1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
ffs_func_from_usb(struct usb_function * f)78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103 
104 
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107 
108 
109 /* The endpoints structures *************************************************/
110 
111 struct ffs_ep {
112 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
113 	struct usb_request		*req;	/* P: epfile->mutex */
114 
115 	/* [0]: full speed, [1]: high speed, [2]: super speed */
116 	struct usb_endpoint_descriptor	*descs[3];
117 
118 	u8				num;
119 
120 	int				status;	/* P: epfile->mutex */
121 };
122 
123 struct ffs_epfile {
124 	/* Protects ep->ep and ep->req. */
125 	struct mutex			mutex;
126 	wait_queue_head_t		wait;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	char				name[5];
134 
135 	unsigned char			in;	/* P: ffs->eps_lock */
136 	unsigned char			isoc;	/* P: ffs->eps_lock */
137 
138 	unsigned char			_pad;
139 };
140 
141 /*  ffs_io_data structure ***************************************************/
142 
143 struct ffs_io_data {
144 	bool aio;
145 	bool read;
146 
147 	struct kiocb *kiocb;
148 	struct iov_iter data;
149 	const void *to_free;
150 	char *buf;
151 
152 	struct mm_struct *mm;
153 	struct work_struct work;
154 
155 	struct usb_ep *ep;
156 	struct usb_request *req;
157 
158 	struct ffs_data *ffs;
159 };
160 
161 struct ffs_desc_helper {
162 	struct ffs_data *ffs;
163 	unsigned interfaces_count;
164 	unsigned eps_count;
165 };
166 
167 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169 
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 		   const struct file_operations *fops);
173 
174 /* Devices management *******************************************************/
175 
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178 
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187 
188 /* Misc helper functions ****************************************************/
189 
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 	__attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 	__attribute__((warn_unused_result, nonnull));
194 
195 
196 /* Control file aka ep0 *****************************************************/
197 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 	struct ffs_data *ffs = req->context;
201 
202 	complete_all(&ffs->ep0req_completion);
203 }
204 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 	struct usb_request *req = ffs->ep0req;
208 	int ret;
209 
210 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
211 
212 	spin_unlock_irq(&ffs->ev.waitq.lock);
213 
214 	req->buf      = data;
215 	req->length   = len;
216 
217 	/*
218 	 * UDC layer requires to provide a buffer even for ZLP, but should
219 	 * not use it at all. Let's provide some poisoned pointer to catch
220 	 * possible bug in the driver.
221 	 */
222 	if (req->buf == NULL)
223 		req->buf = (void *)0xDEADBABE;
224 
225 	reinit_completion(&ffs->ep0req_completion);
226 
227 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 	if (unlikely(ret < 0))
229 		return ret;
230 
231 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 	if (unlikely(ret)) {
233 		usb_ep_dequeue(ffs->gadget->ep0, req);
234 		return -EINTR;
235 	}
236 
237 	ffs->setup_state = FFS_NO_SETUP;
238 	return req->status ? req->status : req->actual;
239 }
240 
__ffs_ep0_stall(struct ffs_data * ffs)241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 	if (ffs->ev.can_stall) {
244 		pr_vdebug("ep0 stall\n");
245 		usb_ep_set_halt(ffs->gadget->ep0);
246 		ffs->setup_state = FFS_NO_SETUP;
247 		return -EL2HLT;
248 	} else {
249 		pr_debug("bogus ep0 stall!\n");
250 		return -ESRCH;
251 	}
252 }
253 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 			     size_t len, loff_t *ptr)
256 {
257 	struct ffs_data *ffs = file->private_data;
258 	ssize_t ret;
259 	char *data;
260 
261 	ENTER();
262 
263 	/* Fast check if setup was canceled */
264 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 		return -EIDRM;
266 
267 	/* Acquire mutex */
268 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 	if (unlikely(ret < 0))
270 		return ret;
271 
272 	/* Check state */
273 	switch (ffs->state) {
274 	case FFS_READ_DESCRIPTORS:
275 	case FFS_READ_STRINGS:
276 		/* Copy data */
277 		if (unlikely(len < 16)) {
278 			ret = -EINVAL;
279 			break;
280 		}
281 
282 		data = ffs_prepare_buffer(buf, len);
283 		if (IS_ERR(data)) {
284 			ret = PTR_ERR(data);
285 			break;
286 		}
287 
288 		/* Handle data */
289 		if (ffs->state == FFS_READ_DESCRIPTORS) {
290 			pr_info("read descriptors\n");
291 			ret = __ffs_data_got_descs(ffs, data, len);
292 			if (unlikely(ret < 0))
293 				break;
294 
295 			ffs->state = FFS_READ_STRINGS;
296 			ret = len;
297 		} else {
298 			pr_info("read strings\n");
299 			ret = __ffs_data_got_strings(ffs, data, len);
300 			if (unlikely(ret < 0))
301 				break;
302 
303 			ret = ffs_epfiles_create(ffs);
304 			if (unlikely(ret)) {
305 				ffs->state = FFS_CLOSING;
306 				break;
307 			}
308 
309 			ffs->state = FFS_ACTIVE;
310 			mutex_unlock(&ffs->mutex);
311 
312 			ret = ffs_ready(ffs);
313 			if (unlikely(ret < 0)) {
314 				ffs->state = FFS_CLOSING;
315 				return ret;
316 			}
317 
318 			return len;
319 		}
320 		break;
321 
322 	case FFS_ACTIVE:
323 		data = NULL;
324 		/*
325 		 * We're called from user space, we can use _irq
326 		 * rather then _irqsave
327 		 */
328 		spin_lock_irq(&ffs->ev.waitq.lock);
329 		switch (ffs_setup_state_clear_cancelled(ffs)) {
330 		case FFS_SETUP_CANCELLED:
331 			ret = -EIDRM;
332 			goto done_spin;
333 
334 		case FFS_NO_SETUP:
335 			ret = -ESRCH;
336 			goto done_spin;
337 
338 		case FFS_SETUP_PENDING:
339 			break;
340 		}
341 
342 		/* FFS_SETUP_PENDING */
343 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
344 			spin_unlock_irq(&ffs->ev.waitq.lock);
345 			ret = __ffs_ep0_stall(ffs);
346 			break;
347 		}
348 
349 		/* FFS_SETUP_PENDING and not stall */
350 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
351 
352 		spin_unlock_irq(&ffs->ev.waitq.lock);
353 
354 		data = ffs_prepare_buffer(buf, len);
355 		if (IS_ERR(data)) {
356 			ret = PTR_ERR(data);
357 			break;
358 		}
359 
360 		spin_lock_irq(&ffs->ev.waitq.lock);
361 
362 		/*
363 		 * We are guaranteed to be still in FFS_ACTIVE state
364 		 * but the state of setup could have changed from
365 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 		 * to check for that.  If that happened we copied data
367 		 * from user space in vain but it's unlikely.
368 		 *
369 		 * For sure we are not in FFS_NO_SETUP since this is
370 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 		 * transition can be performed and it's protected by
372 		 * mutex.
373 		 */
374 		if (ffs_setup_state_clear_cancelled(ffs) ==
375 		    FFS_SETUP_CANCELLED) {
376 			ret = -EIDRM;
377 done_spin:
378 			spin_unlock_irq(&ffs->ev.waitq.lock);
379 		} else {
380 			/* unlocks spinlock */
381 			ret = __ffs_ep0_queue_wait(ffs, data, len);
382 		}
383 		kfree(data);
384 		break;
385 
386 	default:
387 		ret = -EBADFD;
388 		break;
389 	}
390 
391 	mutex_unlock(&ffs->mutex);
392 	return ret;
393 }
394 
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
397 				     size_t n)
398 {
399 	/*
400 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 	 * size of ffs->ev.types array (which is four) so that's how much space
402 	 * we reserve.
403 	 */
404 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
405 	const size_t size = n * sizeof *events;
406 	unsigned i = 0;
407 
408 	memset(events, 0, size);
409 
410 	do {
411 		events[i].type = ffs->ev.types[i];
412 		if (events[i].type == FUNCTIONFS_SETUP) {
413 			events[i].u.setup = ffs->ev.setup;
414 			ffs->setup_state = FFS_SETUP_PENDING;
415 		}
416 	} while (++i < n);
417 
418 	ffs->ev.count -= n;
419 	if (ffs->ev.count)
420 		memmove(ffs->ev.types, ffs->ev.types + n,
421 			ffs->ev.count * sizeof *ffs->ev.types);
422 
423 	spin_unlock_irq(&ffs->ev.waitq.lock);
424 	mutex_unlock(&ffs->mutex);
425 
426 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
427 }
428 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 			    size_t len, loff_t *ptr)
431 {
432 	struct ffs_data *ffs = file->private_data;
433 	char *data = NULL;
434 	size_t n;
435 	int ret;
436 
437 	ENTER();
438 
439 	/* Fast check if setup was canceled */
440 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 		return -EIDRM;
442 
443 	/* Acquire mutex */
444 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 	if (unlikely(ret < 0))
446 		return ret;
447 
448 	/* Check state */
449 	if (ffs->state != FFS_ACTIVE) {
450 		ret = -EBADFD;
451 		goto done_mutex;
452 	}
453 
454 	/*
455 	 * We're called from user space, we can use _irq rather then
456 	 * _irqsave
457 	 */
458 	spin_lock_irq(&ffs->ev.waitq.lock);
459 
460 	switch (ffs_setup_state_clear_cancelled(ffs)) {
461 	case FFS_SETUP_CANCELLED:
462 		ret = -EIDRM;
463 		break;
464 
465 	case FFS_NO_SETUP:
466 		n = len / sizeof(struct usb_functionfs_event);
467 		if (unlikely(!n)) {
468 			ret = -EINVAL;
469 			break;
470 		}
471 
472 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 			ret = -EAGAIN;
474 			break;
475 		}
476 
477 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 							ffs->ev.count)) {
479 			ret = -EINTR;
480 			break;
481 		}
482 
483 		return __ffs_ep0_read_events(ffs, buf,
484 					     min(n, (size_t)ffs->ev.count));
485 
486 	case FFS_SETUP_PENDING:
487 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 			spin_unlock_irq(&ffs->ev.waitq.lock);
489 			ret = __ffs_ep0_stall(ffs);
490 			goto done_mutex;
491 		}
492 
493 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494 
495 		spin_unlock_irq(&ffs->ev.waitq.lock);
496 
497 		if (likely(len)) {
498 			data = kmalloc(len, GFP_KERNEL);
499 			if (unlikely(!data)) {
500 				ret = -ENOMEM;
501 				goto done_mutex;
502 			}
503 		}
504 
505 		spin_lock_irq(&ffs->ev.waitq.lock);
506 
507 		/* See ffs_ep0_write() */
508 		if (ffs_setup_state_clear_cancelled(ffs) ==
509 		    FFS_SETUP_CANCELLED) {
510 			ret = -EIDRM;
511 			break;
512 		}
513 
514 		/* unlocks spinlock */
515 		ret = __ffs_ep0_queue_wait(ffs, data, len);
516 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
517 			ret = -EFAULT;
518 		goto done_mutex;
519 
520 	default:
521 		ret = -EBADFD;
522 		break;
523 	}
524 
525 	spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 	mutex_unlock(&ffs->mutex);
528 	kfree(data);
529 	return ret;
530 }
531 
ffs_ep0_open(struct inode * inode,struct file * file)532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 	struct ffs_data *ffs = inode->i_private;
535 
536 	ENTER();
537 
538 	if (unlikely(ffs->state == FFS_CLOSING))
539 		return -EBUSY;
540 
541 	file->private_data = ffs;
542 	ffs_data_opened(ffs);
543 
544 	return 0;
545 }
546 
ffs_ep0_release(struct inode * inode,struct file * file)547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = file->private_data;
550 
551 	ENTER();
552 
553 	ffs_data_closed(ffs);
554 
555 	return 0;
556 }
557 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 	struct ffs_data *ffs = file->private_data;
561 	struct usb_gadget *gadget = ffs->gadget;
562 	long ret;
563 
564 	ENTER();
565 
566 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 		struct ffs_function *func = ffs->func;
568 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 	} else if (gadget && gadget->ops->ioctl) {
570 		ret = gadget->ops->ioctl(gadget, code, value);
571 	} else {
572 		ret = -ENOTTY;
573 	}
574 
575 	return ret;
576 }
577 
ffs_ep0_poll(struct file * file,poll_table * wait)578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 	struct ffs_data *ffs = file->private_data;
581 	unsigned int mask = POLLWRNORM;
582 	int ret;
583 
584 	poll_wait(file, &ffs->ev.waitq, wait);
585 
586 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 	if (unlikely(ret < 0))
588 		return mask;
589 
590 	switch (ffs->state) {
591 	case FFS_READ_DESCRIPTORS:
592 	case FFS_READ_STRINGS:
593 		mask |= POLLOUT;
594 		break;
595 
596 	case FFS_ACTIVE:
597 		switch (ffs->setup_state) {
598 		case FFS_NO_SETUP:
599 			if (ffs->ev.count)
600 				mask |= POLLIN;
601 			break;
602 
603 		case FFS_SETUP_PENDING:
604 		case FFS_SETUP_CANCELLED:
605 			mask |= (POLLIN | POLLOUT);
606 			break;
607 		}
608 	case FFS_CLOSING:
609 		break;
610 	case FFS_DEACTIVATED:
611 		break;
612 	}
613 
614 	mutex_unlock(&ffs->mutex);
615 
616 	return mask;
617 }
618 
619 static const struct file_operations ffs_ep0_operations = {
620 	.llseek =	no_llseek,
621 
622 	.open =		ffs_ep0_open,
623 	.write =	ffs_ep0_write,
624 	.read =		ffs_ep0_read,
625 	.release =	ffs_ep0_release,
626 	.unlocked_ioctl =	ffs_ep0_ioctl,
627 	.poll =		ffs_ep0_poll,
628 };
629 
630 
631 /* "Normal" endpoints operations ********************************************/
632 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
634 {
635 	ENTER();
636 	if (likely(req->context)) {
637 		struct ffs_ep *ep = _ep->driver_data;
638 		ep->status = req->status ? req->status : req->actual;
639 		complete(req->context);
640 	}
641 }
642 
ffs_user_copy_worker(struct work_struct * work)643 static void ffs_user_copy_worker(struct work_struct *work)
644 {
645 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
646 						   work);
647 	int ret = io_data->req->status ? io_data->req->status :
648 					 io_data->req->actual;
649 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
650 
651 	if (io_data->read && ret > 0) {
652 		use_mm(io_data->mm);
653 		ret = copy_to_iter(io_data->buf, ret, &io_data->data);
654 		if (ret != io_data->req->actual && iov_iter_count(&io_data->data))
655 			ret = -EFAULT;
656 		unuse_mm(io_data->mm);
657 	}
658 
659 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
660 
661 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
662 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
663 
664 	usb_ep_free_request(io_data->ep, io_data->req);
665 
666 	if (io_data->read)
667 		kfree(io_data->to_free);
668 	kfree(io_data->buf);
669 	kfree(io_data);
670 }
671 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)672 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
673 					 struct usb_request *req)
674 {
675 	struct ffs_io_data *io_data = req->context;
676 
677 	ENTER();
678 
679 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
680 	schedule_work(&io_data->work);
681 }
682 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)683 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
684 {
685 	struct ffs_epfile *epfile = file->private_data;
686 	struct ffs_ep *ep;
687 	char *data = NULL;
688 	ssize_t ret, data_len = -EINVAL;
689 	int halt;
690 
691 	/* Are we still active? */
692 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
693 		ret = -ENODEV;
694 		goto error;
695 	}
696 
697 	/* Wait for endpoint to be enabled */
698 	ep = epfile->ep;
699 	if (!ep) {
700 		if (file->f_flags & O_NONBLOCK) {
701 			ret = -EAGAIN;
702 			goto error;
703 		}
704 
705 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
706 		if (ret) {
707 			ret = -EINTR;
708 			goto error;
709 		}
710 	}
711 
712 	/* Do we halt? */
713 	halt = (!io_data->read == !epfile->in);
714 	if (halt && epfile->isoc) {
715 		ret = -EINVAL;
716 		goto error;
717 	}
718 
719 	/* Allocate & copy */
720 	if (!halt) {
721 		/*
722 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
723 		 * before the waiting completes, so do not assign to 'gadget' earlier
724 		 */
725 		struct usb_gadget *gadget = epfile->ffs->gadget;
726 		size_t copied;
727 
728 		spin_lock_irq(&epfile->ffs->eps_lock);
729 		/* In the meantime, endpoint got disabled or changed. */
730 		if (epfile->ep != ep) {
731 			spin_unlock_irq(&epfile->ffs->eps_lock);
732 			return -ESHUTDOWN;
733 		}
734 		data_len = iov_iter_count(&io_data->data);
735 		/*
736 		 * Controller may require buffer size to be aligned to
737 		 * maxpacketsize of an out endpoint.
