[i]);
271 }
272 
273 /*
274  * Check if we need to grow the arrays holding pages and partial page
275  * descriptions.
276  */
splice_grow_spd(const struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280 
281 	spd->nr_pages_max = buffers;
282 	if (buffers <= PIPE_DEF_BUFFERS)
283 		return 0;
284 
285 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287 
288 	if (spd->pages && spd->partial)
289 		return 0;
290 
291 	kfree(spd->pages);
292 	kfree(spd->partial);
293 	return -ENOMEM;
294 }
295 
splice_shrink_spd(struct splice_pipe_desc * spd)296 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 {
298 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299 		return;
300 
301 	kfree(spd->pages);
302 	kfree(spd->partial);
303 }
304 
305 static int
__generic_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307 			   struct pipe_inode_info *pipe, size_t len,
308 			   unsigned int flags)
309 {
310 	struct address_space *mapping = in->f_mapping;
311 	unsigned int loff, nr_pages, req_pages;
312 	struct page *pages[PIPE_DEF_BUFFERS];
313 	struct partial_page partial[PIPE_DEF_BUFFERS];
314 	struct page *page;
315 	pgoff_t index, end_index;
316 	loff_t isize;
317 	int error, page_nr;
318 	struct splice_pipe_desc spd = {
319 		.pages = pages,
320 		.partial = partial,
321 		.nr_pages_max = PIPE_DEF_BUFFERS,
322 		.flags = flags,
323 		.ops = &page_cache_pipe_buf_ops,
324 		.spd_release = spd_release_page,
325 	};
326 
327 	if (splice_grow_spd(pipe, &spd))
328 		return -ENOMEM;
329 
330 	index = *ppos >> PAGE_CACHE_SHIFT;
331 	loff = *ppos & ~PAGE_CACHE_MASK;
332 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333 	nr_pages = min(req_pages, spd.nr_pages_max);
334 
335 	/*
336 	 * Lookup the (hopefully) full range of pages we need.
337 	 */
338 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339 	index += spd.nr_pages;
340 
341 	/*
342 	 * If find_get_pages_contig() returned fewer pages than we needed,
343 	 * readahead/allocate the rest and fill in the holes.
344 	 */
345 	if (spd.nr_pages < nr_pages)
346 		page_cache_sync_readahead(mapping, &in->f_ra, in,
347 				index, req_pages - spd.nr_pages);
348 
349 	error = 0;
350 	while (spd.nr_pages < nr_pages) {
351 		/*
352 		 * Page could be there, find_get_pages_contig() breaks on
353 		 * the first hole.
354 		 */
355 		page = find_get_page(mapping, index);
356 		if (!page) {
357 			/*
358 			 * page didn't exist, allocate one.
359 			 */
360 			page = page_cache_alloc_cold(mapping);
361 			if (!page)
362 				break;
363 
364 			error = add_to_page_cache_lru(page, mapping, index,
365 						GFP_KERNEL);
366 			if (unlikely(error)) {
367 				page_cache_release(page);
368 				if (error == -EEXIST)
369 					continue;
370 				break;
371 			}
372 			/*
373 			 * add_to_page_cache() locks the page, unlock it
374 			 * to avoid convoluting the logic below even more.
375 			 */
376 			unlock_page(page);
377 		}
378 
379 		spd.pages[spd.nr_pages++] = page;
380 		index++;
381 	}
382 
383 	/*
384 	 * Now loop over the map and see if we need to start IO on any
385 	 * pages, fill in the partial map, etc.
386 	 */
387 	index = *ppos >> PAGE_CACHE_SHIFT;
388 	nr_pages = spd.nr_pages;
389 	spd.nr_pages = 0;
390 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391 		unsigned int this_len;
392 
393 		if (!len)
394 			break;
395 
396 		/*
397 		 * this_len is the max we'll use from this page
398 		 */
399 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400 		page = spd.pages[page_nr];
401 
402 		if (PageReadahead(page))
403 			page_cache_async_readahead(mapping, &in->f_ra, in,
404 					page, index, req_pages - page_nr);
405 
406 		/*
407 		 * If the page isn't uptodate, we may need to start io on it
408 		 */
409 		if (!PageUptodate(page)) {
410 			lock_page(page);
411 
412 			/*
413 			 * Page was truncated, or invalidated by the
414 			 * filesystem.  Redo the find/create, but this time the
415 			 * page is kept locked, so there's no chance of another
416 			 * race with truncate/invalidate.
417 			 */
418 			if (!page->mapping) {
419 				unlock_page(page);
420 				page = find_or_create_page(mapping, index,
421 						mapping_gfp_mask(mapping));
422 
423 				if (!page) {
424 					error = -ENOMEM;
425 					break;
426 				}
427 				page_cache_release(spd.pages[page_nr]);
428 				spd.pages[page_nr] = page;
429 			}
430 			/*
431 			 * page was already under io and is now done, great
432 			 */
433 			if (PageUptodate(page)) {
434 				unlock_page(page);
435 				goto fill_it;
436 			}
437 
438 			/*
439 			 * need to read in the page
440 			 */
441 			error = mapping->a_ops->readpage(in, page);
442 			if (unlikely(error)) {
443 				/*
444 				 * We really should re-lookup the page here,
445 				 * but it complicates things a lot. Instead
446 				 * lets just do what we already stored, and
447 				 * we'll get it the next time we are called.
448 				 */
449 				if (error == AOP_TRUNCATED_PAGE)
450 					error = 0;
451 
452 				break;
453 			}
454 		}
455 fill_it:
456 		/*
457 		 * i_size must be checked after PageUptodate.
458 		 */
459 		isize = i_size_read(mapping->host);
460 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461 		if (unlikely(!isize || index > end_index))
462 			break;
463 
464 		/*
465 		 * if this is the last page, see if we need to shrink
466 		 * the length and stop
467 		 */
468 		if (end_index == index) {
469 			unsigned int plen;
470 
471 			/*
472 			 * max good bytes in this page
473 			 */
474 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475 			if (plen <= loff)
476 				break;
477 
478 			/*
479 			 * force quit after adding this page
480 			 */
481 			this_len = min(this_len, plen - loff);
482 			len = this_len;
483 		}
484 
485 		spd.partial[page_nr].offset = loff;
486 		spd.partial[page_nr].len = this_len;
487 		len -= this_len;
488 		loff = 0;
489 		spd.nr_pages++;
490 		index++;
491 	}
492 
493 	/*
494 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
495 	 * we got, 'nr_pages' is how many pages are in the map.
496 	 */
497 	while (page_nr < nr_pages)
498 		page_cache_release(spd.pages[page_nr++]);
499 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500 
501 	if (spd.nr_pages)
502 		error = splice_to_pipe(pipe, &spd);
503 
504 	splice_shrink_spd(&spd);
505 	return error;
506 }
507 
508 /**
509  * generic_file_splice_read - splice data from file to a pipe
510  * @in:		file to splice from
511  * @ppos:	position in @in
512  * @pipe:	pipe to splice to
513  * @len:	number of bytes to splice
514  * @flags:	splice modifier flags
515  *
516  * Description:
517  *    Will read pages from given file and fill them into a pipe. Can be
518  *    used as long as the address_space operations for the source implements
519  *    a readpage() hook.
