1 /*
2 * f_fs.c -- user mode file system API for USB composite function controllers
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 * Author: Michal Nazarewicz <mina86@mina86.com>
6 *
7 * Based on inode.c (GadgetFS) which was:
8 * Copyright (C) 2003-2004 David Brownell
9 * Copyright (C) 2003 Agilent Technologies
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41
42 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
43
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59
60
61 /* The function structure ***************************************************/
62
63 struct ffs_ep;
64
65 struct ffs_function {
66 struct usb_configuration *conf;
67 struct usb_gadget *gadget;
68 struct ffs_data *ffs;
69
70 struct ffs_ep *eps;
71 u8 eps_revmap[16];
72 short *interfaces_nums;
73
74 struct usb_function function;
75 };
76
77
ffs_func_from_usb(struct usb_function * f)78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 return container_of(f, struct ffs_function, function);
81 }
82
83
84 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 return (enum ffs_setup_state)
88 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90
91
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94
95 static int ffs_func_bind(struct usb_configuration *,
96 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103
104
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107
108
109 /* The endpoints structures *************************************************/
110
111 struct ffs_ep {
112 struct usb_ep *ep; /* P: ffs->eps_lock */
113 struct usb_request *req; /* P: epfile->mutex */
114
115 /* [0]: full speed, [1]: high speed, [2]: super speed */
116 struct usb_endpoint_descriptor *descs[3];
117
118 u8 num;
119
120 int status; /* P: epfile->mutex */
121 };
122
123 struct ffs_epfile {
124 /* Protects ep->ep and ep->req. */
125 struct mutex mutex;
126 wait_queue_head_t wait;
127
128 struct ffs_data *ffs;
129 struct ffs_ep *ep; /* P: ffs->eps_lock */
130
131 struct dentry *dentry;
132
133 char name[5];
134
135 unsigned char in; /* P: ffs->eps_lock */
136 unsigned char isoc; /* P: ffs->eps_lock */
137
138 unsigned char _pad;
139 };
140
141 /* ffs_io_data structure ***************************************************/
142
143 struct ffs_io_data {
144 bool aio;
145 bool read;
146
147 struct kiocb *kiocb;
148 struct iov_iter data;
149 const void *to_free;
150 char *buf;
151
152 struct mm_struct *mm;
153 struct work_struct work;
154
155 struct usb_ep *ep;
156 struct usb_request *req;
157
158 struct ffs_data *ffs;
159 };
160
161 struct ffs_desc_helper {
162 struct ffs_data *ffs;
163 unsigned interfaces_count;
164 unsigned eps_count;
165 };
166
167 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 const struct file_operations *fops);
173
174 /* Devices management *******************************************************/
175
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187
188 /* Misc helper functions ****************************************************/
189
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 __attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 __attribute__((warn_unused_result, nonnull));
194
195
196 /* Control file aka ep0 *****************************************************/
197
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 struct ffs_data *ffs = req->context;
201
202 complete_all(&ffs->ep0req_completion);
203 }
204
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 struct usb_request *req = ffs->ep0req;
208 int ret;
209
210 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
211
212 spin_unlock_irq(&ffs->ev.waitq.lock);
213
214 req->buf = data;
215 req->length = len;
216
217 /*
218 * UDC layer requires to provide a buffer even for ZLP, but should
219 * not use it at all. Let's provide some poisoned pointer to catch
220 * possible bug in the driver.
221 */
222 if (req->buf == NULL)
223 req->buf = (void *)0xDEADBABE;
224
225 reinit_completion(&ffs->ep0req_completion);
226
227 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 if (unlikely(ret < 0))
229 return ret;
230
231 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 if (unlikely(ret)) {
233 usb_ep_dequeue(ffs->gadget->ep0, req);
234 return -EINTR;
235 }
236
237 ffs->setup_state = FFS_NO_SETUP;
238 return req->status ? req->status : req->actual;
239 }
240
__ffs_ep0_stall(struct ffs_data * ffs)241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 if (ffs->ev.can_stall) {
244 pr_vdebug("ep0 stall\n");
245 usb_ep_set_halt(ffs->gadget->ep0);
246 ffs->setup_state = FFS_NO_SETUP;
247 return -EL2HLT;
248 } else {
249 pr_debug("bogus ep0 stall!\n");
250 return -ESRCH;
251 }
252 }
253
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 size_t len, loff_t *ptr)
256 {
257 struct ffs_data *ffs = file->private_data;
258 ssize_t ret;
259 char *data;
260
261 ENTER();
262
263 /* Fast check if setup was canceled */
264 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 return -EIDRM;
266
267 /* Acquire mutex */
268 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 if (unlikely(ret < 0))
270 return ret;
271
272 /* Check state */
273 switch (ffs->state) {
274 case FFS_READ_DESCRIPTORS:
275 case FFS_READ_STRINGS:
276 /* Copy data */
277 if (unlikely(len < 16)) {
278 ret = -EINVAL;
279 break;
280 }
281
282 data = ffs_prepare_buffer(buf, len);
283 if (IS_ERR(data)) {
284 ret = PTR_ERR(data);
285 break;
286 }
287
288 /* Handle data */
289 if (ffs->state == FFS_READ_DESCRIPTORS) {
290 pr_info("read descriptors\n");
291 ret = __ffs_data_got_descs(ffs, data, len);
292 if (unlikely(ret < 0))
293 break;
294
295 ffs->state = FFS_READ_STRINGS;
296 ret = len;
297 } else {
298 pr_info("read strings\n");
299 ret = __ffs_data_got_strings(ffs, data, len);
300 if (unlikely(ret < 0))
301 break;
302
303 ret = ffs_epfiles_create(ffs);
304 if (unlikely(ret)) {
305 ffs->state = FFS_CLOSING;
306 break;
307 }
308
309 ffs->state = FFS_ACTIVE;
310 mutex_unlock(&ffs->mutex);
311
312 ret = ffs_ready(ffs);
313 if (unlikely(ret < 0)) {
314 ffs->state = FFS_CLOSING;
315 return ret;
316 }
317
318 return len;
319 }
320 break;
321
322 case FFS_ACTIVE:
323 data = NULL;
324 /*
325 * We're called from user space, we can use _irq
326 * rather then _irqsave
327 */
328 spin_lock_irq(&ffs->ev.waitq.lock);
329 switch (ffs_setup_state_clear_cancelled(ffs)) {
330 case FFS_SETUP_CANCELLED:
331 ret = -EIDRM;
332 goto done_spin;
333
334 case FFS_NO_SETUP:
335 ret = -ESRCH;
336 goto done_spin;
337
338 case FFS_SETUP_PENDING:
339 break;
340 }
341
342 /* FFS_SETUP_PENDING */
343 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
344 spin_unlock_irq(&ffs->ev.waitq.lock);
345 ret = __ffs_ep0_stall(ffs);
346 break;
347 }
348
349 /* FFS_SETUP_PENDING and not stall */
350 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
351
352 spin_unlock_irq(&ffs->ev.waitq.lock);
353
354 data = ffs_prepare_buffer(buf, len);
355 if (IS_ERR(data)) {
356 ret = PTR_ERR(data);
357 break;
358 }
359
360 spin_lock_irq(&ffs->ev.waitq.lock);
361
362 /*
363 * We are guaranteed to be still in FFS_ACTIVE state
364 * but the state of setup could have changed from
365 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 * to check for that. If that happened we copied data
367 * from user space in vain but it's unlikely.
368 *
369 * For sure we are not in FFS_NO_SETUP since this is
370 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 * transition can be performed and it's protected by
372 * mutex.
373 */
374 if (ffs_setup_state_clear_cancelled(ffs) ==
375 FFS_SETUP_CANCELLED) {
376 ret = -EIDRM;
377 done_spin:
378 spin_unlock_irq(&ffs->ev.waitq.lock);
379 } else {
380 /* unlocks spinlock */
381 ret = __ffs_ep0_queue_wait(ffs, data, len);
382 }
383 kfree(data);
384 break;
385
386 default:
387 ret = -EBADFD;
388 break;
389 }
390
391 mutex_unlock(&ffs->mutex);
392 return ret;
393 }
394
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
397 size_t n)
398 {
399 /*
400 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 * size of ffs->ev.types array (which is four) so that's how much space
402 * we reserve.
403 */
404 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
405 const size_t size = n * sizeof *events;
406 unsigned i = 0;
407
408 memset(events, 0, size);
409
410 do {
411 events[i].type = ffs->ev.types[i];
412 if (events[i].type == FUNCTIONFS_SETUP) {
413 events[i].u.setup = ffs->ev.setup;
414 ffs->setup_state = FFS_SETUP_PENDING;
415 }
416 } while (++i < n);
417
418 ffs->ev.count -= n;
419 if (ffs->ev.count)
420 memmove(ffs->ev.types, ffs->ev.types + n,
421 ffs->ev.count * sizeof *ffs->ev.types);
422
423 spin_unlock_irq(&ffs->ev.waitq.lock);
424 mutex_unlock(&ffs->mutex);
425
426 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
427 }
428
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 size_t len, loff_t *ptr)
431 {
432 struct ffs_data *ffs = file->private_data;
433 char *data = NULL;
434 size_t n;
435 int ret;
436
437 ENTER();
438
439 /* Fast check if setup was canceled */
440 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 return -EIDRM;
442
443 /* Acquire mutex */
444 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 if (unlikely(ret < 0))
446 return ret;
447
448 /* Check state */
449 if (ffs->state != FFS_ACTIVE) {
450 ret = -EBADFD;
451 goto done_mutex;
452 }
453
454 /*
455 * We're called from user space, we can use _irq rather then
456 * _irqsave
457 */
458 spin_lock_irq(&ffs->ev.waitq.lock);
459
460 switch (ffs_setup_state_clear_cancelled(ffs)) {
461 case FFS_SETUP_CANCELLED:
462 ret = -EIDRM;
463 break;
464
465 case FFS_NO_SETUP:
466 n = len / sizeof(struct usb_functionfs_event);
467 if (unlikely(!n)) {
468 ret = -EINVAL;
469 break;
470 }
471
472 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 ret = -EAGAIN;
474 break;
475 }
476
477 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 ffs->ev.count)) {
479 ret = -EINTR;
480 break;
481 }
482
483 return __ffs_ep0_read_events(ffs, buf,
484 min(n, (size_t)ffs->ev.count));
485
486 case FFS_SETUP_PENDING:
487 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 spin_unlock_irq(&ffs->ev.waitq.lock);
489 ret = __ffs_ep0_stall(ffs);
490 goto done_mutex;
491 }
492
493 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494
495 spin_unlock_irq(&ffs->ev.waitq.lock);
496
497 if (likely(len)) {
498 data = kmalloc(len, GFP_KERNEL);
499 if (unlikely(!data)) {
500 ret = -ENOMEM;
501 goto done_mutex;
502 }
503 }
504
505 spin_lock_irq(&ffs->ev.waitq.lock);
506
507 /* See ffs_ep0_write() */
508 if (ffs_setup_state_clear_cancelled(ffs) ==
509 FFS_SETUP_CANCELLED) {
510 ret = -EIDRM;
511 break;
512 }
513
514 /* unlocks spinlock */
515 ret = __ffs_ep0_queue_wait(ffs, data, len);
516 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
517 ret = -EFAULT;
518 goto done_mutex;
519
520 default:
521 ret = -EBADFD;
522 break;
523 }
524
525 spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 mutex_unlock(&ffs->mutex);
528 kfree(data);
529 return ret;
530 }
531
ffs_ep0_open(struct inode * inode,struct file * file)532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 struct ffs_data *ffs = inode->i_private;
535
536 ENTER();
537
538 if (unlikely(ffs->state == FFS_CLOSING))
539 return -EBUSY;
540
541 file->private_data = ffs;
542 ffs_data_opened(ffs);
543
544 return 0;
545 }
546
ffs_ep0_release(struct inode * inode,struct file * file)547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 struct ffs_data *ffs = file->private_data;
550
551 ENTER();
552
553 ffs_data_closed(ffs);
554
555 return 0;
556 }
557
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 struct ffs_data *ffs = file->private_data;
561 struct usb_gadget *gadget = ffs->gadget;
562 long ret;
563
564 ENTER();
565
566 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 struct ffs_function *func = ffs->func;
568 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 } else if (gadget && gadget->ops->ioctl) {
570 ret = gadget->ops->ioctl(gadget, code, value);
571 } else {
572 ret = -ENOTTY;
573 }
574
575 return ret;
576 }
577
ffs_ep0_poll(struct file * file,poll_table * wait)578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 struct ffs_data *ffs = file->private_data;
581 unsigned int mask = POLLWRNORM;
582 int ret;
583
584 poll_wait(file, &ffs->ev.waitq, wait);