738 		 */
739 		if (io_data->read)
740 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
741 		spin_unlock_irq(&epfile->ffs->eps_lock);
742 
743 		data = kmalloc(data_len, GFP_KERNEL);
744 		if (unlikely(!data))
745 			return -ENOMEM;
746 		if (!io_data->read) {
747 			copied = copy_from_iter(data, data_len, &io_data->data);
748 			if (copied != data_len) {
749 				ret = -EFAULT;
750 				goto error;
751 			}
752 		}
753 	}
754 
755 	/* We will be using request */
756 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
757 	if (unlikely(ret))
758 		goto error;
759 
760 	spin_lock_irq(&epfile->ffs->eps_lock);
761 
762 	if (epfile->ep != ep) {
763 		/* In the meantime, endpoint got disabled or changed. */
764 		ret = -ESHUTDOWN;
765 		spin_unlock_irq(&epfile->ffs->eps_lock);
766 	} else if (halt) {
767 		/* Halt */
768 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
769 			usb_ep_set_halt(ep->ep);
770 		spin_unlock_irq(&epfile->ffs->eps_lock);
771 		ret = -EBADMSG;
772 	} else {
773 		/* Fire the request */
774 		struct usb_request *req;
775 
776 		/*
777 		 * Sanity Check: even though data_len can't be used
778 		 * uninitialized at the time I write this comment, some
779 		 * compilers complain about this situation.
780 		 * In order to keep the code clean from warnings, data_len is
781 		 * being initialized to -EINVAL during its declaration, which
782 		 * means we can't rely on compiler anymore to warn no future
783 		 * changes won't result in data_len being used uninitialized.
784 		 * For such reason, we're adding this redundant sanity check
785 		 * here.
786 		 */
787 		if (unlikely(data_len == -EINVAL)) {
788 			WARN(1, "%s: data_len == -EINVAL\n", __func__);
789 			ret = -EINVAL;
790 			goto error_lock;
791 		}
792 
793 		if (io_data->aio) {
794 			req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
795 			if (unlikely(!req))
796 				goto error_lock;
797 
798 			req->buf      = data;
799 			req->length   = data_len;
800 
801 			io_data->buf = data;
802 			io_data->ep = ep->ep;
803 			io_data->req = req;
804 			io_data->ffs = epfile->ffs;
805 
806 			req->context  = io_data;
807 			req->complete = ffs_epfile_async_io_complete;
808 
809 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
810 			if (unlikely(ret)) {
811 				usb_ep_free_request(ep->ep, req);
812 				goto error_lock;
813 			}
814 			ret = -EIOCBQUEUED;
815 
816 			spin_unlock_irq(&epfile->ffs->eps_lock);
817 		} else {
818 			DECLARE_COMPLETION_ONSTACK(done);
819 
820 			req = ep->req;
821 			req->buf      = data;
822 			req->length   = data_len;
823 
824 			req->context  = &done;
825 			req->complete = ffs_epfile_io_complete;
826 
827 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
828 
829 			spin_unlock_irq(&epfile->ffs->eps_lock);
830 
831 			if (unlikely(ret < 0)) {
832 				/* nop */
833 			} else if (unlikely(
834 				   wait_for_completion_interruptible(&done))) {
835 				ret = -EINTR;
836 				usb_ep_dequeue(ep->ep, req);
837 			} else {
838 				/*
839 				 * XXX We may end up silently droping data
840 				 * here.  Since data_len (i.e. req->length) may
841 				 * be bigger than len (after being rounded up
842 				 * to maxpacketsize), we may end up with more
843 				 * data then user space has space for.
844 				 */
845 				ret = ep->status;
846 				if (io_data->read && ret > 0) {
847 					ret = copy_to_iter(data, ret, &io_data->data);
848 					if (!ret)
849 						ret = -EFAULT;
850 				}
851 			}
852 			kfree(data);
853 		}
854 	}
855 
856 	mutex_unlock(&epfile->mutex);
857 	return ret;
858 
859 error_lock:
860 	spin_unlock_irq(&epfile->ffs->eps_lock);
861 	mutex_unlock(&epfile->mutex);
862 error:
863 	kfree(data);
864 	return ret;
865 }
866 
867 static int
ffs_epfile_open(struct inode * inode,struct file * file)868 ffs_epfile_open(struct inode *inode, struct file *file)
869 {
870 	struct ffs_epfile *epfile = inode->i_private;
871 
872 	ENTER();
873 
874 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
875 		return -ENODEV;
876 
877 	file->private_data = epfile;
878 	ffs_data_opened(epfile->ffs);
879 
880 	return 0;
881 }
882 
ffs_aio_cancel(struct kiocb * kiocb)883 static int ffs_aio_cancel(struct kiocb *kiocb)
884 {
885 	struct ffs_io_data *io_data = kiocb->private;
886 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
887 	int value;
888 
889 	ENTER();
890 
891 	spin_lock_irq(&epfile->ffs->eps_lock);
892 
893 	if (likely(io_data && io_data->ep && io_data->req))
894 		value = usb_ep_dequeue(io_data->ep, io_data->req);
895 	else
896 		value = -EINVAL;
897 
898 	spin_unlock_irq(&epfile->ffs->eps_lock);
899 
900 	return value;
901 }
902 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)903 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
904 {
905 	struct ffs_io_data io_data, *p = &io_data;
906 	ssize_t res;
907 
908 	ENTER();
909 
910 	if (!is_sync_kiocb(kiocb)) {
911 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
912 		if (unlikely(!p))
913 			return -ENOMEM;
914 		p->aio = true;
915 	} else {
916 		p->aio = false;
917 	}
918 
919 	p->read = false;
920 	p->kiocb = kiocb;
921 	p->data = *from;
922 	p->mm = current->mm;
923 
924 	kiocb->private = p;
925 
926 	if (p->aio)
927 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
928 
929 	res = ffs_epfile_io(kiocb->ki_filp, p);
930 	if (res == -EIOCBQUEUED)
931 		return res;
932 	if (p->aio)
933 		kfree(p);
934 	else
935 		*from = p->data;
936 	return res;
937 }
938 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)939 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
940 {
941 	struct ffs_io_data io_data, *p = &io_data;
942 	ssize_t res;
943 
944 	ENTER();
945 
946 	if (!is_sync_kiocb(kiocb)) {
947 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
948 		if (unlikely(!p))
949 			return -ENOMEM;
950 		p->aio = true;
951 	} else {
952 		p->aio = false;
953 	}
954 
955 	p->read = true;
956 	p->kiocb = kiocb;
957 	if (p->aio) {
958 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
959 		if (!p->to_free) {
960 			kfree(p);
961 			return -ENOMEM;
962 		}
963 	} else {
964 		p->data = *to;
965 		p->to_free = NULL;
966 	}
967 	p->mm = current->mm;
968 
969 	kiocb->private = p;
970 
971 	if (p->aio)
972 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
973 
974 	res = ffs_epfile_io(kiocb->ki_filp, p);
975 	if (res == -EIOCBQUEUED)
976 		return res;
977 
978 	if (p->aio) {
979 		kfree(p->to_free);
980 		kfree(p);
981 	} else {
982 		*to = p->data;
983 	}
984 	return res;
985 }
986 
987 static int
ffs_epfile_release(struct inode * inode,struct file * file)988 ffs_epfile_release(struct inode *inode, struct file *file)
989 {
990 	struct ffs_epfile *epfile = inode->i_private;
991 
992 	ENTER();
993 
994 	ffs_data_closed(epfile->ffs);
995 
996 	return 0;
997 }
998 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)999 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1000 			     unsigned long value)
1001 {
1002 	struct ffs_epfile *epfile = file->private_data;
1003 	int ret;
1004 
1005 	ENTER();
1006 
1007 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1008 		return -ENODEV;
1009 
1010 	spin_lock_irq(&epfile->ffs->eps_lock);
1011 	if (likely(epfile->ep)) {
1012 		switch (code) {
1013 		case FUNCTIONFS_FIFO_STATUS:
1014 			ret = usb_ep_fifo_status(epfile->ep->ep);
1015 			break;
1016 		case FUNCTIONFS_FIFO_FLUSH:
1017 			usb_ep_fifo_flush(epfile->ep->ep);
1018 			ret = 0;
1019 			break;
1020 		case FUNCTIONFS_CLEAR_HALT:
1021 			ret = usb_ep_clear_halt(epfile->ep->ep);
1022 			break;
1023 		case FUNCTIONFS_ENDPOINT_REVMAP:
1024 			ret = epfile->ep->num;
1025 			break;
1026 		case FUNCTIONFS_ENDPOINT_DESC:
1027 		{
1028 			int desc_idx;
1029 			struct usb_endpoint_descriptor *desc;
1030 
1031 			switch (epfile->ffs->gadget->speed) {
1032 			case USB_SPEED_SUPER:
1033 				desc_idx = 2;
1034 				break;
1035 			case USB_SPEED_HIGH:
1036 				desc_idx = 1;
1037 				break;
1038 			default:
1039 				desc_idx = 0;
1040 			}
1041 			desc = epfile->ep->descs[desc_idx];
1042 
1043 			spin_unlock_irq(&epfile->ffs->eps_lock);
1044 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1045 			if (ret)
1046 				ret = -EFAULT;
1047 			return ret;
1048 		}
1049 		default:
1050 			ret = -ENOTTY;
1051 		}
1052 	} else {
1053 		ret = -ENODEV;
1054 	}
1055 	spin_unlock_irq(&epfile->ffs->eps_lock);
1056 
1057 	return ret;
1058 }
1059 
1060 static const struct file_operations ffs_epfile_operations = {
1061 	.llseek =	no_llseek,
1062 
1063 	.open =		ffs_epfile_open,
1064 	.write_iter =	ffs_epfile_write_iter,
1065 	.read_iter =	ffs_epfile_read_iter,
1066 	.release =	ffs_epfile_release,
1067 	.unlocked_ioctl =	ffs_epfile_ioctl,
1068 };
1069 
1070 
1071 /* File system and super block operations ***********************************/
1072 
1073 /*
1074  * Mounting the file system creates a controller file, used first for
1075  * function configuration then later for event monitoring.