520  *
521  */
generic_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523 				 struct pipe_inode_info *pipe, size_t len,
524 				 unsigned int flags)
525 {
526 	loff_t isize, left;
527 	int ret;
528 
529 	if (IS_DAX(in->f_mapping->host))
530 		return default_file_splice_read(in, ppos, pipe, len, flags);
531 
532 	isize = i_size_read(in->f_mapping->host);
533 	if (unlikely(*ppos >= isize))
534 		return 0;
535 
536 	left = isize - *ppos;
537 	if (unlikely(left < len))
538 		len = left;
539 
540 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
541 	if (ret > 0) {
542 		*ppos += ret;
543 		file_accessed(in);
544 	}
545 
546 	return ret;
547 }
548 EXPORT_SYMBOL(generic_file_splice_read);
549 
550 static const struct pipe_buf_operations default_pipe_buf_ops = {
551 	.can_merge = 0,
552 	.confirm = generic_pipe_buf_confirm,
553 	.release = generic_pipe_buf_release,
554 	.steal = generic_pipe_buf_steal,
555 	.get = generic_pipe_buf_get,
556 };
557 
generic_pipe_buf_nosteal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)558 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
559 				    struct pipe_buffer *buf)
560 {
561 	return 1;
562 }
563 
564 /* Pipe buffer operations for a socket and similar. */
565 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
566 	.can_merge = 0,
567 	.confirm = generic_pipe_buf_confirm,
568 	.release = generic_pipe_buf_release,
569 	.steal = generic_pipe_buf_nosteal,
570 	.get = generic_pipe_buf_get,
571 };
572 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
573 
kernel_readv(struct file * file,const struct iovec * vec,unsigned long vlen,loff_t offset)574 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
575 			    unsigned long vlen, loff_t offset)
576 {
577 	mm_segment_t old_fs;
578 	loff_t pos = offset;
579 	ssize_t res;
580 
581 	old_fs = get_fs();
582 	set_fs(get_ds());
583 	/* The cast to a user pointer is valid due to the set_fs() */
584 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
585 	set_fs(old_fs);
586 
587 	return res;
588 }
589 
kernel_write(struct file * file,const char * buf,size_t count,loff_t pos)590 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
591 			    loff_t pos)
592 {
593 	mm_segment_t old_fs;
594 	ssize_t res;
595 
596 	old_fs = get_fs();
597 	set_fs(get_ds());
598 	/* The cast to a user pointer is valid due to the set_fs() */
599 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
600 	set_fs(old_fs);
601 
602 	return res;
603 }
604 EXPORT_SYMBOL(kernel_write);
605 
default_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)606 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
607 				 struct pipe_inode_info *pipe, size_t len,
608 				 unsigned int flags)
609 {
610 	unsigned int nr_pages;
611 	unsigned int nr_freed;
612 	size_t offset;
613 	struct page *pages[PIPE_DEF_BUFFERS];
614 	struct partial_page partial[PIPE_DEF_BUFFERS];
615 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
616 	ssize_t res;
617 	size_t this_len;
618 	int error;
619 	int i;
620 	struct splice_pipe_desc spd = {
621 		.pages = pages,
622 		.partial = partial,
623 		.nr_pages_max = PIPE_DEF_BUFFERS,
624 		.flags = flags,
625 		.ops = &default_pipe_buf_ops,
626 		.spd_release = spd_release_page,
627 	};
628 
629 	if (splice_grow_spd(pipe, &spd))
630 		return -ENOMEM;
631 
632 	res = -ENOMEM;
633 	vec = __vec;
634 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
635 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
636 		if (!vec)
637 			goto shrink_ret;
638 	}
639 
640 	offset = *ppos & ~PAGE_CACHE_MASK;
641 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
642 
643 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
644 		struct page *page;
645 
646 		page = alloc_page(GFP_USER);
647 		error = -ENOMEM;
648 		if (!page)
649 			goto err;
650 
651 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
652 		vec[i].iov_base = (void __user *) page_address(page);
653 		vec[i].iov_len = this_len;
654 		spd.pages[i] = page;
655 		spd.nr_pages++;
656 		len -= this_len;
657 		offset = 0;
658 	}
659 
660 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
661 	if (res < 0) {
662 		error = res;
663 		goto err;
664 	}
665 
666 	error = 0;
667 	if (!res)
668 		goto err;
669 
670 	nr_freed = 0;
671 	for (i = 0; i < spd.nr_pages; i++) {
672 		this_len = min_t(size_t, vec[i].iov_len, res);
673 		spd.partial[i].offset = 0;
674 		spd.partial[i].len = this_len;
675 		if (!this_len) {
676 			__free_page(spd.pages[i]);
677 			spd.pages[i] = NULL;
678 			nr_freed++;
679 		}
680 		res -= this_len;
681 	}
682 	spd.nr_pages -= nr_freed;
683 
684 	res = splice_to_pipe(pipe, &spd);
685 	if (res > 0)
686 		*ppos += res;
687 
688 shrink_ret:
689 	if (vec != __vec)
690 		kfree(vec);
691 	splice_shrink_spd(&spd);
692 	return res;
693 
694 err:
695 	for (i = 0; i < spd.nr_pages; i++)
696 		__free_page(spd.pages[i]);
697 
698 	res = error;
699 	goto shrink_ret;
700 }
701 EXPORT_SYMBOL(default_file_splice_read);
702 
703 /*
704  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
705  * using sendpage(). Return the number of bytes sent.
706  */
pipe_to_sendpage(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)707 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
708 			    struct pipe_buffer *buf, struct splice_desc *sd)
709 {
710 	struct file *file = sd->u.file;
711 	loff_t pos = sd->pos;
712 	int more;
713 
714 	if (!likely(file->f_op->sendpage))
715 		return -EINVAL;
716 
717 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
718 
719 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
720 		more |= MSG_SENDPAGE_NOTLAST;
721 
722 	return file->f_op->sendpage(file, buf->page, buf->offset,
723 				    sd->len, &pos, more);
724 }
725 
wakeup_pipe_writers(struct pipe_inode_info * pipe)726 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
727 {
728 	smp_mb();
729 	if (waitqueue_active(&pipe->wait))
730 		wake_up_interruptible(&pipe->wait);
731 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
732 }
733 
734 /**
735  * splice_from_pipe_feed - feed available data from a pipe to a file
736  * @pipe:	pipe to splice from
737  * @sd:		information to @actor
738  * @actor:	handler that splices the data
739  *
740  * Description:
741  *    This function loops over the pipe and calls @actor to do the
742  *    actual moving of a single struct pipe_buffer to the desired
743  *    destination.  It returns when there's no more buffers left in
744  *    the pipe or if the requested number of bytes (@sd->total_len)
745  *    have been copied.  It returns a positive number (one) if the
746  *    pipe needs to be filled with more data, zero if the required
747  *    number of bytes have been copied and -errno on error.