585
586 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 if (unlikely(ret < 0))
588 return mask;
589
590 switch (ffs->state) {
591 case FFS_READ_DESCRIPTORS:
592 case FFS_READ_STRINGS:
593 mask |= POLLOUT;
594 break;
595
596 case FFS_ACTIVE:
597 switch (ffs->setup_state) {
598 case FFS_NO_SETUP:
599 if (ffs->ev.count)
600 mask |= POLLIN;
601 break;
602
603 case FFS_SETUP_PENDING:
604 case FFS_SETUP_CANCELLED:
605 mask |= (POLLIN | POLLOUT);
606 break;
607 }
608 case FFS_CLOSING:
609 break;
610 case FFS_DEACTIVATED:
611 break;
612 }
613
614 mutex_unlock(&ffs->mutex);
615
616 return mask;
617 }
618
619 static const struct file_operations ffs_ep0_operations = {
620 .llseek = no_llseek,
621
622 .open = ffs_ep0_open,
623 .write = ffs_ep0_write,
624 .read = ffs_ep0_read,
625 .release = ffs_ep0_release,
626 .unlocked_ioctl = ffs_ep0_ioctl,
627 .poll = ffs_ep0_poll,
628 };
629
630
631 /* "Normal" endpoints operations ********************************************/
632
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
634 {
635 ENTER();
636 if (likely(req->context)) {
637 struct ffs_ep *ep = _ep->driver_data;
638 ep->status = req->status ? req->status : req->actual;
639 complete(req->context);
640 }
641 }
642
ffs_user_copy_worker(struct work_struct * work)643 static void ffs_user_copy_worker(struct work_struct *work)
644 {
645 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
646 work);
647 int ret = io_data->req->status ? io_data->req->status :
648 io_data->req->actual;
649 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
650
651 if (io_data->read && ret > 0) {
652 use_mm(io_data->mm);
653 ret = copy_to_iter(io_data->buf, ret, &io_data->data);
654 if (ret != io_data->req->actual && iov_iter_count(&io_data->data))
655 ret = -EFAULT;
656 unuse_mm(io_data->mm);
657 }
658
659 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
660
661 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
662 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
663
664 usb_ep_free_request(io_data->ep, io_data->req);
665
666 if (io_data->read)
667 kfree(io_data->to_free);
668 kfree(io_data->buf);
669 kfree(io_data);
670 }
671
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)672 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
673 struct usb_request *req)
674 {
675 struct ffs_io_data *io_data = req->context;
676
677 ENTER();
678
679 INIT_WORK(&io_data->work, ffs_user_copy_worker);
680 schedule_work(&io_data->work);
681 }
682
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)683 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
684 {
685 struct ffs_epfile *epfile = file->private_data;
686 struct ffs_ep *ep;
687 char *data = NULL;
688 ssize_t ret, data_len = -EINVAL;
689 int halt;
690
691 /* Are we still active? */
692 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
693 ret = -ENODEV;
694 goto error;
695 }
696
697 /* Wait for endpoint to be enabled */
698 ep = epfile->ep;
699 if (!ep) {
700 if (file->f_flags & O_NONBLOCK) {
701 ret = -EAGAIN;
702 goto error;
703 }
704
705 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
706 if (ret) {
707 ret = -EINTR;
708 goto error;
709 }
710 }
711
712 /* Do we halt? */
713 halt = (!io_data->read == !epfile->in);
714 if (halt && epfile->isoc) {
715 ret = -EINVAL;
716 goto error;
717 }
718
719 /* Allocate & copy */
720 if (!halt) {
721 /*
722 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
723 * before the waiting completes, so do not assign to 'gadget' earlier
724 */
725 struct usb_gadget *gadget = epfile->ffs->gadget;
726 size_t copied;
727
728 spin_lock_irq(&epfile->ffs->eps_lock);
729 /* In the meantime, endpoint got disabled or changed. */
730 if (epfile->ep != ep) {
731 spin_unlock_irq(&epfile->ffs->eps_lock);
732 return -ESHUTDOWN;
733 }
734 data_len = iov_iter_count(&io_data->data);
735 /*
736 * Controller may require buffer size to be aligned to
737 * maxpacketsize of an out endpoint.
738 */
739 if (io_data->read)
740 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
741 spin_unlock_irq(&epfile->ffs->eps_lock);
742
743 data = kmalloc(data_len, GFP_KERNEL);
744 if (unlikely(!data))
745 return -ENOMEM;
746 if (!io_data->read) {
747 copied = copy_from_iter(data, data_len, &io_data->data);
748 if (copied != data_len) {
749 ret = -EFAULT;
750 goto error;
751 }
752 }
753 }
754
755 /* We will be using request */
756 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
757 if (unlikely(ret))
758 goto error;
759
760 spin_lock_irq(&epfile->ffs->eps_lock);
761
762 if (epfile->ep != ep) {
763 /* In the meantime, endpoint got disabled or changed. */
764 ret = -ESHUTDOWN;
765 spin_unlock_irq(&epfile->ffs->eps_lock);
766 } else if (halt) {
767 /* Halt */
768 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
769 usb_ep_set_halt(ep->ep);
770 spin_unlock_irq(&epfile->ffs->eps_lock);
771 ret = -EBADMSG;
772 } else {
773 /* Fire the request */
774 struct usb_request *req;
775
776 /*
777 * Sanity Check: even though data_len can't be used
778 * uninitialized at the time I write this comment, some
779 * compilers complain about this situation.
780 * In order to keep the code clean from warnings, data_len is
781 * being initialized to -EINVAL during its declaration, which
782 * means we can't rely on compiler anymore to warn no future
783 * changes won't result in data_len being used uninitialized.
784 * For such reason, we're adding this redundant sanity check
785 * here.
786 */
787 if (unlikely(data_len == -EINVAL)) {
788 WARN(1, "%s: data_len == -EINVAL\n", __func__);
789 ret = -EINVAL;
790 goto error_lock;
791 }
792
793 if (io_data->aio) {
794 req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
795 if (unlikely(!req))
796 goto error_lock;
797
798 req->buf = data;
799 req->length = data_len;
800
801 io_data->buf = data;
802 io_data->ep = ep->ep;
803 io_data->req = req;
804 io_data->ffs = epfile->ffs;
805
806 req->context = io_data;
807 req->complete = ffs_epfile_async_io_complete;
808
809 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
810 if (unlikely(ret)) {
811 usb_ep_free_request(ep->ep, req);
812 goto error_lock;
813 }
814 ret = -EIOCBQUEUED;
815
816 spin_unlock_irq(&epfile->ffs->eps_lock);
817 } else {
818 DECLARE_COMPLETION_ONSTACK(done);
819
820 req = ep->req;
821 req->buf = data;
822 req->length = data_len;
823
824 req->context = &done;
825 req->complete = ffs_epfile_io_complete;
826
827 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
828
829 spin_unlock_irq(&epfile->ffs->eps_lock);
830
831 if (unlikely(ret < 0)) {
832 /* nop */
833 } else if (unlikely(
834 wait_for_completion_interruptible(&done))) {
835 ret = -EINTR;
836 usb_ep_dequeue(ep->ep, req);
837 } else {
838 /*
839 * XXX We may end up silently droping data
840 * here. Since data_len (i.e. req->length) may
841 * be bigger than len (after being rounded up
842 * to maxpacketsize), we may end up with more
843 * data then user space has space for.
844 */
845 ret = ep->status;
846 if (io_data->read && ret > 0) {
847 ret = copy_to_iter(data, ret, &io_data->data);
848 if (!ret)
849 ret = -EFAULT;
850 }
851 }
852 kfree(data);
853 }
854 }
855
856 mutex_unlock(&epfile->mutex);
857 return ret;
858
859 error_lock:
860 spin_unlock_irq(&epfile->ffs->eps_lock);
861 mutex_unlock(&epfile->mutex);
862 error:
863 kfree(data);
864 return ret;
865 }
866
867 static int
ffs_epfile_open(struct inode * inode,struct file * file)868 ffs_epfile_open(struct inode *inode, struct file *file)
869 {
870 struct ffs_epfile *epfile = inode->i_private;
871
872 ENTER();
873
874 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
875 return -ENODEV;
876
877 file->private_data = epfile;
878 ffs_data_opened(epfile->ffs);
879
880 return 0;
881 }
882
ffs_aio_cancel(struct kiocb * kiocb)883 static int ffs_aio_cancel(struct kiocb *kiocb)
884 {
885 struct ffs_io_data *io_data = kiocb->private;
886 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
887 int value;
888
889 ENTER();
890
891 spin_lock_irq(&epfile->ffs->eps_lock);
892
893 if (likely(io_data && io_data->ep && io_data->req))
894 value = usb_ep_dequeue(io_data->ep, io_data->req);
895 else
896 value = -EINVAL;
897
898 spin_unlock_irq(&epfile->ffs->eps_lock);
899
900 return value;
901 }
902
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)903 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
904 {
905 struct ffs_io_data io_data, *p = &io_data;
906 ssize_t res;
907
908 ENTER();
909
910 if (!is_sync_kiocb(kiocb)) {
911 p = kmalloc(sizeof(io_data), GFP_KERNEL);
912 if (unlikely(!p))
913 return -ENOMEM;
914 p->aio = true;
915 } else {
916 p->aio = false;
917 }
918
919 p->read = false;
920 p->kiocb = kiocb;
921 p->data = *from;
922 p->mm = current->mm;
923
924 kiocb->private = p;
925
926 if (p->aio)
927 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
928
929 res = ffs_epfile_io(kiocb->ki_filp, p);
930 if (res == -EIOCBQUEUED)
931 return res;
932 if (p->aio)
933 kfree(p);
934 else
935 *from = p->data;
936 return res;
937 }
938
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)939 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
940 {
941 struct ffs_io_data io_data, *p = &io_data;
942 ssize_t res;
943
944 ENTER();
945
946 if (!is_sync_kiocb(kiocb)) {
947 p = kmalloc(sizeof(io_data), GFP_KERNEL);
948 if (unlikely(!p))
949 return -ENOMEM;
950 p->aio = true;
951 } else {
952 p->aio = false;
953 }
954
955 p->read = true;
956 p->kiocb = kiocb;
957 if (p->aio) {
958 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
959 if (!p->to_free) {
960 kfree(p);
961 return -ENOMEM;
962 }
963 } else {
964 p->data = *to;
965 p->to_free = NULL;
966 }
967 p->mm = current->mm;
968
969 kiocb->private = p;
970
971 if (p->aio)
972 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
973
974 res = ffs_epfile_io(kiocb->ki_filp, p);
975 if (res == -EIOCBQUEUED)
976 return res;
977
978 if (p->aio) {
979 kfree(p->to_free);
980 kfree(p);
981 } else {
982 *to = p->data;
983 }
984 return res;
985 }
986
987 static int
ffs_epfile_release(struct inode * inode,struct file * file)988 ffs_epfile_release(struct inode *inode, struct file *file)
989 {
990 struct ffs_epfile *epfile = inode->i_private;
991
992 ENTER();
993
994 ffs_data_closed(epfile->ffs);
995
996 return 0;
997 }
998
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)999 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1000 unsigned long value)
1001 {
1002 struct ffs_epfile *epfile = file->private_data;
1003 int ret;
1004
1005 ENTER();
1006
1007 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1008 return -ENODEV;
1009
1010 spin_lock_irq(&epfile->ffs->eps_lock);
1011 if (likely(epfile->ep)) {
1012 switch (code) {
1013 case FUNCTIONFS_FIFO_STATUS:
1014 ret = usb_ep_fifo_status(epfile->ep->ep);
1015 break;
1016 case FUNCTIONFS_FIFO_FLUSH:
1017 usb_ep_fifo_flush(epfile->ep->ep);
1018 ret = 0;
1019 break;
1020 case FUNCTIONFS_CLEAR_HALT:
1021 ret = usb_ep_clear_halt(epfile->ep->ep);
1022 break;
1023 case FUNCTIONFS_ENDPOINT_REVMAP:
1024 ret = epfile->ep->num;
1025 break;
1026 case FUNCTIONFS_ENDPOINT_DESC:
1027 {
1028 int desc_idx;
1029 struct usb_endpoint_descriptor *desc;
1030
1031 switch (epfile->ffs->gadget->speed) {
1032 case USB_SPEED_SUPER:
1033 desc_idx = 2;
1034 break;
1035 case USB_SPEED_HIGH:
1036 desc_idx = 1;
1037 break;
1038 default:
1039 desc_idx = 0;
1040 }
1041 desc = epfile->ep->descs[desc_idx];
1042
1043 spin_unlock_irq(&epfile->ffs->eps_lock);
1044 ret = copy_to_user((void *)value, desc, sizeof(*desc));
1045 if (ret)
1046 ret = -EFAULT;
1047 return ret;
1048 }
1049 default:
1050 ret = -ENOTTY;
1051 }
1052 } else {
1053 ret = -ENODEV;
1054 }
1055 spin_unlock_irq(&epfile->ffs->eps_lock);
1056
1057 return ret;
1058 }
1059
1060 static const struct file_operations ffs_epfile_operations = {
1061 .llseek = no_llseek,
1062
1063 .open = ffs_epfile_open,
1064 .write_iter = ffs_epfile_write_iter,
1065 .read_iter = ffs_epfile_read_iter,
1066 .release = ffs_epfile_release,
1067 .unlocked_ioctl = ffs_epfile_ioctl,
1068 };
1069
1070
1071 /* File system and super block operations ***********************************/
1072
1073 /*
1074 * Mounting the file system creates a controller file, used first for
1075 * function configuration then later for event monitoring.