1076  */
1077 
1078 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1079 ffs_sb_make_inode(struct super_block *sb, void *data,
1080 		  const struct file_operations *fops,
1081 		  const struct inode_operations *iops,
1082 		  struct ffs_file_perms *perms)
1083 {
1084 	struct inode *inode;
1085 
1086 	ENTER();
1087 
1088 	inode = new_inode(sb);
1089 
1090 	if (likely(inode)) {
1091 		struct timespec current_time = CURRENT_TIME;
1092 
1093 		inode->i_ino	 = get_next_ino();
1094 		inode->i_mode    = perms->mode;
1095 		inode->i_uid     = perms->uid;
1096 		inode->i_gid     = perms->gid;
1097 		inode->i_atime   = current_time;
1098 		inode->i_mtime   = current_time;
1099 		inode->i_ctime   = current_time;
1100 		inode->i_private = data;
1101 		if (fops)
1102 			inode->i_fop = fops;
1103 		if (iops)
1104 			inode->i_op  = iops;
1105 	}
1106 
1107 	return inode;
1108 }
1109 
1110 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1111 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1112 					const char *name, void *data,
1113 					const struct file_operations *fops)
1114 {
1115 	struct ffs_data	*ffs = sb->s_fs_info;
1116 	struct dentry	*dentry;
1117 	struct inode	*inode;
1118 
1119 	ENTER();
1120 
1121 	dentry = d_alloc_name(sb->s_root, name);
1122 	if (unlikely(!dentry))
1123 		return NULL;
1124 
1125 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1126 	if (unlikely(!inode)) {
1127 		dput(dentry);
1128 		return NULL;
1129 	}
1130 
1131 	d_add(dentry, inode);
1132 	return dentry;
1133 }
1134 
1135 /* Super block */
1136 static const struct super_operations ffs_sb_operations = {
1137 	.statfs =	simple_statfs,
1138 	.drop_inode =	generic_delete_inode,
1139 };
1140 
1141 struct ffs_sb_fill_data {
1142 	struct ffs_file_perms perms;
1143 	umode_t root_mode;
1144 	const char *dev_name;
1145 	bool no_disconnect;
1146 	struct ffs_data *ffs_data;
1147 };
1148 
ffs_sb_fill(struct super_block * sb,void * _data,int silent)1149 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1150 {
1151 	struct ffs_sb_fill_data *data = _data;
1152 	struct inode	*inode;
1153 	struct ffs_data	*ffs = data->ffs_data;
1154 
1155 	ENTER();
1156 
1157 	ffs->sb              = sb;
1158 	data->ffs_data       = NULL;
1159 	sb->s_fs_info        = ffs;
1160 	sb->s_blocksize      = PAGE_CACHE_SIZE;
1161 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1162 	sb->s_magic          = FUNCTIONFS_MAGIC;
1163 	sb->s_op             = &ffs_sb_operations;
1164 	sb->s_time_gran      = 1;
1165 
1166 	/* Root inode */
1167 	data->perms.mode = data->root_mode;
1168 	inode = ffs_sb_make_inode(sb, NULL,
1169 				  &simple_dir_operations,
1170 				  &simple_dir_inode_operations,
1171 				  &data->perms);
1172 	sb->s_root = d_make_root(inode);
1173 	if (unlikely(!sb->s_root))
1174 		return -ENOMEM;
1175 
1176 	/* EP0 file */
1177 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1178 					 &ffs_ep0_operations)))
1179 		return -ENOMEM;
1180 
1181 	return 0;
1182 }
1183 
ffs_fs_parse_opts(struct ffs_sb_fill_data * data,char * opts)1184 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1185 {
1186 	ENTER();
1187 
1188 	if (!opts || !*opts)
1189 		return 0;
1190 
1191 	for (;;) {
1192 		unsigned long value;
1193 		char *eq, *comma;
1194 
1195 		/* Option limit */
1196 		comma = strchr(opts, ',');
1197 		if (comma)
1198 			*comma = 0;
1199 
1200 		/* Value limit */
1201 		eq = strchr(opts, '=');
1202 		if (unlikely(!eq)) {
1203 			pr_err("'=' missing in %s\n", opts);
1204 			return -EINVAL;
1205 		}
1206 		*eq = 0;
1207 
1208 		/* Parse value */
1209 		if (kstrtoul(eq + 1, 0, &value)) {
1210 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1211 			return -EINVAL;
1212 		}
1213 
1214 		/* Interpret option */
1215 		switch (eq - opts) {
1216 		case 13:
1217 			if (!memcmp(opts, "no_disconnect", 13))
1218 				data->no_disconnect = !!value;
1219 			else
1220 				goto invalid;
1221 			break;
1222 		case 5:
1223 			if (!memcmp(opts, "rmode", 5))
1224 				data->root_mode  = (value & 0555) | S_IFDIR;
1225 			else if (!memcmp(opts, "fmode", 5))
1226 				data->perms.mode = (value & 0666) | S_IFREG;
1227 			else
1228 				goto invalid;
1229 			break;
1230 
1231 		case 4:
1232 			if (!memcmp(opts, "mode", 4)) {
1233 				data->root_mode  = (value & 0555) | S_IFDIR;
1234 				data->perms.mode = (value & 0666) | S_IFREG;
1235 			} else {
1236 				goto invalid;
1237 			}
1238 			break;
1239 
1240 		case 3:
1241 			if (!memcmp(opts, "uid", 3)) {
1242 				data->perms.uid = make_kuid(current_user_ns(), value);
1243 				if (!uid_valid(data->perms.uid)) {
1244 					pr_err("%s: unmapped value: %lu\n", opts, value);
1245 					return -EINVAL;
1246 				}
1247 			} else if (!memcmp(opts, "gid", 3)) {
1248 				data->perms.gid = make_kgid(current_user_ns(), value);
1249 				if (!gid_valid(data->perms.gid)) {
1250 					pr_err("%s: unmapped value: %lu\n", opts, value);
1251 					return -EINVAL;
1252 				}
1253 			} else {
1254 				goto invalid;
1255 			}
1256 			break;
1257 
1258 		default:
1259 invalid:
1260 			pr_err("%s: invalid option\n", opts);
1261 			return -EINVAL;
1262 		}
1263 
1264 		/* Next iteration */
1265 		if (!comma)
1266 			break;
1267 		opts = comma + 1;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /* "mount -t functionfs dev_name /dev/function" ends up here */
1274 
1275 static struct dentry *
ffs_fs_mount(struct file_system_type * t,int flags,const char * dev_name,void * opts)1276 ffs_fs_mount(struct file_system_type *t, int flags,
1277 	      const char *dev_name, void *opts)
1278 {
1279 	struct ffs_sb_fill_data data = {
1280 		.perms = {
1281 			.mode = S_IFREG | 0600,
1282 			.uid = GLOBAL_ROOT_UID,
1283 			.gid = GLOBAL_ROOT_GID,
1284 		},
1285 		.root_mode = S_IFDIR | 0500,
1286 		.no_disconnect = false,
1287 	};
1288 	struct dentry *rv;
1289 	int ret;
1290 	void *ffs_dev;
1291 	struct ffs_data	*ffs;
1292 
1293 	ENTER();
1294 
1295 	ret = ffs_fs_parse_opts(&data, opts);
1296 	if (unlikely(ret < 0))
1297 		return ERR_PTR(ret);
1298 
1299 	ffs = ffs_data_new();
1300 	if (unlikely(!ffs))
1301 		return ERR_PTR(-ENOMEM);
1302 	ffs->file_perms = data.perms;
1303 	ffs->no_disconnect = data.no_disconnect;
1304 
1305 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1306 	if (unlikely(!ffs->dev_name)) {
1307 		ffs_data_put(ffs);
1308 		return ERR_PTR(-ENOMEM);
1309 	}
1310 
1311 	ffs_dev = ffs_acquire_dev(dev_name);
1312 	if (IS_ERR(ffs_dev)) {
1313 		ffs_data_put(ffs);
1314 		return ERR_CAST(ffs_dev);
1315 	}
1316 	ffs->private_data = ffs_dev;
1317 	data.ffs_data = ffs;
1318 
1319 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1320 	if (IS_ERR(rv) && data.ffs_data) {
1321 		ffs_release_dev(data.ffs_data);
1322 		ffs_data_put(data.ffs_data);
1323 	}
1324 	return rv;
1325 }
1326 
1327 static void
ffs_fs_kill_sb(struct super_block * sb)1328 ffs_fs_kill_sb(struct super_block *sb)
1329 {
1330 	ENTER();
1331 
1332 	kill_litter_super(sb);
1333 	if (sb->s_fs_info) {
1334 		ffs_release_dev(sb->s_fs_info);
1335 		ffs_data_closed(sb->s_fs_info);
1336 		ffs_data_put(sb->s_fs_info);
1337 	}
1338 }
1339 
1340 static struct file_system_type ffs_fs_type = {
1341 	.owner		= THIS_MODULE,
1342 	.name		= "functionfs",
1343 	.mount		= ffs_fs_mount,
1344 	.kill_sb	= ffs_fs_kill_sb,
1345 };
1346 MODULE_ALIAS_FS("functionfs");
1347 
1348 
1349 /* Driver's main init/cleanup functions *************************************/
1350 
functionfs_init(void)1351 static int functionfs_init(void)
1352 {
1353 	int ret;
1354 
1355 	ENTER();
1356 
1357 	ret = register_filesystem(&ffs_fs_type);
1358 	if (likely(!ret))
1359 		pr_info("file system registered\n");
1360 	else
1361 		pr_err("failed registering file system (%d)\n", ret);
1362 
1363 	return ret;
1364 }
1365 
functionfs_cleanup(void)1366 static void functionfs_cleanup(void)
1367 {
1368 	ENTER();
1369 
1370 	pr_info("unloading\n");
1371 	unregister_filesystem(&ffs_fs_type);
1372 }
1373 
1374 
1375 /* ffs_data and ffs_function construction and destruction code **************/
1376 
1377 static void ffs_data_clear(struct ffs_data *ffs);
1378 static void ffs_data_reset(struct ffs_data *ffs);
1379 
ffs_data_get(struct ffs_data * ffs)1380 static void ffs_data_get(struct ffs_data *ffs)
1381 {
1382 	ENTER();
1383 
1384 	atomic_inc(&ffs->ref);
1385 }
1386 
ffs_data_opened(struct ffs_data * ffs)1387 static void ffs_data_opened(struct ffs_data *ffs)
1388 {
1389 	ENTER();
1390 
1391 	atomic_inc(&ffs->ref);
1392 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1393 			ffs->state == FFS_DEACTIVATED) {
1394 		ffs->state = FFS_CLOSING;
1395 		ffs_data_reset(ffs);
1396 	}
1397 }
1398 
ffs_data_put(struct ffs_data * ffs)1399 static void ffs_data_put(struct ffs_data *ffs)
1400 {
1401 	ENTER();
1402 
1403 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1404 		pr_info("%s(): freeing\n", __func__);
1405 		ffs_data_clear(ffs);
1406 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1407 		       waitqueue_active(&ffs->ep0req_completion.wait));
1408 		kfree(ffs->dev_name);
1409 		kfree(ffs);
1410 	}
1411 }
1412 
ffs_data_closed(struct ffs_data * ffs)1413 static void ffs_data_closed(struct ffs_data *ffs)
1414 {
1415 	ENTER();
1416 
1417 	if (atomic_dec_and_test(&ffs->opened)) {
1418 		if (ffs->no_disconnect) {
1419 			ffs->state = FFS_DEACTIVATED;
1420 			if (ffs->epfiles) {
1421 				ffs_epfiles_destroy(ffs->epfiles,
1422 						   ffs->eps_count);
1423 				ffs->epfiles = NULL;
1424 			}
1425 			if (ffs->setup_state == FFS_SETUP_PENDING)
1426 				__ffs_ep0_stall(ffs);
1427 		} else {
1428 			ffs->state = FFS_CLOSING;
1429 			ffs_data_reset(ffs);
1430 		}
1431 	}
1432 	if (atomic_read(&ffs->opened) < 0) {
1433 		ffs->state = FFS_CLOSING;
1434 		ffs_data_reset(ffs);
1435 	}
1436 
1437 	ffs_data_put(ffs);
1438 }
1439 
ffs_data_new(void)1440 static struct ffs_data *ffs_data_new(void)
1441 {
1442 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1443 	if (unlikely(!ffs))
1444 		return NULL;
1445 
1446 	ENTER();
1447 
1448 	atomic_set(&ffs->ref, 1);
1449 	atomic_set(&ffs->opened, 0);
1450 	ffs->state = FFS_READ_DESCRIPTORS;
1451 	mutex_init(&ffs->mutex);
1452 	spin_lock_init(&ffs->eps_lock);
1453 	init_waitqueue_head(&ffs->ev.waitq);
1454 	init_completion(&ffs->ep0req_completion);
1455 
1456 	/* XXX REVISIT need to update it in some places, or do we? */
1457 	ffs->ev.can_stall = 1;
1458 
1459 	return ffs;
1460 }
1461 
ffs_data_clear(struct ffs_data * ffs)1462 static void ffs_data_clear(struct ffs_data *ffs)
1463 {
1464 	ENTER();
1465 
1466 	ffs_closed(ffs);
1467 
1468 	BUG_ON(ffs->gadget);
1469 
1470 	if (ffs->epfiles)
1471 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1472 
1473 	if (ffs->ffs_eventfd)
1474 		eventfd_ctx_put(ffs->ffs_eventfd);
1475 
1476 	kfree(ffs->raw_descs_data);
1477 	kfree(ffs->raw_strings);
1478 	kfree(ffs->stringtabs);
1479 }
1480 
ffs_data_reset(struct ffs_data * ffs)1481 static void ffs_data_reset(struct ffs_data *ffs)
1482 {
1483 	ENTER();
1484 
1485 	ffs_data_clear(ffs);
1486 
1487 	ffs->epfiles = NULL;
1488 	ffs->raw_descs_data = NULL;
1489 	ffs->raw_descs = NULL;
1490 	ffs->raw_strings = NULL;
1491 	ffs->stringtabs = NULL;
1492 
1493 	ffs->raw_descs_length = 0;
1494 	ffs->fs_descs_count = 0;
1495 	ffs->hs_descs_count = 0;
1496 	ffs->ss_descs_count = 0;
1497 
1498 	ffs->strings_count = 0;
1499 	ffs->interfaces_count = 0;
1500 	ffs->eps_count = 0;
1501 
1502 	ffs->ev.count = 0;