748  *
749  *    This, together with splice_from_pipe_{begin,end,next}, may be
750  *    used to implement the functionality of __splice_from_pipe() when
751  *    locking is required around copying the pipe buffers to the
752  *    destination.
753  */
splice_from_pipe_feed(struct pipe_inode_info * pipe,struct splice_desc * sd,splice_actor * actor)754 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
755 			  splice_actor *actor)
756 {
757 	int ret;
758 
759 	while (pipe->nrbufs) {
760 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
761 		const struct pipe_buf_operations *ops = buf->ops;
762 
763 		sd->len = buf->len;
764 		if (sd->len > sd->total_len)
765 			sd->len = sd->total_len;
766 
767 		ret = buf->ops->confirm(pipe, buf);
768 		if (unlikely(ret)) {
769 			if (ret == -ENODATA)
770 				ret = 0;
771 			return ret;
772 		}
773 
774 		ret = actor(pipe, buf, sd);
775 		if (ret <= 0)
776 			return ret;
777 
778 		buf->offset += ret;
779 		buf->len -= ret;
780 
781 		sd->num_spliced += ret;
782 		sd->len -= ret;
783 		sd->pos += ret;
784 		sd->total_len -= ret;
785 
786 		if (!buf->len) {
787 			buf->ops = NULL;
788 			ops->release(pipe, buf);
789 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
790 			pipe->nrbufs--;
791 			if (pipe->files)
792 				sd->need_wakeup = true;
793 		}
794 
795 		if (!sd->total_len)
796 			return 0;
797 	}
798 
799 	return 1;
800 }
801 
802 /**
803  * splice_from_pipe_next - wait for some data to splice from
804  * @pipe:	pipe to splice from
805  * @sd:		information about the splice operation
806  *
807  * Description:
808  *    This function will wait for some data and return a positive
809  *    value (one) if pipe buffers are available.  It will return zero
810  *    or -errno if no more data needs to be spliced.
811  */
splice_from_pipe_next(struct pipe_inode_info * pipe,struct splice_desc * sd)812 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
813 {
814 	while (!pipe->nrbufs) {
815 		if (!pipe->writers)
816 			return 0;
817 
818 		if (!pipe->waiting_writers && sd->num_spliced)
819 			return 0;
820 
821 		if (sd->flags & SPLICE_F_NONBLOCK)
822 			return -EAGAIN;
823 
824 		if (signal_pending(current))
825 			return -ERESTARTSYS;
826 
827 		if (sd->need_wakeup) {
828 			wakeup_pipe_writers(pipe);
829 			sd->need_wakeup = false;
830 		}
831 
832 		pipe_wait(pipe);
833 	}
834 
835 	return 1;
836 }
837 
838 /**
839  * splice_from_pipe_begin - start splicing from pipe
840  * @sd:		information about the splice operation
841  *
842  * Description:
843  *    This function should be called before a loop containing
844  *    splice_from_pipe_next() and splice_from_pipe_feed() to
845  *    initialize the necessary fields of @sd.
846  */
splice_from_pipe_begin(struct splice_desc * sd)847 static void splice_from_pipe_begin(struct splice_desc *sd)
848 {
849 	sd->num_spliced = 0;
850 	sd->need_wakeup = false;
851 }
852 
853 /**
854  * splice_from_pipe_end - finish splicing from pipe
855  * @pipe:	pipe to splice from
856  * @sd:		information about the splice operation
857  *
858  * Description:
859  *    This function will wake up pipe writers if necessary.  It should
860  *    be called after a loop containing splice_from_pipe_next() and
861  *    splice_from_pipe_feed().
862  */
splice_from_pipe_end(struct pipe_inode_info * pipe,struct splice_desc * sd)863 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
864 {
865 	if (sd->need_wakeup)
866 		wakeup_pipe_writers(pipe);
867 }
868 
869 /**
870  * __splice_from_pipe - splice data from a pipe to given actor
871  * @pipe:	pipe to splice from
872  * @sd:		information to @actor
873  * @actor:	handler that splices the data
874  *
875  * Description:
876  *    This function does little more than loop over the pipe and call
877  *    @actor to do the actual moving of a single struct pipe_buffer to
878  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
879  *    pipe_to_user.
880  *
881  */
__splice_from_pipe(struct pipe_inode_info * pipe,struct splice_desc * sd,splice_actor * actor)882 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
883 			   splice_actor *actor)
884 {
885 	int ret;
886 
887 	splice_from_pipe_begin(sd);
888 	do {
889 		ret = splice_from_pipe_next(pipe, sd);
890 		if (ret > 0)
891 			ret = splice_from_pipe_feed(pipe, sd, actor);
892 	} while (ret > 0);
893 	splice_from_pipe_end(pipe, sd);
894 
895 	return sd->num_spliced ? sd->num_spliced : ret;
896 }
897 EXPORT_SYMBOL(__splice_from_pipe);
898 
899 /**
900  * splice_from_pipe - splice data from a pipe to a file
901  * @pipe:	pipe to splice from
902  * @out:	file to splice to
903  * @ppos:	position in @out
904  * @len:	how many bytes to splice
905  * @flags:	splice modifier flags
906  * @actor:	handler that splices the data
907  *
908  * Description:
909  *    See __splice_from_pipe. This function locks the pipe inode,
910  *    otherwise it's identical to __splice_from_pipe().
911  *
912  */
splice_from_pipe(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags,splice_actor * actor)913 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
914 			 loff_t *ppos, size_t len, unsigned int flags,
915 			 splice_actor *actor)
916 {
917 	ssize_t ret;
918 	struct splice_desc sd = {
919 		.total_len = len,
920 		.flags = flags,
921 		.pos = *ppos,
922 		.u.file = out,
923 	};
924 
925 	pipe_lock(pipe);
926 	ret = __splice_from_pipe(pipe, &sd, actor);
927 	pipe_unlock(pipe);
928 
929 	return ret;
930 }
931 
932 /**
933  * iter_file_splice_write - splice data from a pipe to a file
934  * @pipe:	pipe info
935  * @out:	file to write to
936  * @ppos:	position in @out
937  * @len:	number of bytes to splice
938  * @flags:	splice modifier flags
939  *
940  * Description:
941  *    Will either move or copy pages (determined by @flags options) from
942  *    the given pipe inode to the given file.
943  *    This one is ->write_iter-based.