1076 */
1077
1078 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1079 ffs_sb_make_inode(struct super_block *sb, void *data,
1080 const struct file_operations *fops,
1081 const struct inode_operations *iops,
1082 struct ffs_file_perms *perms)
1083 {
1084 struct inode *inode;
1085
1086 ENTER();
1087
1088 inode = new_inode(sb);
1089
1090 if (likely(inode)) {
1091 struct timespec current_time = CURRENT_TIME;
1092
1093 inode->i_ino = get_next_ino();
1094 inode->i_mode = perms->mode;
1095 inode->i_uid = perms->uid;
1096 inode->i_gid = perms->gid;
1097 inode->i_atime = current_time;
1098 inode->i_mtime = current_time;
1099 inode->i_ctime = current_time;
1100 inode->i_private = data;
1101 if (fops)
1102 inode->i_fop = fops;
1103 if (iops)
1104 inode->i_op = iops;
1105 }
1106
1107 return inode;
1108 }
1109
1110 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1111 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1112 const char *name, void *data,
1113 const struct file_operations *fops)
1114 {
1115 struct ffs_data *ffs = sb->s_fs_info;
1116 struct dentry *dentry;
1117 struct inode *inode;
1118
1119 ENTER();
1120
1121 dentry = d_alloc_name(sb->s_root, name);
1122 if (unlikely(!dentry))
1123 return NULL;
1124
1125 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1126 if (unlikely(!inode)) {
1127 dput(dentry);
1128 return NULL;
1129 }
1130
1131 d_add(dentry, inode);
1132 return dentry;
1133 }
1134
1135 /* Super block */
1136 static const struct super_operations ffs_sb_operations = {
1137 .statfs = simple_statfs,
1138 .drop_inode = generic_delete_inode,
1139 };
1140
1141 struct ffs_sb_fill_data {
1142 struct ffs_file_perms perms;
1143 umode_t root_mode;
1144 const char *dev_name;
1145 bool no_disconnect;
1146 struct ffs_data *ffs_data;
1147 };
1148
ffs_sb_fill(struct super_block * sb,void * _data,int silent)1149 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1150 {
1151 struct ffs_sb_fill_data *data = _data;
1152 struct inode *inode;
1153 struct ffs_data *ffs = data->ffs_data;
1154
1155 ENTER();
1156
1157 ffs->sb = sb;
1158 data->ffs_data = NULL;
1159 sb->s_fs_info = ffs;
1160 sb->s_blocksize = PAGE_CACHE_SIZE;
1161 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1162 sb->s_magic = FUNCTIONFS_MAGIC;
1163 sb->s_op = &ffs_sb_operations;
1164 sb->s_time_gran = 1;
1165
1166 /* Root inode */
1167 data->perms.mode = data->root_mode;
1168 inode = ffs_sb_make_inode(sb, NULL,
1169 &simple_dir_operations,
1170 &simple_dir_inode_operations,
1171 &data->perms);
1172 sb->s_root = d_make_root(inode);
1173 if (unlikely(!sb->s_root))
1174 return -ENOMEM;
1175
1176 /* EP0 file */
1177 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1178 &ffs_ep0_operations)))
1179 return -ENOMEM;
1180
1181 return 0;
1182 }
1183
ffs_fs_parse_opts(struct ffs_sb_fill_data * data,char * opts)1184 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1185 {
1186 ENTER();
1187
1188 if (!opts || !*opts)
1189 return 0;
1190
1191 for (;;) {
1192 unsigned long value;
1193 char *eq, *comma;
1194
1195 /* Option limit */
1196 comma = strchr(opts, ',');
1197 if (comma)
1198 *comma = 0;
1199
1200 /* Value limit */
1201 eq = strchr(opts, '=');
1202 if (unlikely(!eq)) {
1203 pr_err("'=' missing in %s\n", opts);
1204 return -EINVAL;
1205 }
1206 *eq = 0;
1207
1208 /* Parse value */
1209 if (kstrtoul(eq + 1, 0, &value)) {
1210 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1211 return -EINVAL;
1212 }
1213
1214 /* Interpret option */
1215 switch (eq - opts) {
1216 case 13:
1217 if (!memcmp(opts, "no_disconnect", 13))
1218 data->no_disconnect = !!value;
1219 else
1220 goto invalid;
1221 break;
1222 case 5:
1223 if (!memcmp(opts, "rmode", 5))
1224 data->root_mode = (value & 0555) | S_IFDIR;
1225 else if (!memcmp(opts, "fmode", 5))
1226 data->perms.mode = (value & 0666) | S_IFREG;
1227 else
1228 goto invalid;
1229 break;
1230
1231 case 4:
1232 if (!memcmp(opts, "mode", 4)) {
1233 data->root_mode = (value & 0555) | S_IFDIR;
1234 data->perms.mode = (value & 0666) | S_IFREG;
1235 } else {
1236 goto invalid;
1237 }
1238 break;
1239
1240 case 3:
1241 if (!memcmp(opts, "uid", 3)) {
1242 data->perms.uid = make_kuid(current_user_ns(), value);
1243 if (!uid_valid(data->perms.uid)) {
1244 pr_err("%s: unmapped value: %lu\n", opts, value);
1245 return -EINVAL;
1246 }
1247 } else if (!memcmp(opts, "gid", 3)) {
1248 data->perms.gid = make_kgid(current_user_ns(), value);
1249 if (!gid_valid(data->perms.gid)) {
1250 pr_err("%s: unmapped value: %lu\n", opts, value);
1251 return -EINVAL;
1252 }
1253 } else {
1254 goto invalid;
1255 }
1256 break;
1257
1258 default:
1259 invalid:
1260 pr_err("%s: invalid option\n", opts);
1261 return -EINVAL;
1262 }
1263
1264 /* Next iteration */
1265 if (!comma)
1266 break;
1267 opts = comma + 1;
1268 }
1269
1270 return 0;
1271 }
1272
1273 /* "mount -t functionfs dev_name /dev/function" ends up here */
1274
1275 static struct dentry *
ffs_fs_mount(struct file_system_type * t,int flags,const char * dev_name,void * opts)1276 ffs_fs_mount(struct file_system_type *t, int flags,
1277 const char *dev_name, void *opts)
1278 {
1279 struct ffs_sb_fill_data data = {
1280 .perms = {
1281 .mode = S_IFREG | 0600,
1282 .uid = GLOBAL_ROOT_UID,
1283 .gid = GLOBAL_ROOT_GID,
1284 },
1285 .root_mode = S_IFDIR | 0500,
1286 .no_disconnect = false,
1287 };
1288 struct dentry *rv;
1289 int ret;
1290 void *ffs_dev;
1291 struct ffs_data *ffs;
1292
1293 ENTER();
1294
1295 ret = ffs_fs_parse_opts(&data, opts);
1296 if (unlikely(ret < 0))
1297 return ERR_PTR(ret);
1298
1299 ffs = ffs_data_new();
1300 if (unlikely(!ffs))
1301 return ERR_PTR(-ENOMEM);
1302 ffs->file_perms = data.perms;
1303 ffs->no_disconnect = data.no_disconnect;
1304
1305 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1306 if (unlikely(!ffs->dev_name)) {
1307 ffs_data_put(ffs);
1308 return ERR_PTR(-ENOMEM);
1309 }
1310
1311 ffs_dev = ffs_acquire_dev(dev_name);
1312 if (IS_ERR(ffs_dev)) {
1313 ffs_data_put(ffs);
1314 return ERR_CAST(ffs_dev);
1315 }
1316 ffs->private_data = ffs_dev;
1317 data.ffs_data = ffs;
1318
1319 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1320 if (IS_ERR(rv) && data.ffs_data) {
1321 ffs_release_dev(data.ffs_data);
1322 ffs_data_put(data.ffs_data);
1323 }
1324 return rv;
1325 }
1326
1327 static void
ffs_fs_kill_sb(struct super_block * sb)1328 ffs_fs_kill_sb(struct super_block *sb)
1329 {
1330 ENTER();
1331
1332 kill_litter_super(sb);
1333 if (sb->s_fs_info) {
1334 ffs_release_dev(sb->s_fs_info);
1335 ffs_data_closed(sb->s_fs_info);
1336 ffs_data_put(sb->s_fs_info);
1337 }
1338 }
1339
1340 static struct file_system_type ffs_fs_type = {
1341 .owner = THIS_MODULE,
1342 .name = "functionfs",
1343 .mount = ffs_fs_mount,
1344 .kill_sb = ffs_fs_kill_sb,
1345 };
1346 MODULE_ALIAS_FS("functionfs");
1347
1348
1349 /* Driver's main init/cleanup functions *************************************/
1350
functionfs_init(void)1351 static int functionfs_init(void)
1352 {
1353 int ret;
1354
1355 ENTER();
1356
1357 ret = register_filesystem(&ffs_fs_type);
1358 if (likely(!ret))
1359 pr_info("file system registered\n");
1360 else
1361 pr_err("failed registering file system (%d)\n", ret);
1362
1363 return ret;
1364 }
1365
functionfs_cleanup(void)1366 static void functionfs_cleanup(void)
1367 {
1368 ENTER();
1369
1370 pr_info("unloading\n");
1371 unregister_filesystem(&ffs_fs_type);
1372 }
1373
1374
1375 /* ffs_data and ffs_function construction and destruction code **************/
1376
1377 static void ffs_data_clear(struct ffs_data *ffs);
1378 static void ffs_data_reset(struct ffs_data *ffs);
1379
ffs_data_get(struct ffs_data * ffs)1380 static void ffs_data_get(struct ffs_data *ffs)
1381 {
1382 ENTER();
1383
1384 atomic_inc(&ffs->ref);
1385 }
1386
ffs_data_opened(struct ffs_data * ffs)1387 static void ffs_data_opened(struct ffs_data *ffs)
1388 {
1389 ENTER();
1390
1391 atomic_inc(&ffs->ref);
1392 if (atomic_add_return(1, &ffs->opened) == 1 &&
1393 ffs->state == FFS_DEACTIVATED) {
1394 ffs->state = FFS_CLOSING;
1395 ffs_data_reset(ffs);
1396 }
1397 }
1398
ffs_data_put(struct ffs_data * ffs)1399 static void ffs_data_put(struct ffs_data *ffs)
1400 {
1401 ENTER();
1402
1403 if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1404 pr_info("%s(): freeing\n", __func__);
1405 ffs_data_clear(ffs);
1406 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1407 waitqueue_active(&ffs->ep0req_completion.wait));
1408 kfree(ffs->dev_name);
1409 kfree(ffs);
1410 }
1411 }
1412
ffs_data_closed(struct ffs_data * ffs)1413 static void ffs_data_closed(struct ffs_data *ffs)
1414 {
1415 ENTER();
1416
1417 if (atomic_dec_and_test(&ffs->opened)) {
1418 if (ffs->no_disconnect) {
1419 ffs->state = FFS_DEACTIVATED;
1420 if (ffs->epfiles) {
1421 ffs_epfiles_destroy(ffs->epfiles,
1422 ffs->eps_count);
1423 ffs->epfiles = NULL;
1424 }
1425 if (ffs->setup_state == FFS_SETUP_PENDING)
1426 __ffs_ep0_stall(ffs);
1427 } else {
1428 ffs->state = FFS_CLOSING;
1429 ffs_data_reset(ffs);
1430 }
1431 }
1432 if (atomic_read(&ffs->opened) < 0) {
1433 ffs->state = FFS_CLOSING;
1434 ffs_data_reset(ffs);
1435 }
1436
1437 ffs_data_put(ffs);
1438 }
1439
ffs_data_new(void)1440 static struct ffs_data *ffs_data_new(void)
1441 {
1442 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1443 if (unlikely(!ffs))
1444 return NULL;
1445
1446 ENTER();
1447
1448 atomic_set(&ffs->ref, 1);
1449 atomic_set(&ffs->opened, 0);
1450 ffs->state = FFS_READ_DESCRIPTORS;
1451 mutex_init(&ffs->mutex);
1452 spin_lock_init(&ffs->eps_lock);
1453 init_waitqueue_head(&ffs->ev.waitq);
1454 init_completion(&ffs->ep0req_completion);
1455
1456 /* XXX REVISIT need to update it in some places, or do we? */
1457 ffs->ev.can_stall = 1;
1458
1459 return ffs;
1460 }
1461
ffs_data_clear(struct ffs_data * ffs)1462 static void ffs_data_clear(struct ffs_data *ffs)
1463 {
1464 ENTER();
1465
1466 ffs_closed(ffs);
1467
1468 BUG_ON(ffs->gadget);
1469
1470 if (ffs->epfiles)
1471 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1472
1473 if (ffs->ffs_eventfd)
1474 eventfd_ctx_put(ffs->ffs_eventfd);
1475
1476 kfree(ffs->raw_descs_data);
1477 kfree(ffs->raw_strings);
1478 kfree(ffs->stringtabs);
1479 }
1480
ffs_data_reset(struct ffs_data * ffs)1481 static void ffs_data_reset(struct ffs_data *ffs)
1482 {
1483 ENTER();
1484
1485 ffs_data_clear(ffs);
1486
1487 ffs->epfiles = NULL;
1488 ffs->raw_descs_data = NULL;
1489 ffs->raw_descs = NULL;
1490 ffs->raw_strings = NULL;
1491 ffs->stringtabs = NULL;
1492
1493 ffs->raw_descs_length = 0;
1494 ffs->fs_descs_count = 0;
1495 ffs->hs_descs_count = 0;
1496 ffs->ss_descs_count = 0;
1497
1498 ffs->strings_count = 0;
1499 ffs->interfaces_count = 0;
1500 ffs->eps_count = 0;