1503 
1504 	ffs->state = FFS_READ_DESCRIPTORS;
1505 	ffs->setup_state = FFS_NO_SETUP;
1506 	ffs->flags = 0;
1507 }
1508 
1509 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1510 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1511 {
1512 	struct usb_gadget_strings **lang;
1513 	int first_id;
1514 
1515 	ENTER();
1516 
1517 	if (WARN_ON(ffs->state != FFS_ACTIVE
1518 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1519 		return -EBADFD;
1520 
1521 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1522 	if (unlikely(first_id < 0))
1523 		return first_id;
1524 
1525 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1526 	if (unlikely(!ffs->ep0req))
1527 		return -ENOMEM;
1528 	ffs->ep0req->complete = ffs_ep0_complete;
1529 	ffs->ep0req->context = ffs;
1530 
1531 	lang = ffs->stringtabs;
1532 	if (lang) {
1533 		for (; *lang; ++lang) {
1534 			struct usb_string *str = (*lang)->strings;
1535 			int id = first_id;
1536 			for (; str->s; ++id, ++str)
1537 				str->id = id;
1538 		}
1539 	}
1540 
1541 	ffs->gadget = cdev->gadget;
1542 	ffs_data_get(ffs);
1543 	return 0;
1544 }
1545 
functionfs_unbind(struct ffs_data * ffs)1546 static void functionfs_unbind(struct ffs_data *ffs)
1547 {
1548 	ENTER();
1549 
1550 	if (!WARN_ON(!ffs->gadget)) {
1551 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1552 		ffs->ep0req = NULL;
1553 		ffs->gadget = NULL;
1554 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1555 		ffs_data_put(ffs);
1556 	}
1557 }
1558 
ffs_epfiles_create(struct ffs_data * ffs)1559 static int ffs_epfiles_create(struct ffs_data *ffs)
1560 {
1561 	struct ffs_epfile *epfile, *epfiles;
1562 	unsigned i, count;
1563 
1564 	ENTER();
1565 
1566 	count = ffs->eps_count;
1567 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1568 	if (!epfiles)
1569 		return -ENOMEM;
1570 
1571 	epfile = epfiles;
1572 	for (i = 1; i <= count; ++i, ++epfile) {
1573 		epfile->ffs = ffs;
1574 		mutex_init(&epfile->mutex);
1575 		init_waitqueue_head(&epfile->wait);
1576 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1577 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1578 		else
1579 			sprintf(epfile->name, "ep%u", i);
1580 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1581 						 epfile,
1582 						 &ffs_epfile_operations);
1583 		if (unlikely(!epfile->dentry)) {
1584 			ffs_epfiles_destroy(epfiles, i - 1);
1585 			return -ENOMEM;
1586 		}
1587 	}
1588 
1589 	ffs->epfiles = epfiles;
1590 	return 0;
1591 }
1592 
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1593 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1594 {
1595 	struct ffs_epfile *epfile = epfiles;
1596 
1597 	ENTER();
1598 
1599 	for (; count; --count, ++epfile) {
1600 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1601 		       waitqueue_active(&epfile->wait));
1602 		if (epfile->dentry) {
1603 			d_delete(epfile->dentry);
1604 			dput(epfile->dentry);
1605 			epfile->dentry = NULL;
1606 		}
1607 	}
1608 
1609 	kfree(epfiles);
1610 }
1611 
ffs_func_eps_disable(struct ffs_function * func)1612 static void ffs_func_eps_disable(struct ffs_function *func)
1613 {
1614 	struct ffs_ep *ep         = func->eps;
1615 	struct ffs_epfile *epfile = func->ffs->epfiles;
1616 	unsigned count            = func->ffs->eps_count;
1617 	unsigned long flags;
1618 
1619 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1620 	do {
1621 		/* pending requests get nuked */
1622 		if (likely(ep->ep))
1623 			usb_ep_disable(ep->ep);
1624 		++ep;
1625 
1626 		if (epfile) {
1627 			epfile->ep = NULL;
1628 			++epfile;
1629 		}
1630 	} while (--count);
1631 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1632 }
1633 
ffs_func_eps_enable(struct ffs_function * func)1634 static int ffs_func_eps_enable(struct ffs_function *func)
1635 {
1636 	struct ffs_data *ffs      = func->ffs;
1637 	struct ffs_ep *ep         = func->eps;
1638 	struct ffs_epfile *epfile = ffs->epfiles;
1639 	unsigned count            = ffs->eps_count;
1640 	unsigned long flags;
1641 	int ret = 0;
1642 
1643 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1644 	do {
1645 		struct usb_endpoint_descriptor *ds;
1646 		int desc_idx;
1647 
1648 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1649 			desc_idx = 2;
1650 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1651 			desc_idx = 1;
1652 		else
1653 			desc_idx = 0;
1654 
1655 		/* fall-back to lower speed if desc missing for current speed */
1656 		do {
1657 			ds = ep->descs[desc_idx];
1658 		} while (!ds && --desc_idx >= 0);
1659 
1660 		if (!ds) {
1661 			ret = -EINVAL;
1662 			break;
1663 		}
1664 
1665 		ep->ep->driver_data = ep;
1666 		ep->ep->desc = ds;
1667 		ret = usb_ep_enable(ep->ep);
1668 		if (likely(!ret)) {
1669 			epfile->ep = ep;
1670 			epfile->in = usb_endpoint_dir_in(ds);
1671 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1672 		} else {
1673 			break;
1674 		}
1675 
1676 		wake_up(&epfile->wait);
1677 
1678 		++ep;
1679 		++epfile;
1680 	} while (--count);
1681 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1682 
1683 	return ret;
1684 }
1685 
1686 
1687 /* Parsing and building descriptors and strings *****************************/
1688 
1689 /*
1690  * This validates if data pointed by data is a valid USB descriptor as
1691  * well as record how many interfaces, endpoints and strings are
1692  * required by given configuration.  Returns address after the
1693  * descriptor or NULL if data is invalid.
1694  */
1695 
1696 enum ffs_entity_type {
1697 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1698 };
1699 
1700 enum ffs_os_desc_type {
1701 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1702 };
1703 
1704 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1705 				   u8 *valuep,
1706 				   struct usb_descriptor_header *desc,
1707 				   void *priv);
1708 
1709 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1710 				    struct usb_os_desc_header *h, void *data,
1711 				    unsigned len, void *priv);
1712 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv)1713 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1714 					   ffs_entity_callback entity,
1715 					   void *priv)
1716 {
1717 	struct usb_descriptor_header *_ds = (void *)data;
1718 	u8 length;
1719 	int ret;
1720 
1721 	ENTER();
1722 
1723 	/* At least two bytes are required: length and type */
1724 	if (len < 2) {
1725 		pr_vdebug("descriptor too short\n");
1726 		return -EINVAL;
1727 	}
1728 
1729 	/* If we have at least as many bytes as the descriptor takes? */
1730 	length = _ds->bLength;
1731 	if (len < length) {
1732 		pr_vdebug("descriptor longer then available data\n");
1733 		return -EINVAL;
1734 	}
1735 
1736 #define __entity_check_INTERFACE(val)  1
1737 #define __entity_check_STRING(val)     (val)
1738 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1739 #define __entity(type, val) do {					\
1740 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1741 		if (unlikely(!__entity_check_ ##type(val))) {		\
1742 			pr_vdebug("invalid entity's value\n");		\
1743 			return -EINVAL;					\
1744 		}							\
1745 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1746 		if (unlikely(ret < 0)) {				\
1747 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1748 				 (val), ret);				\
1749 			return ret;					\
1750 		}							\
1751 	} while (0)
1752 
1753 	/* Parse descriptor depending on type. */
1754 	switch (_ds->bDescriptorType) {
1755 	case USB_DT_DEVICE:
1756 	case USB_DT_CONFIG:
1757 	case USB_DT_STRING:
1758 	case USB_DT_DEVICE_QUALIFIER:
1759 		/* function can't have any of those */
1760 		pr_vdebug("descriptor reserved for gadget: %d\n",
1761 		      _ds->bDescriptorType);
1762 		return -EINVAL;
1763 
1764 	case USB_DT_INTERFACE: {
1765 		struct usb_interface_descriptor *ds = (void *)_ds;
1766 		pr_vdebug("interface descriptor\n");
1767 		if (length != sizeof *ds)
1768 			goto inv_length;
1769 
1770 		__entity(INTERFACE, ds->bInterfaceNumber);
1771 		if (ds->iInterface)
1772 			__entity(STRING, ds->iInterface);
1773 	}
1774 		break;
1775 
1776 	case USB_DT_ENDPOINT: {
1777 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1778 		pr_vdebug("endpoint descriptor\n");
1779 		if (length != USB_DT_ENDPOINT_SIZE &&
1780 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1781 			goto inv_length;
1782 		__entity(ENDPOINT, ds->bEndpointAddress);
1783 	}
1784 		break;
1785 
1786 	case HID_DT_HID:
1787 		pr_vdebug("hid descriptor\n");
1788 		if (length != sizeof(struct hid_descriptor))
1789 			goto inv_length;
1790 		break;
1791 
1792 	case USB_DT_OTG:
1793 		if (length != sizeof(struct usb_otg_descriptor))
1794 			goto inv_length;
1795 		break;
1796 
1797 	case USB_DT_INTERFACE_ASSOCIATION: {
1798 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1799 		pr_vdebug("interface association descriptor\n");
1800 		if (length != sizeof *ds)
1801 			goto inv_length;
1802 		if (ds->iFunction)
1803 			__entity(STRING, ds->iFunction);
1804 	}
1805 		break;
1806 
1807 	case USB_DT_SS_ENDPOINT_COMP:
1808 		pr_vdebug("EP SS companion descriptor\n");
1809 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1810 			goto inv_length;
1811 		break;
1812 
1813 	case USB_DT_OTHER_SPEED_CONFIG:
1814 	case USB_DT_INTERFACE_POWER:
1815 	case USB_DT_DEBUG:
1816 	case USB_DT_SECURITY:
1817 	case USB_DT_CS_RADIO_CONTROL:
1818 		/* TODO */
1819 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1820 		return -EINVAL;
1821 
1822 	default:
1823 		/* We should never be here */
1824 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1825 		return -EINVAL;
1826 
1827 inv_length:
1828 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1829 			  _ds->bLength, _ds->bDescriptorType);
1830 		return -EINVAL;
1831 	}
1832 
1833 #undef __entity
1834 #undef __entity_check_DESCRIPTOR
1835 #undef __entity_check_INTERFACE
1836 #undef __entity_check_STRING
1837 #undef __entity_check_ENDPOINT
1838 
1839 	return length;
1840 }
1841 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)1842 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1843 				     ffs_entity_callback entity, void *priv)
1844 {
1845 	const unsigned _len = len;
1846 	unsigned long num = 0;
1847 
1848 	ENTER();
1849 
1850 	for (;;) {
1851 		int ret;
1852 
1853 		if (num == count)
1854 			data = NULL;
1855 
1856 		/* Record "descriptor" entity */
1857 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1858 		if (unlikely(ret < 0)) {
1859 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1860 				 num, ret);
1861 			return ret;
1862 		}
1863 
1864 		if (!data)
1865 			return _len - len;
1866 
1867 		ret = ffs_do_single_desc(data, len, entity, priv);
1868 		if (unlikely(ret < 0)) {
1869 			pr_debug("%s returns %d\n", __func__, ret);
1870 			return ret;
1871 		}
1872 
1873 		len -= ret;
1874 		data += ret;
1875 		++num;
1876 	}
1877 }
1878 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)1879 static int __ffs_data_do_entity(enum ffs_entity_type type,
1880 				u8 *valuep, struct usb_descriptor_header *desc,
1881 				void *priv)
1882 {
1883 	struct ffs_desc_helper *helper = priv;
1884 	struct usb_endpoint_descriptor *d;
1885 
1886 	ENTER();
1887 
1888 	switch (type) {
1889 	case FFS_DESCRIPTOR:
1890 		break;
1891 
1892 	case FFS_INTERFACE:
1893 		/*
1894 		 * Interfaces are indexed from zero so if we
1895 		 * encountered interface "n" then there are at least
1896 		 * "n+1" interfaces.