944  *
945  */
946 ssize_t
iter_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)947 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
948 			  loff_t *ppos, size_t len, unsigned int flags)
949 {
950 	struct splice_desc sd = {
951 		.total_len = len,
952 		.flags = flags,
953 		.pos = *ppos,
954 		.u.file = out,
955 	};
956 	int nbufs = pipe->buffers;
957 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
958 					GFP_KERNEL);
959 	ssize_t ret;
960 
961 	if (unlikely(!array))
962 		return -ENOMEM;
963 
964 	pipe_lock(pipe);
965 
966 	splice_from_pipe_begin(&sd);
967 	while (sd.total_len) {
968 		struct iov_iter from;
969 		size_t left;
970 		int n, idx;
971 
972 		ret = splice_from_pipe_next(pipe, &sd);
973 		if (ret <= 0)
974 			break;
975 
976 		if (unlikely(nbufs < pipe->buffers)) {
977 			kfree(array);
978 			nbufs = pipe->buffers;
979 			array = kcalloc(nbufs, sizeof(struct bio_vec),
980 					GFP_KERNEL);
981 			if (!array) {
982 				ret = -ENOMEM;
983 				break;
984 			}
985 		}
986 
987 		/* build the vector */
988 		left = sd.total_len;
989 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
990 			struct pipe_buffer *buf = pipe->bufs + idx;
991 			size_t this_len = buf->len;
992 
993 			if (this_len > left)
994 				this_len = left;
995 
996 			if (idx == pipe->buffers - 1)
997 				idx = -1;
998 
999 			ret = buf->ops->confirm(pipe, buf);
1000 			if (unlikely(ret)) {
1001 				if (ret == -ENODATA)
1002 					ret = 0;
1003 				goto done;
1004 			}
1005 
1006 			array[n].bv_page = buf->page;
1007 			array[n].bv_len = this_len;
1008 			array[n].bv_offset = buf->offset;
1009 			left -= this_len;
1010 		}
1011 
1012 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1013 			      sd.total_len - left);
1014 		ret = vfs_iter_write(out, &from, &sd.pos);
1015 		if (ret <= 0)
1016 			break;
1017 
1018 		sd.num_spliced += ret;
1019 		sd.total_len -= ret;
1020 		*ppos = sd.pos;
1021 
1022 		/* dismiss the fully eaten buffers, adjust the partial one */
1023 		while (ret) {
1024 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1025 			if (ret >= buf->len) {
1026 				const struct pipe_buf_operations *ops = buf->ops;
1027 				ret -= buf->len;
1028 				buf->len = 0;
1029 				buf->ops = NULL;
1030 				ops->release(pipe, buf);
1031 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1032 				pipe->nrbufs--;
1033 				if (pipe->files)
1034 					sd.need_wakeup = true;
1035 			} else {
1036 				buf->offset += ret;
1037 				buf->len -= ret;
1038 				ret = 0;
1039 			}
1040 		}
1041 	}
1042 done:
1043 	kfree(array);
1044 	splice_from_pipe_end(pipe, &sd);
1045 
1046 	pipe_unlock(pipe);
1047 
1048 	if (sd.num_spliced)
1049 		ret = sd.num_spliced;
1050 
1051 	return ret;
1052 }
1053 
1054 EXPORT_SYMBOL(iter_file_splice_write);
1055 
write_pipe_buf(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)1056 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1057 			  struct splice_desc *sd)
1058 {
1059 	int ret;
1060 	void *data;
1061 	loff_t tmp = sd->pos;
1062 
1063 	data = kmap(buf->page);
1064 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1065 	kunmap(buf->page);
1066 
1067 	return ret;
1068 }
1069 
default_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1070 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1071 					 struct file *out, loff_t *ppos,
1072 					 size_t len, unsigned int flags)
1073 {
1074 	ssize_t ret;
1075 
1076 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1077 	if (ret > 0)
1078 		*ppos += ret;
1079 
1080 	return ret;
1081 }
1082 
1083 /**
1084  * generic_splice_sendpage - splice data from a pipe to a socket
1085  * @pipe:	pipe to splice from
1086  * @out:	socket to write to
1087  * @ppos:	position in @out
1088  * @len:	number of bytes to splice
1089  * @flags:	splice modifier flags
1090  *
1091  * Description:
1092  *    Will send @len bytes from the pipe to a network socket. No data copying
1093  *    is involved.
1094  *
1095  */
generic_splice_sendpage(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1096 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1097 				loff_t *ppos, size_t len, unsigned int flags)
1098 {
1099 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1100 }
1101 
1102 EXPORT_SYMBOL(generic_splice_sendpage);
1103 
1104 /*
1105  * Attempt to initiate a splice from pipe to file.
1106  */
do_splice_from(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1107 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1108 			   loff_t *ppos, size_t len, unsigned int flags)
1109 {
1110 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1111 				loff_t *, size_t, unsigned int);
1112 
1113 	if (out->f_op->splice_write)
1114 		splice_write = out->f_op->splice_write;
1115 	else
1116 		splice_write = default_file_splice_write;
1117 
1118 	return splice_write(pipe, out, ppos, len, flags);
1119 }
1120 
1121 /*
1122  * Attempt to initiate a splice from a file to a pipe.
1123  */
do_splice_to(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1124 static long do_splice_to(struct file *in, loff_t *ppos,
1125 			 struct pipe_inode_info *pipe, size_t len,
1126 			 unsigned int flags)
1127 {
1128 	ssize_t (*splice_read)(struct file *, loff_t *,
1129 			       struct pipe_inode_info *, size_t, unsigned int);
1130 	int ret;
1131 
1132 	if (unlikely(!(in->f_mode & FMODE_READ)))
1133 		return -EBADF;
1134 
1135 	ret = rw_verify_area(READ, in, ppos, len);
1136 	if (unlikely(ret < 0))
1137 		return ret;
1138 
1139 	if (in->f_op->splice_read)
1140 		splice_read = in->f_op->splice_read;
1141 	else
1142 		splice_read = default_file_splice_read;
1143 
1144 	return splice_read(in, ppos, pipe, len, flags);
1145 }
1146 
1147 /**
1148  * splice_direct_to_actor - splices data directly between two non-pipes
1149  * @in:		file to splice from
1150  * @sd:		actor information on where to splice to
1151  * @actor:	handles the data splicing
1152  *
1153  * Description:
1154  *    This is a special case helper to splice directly between two
1155  *    points, without requiring an explicit pipe. Internally an allocated
1156  *    pipe is cached in the process, and reused during the lifetime of
1157  *    that process.
1158  *
1159  */
splice_direct_to_actor(struct file * in,struct splice_desc * sd,splice_direct_actor * actor)1160 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1161 			       splice_direct_actor *actor)
1162 {
1163 	struct pipe_inode_info *pipe;
1164 	long ret, bytes;
1165 	umode_t i_mode;
1166 	size_t len;
1167 	int i, flags, more;
1168 
1169 	/*
1170 	 * We require the input being a regular file, as we don't want to
1171 	 * randomly drop data for eg socket -> socket splicing. Use the
1172 	 * piped splicing for that!
1173 	 */
1174 	i_mode = file_inode(in)->i_mode;
1175 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1176 		return -EINVAL;
1177 
1178 	/*
1179 	 * neither in nor out is a pipe, setup an internal pipe attached to
1180 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1181 	 */
1182 	pipe = current->splice_pipe;
1183 	if (unlikely(!pipe)) {
1184 		pipe = alloc_pipe_info();
1185 		if (!pipe)
1186 			return -ENOMEM;
1187 
1188 		/*
1189 		 * We don't have an immediate reader, but we'll read the stuff
1190 		 * out of the pipe right after the splice_to_pipe(). So set
1191 		 * PIPE_READERS appropriately.