1501
1502 ffs->ev.count = 0;
1503
1504 ffs->state = FFS_READ_DESCRIPTORS;
1505 ffs->setup_state = FFS_NO_SETUP;
1506 ffs->flags = 0;
1507 }
1508
1509
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1510 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1511 {
1512 struct usb_gadget_strings **lang;
1513 int first_id;
1514
1515 ENTER();
1516
1517 if (WARN_ON(ffs->state != FFS_ACTIVE
1518 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1519 return -EBADFD;
1520
1521 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1522 if (unlikely(first_id < 0))
1523 return first_id;
1524
1525 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1526 if (unlikely(!ffs->ep0req))
1527 return -ENOMEM;
1528 ffs->ep0req->complete = ffs_ep0_complete;
1529 ffs->ep0req->context = ffs;
1530
1531 lang = ffs->stringtabs;
1532 if (lang) {
1533 for (; *lang; ++lang) {
1534 struct usb_string *str = (*lang)->strings;
1535 int id = first_id;
1536 for (; str->s; ++id, ++str)
1537 str->id = id;
1538 }
1539 }
1540
1541 ffs->gadget = cdev->gadget;
1542 ffs_data_get(ffs);
1543 return 0;
1544 }
1545
functionfs_unbind(struct ffs_data * ffs)1546 static void functionfs_unbind(struct ffs_data *ffs)
1547 {
1548 ENTER();
1549
1550 if (!WARN_ON(!ffs->gadget)) {
1551 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1552 ffs->ep0req = NULL;
1553 ffs->gadget = NULL;
1554 clear_bit(FFS_FL_BOUND, &ffs->flags);
1555 ffs_data_put(ffs);
1556 }
1557 }
1558
ffs_epfiles_create(struct ffs_data * ffs)1559 static int ffs_epfiles_create(struct ffs_data *ffs)
1560 {
1561 struct ffs_epfile *epfile, *epfiles;
1562 unsigned i, count;
1563
1564 ENTER();
1565
1566 count = ffs->eps_count;
1567 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1568 if (!epfiles)
1569 return -ENOMEM;
1570
1571 epfile = epfiles;
1572 for (i = 1; i <= count; ++i, ++epfile) {
1573 epfile->ffs = ffs;
1574 mutex_init(&epfile->mutex);
1575 init_waitqueue_head(&epfile->wait);
1576 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1577 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1578 else
1579 sprintf(epfile->name, "ep%u", i);
1580 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1581 epfile,
1582 &ffs_epfile_operations);
1583 if (unlikely(!epfile->dentry)) {
1584 ffs_epfiles_destroy(epfiles, i - 1);
1585 return -ENOMEM;
1586 }
1587 }
1588
1589 ffs->epfiles = epfiles;
1590 return 0;
1591 }
1592
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1593 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1594 {
1595 struct ffs_epfile *epfile = epfiles;
1596
1597 ENTER();
1598
1599 for (; count; --count, ++epfile) {
1600 BUG_ON(mutex_is_locked(&epfile->mutex) ||
1601 waitqueue_active(&epfile->wait));
1602 if (epfile->dentry) {
1603 d_delete(epfile->dentry);
1604 dput(epfile->dentry);
1605 epfile->dentry = NULL;
1606 }
1607 }
1608
1609 kfree(epfiles);
1610 }
1611
ffs_func_eps_disable(struct ffs_function * func)1612 static void ffs_func_eps_disable(struct ffs_function *func)
1613 {
1614 struct ffs_ep *ep = func->eps;
1615 struct ffs_epfile *epfile = func->ffs->epfiles;
1616 unsigned count = func->ffs->eps_count;
1617 unsigned long flags;
1618
1619 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1620 do {
1621 /* pending requests get nuked */
1622 if (likely(ep->ep))
1623 usb_ep_disable(ep->ep);
1624 ++ep;
1625
1626 if (epfile) {
1627 epfile->ep = NULL;
1628 ++epfile;
1629 }
1630 } while (--count);
1631 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1632 }
1633
ffs_func_eps_enable(struct ffs_function * func)1634 static int ffs_func_eps_enable(struct ffs_function *func)
1635 {
1636 struct ffs_data *ffs = func->ffs;
1637 struct ffs_ep *ep = func->eps;
1638 struct ffs_epfile *epfile = ffs->epfiles;
1639 unsigned count = ffs->eps_count;
1640 unsigned long flags;
1641 int ret = 0;
1642
1643 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1644 do {
1645 struct usb_endpoint_descriptor *ds;
1646 int desc_idx;
1647
1648 if (ffs->gadget->speed == USB_SPEED_SUPER)
1649 desc_idx = 2;
1650 else if (ffs->gadget->speed == USB_SPEED_HIGH)
1651 desc_idx = 1;
1652 else
1653 desc_idx = 0;
1654
1655 /* fall-back to lower speed if desc missing for current speed */
1656 do {
1657 ds = ep->descs[desc_idx];
1658 } while (!ds && --desc_idx >= 0);
1659
1660 if (!ds) {
1661 ret = -EINVAL;
1662 break;
1663 }
1664
1665 ep->ep->driver_data = ep;
1666 ep->ep->desc = ds;
1667 ret = usb_ep_enable(ep->ep);
1668 if (likely(!ret)) {
1669 epfile->ep = ep;
1670 epfile->in = usb_endpoint_dir_in(ds);
1671 epfile->isoc = usb_endpoint_xfer_isoc(ds);
1672 } else {
1673 break;
1674 }
1675
1676 wake_up(&epfile->wait);
1677
1678 ++ep;
1679 ++epfile;
1680 } while (--count);
1681 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1682
1683 return ret;
1684 }
1685
1686
1687 /* Parsing and building descriptors and strings *****************************/
1688
1689 /*
1690 * This validates if data pointed by data is a valid USB descriptor as
1691 * well as record how many interfaces, endpoints and strings are
1692 * required by given configuration. Returns address after the
1693 * descriptor or NULL if data is invalid.
1694 */
1695
1696 enum ffs_entity_type {
1697 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1698 };
1699
1700 enum ffs_os_desc_type {
1701 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1702 };
1703
1704 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1705 u8 *valuep,
1706 struct usb_descriptor_header *desc,
1707 void *priv);
1708
1709 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1710 struct usb_os_desc_header *h, void *data,
1711 unsigned len, void *priv);
1712
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv)1713 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1714 ffs_entity_callback entity,
1715 void *priv)
1716 {
1717 struct usb_descriptor_header *_ds = (void *)data;
1718 u8 length;
1719 int ret;
1720
1721 ENTER();
1722
1723 /* At least two bytes are required: length and type */
1724 if (len < 2) {
1725 pr_vdebug("descriptor too short\n");
1726 return -EINVAL;
1727 }
1728
1729 /* If we have at least as many bytes as the descriptor takes? */
1730 length = _ds->bLength;
1731 if (len < length) {
1732 pr_vdebug("descriptor longer then available data\n");
1733 return -EINVAL;
1734 }
1735
1736 #define __entity_check_INTERFACE(val) 1
1737 #define __entity_check_STRING(val) (val)
1738 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1739 #define __entity(type, val) do { \
1740 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1741 if (unlikely(!__entity_check_ ##type(val))) { \
1742 pr_vdebug("invalid entity's value\n"); \
1743 return -EINVAL; \
1744 } \
1745 ret = entity(FFS_ ##type, &val, _ds, priv); \
1746 if (unlikely(ret < 0)) { \
1747 pr_debug("entity " #type "(%02x); ret = %d\n", \
1748 (val), ret); \
1749 return ret; \
1750 } \
1751 } while (0)
1752
1753 /* Parse descriptor depending on type. */
1754 switch (_ds->bDescriptorType) {
1755 case USB_DT_DEVICE:
1756 case USB_DT_CONFIG:
1757 case USB_DT_STRING:
1758 case USB_DT_DEVICE_QUALIFIER:
1759 /* function can't have any of those */
1760 pr_vdebug("descriptor reserved for gadget: %d\n",
1761 _ds->bDescriptorType);
1762 return -EINVAL;
1763
1764 case USB_DT_INTERFACE: {
1765 struct usb_interface_descriptor *ds = (void *)_ds;
1766 pr_vdebug("interface descriptor\n");
1767 if (length != sizeof *ds)
1768 goto inv_length;
1769
1770 __entity(INTERFACE, ds->bInterfaceNumber);
1771 if (ds->iInterface)
1772 __entity(STRING, ds->iInterface);
1773 }
1774 break;
1775
1776 case USB_DT_ENDPOINT: {
1777 struct usb_endpoint_descriptor *ds = (void *)_ds;
1778 pr_vdebug("endpoint descriptor\n");
1779 if (length != USB_DT_ENDPOINT_SIZE &&
1780 length != USB_DT_ENDPOINT_AUDIO_SIZE)
1781 goto inv_length;
1782 __entity(ENDPOINT, ds->bEndpointAddress);
1783 }
1784 break;
1785
1786 case HID_DT_HID:
1787 pr_vdebug("hid descriptor\n");
1788 if (length != sizeof(struct hid_descriptor))
1789 goto inv_length;
1790 break;
1791
1792 case USB_DT_OTG:
1793 if (length != sizeof(struct usb_otg_descriptor))
1794 goto inv_length;
1795 break;
1796
1797 case USB_DT_INTERFACE_ASSOCIATION: {
1798 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1799 pr_vdebug("interface association descriptor\n");
1800 if (length != sizeof *ds)
1801 goto inv_length;
1802 if (ds->iFunction)
1803 __entity(STRING, ds->iFunction);
1804 }
1805 break;
1806
1807 case USB_DT_SS_ENDPOINT_COMP:
1808 pr_vdebug("EP SS companion descriptor\n");
1809 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1810 goto inv_length;
1811 break;
1812
1813 case USB_DT_OTHER_SPEED_CONFIG:
1814 case USB_DT_INTERFACE_POWER:
1815 case USB_DT_DEBUG:
1816 case USB_DT_SECURITY:
1817 case USB_DT_CS_RADIO_CONTROL:
1818 /* TODO */
1819 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1820 return -EINVAL;
1821
1822 default:
1823 /* We should never be here */
1824 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1825 return -EINVAL;
1826
1827 inv_length:
1828 pr_vdebug("invalid length: %d (descriptor %d)\n",
1829 _ds->bLength, _ds->bDescriptorType);
1830 return -EINVAL;
1831 }
1832
1833 #undef __entity
1834 #undef __entity_check_DESCRIPTOR
1835 #undef __entity_check_INTERFACE
1836 #undef __entity_check_STRING
1837 #undef __entity_check_ENDPOINT
1838
1839 return length;
1840 }
1841
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)1842 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1843 ffs_entity_callback entity, void *priv)
1844 {
1845 const unsigned _len = len;
1846 unsigned long num = 0;
1847
1848 ENTER();
1849
1850 for (;;) {
1851 int ret;
1852
1853 if (num == count)
1854 data = NULL;
1855
1856 /* Record "descriptor" entity */
1857 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1858 if (unlikely(ret < 0)) {
1859 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1860 num, ret);
1861 return ret;
1862 }
1863
1864 if (!data)
1865 return _len - len;
1866
1867 ret = ffs_do_single_desc(data, len, entity, priv);
1868 if (unlikely(ret < 0)) {
1869 pr_debug("%s returns %d\n", __func__, ret);
1870 return ret;
1871 }
1872
1873 len -= ret;
1874 data += ret;
1875 ++num;
1876 }
1877 }
1878
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)1879 static int __ffs_data_do_entity(enum ffs_entity_type type,
1880 u8 *valuep, struct usb_descriptor_header *desc,
1881 void *priv)
1882 {
1883 struct ffs_desc_helper *helper = priv;
1884 struct usb_endpoint_descriptor *d;
1885
1886 ENTER();
1887
1888 switch (type) {
1889 case FFS_DESCRIPTOR:
1890 break;
1891
1892 case FFS_INTERFACE:
1893 /*
1894 * Interfaces are indexed from zero so if we
1895 * encountered interface "n" then there are at least
1896 * "n+1" interfaces.