1897 		 */
1898 		if (*valuep >= helper->interfaces_count)
1899 			helper->interfaces_count = *valuep + 1;
1900 		break;
1901 
1902 	case FFS_STRING:
1903 		/*
1904 		 * Strings are indexed from 1 (0 is magic ;) reserved
1905 		 * for languages list or some such)
1906 		 */
1907 		if (*valuep > helper->ffs->strings_count)
1908 			helper->ffs->strings_count = *valuep;
1909 		break;
1910 
1911 	case FFS_ENDPOINT:
1912 		d = (void *)desc;
1913 		helper->eps_count++;
1914 		if (helper->eps_count >= 15)
1915 			return -EINVAL;
1916 		/* Check if descriptors for any speed were already parsed */
1917 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1918 			helper->ffs->eps_addrmap[helper->eps_count] =
1919 				d->bEndpointAddress;
1920 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1921 				d->bEndpointAddress)
1922 			return -EINVAL;
1923 		break;
1924 	}
1925 
1926 	return 0;
1927 }
1928 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)1929 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1930 				   struct usb_os_desc_header *desc)
1931 {
1932 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1933 	u16 w_index = le16_to_cpu(desc->wIndex);
1934 
1935 	if (bcd_version != 1) {
1936 		pr_vdebug("unsupported os descriptors version: %d",
1937 			  bcd_version);
1938 		return -EINVAL;
1939 	}
1940 	switch (w_index) {
1941 	case 0x4:
1942 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1943 		break;
1944 	case 0x5:
1945 		*next_type = FFS_OS_DESC_EXT_PROP;
1946 		break;
1947 	default:
1948 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1949 		return -EINVAL;
1950 	}
1951 
1952 	return sizeof(*desc);
1953 }
1954 
1955 /*
1956  * Process all extended compatibility/extended property descriptors
1957  * of a feature descriptor
1958  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)1959 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1960 					      enum ffs_os_desc_type type,
1961 					      u16 feature_count,
1962 					      ffs_os_desc_callback entity,
1963 					      void *priv,
1964 					      struct usb_os_desc_header *h)
1965 {
1966 	int ret;
1967 	const unsigned _len = len;
1968 
1969 	ENTER();
1970 
1971 	/* loop over all ext compat/ext prop descriptors */
1972 	while (feature_count--) {
1973 		ret = entity(type, h, data, len, priv);
1974 		if (unlikely(ret < 0)) {
1975 			pr_debug("bad OS descriptor, type: %d\n", type);
1976 			return ret;
1977 		}
1978 		data += ret;
1979 		len -= ret;
1980 	}
1981 	return _len - len;
1982 }
1983 
1984 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)1985 static int __must_check ffs_do_os_descs(unsigned count,
1986 					char *data, unsigned len,
1987 					ffs_os_desc_callback entity, void *priv)
1988 {
1989 	const unsigned _len = len;
1990 	unsigned long num = 0;
1991 
1992 	ENTER();
1993 
1994 	for (num = 0; num < count; ++num) {
1995 		int ret;
1996 		enum ffs_os_desc_type type;
1997 		u16 feature_count;
1998 		struct usb_os_desc_header *desc = (void *)data;
1999 
2000 		if (len < sizeof(*desc))
2001 			return -EINVAL;
2002 
2003 		/*
2004 		 * Record "descriptor" entity.
2005 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2006 		 * Move the data pointer to the beginning of extended
2007 		 * compatibilities proper or extended properties proper
2008 		 * portions of the data
2009 		 */
2010 		if (le32_to_cpu(desc->dwLength) > len)
2011 			return -EINVAL;
2012 
2013 		ret = __ffs_do_os_desc_header(&type, desc);
2014 		if (unlikely(ret < 0)) {
2015 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2016 				 num, ret);
2017 			return ret;
2018 		}
2019 		/*
2020 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2021 		 */
2022 		feature_count = le16_to_cpu(desc->wCount);
2023 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2024 		    (feature_count > 255 || desc->Reserved))
2025 				return -EINVAL;
2026 		len -= ret;
2027 		data += ret;
2028 
2029 		/*
2030 		 * Process all function/property descriptors
2031 		 * of this Feature Descriptor
2032 		 */
2033 		ret = ffs_do_single_os_desc(data, len, type,
2034 					    feature_count, entity, priv, desc);
2035 		if (unlikely(ret < 0)) {
2036 			pr_debug("%s returns %d\n", __func__, ret);
2037 			return ret;
2038 		}
2039 
2040 		len -= ret;
2041 		data += ret;
2042 	}
2043 	return _len - len;
2044 }
2045 
2046 /**
2047  * Validate contents of the buffer from userspace related to OS descriptors.
2048  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2049 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2050 				 struct usb_os_desc_header *h, void *data,
2051 				 unsigned len, void *priv)
2052 {
2053 	struct ffs_data *ffs = priv;
2054 	u8 length;
2055 
2056 	ENTER();
2057 
2058 	switch (type) {
2059 	case FFS_OS_DESC_EXT_COMPAT: {
2060 		struct usb_ext_compat_desc *d = data;
2061 		int i;
2062 
2063 		if (len < sizeof(*d) ||
2064 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2065 		    d->Reserved1)
2066 			return -EINVAL;
2067 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2068 			if (d->Reserved2[i])
2069 				return -EINVAL;
2070 
2071 		length = sizeof(struct usb_ext_compat_desc);
2072 	}
2073 		break;
2074 	case FFS_OS_DESC_EXT_PROP: {
2075 		struct usb_ext_prop_desc *d = data;
2076 		u32 type, pdl;
2077 		u16 pnl;
2078 
2079 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2080 			return -EINVAL;
2081 		length = le32_to_cpu(d->dwSize);
2082 		type = le32_to_cpu(d->dwPropertyDataType);
2083 		if (type < USB_EXT_PROP_UNICODE ||
2084 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2085 			pr_vdebug("unsupported os descriptor property type: %d",
2086 				  type);
2087 			return -EINVAL;
2088 		}
2089 		pnl = le16_to_cpu(d->wPropertyNameLength);
2090 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2091 		if (length != 14 + pnl + pdl) {
2092 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2093 				  length, pnl, pdl, type);
2094 			return -EINVAL;
2095 		}
2096 		++ffs->ms_os_descs_ext_prop_count;
2097 		/* property name reported to the host as "WCHAR"s */
2098 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2099 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2100 	}
2101 		break;
2102 	default:
2103 		pr_vdebug("unknown descriptor: %d\n", type);
2104 		return -EINVAL;
2105 	}
2106 	return length;
2107 }
2108 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2109 static int __ffs_data_got_descs(struct ffs_data *ffs,
2110 				char *const _data, size_t len)
2111 {
2112 	char *data = _data, *raw_descs;
2113 	unsigned os_descs_count = 0, counts[3], flags;
2114 	int ret = -EINVAL, i;
2115 	struct ffs_desc_helper helper;
2116 
2117 	ENTER();
2118 
2119 	if (get_unaligned_le32(data + 4) != len)
2120 		goto error;
2121 
2122 	switch (get_unaligned_le32(data)) {
2123 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2124 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2125 		data += 8;
2126 		len  -= 8;
2127 		break;
2128 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2129 		flags = get_unaligned_le32(data + 8);
2130 		ffs->user_flags = flags;
2131 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2132 			      FUNCTIONFS_HAS_HS_DESC |
2133 			      FUNCTIONFS_HAS_SS_DESC |
2134 			      FUNCTIONFS_HAS_MS_OS_DESC |
2135 			      FUNCTIONFS_VIRTUAL_ADDR |
2136 			      FUNCTIONFS_EVENTFD)) {
2137 			ret = -ENOSYS;
2138 			goto error;
2139 		}
2140 		data += 12;
2141 		len  -= 12;
2142 		break;
2143 	default:
2144 		goto error;
2145 	}
2146 
2147 	if (flags & FUNCTIONFS_EVENTFD) {
2148 		if (len < 4)
2149 			goto error;
2150 		ffs->ffs_eventfd =
2151 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2152 		if (IS_ERR(ffs->ffs_eventfd)) {
2153 			ret = PTR_ERR(ffs->ffs_eventfd);
2154 			ffs->ffs_eventfd = NULL;
2155 			goto error;
2156 		}
2157 		data += 4;
2158 		len  -= 4;
2159 	}
2160 
2161 	/* Read fs_count, hs_count and ss_count (if present) */
2162 	for (i = 0; i < 3; ++i) {
2163 		if (!(flags & (1 << i))) {
2164 			counts[i] = 0;
2165 		} else if (len < 4) {
2166 			goto error;
2167 		} else {
2168 			counts[i] = get_unaligned_le32(data);
2169 			data += 4;
2170 			len  -= 4;
2171 		}
2172 	}
2173 	if (flags & (1 << i)) {
2174 		os_descs_count = get_unaligned_le32(data);
2175 		data += 4;
2176 		len -= 4;
2177 	};
2178 
2179 	/* Read descriptors */
2180 	raw_descs = data;
2181 	helper.ffs = ffs;
2182 	for (i = 0; i < 3; ++i) {
2183 		if (!counts[i])
2184 			continue;
2185 		helper.interfaces_count = 0;
2186 		helper.eps_count = 0;
2187 		ret = ffs_do_descs(counts[i], data, len,
2188 				   __ffs_data_do_entity, &helper);
2189 		if (ret < 0)
2190 			goto error;
2191 		if (!ffs->eps_count && !ffs->interfaces_count) {
2192 			ffs->eps_count = helper.eps_count;
2193 			ffs->interfaces_count = helper.interfaces_count;
2194 		} else {
2195 			if (ffs->eps_count != helper.eps_count) {
2196 				ret = -EINVAL;
2197 				goto error;
2198 			}
2199 			if (ffs->interfaces_count != helper.interfaces_count) {
2200 				ret = -EINVAL;
2201 				goto error;
2202 			}
2203 		}
2204 		data += ret;
2205 		len  -= ret;
2206 	}
2207 	if (os_descs_count) {
2208 		ret = ffs_do_os_descs(os_descs_count, data, len,
2209 				      __ffs_data_do_os_desc, ffs);
2210 		if (ret < 0)
2211 			goto error;
2212 		data += ret;
2213 		len -= ret;
2214 	}
2215 
2216 	if (raw_descs == data || len) {
2217 		ret = -EINVAL;
2218 		goto error;
2219 	}
2220 
2221 	ffs->raw_descs_data	= _data;
2222 	ffs->raw_descs		= raw_descs;
2223 	ffs->raw_descs_length	= data - raw_descs;
2224 	ffs->fs_descs_count	= counts[0];
2225 	ffs->hs_descs_count	= counts[1];
2226 	ffs->ss_descs_count	= counts[2];
2227 	ffs->ms_os_descs_count	= os_descs_count;
2228 
2229 	return 0;
2230 
2231 error:
2232 	kfree(_data);
2233 	return ret;
2234 }
2235 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2236 static int __ffs_data_got_strings(struct ffs_data *ffs,
2237 				  char *const _data, size_t len)
2238 {
2239 	u32 str_count, needed_count, lang_count;
2240 	struct usb_gadget_strings **stringtabs, *t;
2241 	struct usb_string *strings, *s;
2242 	const char *data = _data;
2243 
2244 	ENTER();
2245 
2246 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2247 		     get_unaligned_le32(data + 4) != len))
2248 		goto error;
2249 	str_count  = get_unaligned_le32(data + 8);
2250 	lang_count = get_unaligned_le32(data + 12);
2251 
2252 	/* if one is zero the other must be zero */
2253 	if (unlikely(!str_count != !lang_count))
2254 		goto error;
2255 
2256 	/* Do we have at least as many strings as descriptors need? */
2257 	needed_count = ffs->strings_count;
2258 	if (unlikely(str_count < needed_count))
2259 		goto error;
2260 
2261 	/*
2262 	 * If we don't need any strings just return and free all
2263 	 * memory.