1192 		 */
1193 		pipe->readers = 1;
1194 
1195 		current->splice_pipe = pipe;
1196 	}
1197 
1198 	/*
1199 	 * Do the splice.
1200 	 */
1201 	ret = 0;
1202 	bytes = 0;
1203 	len = sd->total_len;
1204 	flags = sd->flags;
1205 
1206 	/*
1207 	 * Don't block on output, we have to drain the direct pipe.
1208 	 */
1209 	sd->flags &= ~SPLICE_F_NONBLOCK;
1210 	more = sd->flags & SPLICE_F_MORE;
1211 
1212 	while (len) {
1213 		size_t read_len;
1214 		loff_t pos = sd->pos, prev_pos = pos;
1215 
1216 		ret = do_splice_to(in, &pos, pipe, len, flags);
1217 		if (unlikely(ret <= 0))
1218 			goto out_release;
1219 
1220 		read_len = ret;
1221 		sd->total_len = read_len;
1222 
1223 		/*
1224 		 * If more data is pending, set SPLICE_F_MORE
1225 		 * If this is the last data and SPLICE_F_MORE was not set
1226 		 * initially, clears it.
1227 		 */
1228 		if (read_len < len)
1229 			sd->flags |= SPLICE_F_MORE;
1230 		else if (!more)
1231 			sd->flags &= ~SPLICE_F_MORE;
1232 		/*
1233 		 * NOTE: nonblocking mode only applies to the input. We
1234 		 * must not do the output in nonblocking mode as then we
1235 		 * could get stuck data in the internal pipe:
1236 		 */
1237 		ret = actor(pipe, sd);
1238 		if (unlikely(ret <= 0)) {
1239 			sd->pos = prev_pos;
1240 			goto out_release;
1241 		}
1242 
1243 		bytes += ret;
1244 		len -= ret;
1245 		sd->pos = pos;
1246 
1247 		if (ret < read_len) {
1248 			sd->pos = prev_pos + ret;
1249 			goto out_release;
1250 		}
1251 	}
1252 
1253 done:
1254 	pipe->nrbufs = pipe->curbuf = 0;
1255 	file_accessed(in);
1256 	return bytes;
1257 
1258 out_release:
1259 	/*
1260 	 * If we did an incomplete transfer we must release
1261 	 * the pipe buffers in question:
1262 	 */
1263 	for (i = 0; i < pipe->buffers; i++) {
1264 		struct pipe_buffer *buf = pipe->bufs + i;
1265 
1266 		if (buf->ops) {
1267 			buf->ops->release(pipe, buf);
1268 			buf->ops = NULL;
1269 		}
1270 	}
1271 
1272 	if (!bytes)
1273 		bytes = ret;
1274 
1275 	goto done;
1276 }
1277 EXPORT_SYMBOL(splice_direct_to_actor);
1278 
direct_splice_actor(struct pipe_inode_info * pipe,struct splice_desc * sd)1279 static int direct_splice_actor(struct pipe_inode_info *pipe,
1280 			       struct splice_desc *sd)
1281 {
1282 	struct file *file = sd->u.file;
1283 
1284 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1285 			      sd->flags);
1286 }
1287 
1288 /**
1289  * do_splice_direct - splices data directly between two files
1290  * @in:		file to splice from
1291  * @ppos:	input file offset
1292  * @out:	file to splice to
1293  * @opos:	output file offset
1294  * @len:	number of bytes to splice
1295  * @flags:	splice modifier flags
1296  *
1297  * Description:
1298  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1299  *    doing it in the application would incur an extra system call
1300  *    (splice in + splice out, as compared to just sendfile()). So this helper
1301  *    can splice directly through a process-private pipe.
1302  *
1303  */
do_splice_direct(struct file * in,loff_t * ppos,struct file * out,loff_t * opos,size_t len,unsigned int flags)1304 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1305 		      loff_t *opos, size_t len, unsigned int flags)
1306 {
1307 	struct splice_desc sd = {
1308 		.len		= len,
1309 		.total_len	= len,
1310 		.flags		= flags,
1311 		.pos		= *ppos,
1312 		.u.file		= out,
1313 		.opos		= opos,
1314 	};
1315 	long ret;
1316 
1317 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1318 		return -EBADF;
1319 
1320 	if (unlikely(out->f_flags & O_APPEND))
1321 		return -EINVAL;
1322 
1323 	ret = rw_verify_area(WRITE, out, opos, len);
1324 	if (unlikely(ret < 0))
1325 		return ret;
1326 
1327 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1328 	if (ret > 0)
1329 		*ppos = sd.pos;
1330 
1331 	return ret;
1332 }
1333 EXPORT_SYMBOL(do_splice_direct);
1334 
1335 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1336 			       struct pipe_inode_info *opipe,
1337 			       size_t len, unsigned int flags);
1338 
1339 /*
1340  * Determine where to splice to/from.
1341  */
do_splice(struct file * in,loff_t __user * off_in,struct file * out,loff_t __user * off_out,size_t len,unsigned int flags)1342 static long do_splice(struct file *in, loff_t __user *off_in,
1343 		      struct file *out, loff_t __user *off_out,
1344 		      size_t len, unsigned int flags)
1345 {
1346 	struct pipe_inode_info *ipipe;
1347 	struct pipe_inode_info *opipe;
1348 	loff_t offset;
1349 	long ret;
1350 
1351 	ipipe = get_pipe_info(in);
1352 	opipe = get_pipe_info(out);
1353 
1354 	if (ipipe && opipe) {
1355 		if (off_in || off_out)
1356 			return -ESPIPE;
1357 
1358 		if (!(in->f_mode & FMODE_READ))
1359 			return -EBADF;
1360 
1361 		if (!(out->f_mode & FMODE_WRITE))
1362 			return -EBADF;
1363 
1364 		/* Splicing to self would be fun, but... */
1365 		if (ipipe == opipe)
1366 			return -EINVAL;
1367 
1368 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1369 	}
1370 
1371 	if (ipipe) {
1372 		if (off_in)
1373 			return -ESPIPE;
1374 		if (off_out) {
1375 			if (!(out->f_mode & FMODE_PWRITE))
1376 				return -EINVAL;
1377 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1378 				return -EFAULT;
1379 		} else {
1380 			offset = out->f_pos;
1381 		}
1382 
1383 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1384 			return -EBADF;
1385 
1386 		if (unlikely(out->f_flags & O_APPEND))
1387 			return -EINVAL;
1388 
1389 		ret = rw_verify_area(WRITE, out, &offset, len);
1390 		if (unlikely(ret < 0))
1391 			return ret;
1392 
1393 		file_start_write(out);
1394 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1395 		file_end_write(out);
1396 
1397 		if (!off_out)
1398 			out->f_pos = offset;
1399 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1400 			ret = -EFAULT;
1401 
1402 		return ret;
1403 	}
1404 
1405 	if (opipe) {
1406 		if (off_out)
1407 			return -ESPIPE;
1408 		if (off_in) {
1409 			if (!(in->f_mode & FMODE_PREAD))
1410 				return -EINVAL;
1411 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1412 				return -EFAULT;
1413 		} else {
1414 			offset = in->f_pos;
1415 		}
1416 
1417 		ret = do_splice_to(in, &offset, opipe, len, flags);
1418 
1419 		if (!off_in)
1420 			in->f_pos = offset;
1421 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1422 			ret = -EFAULT;
1423 
1424 		return ret;
1425 	}
1426 
1427 	return -EINVAL;
1428 }
1429 
1430 /*
1431  * Map an iov into an array of pages and offset/length tupples. With the
1432  * partial_page structure, we can map several non-contiguous ranges into
1433  * our ones pages[] map instead of splitting that operation into pieces.