1897 */
1898 if (*valuep >= helper->interfaces_count)
1899 helper->interfaces_count = *valuep + 1;
1900 break;
1901
1902 case FFS_STRING:
1903 /*
1904 * Strings are indexed from 1 (0 is magic ;) reserved
1905 * for languages list or some such)
1906 */
1907 if (*valuep > helper->ffs->strings_count)
1908 helper->ffs->strings_count = *valuep;
1909 break;
1910
1911 case FFS_ENDPOINT:
1912 d = (void *)desc;
1913 helper->eps_count++;
1914 if (helper->eps_count >= 15)
1915 return -EINVAL;
1916 /* Check if descriptors for any speed were already parsed */
1917 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1918 helper->ffs->eps_addrmap[helper->eps_count] =
1919 d->bEndpointAddress;
1920 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1921 d->bEndpointAddress)
1922 return -EINVAL;
1923 break;
1924 }
1925
1926 return 0;
1927 }
1928
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)1929 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1930 struct usb_os_desc_header *desc)
1931 {
1932 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1933 u16 w_index = le16_to_cpu(desc->wIndex);
1934
1935 if (bcd_version != 1) {
1936 pr_vdebug("unsupported os descriptors version: %d",
1937 bcd_version);
1938 return -EINVAL;
1939 }
1940 switch (w_index) {
1941 case 0x4:
1942 *next_type = FFS_OS_DESC_EXT_COMPAT;
1943 break;
1944 case 0x5:
1945 *next_type = FFS_OS_DESC_EXT_PROP;
1946 break;
1947 default:
1948 pr_vdebug("unsupported os descriptor type: %d", w_index);
1949 return -EINVAL;
1950 }
1951
1952 return sizeof(*desc);
1953 }
1954
1955 /*
1956 * Process all extended compatibility/extended property descriptors
1957 * of a feature descriptor
1958 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)1959 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1960 enum ffs_os_desc_type type,
1961 u16 feature_count,
1962 ffs_os_desc_callback entity,
1963 void *priv,
1964 struct usb_os_desc_header *h)
1965 {
1966 int ret;
1967 const unsigned _len = len;
1968
1969 ENTER();
1970
1971 /* loop over all ext compat/ext prop descriptors */
1972 while (feature_count--) {
1973 ret = entity(type, h, data, len, priv);
1974 if (unlikely(ret < 0)) {
1975 pr_debug("bad OS descriptor, type: %d\n", type);
1976 return ret;
1977 }
1978 data += ret;
1979 len -= ret;
1980 }
1981 return _len - len;
1982 }
1983
1984 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)1985 static int __must_check ffs_do_os_descs(unsigned count,
1986 char *data, unsigned len,
1987 ffs_os_desc_callback entity, void *priv)
1988 {
1989 const unsigned _len = len;
1990 unsigned long num = 0;
1991
1992 ENTER();
1993
1994 for (num = 0; num < count; ++num) {
1995 int ret;
1996 enum ffs_os_desc_type type;
1997 u16 feature_count;
1998 struct usb_os_desc_header *desc = (void *)data;
1999
2000 if (len < sizeof(*desc))
2001 return -EINVAL;
2002
2003 /*
2004 * Record "descriptor" entity.
2005 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2006 * Move the data pointer to the beginning of extended
2007 * compatibilities proper or extended properties proper
2008 * portions of the data
2009 */
2010 if (le32_to_cpu(desc->dwLength) > len)
2011 return -EINVAL;
2012
2013 ret = __ffs_do_os_desc_header(&type, desc);
2014 if (unlikely(ret < 0)) {
2015 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2016 num, ret);
2017 return ret;
2018 }
2019 /*
2020 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2021 */
2022 feature_count = le16_to_cpu(desc->wCount);
2023 if (type == FFS_OS_DESC_EXT_COMPAT &&
2024 (feature_count > 255 || desc->Reserved))
2025 return -EINVAL;
2026 len -= ret;
2027 data += ret;
2028
2029 /*
2030 * Process all function/property descriptors
2031 * of this Feature Descriptor
2032 */
2033 ret = ffs_do_single_os_desc(data, len, type,
2034 feature_count, entity, priv, desc);
2035 if (unlikely(ret < 0)) {
2036 pr_debug("%s returns %d\n", __func__, ret);
2037 return ret;
2038 }
2039
2040 len -= ret;
2041 data += ret;
2042 }
2043 return _len - len;
2044 }
2045
2046 /**
2047 * Validate contents of the buffer from userspace related to OS descriptors.
2048 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2049 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2050 struct usb_os_desc_header *h, void *data,
2051 unsigned len, void *priv)
2052 {
2053 struct ffs_data *ffs = priv;
2054 u8 length;
2055
2056 ENTER();
2057
2058 switch (type) {
2059 case FFS_OS_DESC_EXT_COMPAT: {
2060 struct usb_ext_compat_desc *d = data;
2061 int i;
2062
2063 if (len < sizeof(*d) ||
2064 d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2065 d->Reserved1)
2066 return -EINVAL;
2067 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2068 if (d->Reserved2[i])
2069 return -EINVAL;
2070
2071 length = sizeof(struct usb_ext_compat_desc);
2072 }
2073 break;
2074 case FFS_OS_DESC_EXT_PROP: {
2075 struct usb_ext_prop_desc *d = data;
2076 u32 type, pdl;
2077 u16 pnl;
2078
2079 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2080 return -EINVAL;
2081 length = le32_to_cpu(d->dwSize);
2082 type = le32_to_cpu(d->dwPropertyDataType);
2083 if (type < USB_EXT_PROP_UNICODE ||
2084 type > USB_EXT_PROP_UNICODE_MULTI) {
2085 pr_vdebug("unsupported os descriptor property type: %d",
2086 type);
2087 return -EINVAL;
2088 }
2089 pnl = le16_to_cpu(d->wPropertyNameLength);
2090 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2091 if (length != 14 + pnl + pdl) {
2092 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2093 length, pnl, pdl, type);
2094 return -EINVAL;
2095 }
2096 ++ffs->ms_os_descs_ext_prop_count;
2097 /* property name reported to the host as "WCHAR"s */
2098 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2099 ffs->ms_os_descs_ext_prop_data_len += pdl;
2100 }
2101 break;
2102 default:
2103 pr_vdebug("unknown descriptor: %d\n", type);
2104 return -EINVAL;
2105 }
2106 return length;
2107 }
2108
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2109 static int __ffs_data_got_descs(struct ffs_data *ffs,
2110 char *const _data, size_t len)
2111 {
2112 char *data = _data, *raw_descs;
2113 unsigned os_descs_count = 0, counts[3], flags;
2114 int ret = -EINVAL, i;
2115 struct ffs_desc_helper helper;
2116
2117 ENTER();
2118
2119 if (get_unaligned_le32(data + 4) != len)
2120 goto error;
2121
2122 switch (get_unaligned_le32(data)) {
2123 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2124 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2125 data += 8;
2126 len -= 8;
2127 break;
2128 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2129 flags = get_unaligned_le32(data + 8);
2130 ffs->user_flags = flags;
2131 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2132 FUNCTIONFS_HAS_HS_DESC |
2133 FUNCTIONFS_HAS_SS_DESC |
2134 FUNCTIONFS_HAS_MS_OS_DESC |
2135 FUNCTIONFS_VIRTUAL_ADDR |
2136 FUNCTIONFS_EVENTFD)) {
2137 ret = -ENOSYS;
2138 goto error;
2139 }
2140 data += 12;
2141 len -= 12;
2142 break;
2143 default:
2144 goto error;
2145 }
2146
2147 if (flags & FUNCTIONFS_EVENTFD) {
2148 if (len < 4)
2149 goto error;
2150 ffs->ffs_eventfd =
2151 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2152 if (IS_ERR(ffs->ffs_eventfd)) {
2153 ret = PTR_ERR(ffs->ffs_eventfd);
2154 ffs->ffs_eventfd = NULL;
2155 goto error;
2156 }
2157 data += 4;
2158 len -= 4;
2159 }
2160
2161 /* Read fs_count, hs_count and ss_count (if present) */
2162 for (i = 0; i < 3; ++i) {
2163 if (!(flags & (1 << i))) {
2164 counts[i] = 0;
2165 } else if (len < 4) {
2166 goto error;
2167 } else {
2168 counts[i] = get_unaligned_le32(data);
2169 data += 4;
2170 len -= 4;
2171 }
2172 }
2173 if (flags & (1 << i)) {
2174 os_descs_count = get_unaligned_le32(data);
2175 data += 4;
2176 len -= 4;
2177 };
2178
2179 /* Read descriptors */
2180 raw_descs = data;
2181 helper.ffs = ffs;
2182 for (i = 0; i < 3; ++i) {
2183 if (!counts[i])
2184 continue;
2185 helper.interfaces_count = 0;
2186 helper.eps_count = 0;
2187 ret = ffs_do_descs(counts[i], data, len,
2188 __ffs_data_do_entity, &helper);
2189 if (ret < 0)
2190 goto error;
2191 if (!ffs->eps_count && !ffs->interfaces_count) {
2192 ffs->eps_count = helper.eps_count;
2193 ffs->interfaces_count = helper.interfaces_count;
2194 } else {
2195 if (ffs->eps_count != helper.eps_count) {
2196 ret = -EINVAL;
2197 goto error;
2198 }
2199 if (ffs->interfaces_count != helper.interfaces_count) {
2200 ret = -EINVAL;
2201 goto error;
2202 }
2203 }
2204 data += ret;
2205 len -= ret;
2206 }
2207 if (os_descs_count) {
2208 ret = ffs_do_os_descs(os_descs_count, data, len,
2209 __ffs_data_do_os_desc, ffs);
2210 if (ret < 0)
2211 goto error;
2212 data += ret;
2213 len -= ret;
2214 }
2215
2216 if (raw_descs == data || len) {
2217 ret = -EINVAL;
2218 goto error;
2219 }
2220
2221 ffs->raw_descs_data = _data;
2222 ffs->raw_descs = raw_descs;
2223 ffs->raw_descs_length = data - raw_descs;
2224 ffs->fs_descs_count = counts[0];
2225 ffs->hs_descs_count = counts[1];
2226 ffs->ss_descs_count = counts[2];
2227 ffs->ms_os_descs_count = os_descs_count;
2228
2229 return 0;
2230
2231 error:
2232 kfree(_data);
2233 return ret;
2234 }
2235
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2236 static int __ffs_data_got_strings(struct ffs_data *ffs,
2237 char *const _data, size_t len)
2238 {
2239 u32 str_count, needed_count, lang_count;
2240 struct usb_gadget_strings **stringtabs, *t;
2241 struct usb_string *strings, *s;
2242 const char *data = _data;
2243
2244 ENTER();
2245
2246 if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2247 get_unaligned_le32(data + 4) != len))
2248 goto error;
2249 str_count = get_unaligned_le32(data + 8);
2250 lang_count = get_unaligned_le32(data + 12);
2251
2252 /* if one is zero the other must be zero */
2253 if (unlikely(!str_count != !lang_count))
2254 goto error;
2255
2256 /* Do we have at least as many strings as descriptors need? */
2257 needed_count = ffs->strings_count;
2258 if (unlikely(str_count < needed_count))
2259 goto error;
2260
2261 /*
2262 * If we don't need any strings just return and free all
2263 * memory.
