1 /*
2  *  linux/drivers/thermal/cpu_cooling.c
3  *
4  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
5  *  Copyright (C) 2012  Amit Daniel <amit.kachhap@linaro.org>
6  *
7  *  Copyright (C) 2014  Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; version 2 of the License.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
33 
34 #include <trace/events/thermal.h>
35 
36 /*
37  * Cooling state <-> CPUFreq frequency
38  *
39  * Cooling states are translated to frequencies throughout this driver and this
40  * is the relation between them.
41  *
42  * Highest cooling state corresponds to lowest possible frequency.
43  *
44  * i.e.
45  *	level 0 --> 1st Max Freq
46  *	level 1 --> 2nd Max Freq
47  *	...
48  */
49 
50 /**
51  * struct power_table - frequency to power conversion
52  * @frequency:	frequency in KHz
53  * @power:	power in mW
54  *
55  * This structure is built when the cooling device registers and helps
56  * in translating frequency to power and viceversa.
57  */
58 struct power_table {
59 	u32 frequency;
60 	u32 power;
61 };
62 
63 /**
64  * struct cpufreq_cooling_device - data for cooling device with cpufreq
65  * @id: unique integer value corresponding to each cpufreq_cooling_device
66  *	registered.
67  * @cool_dev: thermal_cooling_device pointer to keep track of the
68  *	registered cooling device.
69  * @cpufreq_state: integer value representing the current state of cpufreq
70  *	cooling	devices.
71  * @clipped_freq: integer value representing the absolute value of the clipped
72  *	frequency.
73  * @max_level: maximum cooling level. One less than total number of valid
74  *	cpufreq frequencies.
75  * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76  * @node: list_head to link all cpufreq_cooling_device together.
77  * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78  * @time_in_idle: previous reading of the absolute time that this cpu was idle
79  * @time_in_idle_timestamp: wall time of the last invocation of
80  *	get_cpu_idle_time_us()
81  * @dyn_power_table: array of struct power_table for frequency to power
82  *	conversion, sorted in ascending order.
83  * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84  * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85  * @plat_get_static_power: callback to calculate the static power
86  *
87  * This structure is required for keeping information of each registered
88  * cpufreq_cooling_device.
89  */
90 struct cpufreq_cooling_device {
91 	int id;
92 	struct thermal_cooling_device *cool_dev;
93 	unsigned int cpufreq_state;
94 	unsigned int clipped_freq;
95 	unsigned int max_level;
96 	unsigned int *freq_table;	/* In descending order */
97 	struct cpumask allowed_cpus;
98 	struct list_head node;
99 	u32 last_load;
100 	u64 *time_in_idle;
101 	u64 *time_in_idle_timestamp;
102 	struct power_table *dyn_power_table;
103 	int dyn_power_table_entries;
104 	struct device *cpu_dev;
105 	get_static_t plat_get_static_power;
106 };
107 static DEFINE_IDR(cpufreq_idr);
108 static DEFINE_MUTEX(cooling_cpufreq_lock);
109 
110 static unsigned int cpufreq_dev_count;
111 
112 static DEFINE_MUTEX(cooling_list_lock);
113 static LIST_HEAD(cpufreq_dev_list);
114 
115 /**
116  * get_idr - function to get a unique id.
117  * @idr: struct idr * handle used to create a id.
118  * @id: int * value generated by this function.
119  *
120  * This function will populate @id with an unique
121  * id, using the idr API.
122  *
123  * Return: 0 on success, an error code on failure.
124  */
get_idr(struct idr * idr,int * id)125 static int get_idr(struct idr *idr, int *id)
126 {
127 	int ret;
128 
129 	mutex_lock(&cooling_cpufreq_lock);
130 	ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
131 	mutex_unlock(&cooling_cpufreq_lock);
132 	if (unlikely(ret < 0))
133 		return ret;
134 	*id = ret;
135 
136 	return 0;
137 }
138 
139 /**
140  * release_idr - function to free the unique id.
141  * @idr: struct idr * handle used for creating the id.
142  * @id: int value representing the unique id.