1434  * Could easily be exported as a generic helper for other users, in which
1435  * case one would probably want to add a 'max_nr_pages' parameter as well.
1436  */
get_iovec_page_array(const struct iovec __user * iov,unsigned int nr_vecs,struct page ** pages,struct partial_page * partial,bool aligned,unsigned int pipe_buffers)1437 static int get_iovec_page_array(const struct iovec __user *iov,
1438 				unsigned int nr_vecs, struct page **pages,
1439 				struct partial_page *partial, bool aligned,
1440 				unsigned int pipe_buffers)
1441 {
1442 	int buffers = 0, error = 0;
1443 
1444 	while (nr_vecs) {
1445 		unsigned long off, npages;
1446 		struct iovec entry;
1447 		void __user *base;
1448 		size_t len;
1449 		int i;
1450 
1451 		error = -EFAULT;
1452 		if (copy_from_user(&entry, iov, sizeof(entry)))
1453 			break;
1454 
1455 		base = entry.iov_base;
1456 		len = entry.iov_len;
1457 
1458 		/*
1459 		 * Sanity check this iovec. 0 read succeeds.
1460 		 */
1461 		error = 0;
1462 		if (unlikely(!len))
1463 			break;
1464 		error = -EFAULT;
1465 		if (!access_ok(VERIFY_READ, base, len))
1466 			break;
1467 
1468 		/*
1469 		 * Get this base offset and number of pages, then map
1470 		 * in the user pages.
1471 		 */
1472 		off = (unsigned long) base & ~PAGE_MASK;
1473 
1474 		/*
1475 		 * If asked for alignment, the offset must be zero and the
1476 		 * length a multiple of the PAGE_SIZE.
1477 		 */
1478 		error = -EINVAL;
1479 		if (aligned && (off || len & ~PAGE_MASK))
1480 			break;
1481 
1482 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1483 		if (npages > pipe_buffers - buffers)
1484 			npages = pipe_buffers - buffers;
1485 
1486 		error = get_user_pages_fast((unsigned long)base, npages,
1487 					0, &pages[buffers]);
1488 
1489 		if (unlikely(error <= 0))
1490 			break;
1491 
1492 		/*
1493 		 * Fill this contiguous range into the partial page map.
1494 		 */
1495 		for (i = 0; i < error; i++) {
1496 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1497 
1498 			partial[buffers].offset = off;
1499 			partial[buffers].len = plen;
1500 
1501 			off = 0;
1502 			len -= plen;
1503 			buffers++;
1504 		}
1505 
1506 		/*
1507 		 * We didn't complete this iov, stop here since it probably
1508 		 * means we have to move some of this into a pipe to
1509 		 * be able to continue.
1510 		 */
1511 		if (len)
1512 			break;
1513 
1514 		/*
1515 		 * Don't continue if we mapped fewer pages than we asked for,
1516 		 * or if we mapped the max number of pages that we have
1517 		 * room for.
1518 		 */
1519 		if (error < npages || buffers == pipe_buffers)
1520 			break;
1521 
1522 		nr_vecs--;
1523 		iov++;
1524 	}
1525 
1526 	if (buffers)
1527 		return buffers;
1528 
1529 	return error;
1530 }
1531 
pipe_to_user(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)1532 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1533 			struct splice_desc *sd)
1534 {
1535 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1536 	return n == sd->len ? n : -EFAULT;
1537 }
1538 
1539 /*
1540  * For lack of a better implementation, implement vmsplice() to userspace
1541  * as a simple copy of the pipes pages to the user iov.
1542  */
vmsplice_to_user(struct file * file,const struct iovec __user * uiov,unsigned long nr_segs,unsigned int flags)1543 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1544 			     unsigned long nr_segs, unsigned int flags)
1545 {
1546 	struct pipe_inode_info *pipe;
1547 	struct splice_desc sd;
1548 	long ret;
1549 	struct iovec iovstack[UIO_FASTIOV];
1550 	struct iovec *iov = iovstack;
1551 	struct iov_iter iter;
1552 
1553 	pipe = get_pipe_info(file);
1554 	if (!pipe)
1555 		return -EBADF;
1556 
1557 	ret = import_iovec(READ, uiov, nr_segs,
1558 			   ARRAY_SIZE(iovstack), &iov, &iter);
1559 	if (ret < 0)
1560 		return ret;
1561 
1562 	sd.total_len = iov_iter_count(&iter);
1563 	sd.len = 0;
1564 	sd.flags = flags;
1565 	sd.u.data = &iter;
1566 	sd.pos = 0;
1567 
1568 	if (sd.total_len) {
1569 		pipe_lock(pipe);
1570 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1571 		pipe_unlock(pipe);
1572 	}
1573 
1574 	kfree(iov);
1575 	return ret;
1576 }
1577 
1578 /*
1579  * vmsplice splices a user address range into a pipe. It can be thought of
1580  * as splice-from-memory, where the regular splice is splice-from-file (or
1581  * to file). In both cases the output is a pipe, naturally.
1582  */
vmsplice_to_pipe(struct file * file,const struct iovec __user * iov,unsigned long nr_segs,unsigned int flags)1583 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1584 			     unsigned long nr_segs, unsigned int flags)
1585 {
1586 	struct pipe_inode_info *pipe;
1587 	struct page *pages[PIPE_DEF_BUFFERS];
1588 	struct partial_page partial[PIPE_DEF_BUFFERS];
1589 	struct splice_pipe_desc spd = {
1590 		.pages = pages,
1591 		.partial = partial,
1592 		.nr_pages_max = PIPE_DEF_BUFFERS,
1593 		.flags = flags,
1594 		.ops = &user_page_pipe_buf_ops,
1595 		.spd_release = spd_release_page,
1596 	};
1597 	long ret;
1598 
1599 	pipe = get_pipe_info(file);
1600 	if (!pipe)
1601 		return -EBADF;
1602 
1603 	if (splice_grow_spd(pipe, &spd))
1604 		return -ENOMEM;
1605 
1606 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1607 					    spd.partial, false,
1608 					    spd.nr_pages_max);
1609 	if (spd.nr_pages <= 0)
1610 		ret = spd.nr_pages;
1611 	else
1612 		ret = splice_to_pipe(pipe, &spd);
1613 
1614 	splice_shrink_spd(&spd);
1615 	return ret;
1616 }
1617 
1618 /*
1619  * Note that vmsplice only really supports true splicing _from_ user memory
1620  * to a pipe, not the other way around. Splicing from user memory is a simple
1621  * operation that can be supported without any funky alignment restrictions
1622  * or nasty vm tricks. We simply map in the user memory and fill them into
1623  * a pipe. The reverse isn't quite as easy, though. There are two possible
1624  * solutions for that:
1625  *
1626  *	- memcpy() the data internally, at which point we might as well just
1627  *	  do a regular read() on the buffer anyway.