2264 */
2265 if (!needed_count) {
2266 kfree(_data);
2267 return 0;
2268 }
2269
2270 /* Allocate everything in one chunk so there's less maintenance. */
2271 {
2272 unsigned i = 0;
2273 vla_group(d);
2274 vla_item(d, struct usb_gadget_strings *, stringtabs,
2275 lang_count + 1);
2276 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2277 vla_item(d, struct usb_string, strings,
2278 lang_count*(needed_count+1));
2279
2280 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2281
2282 if (unlikely(!vlabuf)) {
2283 kfree(_data);
2284 return -ENOMEM;
2285 }
2286
2287 /* Initialize the VLA pointers */
2288 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2289 t = vla_ptr(vlabuf, d, stringtab);
2290 i = lang_count;
2291 do {
2292 *stringtabs++ = t++;
2293 } while (--i);
2294 *stringtabs = NULL;
2295
2296 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2297 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2298 t = vla_ptr(vlabuf, d, stringtab);
2299 s = vla_ptr(vlabuf, d, strings);
2300 strings = s;
2301 }
2302
2303 /* For each language */
2304 data += 16;
2305 len -= 16;
2306
2307 do { /* lang_count > 0 so we can use do-while */
2308 unsigned needed = needed_count;
2309
2310 if (unlikely(len < 3))
2311 goto error_free;
2312 t->language = get_unaligned_le16(data);
2313 t->strings = s;
2314 ++t;
2315
2316 data += 2;
2317 len -= 2;
2318
2319 /* For each string */
2320 do { /* str_count > 0 so we can use do-while */
2321 size_t length = strnlen(data, len);
2322
2323 if (unlikely(length == len))
2324 goto error_free;
2325
2326 /*
2327 * User may provide more strings then we need,
2328 * if that's the case we simply ignore the
2329 * rest
2330 */
2331 if (likely(needed)) {
2332 /*
2333 * s->id will be set while adding
2334 * function to configuration so for
2335 * now just leave garbage here.
2336 */
2337 s->s = data;
2338 --needed;
2339 ++s;
2340 }
2341
2342 data += length + 1;
2343 len -= length + 1;
2344 } while (--str_count);
2345
2346 s->id = 0; /* terminator */
2347 s->s = NULL;
2348 ++s;
2349
2350 } while (--lang_count);
2351
2352 /* Some garbage left? */
2353 if (unlikely(len))
2354 goto error_free;
2355
2356 /* Done! */
2357 ffs->stringtabs = stringtabs;
2358 ffs->raw_strings = _data;
2359
2360 return 0;
2361
2362 error_free:
2363 kfree(stringtabs);
2364 error:
2365 kfree(_data);
2366 return -EINVAL;
2367 }
2368
2369
2370 /* Events handling and management *******************************************/
2371
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2372 static void __ffs_event_add(struct ffs_data *ffs,
2373 enum usb_functionfs_event_type type)
2374 {
2375 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2376 int neg = 0;
2377
2378 /*
2379 * Abort any unhandled setup
2380 *
2381 * We do not need to worry about some cmpxchg() changing value
2382 * of ffs->setup_state without holding the lock because when
2383 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2384 * the source does nothing.
2385 */
2386 if (ffs->setup_state == FFS_SETUP_PENDING)
2387 ffs->setup_state = FFS_SETUP_CANCELLED;
2388
2389 /*
2390 * Logic of this function guarantees that there are at most four pending
2391 * evens on ffs->ev.types queue. This is important because the queue
2392 * has space for four elements only and __ffs_ep0_read_events function
2393 * depends on that limit as well. If more event types are added, those
2394 * limits have to be revisited or guaranteed to still hold.
2395 */
2396 switch (type) {
2397 case FUNCTIONFS_RESUME:
2398 rem_type2 = FUNCTIONFS_SUSPEND;
2399 /* FALL THROUGH */
2400 case FUNCTIONFS_SUSPEND:
2401 case FUNCTIONFS_SETUP:
2402 rem_type1 = type;
2403 /* Discard all similar events */
2404 break;
2405
2406 case FUNCTIONFS_BIND:
2407 case FUNCTIONFS_UNBIND:
2408 case FUNCTIONFS_DISABLE:
2409 case FUNCTIONFS_ENABLE:
2410 /* Discard everything other then power management. */
2411 rem_type1 = FUNCTIONFS_SUSPEND;
2412 rem_type2 = FUNCTIONFS_RESUME;
2413 neg = 1;
2414 break;
2415
2416 default:
2417 WARN(1, "%d: unknown event, this should not happen\n", type);
2418 return;
2419 }
2420
2421 {
2422 u8 *ev = ffs->ev.types, *out = ev;
2423 unsigned n = ffs->ev.count;
2424 for (; n; --n, ++ev)
2425 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2426 *out++ = *ev;
2427 else
2428 pr_vdebug("purging event %d\n", *ev);
2429 ffs->ev.count = out - ffs->ev.types;
2430 }
2431
2432 pr_vdebug("adding event %d\n", type);
2433 ffs->ev.types[ffs->ev.count++] = type;
2434 wake_up_locked(&ffs->ev.waitq);
2435 if (ffs->ffs_eventfd)
2436 eventfd_signal(ffs->ffs_eventfd, 1);
2437 }
2438
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2439 static void ffs_event_add(struct ffs_data *ffs,
2440 enum usb_functionfs_event_type type)
2441 {
2442 unsigned long flags;
2443 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2444 __ffs_event_add(ffs, type);
2445 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2446 }
2447
2448 /* Bind/unbind USB function hooks *******************************************/
2449
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2450 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2451 {
2452 int i;
2453
2454 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2455 if (ffs->eps_addrmap[i] == endpoint_address)
2456 return i;
2457 return -ENOENT;
2458 }
2459
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2460 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2461 struct usb_descriptor_header *desc,
2462 void *priv)
2463 {
2464 struct usb_endpoint_descriptor *ds = (void *)desc;
2465 struct ffs_function *func = priv;
2466 struct ffs_ep *ffs_ep;
2467 unsigned ep_desc_id;
2468 int idx;
2469 static const char *speed_names[] = { "full", "high", "super" };
2470
2471 if (type != FFS_DESCRIPTOR)
2472 return 0;
2473
2474 /*
2475 * If ss_descriptors is not NULL, we are reading super speed
2476 * descriptors; if hs_descriptors is not NULL, we are reading high
2477 * speed descriptors; otherwise, we are reading full speed
2478 * descriptors.
2479 */
2480 if (func->function.ss_descriptors) {
2481 ep_desc_id = 2;
2482 func->function.ss_descriptors[(long)valuep] = desc;
2483 } else if (func->function.hs_descriptors) {
2484 ep_desc_id = 1;
2485 func->function.hs_descriptors[(long)valuep] = desc;
2486 } else {
2487 ep_desc_id = 0;
2488 func->function.fs_descriptors[(long)valuep] = desc;
2489 }
2490
2491 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2492 return 0;
2493
2494 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2495 if (idx < 0)
2496 return idx;
2497
2498 ffs_ep = func->eps + idx;
2499
2500 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2501 pr_err("two %sspeed descriptors for EP %d\n",
2502 speed_names[ep_desc_id],
2503 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2504 return -EINVAL;
2505 }
2506 ffs_ep->descs[ep_desc_id] = ds;
2507
2508 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2509 if (ffs_ep->ep) {
2510 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2511 if (!ds->wMaxPacketSize)
2512 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2513 } else {
2514 struct usb_request *req;
2515 struct usb_ep *ep;
2516 u8 bEndpointAddress;
2517
2518 /*
2519 * We back up bEndpointAddress because autoconfig overwrites
2520 * it with physical endpoint address.
2521 */
2522 bEndpointAddress = ds->bEndpointAddress;
2523 pr_vdebug("autoconfig\n");
2524 ep = usb_ep_autoconfig(func->gadget, ds);
2525 if (unlikely(!ep))
2526 return -ENOTSUPP;
2527 ep->driver_data = func->eps + idx;
2528
2529 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2530 if (unlikely(!req))
2531 return -ENOMEM;
2532
2533 ffs_ep->ep = ep;
2534 ffs_ep->req = req;
2535 func->eps_revmap[ds->bEndpointAddress &
2536 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2537 /*
2538 * If we use virtual address mapping, we restore
2539 * original bEndpointAddress value.
2540 */
2541 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2542 ds->bEndpointAddress = bEndpointAddress;
2543 }
2544 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2545
2546 return 0;
2547 }
2548
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2549 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2550 struct usb_descriptor_header *desc,
2551 void *priv)
2552 {
2553 struct ffs_function *func = priv;
2554 unsigned idx;
2555 u8 newValue;
2556
2557 switch (type) {
2558 default:
2559 case FFS_DESCRIPTOR:
2560 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2561 return 0;
2562
2563 case FFS_INTERFACE:
2564 idx = *valuep;
2565 if (func->interfaces_nums[idx] < 0) {
2566 int id = usb_interface_id(func->conf, &func->function);
2567 if (unlikely(id < 0))
2568 return id;
2569 func->interfaces_nums[idx] = id;
2570 }
2571 newValue = func->interfaces_nums[idx];
2572 break;
2573
2574 case FFS_STRING:
2575 /* String' IDs are allocated when fsf_data is bound to cdev */
2576 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2577 break;
2578
2579 case FFS_ENDPOINT:
2580 /*
2581 * USB_DT_ENDPOINT are handled in
2582 * __ffs_func_bind_do_descs().
2583 */
2584 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2585 return 0;
2586
2587 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2588 if (unlikely(!func->eps[idx].ep))
2589 return -EINVAL;
2590
2591 {
2592 struct usb_endpoint_descriptor **descs;
2593 descs = func->eps[idx].descs;
2594 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2595 }
2596 break;
2597 }
2598
2599 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2600 *valuep = newValue;
2601 return 0;
2602 }
2603
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2604 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2605 struct usb_os_desc_header *h, void *data,
2606 unsigned len, void *priv)
2607 {
2608 struct ffs_function *func = priv;
2609 u8 length = 0;
2610
2611 switch (type) {
2612 case FFS_OS_DESC_EXT_COMPAT: {
2613 struct usb_ext_compat_desc *desc = data;
2614 struct usb_os_desc_table *t;
2615
2616 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2617 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2618 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2619 ARRAY_SIZE(desc->CompatibleID) +
2620 ARRAY_SIZE(desc->SubCompatibleID));
2621 length = sizeof(*desc);
2622 }
2623 break;
2624 case FFS_OS_DESC_EXT_PROP: {
2625 struct usb_ext_prop_desc *desc = data;
2626 struct usb_os_desc_table *t;
2627 struct usb_os_desc_ext_prop *ext_prop;
2628 char *ext_prop_name;
2629 char *ext_prop_data;
2630
2631 t = &func->function.os_desc_table[h->interface];
2632 t->if_id = func->interfaces_nums[h->interface];
2633
2634 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2635 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2636
2637 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2638 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2639 ext_prop->data_len = le32_to_cpu(*(u32 *)
2640 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2641 length = ext_prop->name_len + ext_prop->data_len + 14;
2642
2643 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2644 func->ffs->ms_os_descs_ext_prop_name_avail +=
2645 ext_prop->name_len;
2646
2647 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2648 func->ffs->ms_os_descs_ext_prop_data_avail +=
2649 ext_prop->data_len;
2650 memcpy(ext_prop_data,
2651 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2652 ext_prop->data_len);
2653 /* unicode data reported to the host as "WCHAR"s */
2654 switch (ext_prop->type) {
2655 case USB_EXT_PROP_UNICODE:
2656 case USB_EXT_PROP_UNICODE_ENV:
2657 case USB_EXT_PROP_UNICODE_LINK:
2658 case USB_EXT_PROP_UNICODE_MULTI:
2659 ext_prop->data_len *= 2;
2660 break;
2661 }
2662 ext_prop->data = ext_prop_data;
2663
2664 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2665 ext_prop->name_len);
2666 /* property name reported to the host as "WCHAR"s */
2667 ext_prop->name_len *= 2;
2668 ext_prop->name = ext_prop_name;
2669
2670 t->os_desc->ext_prop_len +=
2671 ext_prop->name_len + ext_prop->data_len + 14;
2672 ++t->os_desc->ext_prop_count;
2673 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2674 }
2675 break;
2676 default:
2677 pr_vdebug("unknown descriptor: %d\n", type);
2678 }
2679
2680 return length;
2681 }
2682
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)2683 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2684 struct usb_configuration *c)
2685 {
2686 struct ffs_function *func = ffs_func_from_usb(f);
2687 struct f_fs_opts *ffs_opts =
2688 container_of(f->fi, struct f_fs_opts, func_inst);
2689 int ret;
2690
2691 ENTER();
2692
2693 /*
2694 * Legacy gadget triggers binding in functionfs_ready_callback,
2695 * which already uses locking; taking the same lock here would
2696 * cause a deadlock.