143  */
release_idr(struct idr * idr,int id)144 static void release_idr(struct idr *idr, int id)
145 {
146 	mutex_lock(&cooling_cpufreq_lock);
147 	idr_remove(idr, id);
148 	mutex_unlock(&cooling_cpufreq_lock);
149 }
150 
151 /* Below code defines functions to be used for cpufreq as cooling device */
152 
153 /**
154  * get_level: Find the level for a particular frequency
155  * @cpufreq_dev: cpufreq_dev for which the property is required
156  * @freq: Frequency
157  *
158  * Return: level on success, THERMAL_CSTATE_INVALID on error.
159  */
get_level(struct cpufreq_cooling_device * cpufreq_dev,unsigned int freq)160 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 			       unsigned int freq)
162 {
163 	unsigned long level;
164 
165 	for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 		if (freq == cpufreq_dev->freq_table[level])
167 			return level;
168 
169 		if (freq > cpufreq_dev->freq_table[level])
170 			break;
171 	}
172 
173 	return THERMAL_CSTATE_INVALID;
174 }
175 
176 /**
177  * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
178  * @cpu: cpu for which the level is required
179  * @freq: the frequency of interest
180  *
181  * This function will match the cooling level corresponding to the
182  * requested @freq and return it.
183  *
184  * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185  * otherwise.
186  */
cpufreq_cooling_get_level(unsigned int cpu,unsigned int freq)187 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
188 {
189 	struct cpufreq_cooling_device *cpufreq_dev;
190 
191 	mutex_lock(&cooling_list_lock);
192 	list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 		if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
194 			mutex_unlock(&cooling_list_lock);
195 			return get_level(cpufreq_dev, freq);
196 		}
197 	}
198 	mutex_unlock(&cooling_list_lock);
199 
200 	pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
201 	return THERMAL_CSTATE_INVALID;
202 }
203 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
204 
205 /**
206  * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207  * @nb:	struct notifier_block * with callback info.
208  * @event: value showing cpufreq event for which this function invoked.
209  * @data: callback-specific data
210  *
211  * Callback to hijack the notification on cpufreq policy transition.
212  * Every time there is a change in policy, we will intercept and
213  * update the cpufreq policy with thermal constraints.
214  *
215  * Return: 0 (success)
216  */
cpufreq_thermal_notifier(struct notifier_block * nb,unsigned long event,void * data)217 static int cpufreq_thermal_notifier(struct notifier_block *nb,
218 				    unsigned long event, void *data)
219 {
220 	struct cpufreq_policy *policy = data;
221 	unsigned long clipped_freq;
222 	struct cpufreq_cooling_device *cpufreq_dev;
223 
224 	if (event != CPUFREQ_ADJUST)
225 		return NOTIFY_DONE;
226 
227 	mutex_lock(&cooling_list_lock);
228 	list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
229 		if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
230 			continue;
231 
232 		/*
233 		 * policy->max is the maximum allowed frequency defined by user
234 		 * and clipped_freq is the maximum that thermal constraints
235 		 * allow.
236 		 *
237 		 * If clipped_freq is lower than policy->max, then we need to
238 		 * readjust policy->max.
239 		 *
240 		 * But, if clipped_freq is greater than policy->max, we don't
241 		 * need to do anything.
242 		 */
243 		clipped_freq = cpufreq_dev->clipped_freq;
244 
245 		if (policy->max > clipped_freq)
246 			cpufreq_verify_within_limits(policy, 0, clipped_freq);
247 		break;
248 	}
249 	mutex_unlock(&cooling_list_lock);
250 
251 	return NOTIFY_OK;
252 }
253 
254 /**
255  * build_dyn_power_table() - create a dynamic power to frequency table
256  * @cpufreq_device:	the cpufreq cooling device in which to store the table
257  * @capacitance: dynamic power coefficient for these cpus
258  *
259  * Build a dynamic power to frequency table for this cpu and store it
260  * in @cpufreq_device.  This table will be used in cpu_power_to_freq() and
261  * cpu_freq_to_power() to convert between power and frequency
262  * efficiently.  Power is stored in mW, frequency in KHz.  The
263  * resulting table is in ascending order.