1628  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1629  *	  has restriction limitations on both ends of the pipe).
1630  *
1631  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1632  *
1633  */
SYSCALL_DEFINE4(vmsplice,int,fd,const struct iovec __user *,iov,unsigned long,nr_segs,unsigned int,flags)1634 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1635 		unsigned long, nr_segs, unsigned int, flags)
1636 {
1637 	struct fd f;
1638 	long error;
1639 
1640 	if (unlikely(nr_segs > UIO_MAXIOV))
1641 		return -EINVAL;
1642 	else if (unlikely(!nr_segs))
1643 		return 0;
1644 
1645 	error = -EBADF;
1646 	f = fdget(fd);
1647 	if (f.file) {
1648 		if (f.file->f_mode & FMODE_WRITE)
1649 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1650 		else if (f.file->f_mode & FMODE_READ)
1651 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1652 
1653 		fdput(f);
1654 	}
1655 
1656 	return error;
1657 }
1658 
1659 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(vmsplice,int,fd,const struct compat_iovec __user *,iov32,unsigned int,nr_segs,unsigned int,flags)1660 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1661 		    unsigned int, nr_segs, unsigned int, flags)
1662 {
1663 	unsigned i;
1664 	struct iovec __user *iov;
1665 	if (nr_segs > UIO_MAXIOV)
1666 		return -EINVAL;
1667 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1668 	for (i = 0; i < nr_segs; i++) {
1669 		struct compat_iovec v;
1670 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1671 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1672 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1673 		    put_user(v.iov_len, &iov[i].iov_len))
1674 			return -EFAULT;
1675 	}
1676 	return sys_vmsplice(fd, iov, nr_segs, flags);
1677 }
1678 #endif
1679 
SYSCALL_DEFINE6(splice,int,fd_in,loff_t __user *,off_in,int,fd_out,loff_t __user *,off_out,size_t,len,unsigned int,flags)1680 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1681 		int, fd_out, loff_t __user *, off_out,
1682 		size_t, len, unsigned int, flags)
1683 {
1684 	struct fd in, out;
1685 	long error;
1686 
1687 	if (unlikely(!len))
1688 		return 0;
1689 
1690 	error = -EBADF;
1691 	in = fdget(fd_in);
1692 	if (in.file) {
1693 		if (in.file->f_mode & FMODE_READ) {
1694 			out = fdget(fd_out);
1695 			if (out.file) {
1696 				if (out.file->f_mode & FMODE_WRITE)
1697 					error = do_splice(in.file, off_in,
1698 							  out.file, off_out,
1699 							  len, flags);
1700 				fdput(out);
1701 			}
1702 		}
1703 		fdput(in);
1704 	}
1705 	return error;
1706 }
1707 
1708 /*
1709  * Make sure there's data to read. Wait for input if we can, otherwise
1710  * return an appropriate error.
1711  */
ipipe_prep(struct pipe_inode_info * pipe,unsigned int flags)1712 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1713 {
1714 	int ret;
1715 
1716 	/*
1717 	 * Check ->nrbufs without the inode lock first. This function
1718 	 * is speculative anyways, so missing one is ok.
1719 	 */
1720 	if (pipe->nrbufs)
1721 		return 0;
1722 
1723 	ret = 0;
1724 	pipe_lock(pipe);
1725 
1726 	while (!pipe->nrbufs) {
1727 		if (signal_pending(current)) {
1728 			ret = -ERESTARTSYS;
1729 			break;
1730 		}
1731 		if (!pipe->writers)
1732 			break;
1733 		if (!pipe->waiting_writers) {
1734 			if (flags & SPLICE_F_NONBLOCK) {
1735 				ret = -EAGAIN;
1736 				break;
1737 			}
1738 		}
1739 		pipe_wait(pipe);
1740 	}
1741 
1742 	pipe_unlock(pipe);
1743 	return ret;
1744 }
1745 
1746 /*
1747  * Make sure there's writeable room. Wait for room if we can, otherwise
1748  * return an appropriate error.
1749  */
opipe_prep(struct pipe_inode_info * pipe,unsigned int flags)1750 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1751 {
1752 	int ret;
1753 
1754 	/*
1755 	 * Check ->nrbufs without the inode lock first. This function
1756 	 * is speculative anyways, so missing one is ok.
1757 	 */
1758 	if (pipe->nrbufs < pipe->buffers)
1759 		return 0;
1760 
1761 	ret = 0;
1762 	pipe_lock(pipe);
1763 
1764 	while (pipe->nrbufs >= pipe->buffers) {
1765 		if (!pipe->readers) {
1766 			send_sig(SIGPIPE, current, 0);
1767 			ret = -EPIPE;
1768 			break;
1769 		}
1770 		if (flags & SPLICE_F_NONBLOCK) {
1771 			ret = -EAGAIN;
1772 			break;
1773 		}
1774 		if (signal_pending(current)) {
1775 			ret = -ERESTARTSYS;
1776 			break;
1777 		}
1778 		pipe->waiting_writers++;
1779 		pipe_wait(pipe);
1780 		pipe->waiting_writers--;
1781 	}
1782 
1783 	pipe_unlock(pipe);
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Splice contents of ipipe to opipe.
1789  */
splice_pipe_to_pipe(struct pipe_inode_info * ipipe,struct pipe_inode_info * opipe,size_t len,unsigned int flags)1790 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1791 			       struct pipe_inode_info *opipe,
1792 			       size_t len, unsigned int flags)
1793 {
1794 	struct pipe_buffer *ibuf, *obuf;
1795 	int ret = 0, nbuf;
1796 	bool input_wakeup = false;
1797 
1798 
1799 retry:
1800 	ret = ipipe_prep(ipipe, flags);
1801 	if (ret)
1802 		return ret;
1803 
1804 	ret = opipe_prep(opipe, flags);
1805 	if (ret)
1806 		return ret;
1807 
1808 	/*
1809 	 * Potential ABBA deadlock, work around it by ordering lock
1810 	 * grabbing by pipe info address. Otherwise two different processes
1811 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1812 	 */
1813 	pipe_double_lock(ipipe, opipe);
1814 
1815 	do {
1816 		if (!opipe->readers) {
1817 			send_sig(SIGPIPE, current, 0);
1818 			if (!ret)
1819 				ret = -EPIPE;
1820 			break;
1821 		}
1822 
1823 		if (!ipipe->nrbufs && !ipipe->writers)
1824 			break;
1825 
1826 		/*
1827 		 * Cannot make any progress, because either the input
1828 		 * pipe is empty or the output pipe is full.