2264 	 */
2265 	if (!needed_count) {
2266 		kfree(_data);
2267 		return 0;
2268 	}
2269 
2270 	/* Allocate everything in one chunk so there's less maintenance. */
2271 	{
2272 		unsigned i = 0;
2273 		vla_group(d);
2274 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2275 			lang_count + 1);
2276 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2277 		vla_item(d, struct usb_string, strings,
2278 			lang_count*(needed_count+1));
2279 
2280 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2281 
2282 		if (unlikely(!vlabuf)) {
2283 			kfree(_data);
2284 			return -ENOMEM;
2285 		}
2286 
2287 		/* Initialize the VLA pointers */
2288 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2289 		t = vla_ptr(vlabuf, d, stringtab);
2290 		i = lang_count;
2291 		do {
2292 			*stringtabs++ = t++;
2293 		} while (--i);
2294 		*stringtabs = NULL;
2295 
2296 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2297 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2298 		t = vla_ptr(vlabuf, d, stringtab);
2299 		s = vla_ptr(vlabuf, d, strings);
2300 		strings = s;
2301 	}
2302 
2303 	/* For each language */
2304 	data += 16;
2305 	len -= 16;
2306 
2307 	do { /* lang_count > 0 so we can use do-while */
2308 		unsigned needed = needed_count;
2309 
2310 		if (unlikely(len < 3))
2311 			goto error_free;
2312 		t->language = get_unaligned_le16(data);
2313 		t->strings  = s;
2314 		++t;
2315 
2316 		data += 2;
2317 		len -= 2;
2318 
2319 		/* For each string */
2320 		do { /* str_count > 0 so we can use do-while */
2321 			size_t length = strnlen(data, len);
2322 
2323 			if (unlikely(length == len))
2324 				goto error_free;
2325 
2326 			/*
2327 			 * User may provide more strings then we need,
2328 			 * if that's the case we simply ignore the
2329 			 * rest
2330 			 */
2331 			if (likely(needed)) {
2332 				/*
2333 				 * s->id will be set while adding
2334 				 * function to configuration so for
2335 				 * now just leave garbage here.
2336 				 */
2337 				s->s = data;
2338 				--needed;
2339 				++s;
2340 			}
2341 
2342 			data += length + 1;
2343 			len -= length + 1;
2344 		} while (--str_count);
2345 
2346 		s->id = 0;   /* terminator */
2347 		s->s = NULL;
2348 		++s;
2349 
2350 	} while (--lang_count);
2351 
2352 	/* Some garbage left? */
2353 	if (unlikely(len))
2354 		goto error_free;
2355 
2356 	/* Done! */
2357 	ffs->stringtabs = stringtabs;
2358 	ffs->raw_strings = _data;
2359 
2360 	return 0;
2361 
2362 error_free:
2363 	kfree(stringtabs);
2364 error:
2365 	kfree(_data);
2366 	return -EINVAL;
2367 }
2368 
2369 
2370 /* Events handling and management *******************************************/
2371 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2372 static void __ffs_event_add(struct ffs_data *ffs,
2373 			    enum usb_functionfs_event_type type)
2374 {
2375 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2376 	int neg = 0;
2377 
2378 	/*
2379 	 * Abort any unhandled setup
2380 	 *
2381 	 * We do not need to worry about some cmpxchg() changing value
2382 	 * of ffs->setup_state without holding the lock because when
2383 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2384 	 * the source does nothing.
2385 	 */
2386 	if (ffs->setup_state == FFS_SETUP_PENDING)
2387 		ffs->setup_state = FFS_SETUP_CANCELLED;
2388 
2389 	/*
2390 	 * Logic of this function guarantees that there are at most four pending
2391 	 * evens on ffs->ev.types queue.  This is important because the queue
2392 	 * has space for four elements only and __ffs_ep0_read_events function
2393 	 * depends on that limit as well.  If more event types are added, those
2394 	 * limits have to be revisited or guaranteed to still hold.
2395 	 */
2396 	switch (type) {
2397 	case FUNCTIONFS_RESUME:
2398 		rem_type2 = FUNCTIONFS_SUSPEND;
2399 		/* FALL THROUGH */
2400 	case FUNCTIONFS_SUSPEND:
2401 	case FUNCTIONFS_SETUP:
2402 		rem_type1 = type;
2403 		/* Discard all similar events */
2404 		break;
2405 
2406 	case FUNCTIONFS_BIND:
2407 	case FUNCTIONFS_UNBIND:
2408 	case FUNCTIONFS_DISABLE:
2409 	case FUNCTIONFS_ENABLE:
2410 		/* Discard everything other then power management. */
2411 		rem_type1 = FUNCTIONFS_SUSPEND;
2412 		rem_type2 = FUNCTIONFS_RESUME;
2413 		neg = 1;
2414 		break;
2415 
2416 	default:
2417 		WARN(1, "%d: unknown event, this should not happen\n", type);
2418 		return;
2419 	}
2420 
2421 	{
2422 		u8 *ev  = ffs->ev.types, *out = ev;
2423 		unsigned n = ffs->ev.count;
2424 		for (; n; --n, ++ev)
2425 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2426 				*out++ = *ev;
2427 			else
2428 				pr_vdebug("purging event %d\n", *ev);
2429 		ffs->ev.count = out - ffs->ev.types;
2430 	}
2431 
2432 	pr_vdebug("adding event %d\n", type);
2433 	ffs->ev.types[ffs->ev.count++] = type;
2434 	wake_up_locked(&ffs->ev.waitq);
2435 	if (ffs->ffs_eventfd)
2436 		eventfd_signal(ffs->ffs_eventfd, 1);
2437 }
2438 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2439 static void ffs_event_add(struct ffs_data *ffs,
2440 			  enum usb_functionfs_event_type type)
2441 {
2442 	unsigned long flags;
2443 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2444 	__ffs_event_add(ffs, type);
2445 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2446 }
2447 
2448 /* Bind/unbind USB function hooks *******************************************/
2449 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2450 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2451 {
2452 	int i;
2453 
2454 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2455 		if (ffs->eps_addrmap[i] == endpoint_address)
2456 			return i;
2457 	return -ENOENT;
2458 }
2459 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2460 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2461 				    struct usb_descriptor_header *desc,
2462 				    void *priv)
2463 {
2464 	struct usb_endpoint_descriptor *ds = (void *)desc;
2465 	struct ffs_function *func = priv;
2466 	struct ffs_ep *ffs_ep;
2467 	unsigned ep_desc_id;
2468 	int idx;
2469 	static const char *speed_names[] = { "full", "high", "super" };
2470 
2471 	if (type != FFS_DESCRIPTOR)
2472 		return 0;
2473 
2474 	/*
2475 	 * If ss_descriptors is not NULL, we are reading super speed
2476 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2477 	 * speed descriptors; otherwise, we are reading full speed
2478 	 * descriptors.
2479 	 */
2480 	if (func->function.ss_descriptors) {
2481 		ep_desc_id = 2;
2482 		func->function.ss_descriptors[(long)valuep] = desc;
2483 	} else if (func->function.hs_descriptors) {
2484 		ep_desc_id = 1;
2485 		func->function.hs_descriptors[(long)valuep] = desc;
2486 	} else {
2487 		ep_desc_id = 0;
2488 		func->function.fs_descriptors[(long)valuep]    = desc;
2489 	}
2490 
2491 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2492 		return 0;
2493 
2494 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2495 	if (idx < 0)
2496 		return idx;
2497 
2498 	ffs_ep = func->eps + idx;
2499 
2500 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2501 		pr_err("two %sspeed descriptors for EP %d\n",
2502 			  speed_names[ep_desc_id],
2503 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2504 		return -EINVAL;
2505 	}
2506 	ffs_ep->descs[ep_desc_id] = ds;
2507 
2508 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2509 	if (ffs_ep->ep) {
2510 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2511 		if (!ds->wMaxPacketSize)
2512 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2513 	} else {
2514 		struct usb_request *req;
2515 		struct usb_ep *ep;
2516 		u8 bEndpointAddress;
2517 
2518 		/*
2519 		 * We back up bEndpointAddress because autoconfig overwrites
2520 		 * it with physical endpoint address.
2521 		 */
2522 		bEndpointAddress = ds->bEndpointAddress;
2523 		pr_vdebug("autoconfig\n");
2524 		ep = usb_ep_autoconfig(func->gadget, ds);
2525 		if (unlikely(!ep))
2526 			return -ENOTSUPP;
2527 		ep->driver_data = func->eps + idx;
2528 
2529 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2530 		if (unlikely(!req))
2531 			return -ENOMEM;
2532 
2533 		ffs_ep->ep  = ep;
2534 		ffs_ep->req = req;
2535 		func->eps_revmap[ds->bEndpointAddress &
2536 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2537 		/*
2538 		 * If we use virtual address mapping, we restore
2539 		 * original bEndpointAddress value.
2540 		 */
2541 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2542 			ds->bEndpointAddress = bEndpointAddress;
2543 	}
2544 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2545 
2546 	return 0;
2547 }
2548 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2549 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2550 				   struct usb_descriptor_header *desc,
2551 				   void *priv)
2552 {
2553 	struct ffs_function *func = priv;
2554 	unsigned idx;
2555 	u8 newValue;
2556 
2557 	switch (type) {
2558 	default:
2559 	case FFS_DESCRIPTOR:
2560 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2561 		return 0;
2562 
2563 	case FFS_INTERFACE:
2564 		idx = *valuep;
2565 		if (func->interfaces_nums[idx] < 0) {
2566 			int id = usb_interface_id(func->conf, &func->function);
2567 			if (unlikely(id < 0))
2568 				return id;
2569 			func->interfaces_nums[idx] = id;
2570 		}
2571 		newValue = func->interfaces_nums[idx];
2572 		break;
2573 
2574 	case FFS_STRING:
2575 		/* String' IDs are allocated when fsf_data is bound to cdev */
2576 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2577 		break;
2578 
2579 	case FFS_ENDPOINT:
2580 		/*
2581 		 * USB_DT_ENDPOINT are handled in
2582 		 * __ffs_func_bind_do_descs().
2583 		 */
2584 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2585 			return 0;
2586 
2587 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2588 		if (unlikely(!func->eps[idx].ep))
2589 			return -EINVAL;
2590 
2591 		{
2592 			struct usb_endpoint_descriptor **descs;
2593 			descs = func->eps[idx].descs;
2594 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2595 		}
2596 		break;
2597 	}
2598 
2599 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2600 	*valuep = newValue;
2601 	return 0;
2602 }
2603 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2604 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2605 				      struct usb_os_desc_header *h, void *data,
2606 				      unsigned len, void *priv)
2607 {
2608 	struct ffs_function *func = priv;
2609 	u8 length = 0;
2610 
2611 	switch (type) {
2612 	case FFS_OS_DESC_EXT_COMPAT: {
2613 		struct usb_ext_compat_desc *desc = data;
2614 		struct usb_os_desc_table *t;
2615 
2616 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2617 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2618 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2619 		       ARRAY_SIZE(desc->CompatibleID) +
2620 		       ARRAY_SIZE(desc->SubCompatibleID));
2621 		length = sizeof(*desc);
2622 	}
2623 		break;
2624 	case FFS_OS_DESC_EXT_PROP: {
2625 		struct usb_ext_prop_desc *desc = data;
2626 		struct usb_os_desc_table *t;
2627 		struct usb_os_desc_ext_prop *ext_prop;
2628 		char *ext_prop_name;
2629 		char *ext_prop_data;
2630 
2631 		t = &func->function.os_desc_table[h->interface];
2632 		t->if_id = func->interfaces_nums[h->interface];
2633 
2634 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2635 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2636 
2637 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2638 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2639 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2640 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2641 		length = ext_prop->name_len + ext_prop->data_len + 14;
2642 
2643 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2644 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2645 			ext_prop->name_len;
2646 
2647 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2648 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2649 			ext_prop->data_len;
2650 		memcpy(ext_prop_data,
2651 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2652 		       ext_prop->data_len);
2653 		/* unicode data reported to the host as "WCHAR"s */
2654 		switch (ext_prop->type) {
2655 		case USB_EXT_PROP_UNICODE:
2656 		case USB_EXT_PROP_UNICODE_ENV:
2657 		case USB_EXT_PROP_UNICODE_LINK:
2658 		case USB_EXT_PROP_UNICODE_MULTI:
2659 			ext_prop->data_len *= 2;
2660 			break;
2661 		}
2662 		ext_prop->data = ext_prop_data;
2663 
2664 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2665 		       ext_prop->name_len);
2666 		/* property name reported to the host as "WCHAR"s */
2667 		ext_prop->name_len *= 2;
2668 		ext_prop->name = ext_prop_name;
2669 
2670 		t->os_desc->ext_prop_len +=
2671 			ext_prop->name_len + ext_prop->data_len + 14;
2672 		++t->os_desc->ext_prop_count;
2673 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2674 	}
2675 		break;
2676 	default:
2677 		pr_vdebug("unknown descriptor: %d\n", type);
2678 	}
2679 
2680 	return length;
2681 }
2682 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)2683 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2684 						struct usb_configuration *c)
2685 {
2686 	struct ffs_function *func = ffs_func_from_usb(f);
2687 	struct f_fs_opts *ffs_opts =
2688 		container_of(f->fi, struct f_fs_opts, func_inst);
2689 	int ret;
2690 
2691 	ENTER();
2692 
2693 	/*
2694 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2695 	 * which already uses locking; taking the same lock here would
2696 	 * cause a deadlock.