264  *
265  * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
266  * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
267  * added/enabled while the function was executing.
268  */
build_dyn_power_table(struct cpufreq_cooling_device * cpufreq_device,u32 capacitance)269 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
270 				 u32 capacitance)
271 {
272 	struct power_table *power_table;
273 	struct dev_pm_opp *opp;
274 	struct device *dev = NULL;
275 	int num_opps = 0, cpu, i, ret = 0;
276 	unsigned long freq;
277 
278 	for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
279 		dev = get_cpu_device(cpu);
280 		if (!dev) {
281 			dev_warn(&cpufreq_device->cool_dev->device,
282 				 "No cpu device for cpu %d\n", cpu);
283 			continue;
284 		}
285 
286 		num_opps = dev_pm_opp_get_opp_count(dev);
287 		if (num_opps > 0)
288 			break;
289 		else if (num_opps < 0)
290 			return num_opps;
291 	}
292 
293 	if (num_opps == 0)
294 		return -EINVAL;
295 
296 	power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
297 	if (!power_table)
298 		return -ENOMEM;
299 
300 	rcu_read_lock();
301 
302 	for (freq = 0, i = 0;
303 	     opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
304 	     freq++, i++) {
305 		u32 freq_mhz, voltage_mv;
306 		u64 power;
307 
308 		if (i >= num_opps) {
309 			rcu_read_unlock();
310 			ret = -EAGAIN;
311 			goto free_power_table;
312 		}
313 
314 		freq_mhz = freq / 1000000;
315 		voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
316 
317 		/*
318 		 * Do the multiplication with MHz and millivolt so as
319 		 * to not overflow.
320 		 */
321 		power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
322 		do_div(power, 1000000000);
323 
324 		/* frequency is stored in power_table in KHz */
325 		power_table[i].frequency = freq / 1000;
326 
327 		/* power is stored in mW */
328 		power_table[i].power = power;
329 	}
330 
331 	rcu_read_unlock();
332 
333 	if (i != num_opps) {
334 		ret = PTR_ERR(opp);
335 		goto free_power_table;
336 	}
337 
338 	cpufreq_device->cpu_dev = dev;
339 	cpufreq_device->dyn_power_table = power_table;
340 	cpufreq_device->dyn_power_table_entries = i;
341 
342 	return 0;
343 
344 free_power_table:
345 	kfree(power_table);
346 
347 	return ret;
348 }
349 
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_device,u32 freq)350 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
351 			     u32 freq)
352 {
353 	int i;
354 	struct power_table *pt = cpufreq_device->dyn_power_table;
355 
356 	for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
357 		if (freq < pt[i].frequency)
358 			break;
359 
360 	return pt[i - 1].power;
361 }
362 
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_device,u32 power)363 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
364 			     u32 power)
365 {
366 	int i;
367 	struct power_table *pt = cpufreq_device->dyn_power_table;
368 
369 	for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
370 		if (power < pt[i].power)
371 			break;
372 
373 	return pt[i - 1].frequency;
374 }
375 
376 /**
377  * get_load() - get load for a cpu since last updated
378  * @cpufreq_device:	&struct cpufreq_cooling_device for this cpu
379  * @cpu:	cpu number
380  * @cpu_idx:	index of the cpu in cpufreq_device->allowed_cpus
381  *
382  * Return: The average load of cpu @cpu in percentage since this
383  * function was last called.