2697 *
2698 * Configfs-enabled gadgets however do need ffs_dev_lock.
2699 */
2700 if (!ffs_opts->no_configfs)
2701 ffs_dev_lock();
2702 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2703 func->ffs = ffs_opts->dev->ffs_data;
2704 if (!ffs_opts->no_configfs)
2705 ffs_dev_unlock();
2706 if (ret)
2707 return ERR_PTR(ret);
2708
2709 func->conf = c;
2710 func->gadget = c->cdev->gadget;
2711
2712 /*
2713 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2714 * configurations are bound in sequence with list_for_each_entry,
2715 * in each configuration its functions are bound in sequence
2716 * with list_for_each_entry, so we assume no race condition
2717 * with regard to ffs_opts->bound access
2718 */
2719 if (!ffs_opts->refcnt) {
2720 ret = functionfs_bind(func->ffs, c->cdev);
2721 if (ret)
2722 return ERR_PTR(ret);
2723 }
2724 ffs_opts->refcnt++;
2725 func->function.strings = func->ffs->stringtabs;
2726
2727 return ffs_opts;
2728 }
2729
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2730 static int _ffs_func_bind(struct usb_configuration *c,
2731 struct usb_function *f)
2732 {
2733 struct ffs_function *func = ffs_func_from_usb(f);
2734 struct ffs_data *ffs = func->ffs;
2735
2736 const int full = !!func->ffs->fs_descs_count;
2737 const int high = gadget_is_dualspeed(func->gadget) &&
2738 func->ffs->hs_descs_count;
2739 const int super = gadget_is_superspeed(func->gadget) &&
2740 func->ffs->ss_descs_count;
2741
2742 int fs_len, hs_len, ss_len, ret, i;
2743
2744 /* Make it a single chunk, less management later on */
2745 vla_group(d);
2746 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2747 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2748 full ? ffs->fs_descs_count + 1 : 0);
2749 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2750 high ? ffs->hs_descs_count + 1 : 0);
2751 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2752 super ? ffs->ss_descs_count + 1 : 0);
2753 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2754 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2755 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2756 vla_item_with_sz(d, char[16], ext_compat,
2757 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2758 vla_item_with_sz(d, struct usb_os_desc, os_desc,
2759 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2760 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2761 ffs->ms_os_descs_ext_prop_count);
2762 vla_item_with_sz(d, char, ext_prop_name,
2763 ffs->ms_os_descs_ext_prop_name_len);
2764 vla_item_with_sz(d, char, ext_prop_data,
2765 ffs->ms_os_descs_ext_prop_data_len);
2766 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2767 char *vlabuf;
2768
2769 ENTER();
2770
2771 /* Has descriptors only for speeds gadget does not support */
2772 if (unlikely(!(full | high | super)))
2773 return -ENOTSUPP;
2774
2775 /* Allocate a single chunk, less management later on */
2776 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2777 if (unlikely(!vlabuf))
2778 return -ENOMEM;
2779
2780 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2781 ffs->ms_os_descs_ext_prop_name_avail =
2782 vla_ptr(vlabuf, d, ext_prop_name);
2783 ffs->ms_os_descs_ext_prop_data_avail =
2784 vla_ptr(vlabuf, d, ext_prop_data);
2785
2786 /* Copy descriptors */
2787 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2788 ffs->raw_descs_length);
2789
2790 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2791 for (ret = ffs->eps_count; ret; --ret) {
2792 struct ffs_ep *ptr;
2793
2794 ptr = vla_ptr(vlabuf, d, eps);
2795 ptr[ret].num = -1;
2796 }
2797
2798 /* Save pointers
2799 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2800 */
2801 func->eps = vla_ptr(vlabuf, d, eps);
2802 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2803
2804 /*
2805 * Go through all the endpoint descriptors and allocate
2806 * endpoints first, so that later we can rewrite the endpoint
2807 * numbers without worrying that it may be described later on.
2808 */
2809 if (likely(full)) {
2810 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2811 fs_len = ffs_do_descs(ffs->fs_descs_count,
2812 vla_ptr(vlabuf, d, raw_descs),
2813 d_raw_descs__sz,
2814 __ffs_func_bind_do_descs, func);
2815 if (unlikely(fs_len < 0)) {
2816 ret = fs_len;
2817 goto error;
2818 }
2819 } else {
2820 fs_len = 0;
2821 }
2822
2823 if (likely(high)) {
2824 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2825 hs_len = ffs_do_descs(ffs->hs_descs_count,
2826 vla_ptr(vlabuf, d, raw_descs) + fs_len,
2827 d_raw_descs__sz - fs_len,
2828 __ffs_func_bind_do_descs, func);
2829 if (unlikely(hs_len < 0)) {
2830 ret = hs_len;
2831 goto error;
2832 }
2833 } else {
2834 hs_len = 0;
2835 }
2836
2837 if (likely(super)) {
2838 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2839 ss_len = ffs_do_descs(ffs->ss_descs_count,
2840 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2841 d_raw_descs__sz - fs_len - hs_len,
2842 __ffs_func_bind_do_descs, func);
2843 if (unlikely(ss_len < 0)) {
2844 ret = ss_len;
2845 goto error;
2846 }
2847 } else {
2848 ss_len = 0;
2849 }
2850
2851 /*
2852 * Now handle interface numbers allocation and interface and
2853 * endpoint numbers rewriting. We can do that in one go
2854 * now.
2855 */
2856 ret = ffs_do_descs(ffs->fs_descs_count +
2857 (high ? ffs->hs_descs_count : 0) +
2858 (super ? ffs->ss_descs_count : 0),
2859 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2860 __ffs_func_bind_do_nums, func);
2861 if (unlikely(ret < 0))
2862 goto error;
2863
2864 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2865 if (c->cdev->use_os_string)
2866 for (i = 0; i < ffs->interfaces_count; ++i) {
2867 struct usb_os_desc *desc;
2868
2869 desc = func->function.os_desc_table[i].os_desc =
2870 vla_ptr(vlabuf, d, os_desc) +
2871 i * sizeof(struct usb_os_desc);
2872 desc->ext_compat_id =
2873 vla_ptr(vlabuf, d, ext_compat) + i * 16;
2874 INIT_LIST_HEAD(&desc->ext_prop);
2875 }
2876 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2877 vla_ptr(vlabuf, d, raw_descs) +
2878 fs_len + hs_len + ss_len,
2879 d_raw_descs__sz - fs_len - hs_len - ss_len,
2880 __ffs_func_bind_do_os_desc, func);
2881 if (unlikely(ret < 0))
2882 goto error;
2883 func->function.os_desc_n =
2884 c->cdev->use_os_string ? ffs->interfaces_count : 0;
2885
2886 /* And we're done */
2887 ffs_event_add(ffs, FUNCTIONFS_BIND);
2888 return 0;
2889
2890 error:
2891 /* XXX Do we need to release all claimed endpoints here? */
2892 return ret;
2893 }
2894
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2895 static int ffs_func_bind(struct usb_configuration *c,
2896 struct usb_function *f)
2897 {
2898 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2899 struct ffs_function *func = ffs_func_from_usb(f);
2900 int ret;
2901
2902 if (IS_ERR(ffs_opts))
2903 return PTR_ERR(ffs_opts);
2904
2905 ret = _ffs_func_bind(c, f);
2906 if (ret && !--ffs_opts->refcnt)
2907 functionfs_unbind(func->ffs);
2908
2909 return ret;
2910 }
2911
2912
2913 /* Other USB function hooks *************************************************/
2914
ffs_reset_work(struct work_struct * work)2915 static void ffs_reset_work(struct work_struct *work)
2916 {
2917 struct ffs_data *ffs = container_of(work,
2918 struct ffs_data, reset_work);
2919 ffs_data_reset(ffs);
2920 }
2921
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)2922 static int ffs_func_set_alt(struct usb_function *f,
2923 unsigned interface, unsigned alt)
2924 {
2925 struct ffs_function *func = ffs_func_from_usb(f);
2926 struct ffs_data *ffs = func->ffs;
2927 int ret = 0, intf;
2928
2929 if (alt != (unsigned)-1) {
2930 intf = ffs_func_revmap_intf(func, interface);
2931 if (unlikely(intf < 0))
2932 return intf;
2933 }
2934
2935 if (ffs->func)
2936 ffs_func_eps_disable(ffs->func);
2937
2938 if (ffs->state == FFS_DEACTIVATED) {
2939 ffs->state = FFS_CLOSING;
2940 INIT_WORK(&ffs->reset_work, ffs_reset_work);
2941 schedule_work(&ffs->reset_work);
2942 return -ENODEV;
2943 }
2944
2945 if (ffs->state != FFS_ACTIVE)
2946 return -ENODEV;
2947
2948 if (alt == (unsigned)-1) {
2949 ffs->func = NULL;
2950 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2951 return 0;
2952 }
2953
2954 ffs->func = func;
2955 ret = ffs_func_eps_enable(func);
2956 if (likely(ret >= 0))
2957 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2958 return ret;
2959 }
2960
ffs_func_disable(struct usb_function * f)2961 static void ffs_func_disable(struct usb_function *f)
2962 {
2963 ffs_func_set_alt(f, 0, (unsigned)-1);
2964 }
2965
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)2966 static int ffs_func_setup(struct usb_function *f,
2967 const struct usb_ctrlrequest *creq)
2968 {
2969 struct ffs_function *func = ffs_func_from_usb(f);
2970 struct ffs_data *ffs = func->ffs;
2971 unsigned long flags;
2972 int ret;
2973
2974 ENTER();
2975
2976 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2977 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
2978 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
2979 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
2980 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
2981
2982 /*
2983 * Most requests directed to interface go through here
2984 * (notable exceptions are set/get interface) so we need to
2985 * handle them. All other either handled by composite or
2986 * passed to usb_configuration->setup() (if one is set). No
2987 * matter, we will handle requests directed to endpoint here
2988 * as well (as it's straightforward) but what to do with any
2989 * other request?