2697 	 *
2698 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2699 	 */
2700 	if (!ffs_opts->no_configfs)
2701 		ffs_dev_lock();
2702 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2703 	func->ffs = ffs_opts->dev->ffs_data;
2704 	if (!ffs_opts->no_configfs)
2705 		ffs_dev_unlock();
2706 	if (ret)
2707 		return ERR_PTR(ret);
2708 
2709 	func->conf = c;
2710 	func->gadget = c->cdev->gadget;
2711 
2712 	/*
2713 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2714 	 * configurations are bound in sequence with list_for_each_entry,
2715 	 * in each configuration its functions are bound in sequence
2716 	 * with list_for_each_entry, so we assume no race condition
2717 	 * with regard to ffs_opts->bound access
2718 	 */
2719 	if (!ffs_opts->refcnt) {
2720 		ret = functionfs_bind(func->ffs, c->cdev);
2721 		if (ret)
2722 			return ERR_PTR(ret);
2723 	}
2724 	ffs_opts->refcnt++;
2725 	func->function.strings = func->ffs->stringtabs;
2726 
2727 	return ffs_opts;
2728 }
2729 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2730 static int _ffs_func_bind(struct usb_configuration *c,
2731 			  struct usb_function *f)
2732 {
2733 	struct ffs_function *func = ffs_func_from_usb(f);
2734 	struct ffs_data *ffs = func->ffs;
2735 
2736 	const int full = !!func->ffs->fs_descs_count;
2737 	const int high = gadget_is_dualspeed(func->gadget) &&
2738 		func->ffs->hs_descs_count;
2739 	const int super = gadget_is_superspeed(func->gadget) &&
2740 		func->ffs->ss_descs_count;
2741 
2742 	int fs_len, hs_len, ss_len, ret, i;
2743 
2744 	/* Make it a single chunk, less management later on */
2745 	vla_group(d);
2746 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2747 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2748 		full ? ffs->fs_descs_count + 1 : 0);
2749 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2750 		high ? ffs->hs_descs_count + 1 : 0);
2751 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2752 		super ? ffs->ss_descs_count + 1 : 0);
2753 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2754 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2755 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2756 	vla_item_with_sz(d, char[16], ext_compat,
2757 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2758 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2759 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2760 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2761 			 ffs->ms_os_descs_ext_prop_count);
2762 	vla_item_with_sz(d, char, ext_prop_name,
2763 			 ffs->ms_os_descs_ext_prop_name_len);
2764 	vla_item_with_sz(d, char, ext_prop_data,
2765 			 ffs->ms_os_descs_ext_prop_data_len);
2766 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2767 	char *vlabuf;
2768 
2769 	ENTER();
2770 
2771 	/* Has descriptors only for speeds gadget does not support */
2772 	if (unlikely(!(full | high | super)))
2773 		return -ENOTSUPP;
2774 
2775 	/* Allocate a single chunk, less management later on */
2776 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2777 	if (unlikely(!vlabuf))
2778 		return -ENOMEM;
2779 
2780 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2781 	ffs->ms_os_descs_ext_prop_name_avail =
2782 		vla_ptr(vlabuf, d, ext_prop_name);
2783 	ffs->ms_os_descs_ext_prop_data_avail =
2784 		vla_ptr(vlabuf, d, ext_prop_data);
2785 
2786 	/* Copy descriptors  */
2787 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2788 	       ffs->raw_descs_length);
2789 
2790 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2791 	for (ret = ffs->eps_count; ret; --ret) {
2792 		struct ffs_ep *ptr;
2793 
2794 		ptr = vla_ptr(vlabuf, d, eps);
2795 		ptr[ret].num = -1;
2796 	}
2797 
2798 	/* Save pointers
2799 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2800 	*/
2801 	func->eps             = vla_ptr(vlabuf, d, eps);
2802 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2803 
2804 	/*
2805 	 * Go through all the endpoint descriptors and allocate
2806 	 * endpoints first, so that later we can rewrite the endpoint
2807 	 * numbers without worrying that it may be described later on.
2808 	 */
2809 	if (likely(full)) {
2810 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2811 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2812 				      vla_ptr(vlabuf, d, raw_descs),
2813 				      d_raw_descs__sz,
2814 				      __ffs_func_bind_do_descs, func);
2815 		if (unlikely(fs_len < 0)) {
2816 			ret = fs_len;
2817 			goto error;
2818 		}
2819 	} else {
2820 		fs_len = 0;
2821 	}
2822 
2823 	if (likely(high)) {
2824 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2825 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2826 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2827 				      d_raw_descs__sz - fs_len,
2828 				      __ffs_func_bind_do_descs, func);
2829 		if (unlikely(hs_len < 0)) {
2830 			ret = hs_len;
2831 			goto error;
2832 		}
2833 	} else {
2834 		hs_len = 0;
2835 	}
2836 
2837 	if (likely(super)) {
2838 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2839 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2840 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2841 				d_raw_descs__sz - fs_len - hs_len,
2842 				__ffs_func_bind_do_descs, func);
2843 		if (unlikely(ss_len < 0)) {
2844 			ret = ss_len;
2845 			goto error;
2846 		}
2847 	} else {
2848 		ss_len = 0;
2849 	}
2850 
2851 	/*
2852 	 * Now handle interface numbers allocation and interface and
2853 	 * endpoint numbers rewriting.  We can do that in one go
2854 	 * now.
2855 	 */
2856 	ret = ffs_do_descs(ffs->fs_descs_count +
2857 			   (high ? ffs->hs_descs_count : 0) +
2858 			   (super ? ffs->ss_descs_count : 0),
2859 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2860 			   __ffs_func_bind_do_nums, func);
2861 	if (unlikely(ret < 0))
2862 		goto error;
2863 
2864 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2865 	if (c->cdev->use_os_string)
2866 		for (i = 0; i < ffs->interfaces_count; ++i) {
2867 			struct usb_os_desc *desc;
2868 
2869 			desc = func->function.os_desc_table[i].os_desc =
2870 				vla_ptr(vlabuf, d, os_desc) +
2871 				i * sizeof(struct usb_os_desc);
2872 			desc->ext_compat_id =
2873 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2874 			INIT_LIST_HEAD(&desc->ext_prop);
2875 		}
2876 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2877 			      vla_ptr(vlabuf, d, raw_descs) +
2878 			      fs_len + hs_len + ss_len,
2879 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2880 			      __ffs_func_bind_do_os_desc, func);
2881 	if (unlikely(ret < 0))
2882 		goto error;
2883 	func->function.os_desc_n =
2884 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2885 
2886 	/* And we're done */
2887 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2888 	return 0;
2889 
2890 error:
2891 	/* XXX Do we need to release all claimed endpoints here? */
2892 	return ret;
2893 }
2894 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2895 static int ffs_func_bind(struct usb_configuration *c,
2896 			 struct usb_function *f)
2897 {
2898 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2899 	struct ffs_function *func = ffs_func_from_usb(f);
2900 	int ret;
2901 
2902 	if (IS_ERR(ffs_opts))
2903 		return PTR_ERR(ffs_opts);
2904 
2905 	ret = _ffs_func_bind(c, f);
2906 	if (ret && !--ffs_opts->refcnt)
2907 		functionfs_unbind(func->ffs);
2908 
2909 	return ret;
2910 }
2911 
2912 
2913 /* Other USB function hooks *************************************************/
2914 
ffs_reset_work(struct work_struct * work)2915 static void ffs_reset_work(struct work_struct *work)
2916 {
2917 	struct ffs_data *ffs = container_of(work,
2918 		struct ffs_data, reset_work);
2919 	ffs_data_reset(ffs);
2920 }
2921 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)2922 static int ffs_func_set_alt(struct usb_function *f,
2923 			    unsigned interface, unsigned alt)
2924 {
2925 	struct ffs_function *func = ffs_func_from_usb(f);
2926 	struct ffs_data *ffs = func->ffs;
2927 	int ret = 0, intf;
2928 
2929 	if (alt != (unsigned)-1) {
2930 		intf = ffs_func_revmap_intf(func, interface);
2931 		if (unlikely(intf < 0))
2932 			return intf;
2933 	}
2934 
2935 	if (ffs->func)
2936 		ffs_func_eps_disable(ffs->func);
2937 
2938 	if (ffs->state == FFS_DEACTIVATED) {
2939 		ffs->state = FFS_CLOSING;
2940 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2941 		schedule_work(&ffs->reset_work);
2942 		return -ENODEV;
2943 	}
2944 
2945 	if (ffs->state != FFS_ACTIVE)
2946 		return -ENODEV;
2947 
2948 	if (alt == (unsigned)-1) {
2949 		ffs->func = NULL;
2950 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2951 		return 0;
2952 	}
2953 
2954 	ffs->func = func;
2955 	ret = ffs_func_eps_enable(func);
2956 	if (likely(ret >= 0))
2957 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2958 	return ret;
2959 }
2960 
ffs_func_disable(struct usb_function * f)2961 static void ffs_func_disable(struct usb_function *f)
2962 {
2963 	ffs_func_set_alt(f, 0, (unsigned)-1);
2964 }
2965 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)2966 static int ffs_func_setup(struct usb_function *f,
2967 			  const struct usb_ctrlrequest *creq)
2968 {
2969 	struct ffs_function *func = ffs_func_from_usb(f);
2970 	struct ffs_data *ffs = func->ffs;
2971 	unsigned long flags;
2972 	int ret;
2973 
2974 	ENTER();
2975 
2976 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2977 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2978 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2979 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2980 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2981 
2982 	/*
2983 	 * Most requests directed to interface go through here
2984 	 * (notable exceptions are set/get interface) so we need to
2985 	 * handle them.  All other either handled by composite or
2986 	 * passed to usb_configuration->setup() (if one is set).  No
2987 	 * matter, we will handle requests directed to endpoint here
2988 	 * as well (as it's straightforward) but what to do with any
2989 	 * other request?