384  */
get_load(struct cpufreq_cooling_device * cpufreq_device,int cpu,int cpu_idx)385 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu,
386 		    int cpu_idx)
387 {
388 	u32 load;
389 	u64 now, now_idle, delta_time, delta_idle;
390 
391 	now_idle = get_cpu_idle_time(cpu, &now, 0);
392 	delta_idle = now_idle - cpufreq_device->time_in_idle[cpu_idx];
393 	delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu_idx];
394 
395 	if (delta_time <= delta_idle)
396 		load = 0;
397 	else
398 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
399 
400 	cpufreq_device->time_in_idle[cpu_idx] = now_idle;
401 	cpufreq_device->time_in_idle_timestamp[cpu_idx] = now;
402 
403 	return load;
404 }
405 
406 /**
407  * get_static_power() - calculate the static power consumed by the cpus
408  * @cpufreq_device:	struct &cpufreq_cooling_device for this cpu cdev
409  * @tz:		thermal zone device in which we're operating
410  * @freq:	frequency in KHz
411  * @power:	pointer in which to store the calculated static power
412  *
413  * Calculate the static power consumed by the cpus described by
414  * @cpu_actor running at frequency @freq.  This function relies on a
415  * platform specific function that should have been provided when the
416  * actor was registered.  If it wasn't, the static power is assumed to
417  * be negligible.  The calculated static power is stored in @power.
418  *
419  * Return: 0 on success, -E* on failure.
420  */
get_static_power(struct cpufreq_cooling_device * cpufreq_device,struct thermal_zone_device * tz,unsigned long freq,u32 * power)421 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
422 			    struct thermal_zone_device *tz, unsigned long freq,
423 			    u32 *power)
424 {
425 	struct dev_pm_opp *opp;
426 	unsigned long voltage;
427 	struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
428 	unsigned long freq_hz = freq * 1000;
429 
430 	if (!cpufreq_device->plat_get_static_power ||
431 	    !cpufreq_device->cpu_dev) {
432 		*power = 0;
433 		return 0;
434 	}
435 
436 	rcu_read_lock();
437 
438 	opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
439 					 true);
440 	voltage = dev_pm_opp_get_voltage(opp);
441 
442 	rcu_read_unlock();
443 
444 	if (voltage == 0) {
445 		dev_warn_ratelimited(cpufreq_device->cpu_dev,
446 				     "Failed to get voltage for frequency %lu: %ld\n",
447 				     freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
448 		return -EINVAL;
449 	}
450 
451 	return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
452 						     voltage, power);
453 }
454 
455 /**
456  * get_dynamic_power() - calculate the dynamic power
457  * @cpufreq_device:	&cpufreq_cooling_device for this cdev
458  * @freq:	current frequency
459  *
460  * Return: the dynamic power consumed by the cpus described by
461  * @cpufreq_device.
462  */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_device,unsigned long freq)463 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
464 			     unsigned long freq)
465 {
466 	u32 raw_cpu_power;
467 
468 	raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
469 	return (raw_cpu_power * cpufreq_device->last_load) / 100;
470 }
471 
472 /* cpufreq cooling device callback functions are defined below */
473 
474 /**
475  * cpufreq_get_max_state - callback function to get the max cooling state.
476  * @cdev: thermal cooling device pointer.
477  * @state: fill this variable with the max cooling state.
478  *
479  * Callback for the thermal cooling device to return the cpufreq
480  * max cooling state.
481  *
482  * Return: 0 on success, an error code otherwise.
483  */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)484 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
485 				 unsigned long *state)
486 {
487 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
488 
489 	*state = cpufreq_device->max_level;
490 	return 0;
491 }
492 
493 /**
494  * cpufreq_get_cur_state - callback function to get the current cooling state.
495  * @cdev: thermal cooling device pointer.
496  * @state: fill this variable with the current cooling state.
497  *
498  * Callback for the thermal cooling device to return the cpufreq
499  * current cooling state.
500  *
501  * Return: 0 on success, an error code otherwise.
502  */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)503 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
504 				 unsigned long *state)
505 {
506 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
507 
508 	*state = cpufreq_device->cpufreq_state;
509 
510 	return 0;
511 }
512 
513 /**
514  * cpufreq_set_cur_state - callback function to set the current cooling state.
515  * @cdev: thermal cooling device pointer.
516  * @state: set this variable to the current cooling state.
517  *
518  * Callback for the thermal cooling device to change the cpufreq
519  * current cooling state.
520  *
521  * Return: 0 on success, an error code otherwise.