1829 		 */
1830 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1831 			/* Already processed some buffers, break */
1832 			if (ret)
1833 				break;
1834 
1835 			if (flags & SPLICE_F_NONBLOCK) {
1836 				ret = -EAGAIN;
1837 				break;
1838 			}
1839 
1840 			/*
1841 			 * We raced with another reader/writer and haven't
1842 			 * managed to process any buffers.  A zero return
1843 			 * value means EOF, so retry instead.
1844 			 */
1845 			pipe_unlock(ipipe);
1846 			pipe_unlock(opipe);
1847 			goto retry;
1848 		}
1849 
1850 		ibuf = ipipe->bufs + ipipe->curbuf;
1851 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1852 		obuf = opipe->bufs + nbuf;
1853 
1854 		if (len >= ibuf->len) {
1855 			/*
1856 			 * Simply move the whole buffer from ipipe to opipe
1857 			 */
1858 			*obuf = *ibuf;
1859 			ibuf->ops = NULL;
1860 			opipe->nrbufs++;
1861 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1862 			ipipe->nrbufs--;
1863 			input_wakeup = true;
1864 		} else {
1865 			/*
1866 			 * Get a reference to this pipe buffer,
1867 			 * so we can copy the contents over.
1868 			 */
1869 			ibuf->ops->get(ipipe, ibuf);
1870 			*obuf = *ibuf;
1871 
1872 			/*
1873 			 * Don't inherit the gift flag, we need to
1874 			 * prevent multiple steals of this page.
1875 			 */
1876 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1877 
1878 			obuf->len = len;
1879 			opipe->nrbufs++;
1880 			ibuf->offset += obuf->len;
1881 			ibuf->len -= obuf->len;
1882 		}
1883 		ret += obuf->len;
1884 		len -= obuf->len;
1885 	} while (len);
1886 
1887 	pipe_unlock(ipipe);
1888 	pipe_unlock(opipe);
1889 
1890 	/*
1891 	 * If we put data in the output pipe, wakeup any potential readers.
1892 	 */
1893 	if (ret > 0)
1894 		wakeup_pipe_readers(opipe);
1895 
1896 	if (input_wakeup)
1897 		wakeup_pipe_writers(ipipe);
1898 
1899 	return ret;
1900 }
1901 
1902 /*
1903  * Link contents of ipipe to opipe.
1904  */
link_pipe(struct pipe_inode_info * ipipe,struct pipe_inode_info * opipe,size_t len,unsigned int flags)1905 static int link_pipe(struct pipe_inode_info *ipipe,
1906 		     struct pipe_inode_info *opipe,
1907 		     size_t len, unsigned int flags)
1908 {
1909 	struct pipe_buffer *ibuf, *obuf;
1910 	int ret = 0, i = 0, nbuf;
1911 
1912 	/*
1913 	 * Potential ABBA deadlock, work around it by ordering lock
1914 	 * grabbing by pipe info address. Otherwise two different processes
1915 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1916 	 */
1917 	pipe_double_lock(ipipe, opipe);
1918 
1919 	do {
1920 		if (!opipe->readers) {
1921 			send_sig(SIGPIPE, current, 0);
1922 			if (!ret)
1923 				ret = -EPIPE;
1924 			break;
1925 		}
1926 
1927 		/*
1928 		 * If we have iterated all input buffers or ran out of
1929 		 * output room, break.
1930 		 */
1931 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1932 			break;
1933 
1934 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1935 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1936 
1937 		/*
1938 		 * Get a reference to this pipe buffer,
1939 		 * so we can copy the contents over.
1940 		 */
1941 		ibuf->ops->get(ipipe, ibuf);
1942 
1943 		obuf = opipe->bufs + nbuf;
1944 		*obuf = *ibuf;
1945 
1946 		/*
1947 		 * Don't inherit the gift flag, we need to
1948 		 * prevent multiple steals of this page.
1949 		 */
1950 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1951 
1952 		if (obuf->len > len)
1953 			obuf->len = len;
1954 
1955 		opipe->nrbufs++;
1956 		ret += obuf->len;
1957 		len -= obuf->len;
1958 		i++;
1959 	} while (len);
1960 
1961 	/*
1962 	 * return EAGAIN if we have the potential of some data in the
1963 	 * future, otherwise just return 0
1964 	 */
1965 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1966 		ret = -EAGAIN;
1967 
1968 	pipe_unlock(ipipe);
1969 	pipe_unlock(opipe);
1970 
1971 	/*
1972 	 * If we put data in the output pipe, wakeup any potential readers.
1973 	 */
1974 	if (ret > 0)
1975 		wakeup_pipe_readers(opipe);
1976 
1977 	return ret;
1978 }
1979 
1980 /*
1981  * This is a tee(1) implementation that works on pipes. It doesn't copy
1982  * any data, it simply references the 'in' pages on the 'out' pipe.
1983  * The 'flags' used are the SPLICE_F_* variants, currently the only
1984  * applicable one is SPLICE_F_NONBLOCK.
1985  */
do_tee(struct file * in,struct file * out,size_t len,unsigned int flags)1986 static long do_tee(struct file *in, struct file *out, size_t len,
1987 		   unsigned int flags)
1988 {
1989 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1990 	struct pipe_inode_info *opipe = get_pipe_info(out);
1991 	int ret = -EINVAL;
1992 
1993 	/*
1994 	 * Duplicate the contents of ipipe to opipe without actually
1995 	 * copying the data.
1996 	 */
1997 	if (ipipe && opipe && ipipe != opipe) {
1998 		/*
1999 		 * Keep going, unless we encounter an error. The ipipe/opipe
2000 		 * ordering doesn't really matter.
2001 		 */
2002 		ret = ipipe_prep(ipipe, flags);
2003 		if (!ret) {
2004 			ret = opipe_prep(opipe, flags);
2005 			if (!ret)
2006 				ret = link_pipe(ipipe, opipe, len, flags);
2007 		}
2008 	}
2009 
2010 	return ret;
2011 }
2012 
SYSCALL_DEFINE4(tee,int,fdin,int,fdout,size_t,len,unsigned int,flags)2013 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2014 {
2015 	struct fd in;
2016 	int error;
2017 
2018 	if (unlikely(!len))
2019 		return 0;
2020 
2021 	error = -EBADF;
2022 	in = fdget(fdin);
2023 	if (in.file) {
2024 		if (in.file->f_mode & FMODE_READ) {
2025 			struct fd out = fdget(fdout);
2026 			if (out.file) {
2027 				if (out.file->f_mode & FMODE_WRITE)
2028 					error = do_tee(in.file, out.file,
2029 							len, flags);
2030 				fdput(out);
2031 			}
2032 		}
2033  		fdput(in);
2034  	}
2035 
2036 	return error;
2037 }
2038