2990 	 */
2991 	if (ffs->state != FFS_ACTIVE)
2992 		return -ENODEV;
2993 
2994 	switch (creq->bRequestType & USB_RECIP_MASK) {
2995 	case USB_RECIP_INTERFACE:
2996 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2997 		if (unlikely(ret < 0))
2998 			return ret;
2999 		break;
3000 
3001 	case USB_RECIP_ENDPOINT:
3002 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3003 		if (unlikely(ret < 0))
3004 			return ret;
3005 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3006 			ret = func->ffs->eps_addrmap[ret];
3007 		break;
3008 
3009 	default:
3010 		return -EOPNOTSUPP;
3011 	}
3012 
3013 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3014 	ffs->ev.setup = *creq;
3015 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3016 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3017 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3018 
3019 	return 0;
3020 }
3021 
ffs_func_suspend(struct usb_function * f)3022 static void ffs_func_suspend(struct usb_function *f)
3023 {
3024 	ENTER();
3025 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3026 }
3027 
ffs_func_resume(struct usb_function * f)3028 static void ffs_func_resume(struct usb_function *f)
3029 {
3030 	ENTER();
3031 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3032 }
3033 
3034 
3035 /* Endpoint and interface numbers reverse mapping ***************************/
3036 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3037 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3038 {
3039 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3040 	return num ? num : -EDOM;
3041 }
3042 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3043 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3044 {
3045 	short *nums = func->interfaces_nums;
3046 	unsigned count = func->ffs->interfaces_count;
3047 
3048 	for (; count; --count, ++nums) {
3049 		if (*nums >= 0 && *nums == intf)
3050 			return nums - func->interfaces_nums;
3051 	}
3052 
3053 	return -EDOM;
3054 }
3055 
3056 
3057 /* Devices management *******************************************************/
3058 
3059 static LIST_HEAD(ffs_devices);
3060 
_ffs_do_find_dev(const char * name)3061 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3062 {
3063 	struct ffs_dev *dev;
3064 
3065 	list_for_each_entry(dev, &ffs_devices, entry) {
3066 		if (!dev->name || !name)
3067 			continue;
3068 		if (strcmp(dev->name, name) == 0)
3069 			return dev;
3070 	}
3071 
3072 	return NULL;
3073 }
3074 
3075 /*
3076  * ffs_lock must be taken by the caller of this function
3077  */
_ffs_get_single_dev(void)3078 static struct ffs_dev *_ffs_get_single_dev(void)
3079 {
3080 	struct ffs_dev *dev;
3081 
3082 	if (list_is_singular(&ffs_devices)) {
3083 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3084 		if (dev->single)
3085 			return dev;
3086 	}
3087 
3088 	return NULL;
3089 }
3090 
3091 /*
3092  * ffs_lock must be taken by the caller of this function
3093  */
_ffs_find_dev(const char * name)3094 static struct ffs_dev *_ffs_find_dev(const char *name)
3095 {
3096 	struct ffs_dev *dev;
3097 
3098 	dev = _ffs_get_single_dev();
3099 	if (dev)
3100 		return dev;
3101 
3102 	return _ffs_do_find_dev(name);
3103 }
3104 
3105 /* Configfs support *********************************************************/
3106 
to_ffs_opts(struct config_item * item)3107 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3108 {
3109 	return container_of(to_config_group(item), struct f_fs_opts,
3110 			    func_inst.group);
3111 }
3112 
ffs_attr_release(struct config_item * item)3113 static void ffs_attr_release(struct config_item *item)
3114 {
3115 	struct f_fs_opts *opts = to_ffs_opts(item);
3116 
3117 	usb_put_function_instance(&opts->func_inst);
3118 }
3119 
3120 static struct configfs_item_operations ffs_item_ops = {
3121 	.release	= ffs_attr_release,
3122 };
3123 
3124 static struct config_item_type ffs_func_type = {
3125 	.ct_item_ops	= &ffs_item_ops,
3126 	.ct_owner	= THIS_MODULE,
3127 };
3128 
3129 
3130 /* Function registration interface ******************************************/
3131 
ffs_free_inst(struct usb_function_instance * f)3132 static void ffs_free_inst(struct usb_function_instance *f)
3133 {
3134 	struct f_fs_opts *opts;
3135 
3136 	opts = to_f_fs_opts(f);
3137 	ffs_dev_lock();
3138 	_ffs_free_dev(opts->dev);
3139 	ffs_dev_unlock();
3140 	kfree(opts);
3141 }
3142 
3143 #define MAX_INST_NAME_LEN	40
3144 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3145 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3146 {
3147 	struct f_fs_opts *opts;
3148 	char *ptr;
3149 	const char *tmp;
3150 	int name_len, ret;
3151 
3152 	name_len = strlen(name) + 1;
3153 	if (name_len > MAX_INST_NAME_LEN)
3154 		return -ENAMETOOLONG;
3155 
3156 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3157 	if (!ptr)
3158 		return -ENOMEM;
3159 
3160 	opts = to_f_fs_opts(fi);
3161 	tmp = NULL;
3162 
3163 	ffs_dev_lock();
3164 
3165 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3166 	ret = _ffs_name_dev(opts->dev, ptr);
3167 	if (ret) {
3168 		kfree(ptr);
3169 		ffs_dev_unlock();
3170 		return ret;
3171 	}
3172 	opts->dev->name_allocated = true;
3173 
3174 	ffs_dev_unlock();
3175 
3176 	kfree(tmp);
3177 
3178 	return 0;
3179 }
3180 
ffs_alloc_inst(void)3181 static struct usb_function_instance *ffs_alloc_inst(void)
3182 {
3183 	struct f_fs_opts *opts;
3184 	struct ffs_dev *dev;
3185 
3186 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3187 	if (!opts)
3188 		return ERR_PTR(-ENOMEM);
3189 
3190 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3191 	opts->func_inst.free_func_inst = ffs_free_inst;
3192 	ffs_dev_lock();
3193 	dev = _ffs_alloc_dev();
3194 	ffs_dev_unlock();
3195 	if (IS_ERR(dev)) {
3196 		kfree(opts);
3197 		return ERR_CAST(dev);
3198 	}
3199 	opts->dev = dev;
3200 	dev->opts = opts;
3201 
3202 	config_group_init_type_name(&opts->func_inst.group, "",
3203 				    &ffs_func_type);
3204 	return &opts->func_inst;
3205 }
3206 
ffs_free(struct usb_function * f)3207 static void ffs_free(struct usb_function *f)
3208 {
3209 	kfree(ffs_func_from_usb(f));
3210 }
3211 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3212 static void ffs_func_unbind(struct usb_configuration *c,
3213 			    struct usb_function *f)
3214 {
3215 	struct ffs_function *func = ffs_func_from_usb(f);
3216 	struct ffs_data *ffs = func->ffs;
3217 	struct f_fs_opts *opts =
3218 		container_of(f->fi, struct f_fs_opts, func_inst);
3219 	struct ffs_ep *ep = func->eps;
3220 	unsigned count = ffs->eps_count;
3221 	unsigned long flags;
3222 
3223 	ENTER();
3224 	if (ffs->func == func) {
3225 		ffs_func_eps_disable(func);
3226 		ffs->func = NULL;
3227 	}
3228 
3229 	if (!--opts->refcnt)
3230 		functionfs_unbind(ffs);
3231 
3232 	/* cleanup after autoconfig */
3233 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3234 	do {
3235 		if (ep->ep && ep->req)
3236 			usb_ep_free_request(ep->ep, ep->req);
3237 		ep->req = NULL;
3238 		++ep;
3239 	} while (--count);
3240 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3241 	kfree(func->eps);
3242 	func->eps = NULL;
3243 	/*
3244 	 * eps, descriptors and interfaces_nums are allocated in the
3245 	 * same chunk so only one free is required.
3246 	 */
3247 	func->function.fs_descriptors = NULL;
3248 	func->function.hs_descriptors = NULL;
3249 	func->function.ss_descriptors = NULL;
3250 	func->interfaces_nums = NULL;
3251 
3252 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3253 }
3254 
ffs_alloc(struct usb_function_instance * fi)3255 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3256 {
3257 	struct ffs_function *func;
3258 
3259 	ENTER();
3260 
3261 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3262 	if (unlikely(!func))
3263 		return ERR_PTR(-ENOMEM);
3264 
3265 	func->function.name    = "Function FS Gadget";
3266 
3267 	func->function.bind    = ffs_func_bind;
3268 	func->function.unbind  = ffs_func_unbind;
3269 	func->function.set_alt = ffs_func_set_alt;
3270 	func->function.disable = ffs_func_disable;
3271 	func->function.setup   = ffs_func_setup;
3272 	func->function.suspend = ffs_func_suspend;
3273 	func->function.resume  = ffs_func_resume;
3274 	func->function.free_func = ffs_free;
3275 
3276 	return &func->function;
3277 }
3278 
3279 /*
3280  * ffs_lock must be taken by the caller of this function
3281  */
_ffs_alloc_dev(void)3282 static struct ffs_dev *_ffs_alloc_dev(void)
3283 {
3284 	struct ffs_dev *dev;
3285 	int ret;
3286 
3287 	if (_ffs_get_single_dev())
3288 			return ERR_PTR(-EBUSY);
3289 
3290 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3291 	if (!dev)
3292 		return ERR_PTR(-ENOMEM);
3293 
3294 	if (list_empty(&ffs_devices)) {
3295 		ret = functionfs_init();
3296 		if (ret) {
3297 			kfree(dev);
3298 			return ERR_PTR(ret);
3299 		}
3300 	}
3301 
3302 	list_add(&dev->entry, &ffs_devices);
3303 
3304 	return dev;
3305 }
3306 
3307 /*
3308  * ffs_lock must be taken by the caller of this function
3309  * The caller is responsible for "name" being available whenever f_fs needs it
3310  */
_ffs_name_dev(struct ffs_dev * dev,const char * name)3311 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3312 {
3313 	struct ffs_dev *existing;
3314 
3315 	existing = _ffs_do_find_dev(name);
3316 	if (existing)
3317 		return -EBUSY;
3318 
3319 	dev->name = name;
3320 
3321 	return 0;
3322 }
3323 
3324 /*
3325  * The caller is responsible for "name" being available whenever f_fs needs it
3326  */
ffs_name_dev(struct ffs_dev * dev,const char * name)3327 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3328 {
3329 	int ret;
3330 
3331 	ffs_dev_lock();
3332 	ret = _ffs_name_dev(dev, name);
3333 	ffs_dev_unlock();
3334 
3335 	return ret;
3336 }
3337 EXPORT_SYMBOL_GPL(ffs_name_dev);
3338 
ffs_single_dev(struct ffs_dev * dev)3339 int ffs_single_dev(struct ffs_dev *dev)
3340 {
3341 	int ret;
3342 
3343 	ret = 0;
3344 	ffs_dev_lock();
3345 
3346 	if (!list_is_singular(&ffs_devices))
3347 		ret = -EBUSY;
3348 	else
3349 		dev->single = true;
3350 
3351 	ffs_dev_unlock();
3352 	return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(ffs_single_dev);
3355 
3356 /*
3357  * ffs_lock must be taken by the caller of this function
3358  */
_ffs_free_dev(struct ffs_dev * dev)3359 static void _ffs_free_dev(struct ffs_dev *dev)
3360 {
3361 	list_del(&dev->entry);
3362 	if (dev->name_allocated)
3363 		kfree(dev->name);
3364 	kfree(dev);
3365 	if (list_empty(&ffs_devices))
3366 		functionfs_cleanup();
3367 }
3368 
ffs_acquire_dev(const char * dev_name)3369 static void *ffs_acquire_dev(const char *dev_name)
3370 {
3371 	struct ffs_dev *ffs_dev;
3372 
3373 	ENTER();
3374 	ffs_dev_lock();
3375 
3376 	ffs_dev = _ffs_find_dev(dev_name);
3377 	if (!ffs_dev)
3378 		ffs_dev = ERR_PTR(-ENOENT);
3379 	else if (ffs_dev->mounted)
3380 		ffs_dev = ERR_PTR(-EBUSY);
3381 	else if (ffs_dev->ffs_acquire_dev_callback &&
3382 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3383 		ffs_dev = ERR_PTR(-ENOENT);
3384 	else
3385 		ffs_dev->mounted = true;
3386 
3387 	ffs_dev_unlock();
3388 	return ffs_dev;
3389 }
3390 
ffs_release_dev(struct ffs_data * ffs_data)3391 static void ffs_release_dev(struct ffs_data *ffs_data)
3392 {
3393 	struct ffs_dev *ffs_dev;
3394 
3395 	ENTER();
3396 	ffs_dev_lock();
3397 
3398 	ffs_dev = ffs_data->private_data;
3399 	if (ffs_dev) {
3400 		ffs_dev->mounted = false;
3401 
3402 		if (ffs_dev->ffs_release_dev_callback)
3403 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3404 	}
3405 
3406 	ffs_dev_unlock();
3407 }
3408 
ffs_ready(struct ffs_data * ffs)3409 static int ffs_ready(struct ffs_data *ffs)
3410 {
3411 	struct ffs_dev *ffs_obj;
3412 	int ret = 0;
3413 
3414 	ENTER();
3415 	ffs_dev_lock();
3416 
3417 	ffs_obj = ffs->private_data;
3418 	if (!ffs_obj) {
3419 		ret = -EINVAL;
3420 		goto done;
3421 	}
3422 	if (WARN_ON(ffs_obj->desc_ready)) {
3423 		ret = -EBUSY;
3424 		goto done;
3425 	}
3426 
3427 	ffs_obj->desc_ready = true;
3428 	ffs_obj->ffs_data = ffs;
3429 
3430 	if (ffs_obj->ffs_ready_callback) {
3431 		ret = ffs_obj->ffs_ready_callback(ffs);
3432 		if (ret)
3433 			goto done;
3434 	}
3435 
3436 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3437 done:
3438 	ffs_dev_unlock();
3439 	return ret;
3440 }
3441 
ffs_closed(struct ffs_data * ffs)3442 static void ffs_closed(struct ffs_data *ffs)
3443 {
3444 	struct ffs_dev *ffs_obj;
3445 	struct f_fs_opts *opts;
3446 
3447 	ENTER();
3448 	ffs_dev_lock();
3449 
3450 	ffs_obj = ffs->private_data;
3451 	if (!ffs_obj)
3452 		goto done;
3453 
3454 	ffs_obj->desc_ready = false;
3455 
3456 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3457 	    ffs_obj->ffs_closed_callback)
3458 		ffs_obj->ffs_closed_callback(ffs);
3459 
3460 	if (ffs_obj->opts)
3461 		opts = ffs_obj->opts;
3462 	else
3463 		goto done;
3464 
3465 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3466 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3467 		goto done;
3468 
3469 	unregister_gadget_item(ffs_obj->opts->
3470 			       func_inst.group.cg_item.ci_parent->ci_parent);
3471 done:
3472 	ffs_dev_unlock();
3473 }
3474 
3475 /* Misc helper functions ****************************************************/
3476 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3477 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3478 {
3479 	return nonblock
3480 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3481 		: mutex_lock_interruptible(mutex);
3482 }
3483 
ffs_prepare_buffer(const char __user * buf,size_t len)3484 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3485 {
3486 	char *data;
3487 
3488 	if (unlikely(!len))
3489 		return NULL;
3490 
3491 	data = kmalloc(len, GFP_KERNEL);
3492 	if (unlikely(!data))
3493 		return ERR_PTR(-ENOMEM);
3494 
3495 	if (unlikely(copy_from_user(data, buf, len))) {
3496 		kfree(data);
3497 		return ERR_PTR(-EFAULT);
3498 	}
3499 
3500 	pr_vdebug("Buffer from user space:\n");
3501 	ffs_dump_mem("", data, len);
3502 
3503 	return data;
3504 }
3505 
3506 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3507 MODULE_LICENSE("GPL");
3508 MODULE_AUTHOR("Michal Nazarewicz");
3509