2990 */
2991 if (ffs->state != FFS_ACTIVE)
2992 return -ENODEV;
2993
2994 switch (creq->bRequestType & USB_RECIP_MASK) {
2995 case USB_RECIP_INTERFACE:
2996 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2997 if (unlikely(ret < 0))
2998 return ret;
2999 break;
3000
3001 case USB_RECIP_ENDPOINT:
3002 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3003 if (unlikely(ret < 0))
3004 return ret;
3005 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3006 ret = func->ffs->eps_addrmap[ret];
3007 break;
3008
3009 default:
3010 return -EOPNOTSUPP;
3011 }
3012
3013 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3014 ffs->ev.setup = *creq;
3015 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3016 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3017 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3018
3019 return 0;
3020 }
3021
ffs_func_suspend(struct usb_function * f)3022 static void ffs_func_suspend(struct usb_function *f)
3023 {
3024 ENTER();
3025 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3026 }
3027
ffs_func_resume(struct usb_function * f)3028 static void ffs_func_resume(struct usb_function *f)
3029 {
3030 ENTER();
3031 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3032 }
3033
3034
3035 /* Endpoint and interface numbers reverse mapping ***************************/
3036
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3037 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3038 {
3039 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3040 return num ? num : -EDOM;
3041 }
3042
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3043 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3044 {
3045 short *nums = func->interfaces_nums;
3046 unsigned count = func->ffs->interfaces_count;
3047
3048 for (; count; --count, ++nums) {
3049 if (*nums >= 0 && *nums == intf)
3050 return nums - func->interfaces_nums;
3051 }
3052
3053 return -EDOM;
3054 }
3055
3056
3057 /* Devices management *******************************************************/
3058
3059 static LIST_HEAD(ffs_devices);
3060
_ffs_do_find_dev(const char * name)3061 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3062 {
3063 struct ffs_dev *dev;
3064
3065 list_for_each_entry(dev, &ffs_devices, entry) {
3066 if (!dev->name || !name)
3067 continue;
3068 if (strcmp(dev->name, name) == 0)
3069 return dev;
3070 }
3071
3072 return NULL;
3073 }
3074
3075 /*
3076 * ffs_lock must be taken by the caller of this function
3077 */
_ffs_get_single_dev(void)3078 static struct ffs_dev *_ffs_get_single_dev(void)
3079 {
3080 struct ffs_dev *dev;
3081
3082 if (list_is_singular(&ffs_devices)) {
3083 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3084 if (dev->single)
3085 return dev;
3086 }
3087
3088 return NULL;
3089 }
3090
3091 /*
3092 * ffs_lock must be taken by the caller of this function
3093 */
_ffs_find_dev(const char * name)3094 static struct ffs_dev *_ffs_find_dev(const char *name)
3095 {
3096 struct ffs_dev *dev;
3097
3098 dev = _ffs_get_single_dev();
3099 if (dev)
3100 return dev;
3101
3102 return _ffs_do_find_dev(name);
3103 }
3104
3105 /* Configfs support *********************************************************/
3106
to_ffs_opts(struct config_item * item)3107 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3108 {
3109 return container_of(to_config_group(item), struct f_fs_opts,
3110 func_inst.group);
3111 }
3112
ffs_attr_release(struct config_item * item)3113 static void ffs_attr_release(struct config_item *item)
3114 {
3115 struct f_fs_opts *opts = to_ffs_opts(item);
3116
3117 usb_put_function_instance(&opts->func_inst);
3118 }
3119
3120 static struct configfs_item_operations ffs_item_ops = {
3121 .release = ffs_attr_release,
3122 };
3123
3124 static struct config_item_type ffs_func_type = {
3125 .ct_item_ops = &ffs_item_ops,
3126 .ct_owner = THIS_MODULE,
3127 };
3128
3129
3130 /* Function registration interface ******************************************/
3131
ffs_free_inst(struct usb_function_instance * f)3132 static void ffs_free_inst(struct usb_function_instance *f)
3133 {
3134 struct f_fs_opts *opts;
3135
3136 opts = to_f_fs_opts(f);
3137 ffs_dev_lock();
3138 _ffs_free_dev(opts->dev);
3139 ffs_dev_unlock();
3140 kfree(opts);
3141 }
3142
3143 #define MAX_INST_NAME_LEN 40
3144
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3145 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3146 {
3147 struct f_fs_opts *opts;
3148 char *ptr;
3149 const char *tmp;
3150 int name_len, ret;
3151
3152 name_len = strlen(name) + 1;
3153 if (name_len > MAX_INST_NAME_LEN)
3154 return -ENAMETOOLONG;
3155
3156 ptr = kstrndup(name, name_len, GFP_KERNEL);
3157 if (!ptr)
3158 return -ENOMEM;
3159
3160 opts = to_f_fs_opts(fi);
3161 tmp = NULL;
3162
3163 ffs_dev_lock();
3164
3165 tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3166 ret = _ffs_name_dev(opts->dev, ptr);
3167 if (ret) {
3168 kfree(ptr);
3169 ffs_dev_unlock();
3170 return ret;
3171 }
3172 opts->dev->name_allocated = true;
3173
3174 ffs_dev_unlock();
3175
3176 kfree(tmp);
3177
3178 return 0;
3179 }
3180
ffs_alloc_inst(void)3181 static struct usb_function_instance *ffs_alloc_inst(void)
3182 {
3183 struct f_fs_opts *opts;
3184 struct ffs_dev *dev;
3185
3186 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3187 if (!opts)
3188 return ERR_PTR(-ENOMEM);
3189
3190 opts->func_inst.set_inst_name = ffs_set_inst_name;
3191 opts->func_inst.free_func_inst = ffs_free_inst;
3192 ffs_dev_lock();
3193 dev = _ffs_alloc_dev();
3194 ffs_dev_unlock();
3195 if (IS_ERR(dev)) {
3196 kfree(opts);
3197 return ERR_CAST(dev);
3198 }
3199 opts->dev = dev;
3200 dev->opts = opts;
3201
3202 config_group_init_type_name(&opts->func_inst.group, "",
3203 &ffs_func_type);
3204 return &opts->func_inst;
3205 }
3206
ffs_free(struct usb_function * f)3207 static void ffs_free(struct usb_function *f)
3208 {
3209 kfree(ffs_func_from_usb(f));
3210 }
3211
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3212 static void ffs_func_unbind(struct usb_configuration *c,
3213 struct usb_function *f)
3214 {
3215 struct ffs_function *func = ffs_func_from_usb(f);
3216 struct ffs_data *ffs = func->ffs;
3217 struct f_fs_opts *opts =
3218 container_of(f->fi, struct f_fs_opts, func_inst);
3219 struct ffs_ep *ep = func->eps;
3220 unsigned count = ffs->eps_count;
3221 unsigned long flags;
3222
3223 ENTER();
3224 if (ffs->func == func) {
3225 ffs_func_eps_disable(func);
3226 ffs->func = NULL;
3227 }
3228
3229 if (!--opts->refcnt)
3230 functionfs_unbind(ffs);
3231
3232 /* cleanup after autoconfig */
3233 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3234 do {
3235 if (ep->ep && ep->req)
3236 usb_ep_free_request(ep->ep, ep->req);
3237 ep->req = NULL;
3238 ++ep;
3239 } while (--count);
3240 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3241 kfree(func->eps);
3242 func->eps = NULL;
3243 /*
3244 * eps, descriptors and interfaces_nums are allocated in the
3245 * same chunk so only one free is required.
3246 */
3247 func->function.fs_descriptors = NULL;
3248 func->function.hs_descriptors = NULL;
3249 func->function.ss_descriptors = NULL;
3250 func->interfaces_nums = NULL;
3251
3252 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3253 }
3254
ffs_alloc(struct usb_function_instance * fi)3255 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3256 {
3257 struct ffs_function *func;
3258
3259 ENTER();
3260
3261 func = kzalloc(sizeof(*func), GFP_KERNEL);
3262 if (unlikely(!func))
3263 return ERR_PTR(-ENOMEM);
3264
3265 func->function.name = "Function FS Gadget";
3266
3267 func->function.bind = ffs_func_bind;
3268 func->function.unbind = ffs_func_unbind;
3269 func->function.set_alt = ffs_func_set_alt;
3270 func->function.disable = ffs_func_disable;
3271 func->function.setup = ffs_func_setup;
3272 func->function.suspend = ffs_func_suspend;
3273 func->function.resume = ffs_func_resume;
3274 func->function.free_func = ffs_free;
3275
3276 return &func->function;
3277 }
3278
3279 /*
3280 * ffs_lock must be taken by the caller of this function
3281 */
_ffs_alloc_dev(void)3282 static struct ffs_dev *_ffs_alloc_dev(void)
3283 {
3284 struct ffs_dev *dev;
3285 int ret;
3286
3287 if (_ffs_get_single_dev())
3288 return ERR_PTR(-EBUSY);
3289
3290 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3291 if (!dev)
3292 return ERR_PTR(-ENOMEM);
3293
3294 if (list_empty(&ffs_devices)) {
3295 ret = functionfs_init();
3296 if (ret) {
3297 kfree(dev);
3298 return ERR_PTR(ret);
3299 }
3300 }
3301
3302 list_add(&dev->entry, &ffs_devices);
3303
3304 return dev;
3305 }
3306
3307 /*
3308 * ffs_lock must be taken by the caller of this function
3309 * The caller is responsible for "name" being available whenever f_fs needs it
3310 */
_ffs_name_dev(struct ffs_dev * dev,const char * name)3311 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3312 {
3313 struct ffs_dev *existing;
3314
3315 existing = _ffs_do_find_dev(name);
3316 if (existing)
3317 return -EBUSY;
3318
3319 dev->name = name;
3320
3321 return 0;
3322 }
3323
3324 /*
3325 * The caller is responsible for "name" being available whenever f_fs needs it
3326 */
ffs_name_dev(struct ffs_dev * dev,const char * name)3327 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3328 {
3329 int ret;
3330
3331 ffs_dev_lock();
3332 ret = _ffs_name_dev(dev, name);
3333 ffs_dev_unlock();
3334
3335 return ret;
3336 }
3337 EXPORT_SYMBOL_GPL(ffs_name_dev);
3338
ffs_single_dev(struct ffs_dev * dev)3339 int ffs_single_dev(struct ffs_dev *dev)
3340 {
3341 int ret;
3342
3343 ret = 0;
3344 ffs_dev_lock();
3345
3346 if (!list_is_singular(&ffs_devices))
3347 ret = -EBUSY;
3348 else
3349 dev->single = true;
3350
3351 ffs_dev_unlock();
3352 return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(ffs_single_dev);
3355
3356 /*
3357 * ffs_lock must be taken by the caller of this function
3358 */
_ffs_free_dev(struct ffs_dev * dev)3359 static void _ffs_free_dev(struct ffs_dev *dev)
3360 {
3361 list_del(&dev->entry);
3362 if (dev->name_allocated)
3363 kfree(dev->name);
3364 kfree(dev);
3365 if (list_empty(&ffs_devices))
3366 functionfs_cleanup();
3367 }
3368
ffs_acquire_dev(const char * dev_name)3369 static void *ffs_acquire_dev(const char *dev_name)
3370 {
3371 struct ffs_dev *ffs_dev;
3372
3373 ENTER();
3374 ffs_dev_lock();
3375
3376 ffs_dev = _ffs_find_dev(dev_name);
3377 if (!ffs_dev)
3378 ffs_dev = ERR_PTR(-ENOENT);
3379 else if (ffs_dev->mounted)
3380 ffs_dev = ERR_PTR(-EBUSY);
3381 else if (ffs_dev->ffs_acquire_dev_callback &&
3382 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3383 ffs_dev = ERR_PTR(-ENOENT);
3384 else
3385 ffs_dev->mounted = true;
3386
3387 ffs_dev_unlock();
3388 return ffs_dev;
3389 }
3390
ffs_release_dev(struct ffs_data * ffs_data)3391 static void ffs_release_dev(struct ffs_data *ffs_data)
3392 {
3393 struct ffs_dev *ffs_dev;
3394
3395 ENTER();
3396 ffs_dev_lock();
3397
3398 ffs_dev = ffs_data->private_data;
3399 if (ffs_dev) {
3400 ffs_dev->mounted = false;
3401
3402 if (ffs_dev->ffs_release_dev_callback)
3403 ffs_dev->ffs_release_dev_callback(ffs_dev);
3404 }
3405
3406 ffs_dev_unlock();
3407 }
3408
ffs_ready(struct ffs_data * ffs)3409 static int ffs_ready(struct ffs_data *ffs)
3410 {
3411 struct ffs_dev *ffs_obj;
3412 int ret = 0;
3413
3414 ENTER();
3415 ffs_dev_lock();
3416
3417 ffs_obj = ffs->private_data;
3418 if (!ffs_obj) {
3419 ret = -EINVAL;
3420 goto done;
3421 }
3422 if (WARN_ON(ffs_obj->desc_ready)) {
3423 ret = -EBUSY;
3424 goto done;
3425 }
3426
3427 ffs_obj->desc_ready = true;
3428 ffs_obj->ffs_data = ffs;
3429
3430 if (ffs_obj->ffs_ready_callback) {
3431 ret = ffs_obj->ffs_ready_callback(ffs);
3432 if (ret)
3433 goto done;
3434 }
3435
3436 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3437 done:
3438 ffs_dev_unlock();
3439 return ret;
3440 }
3441
ffs_closed(struct ffs_data * ffs)3442 static void ffs_closed(struct ffs_data *ffs)
3443 {
3444 struct ffs_dev *ffs_obj;
3445 struct f_fs_opts *opts;
3446
3447 ENTER();
3448 ffs_dev_lock();
3449
3450 ffs_obj = ffs->private_data;
3451 if (!ffs_obj)
3452 goto done;
3453
3454 ffs_obj->desc_ready = false;
3455
3456 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3457 ffs_obj->ffs_closed_callback)
3458 ffs_obj->ffs_closed_callback(ffs);
3459
3460 if (ffs_obj->opts)
3461 opts = ffs_obj->opts;
3462 else
3463 goto done;
3464
3465 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3466 || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3467 goto done;
3468
3469 unregister_gadget_item(ffs_obj->opts->
3470 func_inst.group.cg_item.ci_parent->ci_parent);
3471 done:
3472 ffs_dev_unlock();
3473 }
3474
3475 /* Misc helper functions ****************************************************/
3476
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3477 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3478 {
3479 return nonblock
3480 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3481 : mutex_lock_interruptible(mutex);
3482 }
3483
ffs_prepare_buffer(const char __user * buf,size_t len)3484 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3485 {
3486 char *data;
3487
3488 if (unlikely(!len))
3489 return NULL;
3490
3491 data = kmalloc(len, GFP_KERNEL);
3492 if (unlikely(!data))
3493 return ERR_PTR(-ENOMEM);
3494
3495 if (unlikely(copy_from_user(data, buf, len))) {
3496 kfree(data);
3497 return ERR_PTR(-EFAULT);
3498 }
3499
3500 pr_vdebug("Buffer from user space:\n");
3501 ffs_dump_mem("", data, len);
3502
3503 return data;
3504 }
3505
3506 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3507 MODULE_LICENSE("GPL");
3508 MODULE_AUTHOR("Michal Nazarewicz");
3509