522  */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)523 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
524 				 unsigned long state)
525 {
526 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
527 	unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
528 	unsigned int clip_freq;
529 
530 	/* Request state should be less than max_level */
531 	if (WARN_ON(state > cpufreq_device->max_level))
532 		return -EINVAL;
533 
534 	/* Check if the old cooling action is same as new cooling action */
535 	if (cpufreq_device->cpufreq_state == state)
536 		return 0;
537 
538 	clip_freq = cpufreq_device->freq_table[state];
539 	cpufreq_device->cpufreq_state = state;
540 	cpufreq_device->clipped_freq = clip_freq;
541 
542 	cpufreq_update_policy(cpu);
543 
544 	return 0;
545 }
546 
547 /**
548  * cpufreq_get_requested_power() - get the current power
549  * @cdev:	&thermal_cooling_device pointer
550  * @tz:		a valid thermal zone device pointer
551  * @power:	pointer in which to store the resulting power
552  *
553  * Calculate the current power consumption of the cpus in milliwatts
554  * and store it in @power.  This function should actually calculate
555  * the requested power, but it's hard to get the frequency that
556  * cpufreq would have assigned if there were no thermal limits.
557  * Instead, we calculate the current power on the assumption that the
558  * immediate future will look like the immediate past.
559  *
560  * We use the current frequency and the average load since this
561  * function was last called.  In reality, there could have been
562  * multiple opps since this function was last called and that affects
563  * the load calculation.  While it's not perfectly accurate, this
564  * simplification is good enough and works.  REVISIT this, as more
565  * complex code may be needed if experiments show that it's not
566  * accurate enough.
567  *
568  * Return: 0 on success, -E* if getting the static power failed.
569  */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,u32 * power)570 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
571 				       struct thermal_zone_device *tz,
572 				       u32 *power)
573 {
574 	unsigned long freq;
575 	int i = 0, cpu, ret;
576 	u32 static_power, dynamic_power, total_load = 0;
577 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
578 	u32 *load_cpu = NULL;
579 
580 	cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
581 
582 	/*
583 	 * All the CPUs are offline, thus the requested power by
584 	 * the cdev is 0
585 	 */
586 	if (cpu >= nr_cpu_ids) {
587 		*power = 0;
588 		return 0;
589 	}
590 
591 	freq = cpufreq_quick_get(cpu);
592 
593 	if (trace_thermal_power_cpu_get_power_enabled()) {
594 		u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
595 
596 		load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
597 	}
598 
599 	for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
600 		u32 load;
601 
602 		if (cpu_online(cpu))
603 			load = get_load(cpufreq_device, cpu, i);
604 		else
605 			load = 0;
606 
607 		total_load += load;
608 		if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
609 			load_cpu[i] = load;
610 
611 		i++;
612 	}
613 
614 	cpufreq_device->last_load = total_load;
615 
616 	dynamic_power = get_dynamic_power(cpufreq_device, freq);
617 	ret = get_static_power(cpufreq_device, tz, freq, &static_power);
618 	if (ret) {
619 		kfree(load_cpu);
620 		return ret;
621 	}
622 
623 	if (load_cpu) {
624 		trace_thermal_power_cpu_get_power(
625 			&cpufreq_device->allowed_cpus,
626 			freq, load_cpu, i, dynamic_power, static_power);
627 
628 		kfree(load_cpu);
629 	}
630 
631 	*power = static_power + dynamic_power;
632 	return 0;
633 }
634 
635 /**
636  * cpufreq_state2power() - convert a cpu cdev state to power consumed
637  * @cdev:	&thermal_cooling_device pointer
638  * @tz:		a valid thermal zone device pointer
639  * @state:	cooling device state to be converted
640  * @power:	pointer in which to store the resulting power
641  *
642  * Convert cooling device state @state into power consumption in
643  * milliwatts assuming 100% load.  Store the calculated power in
644  * @power.
645  *
646  * Return: 0 on success, -EINVAL if the cooling device state could not
647  * be converted into a frequency or other -E* if there was an error
648  * when calculating the static power.
649  */
cpufreq_state2power(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,unsigned long state,u32 * power)650 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
651 			       struct thermal_zone_device *tz,
652 			       unsigned long state, u32 *power)
653 {
654 	unsigned int freq, num_cpus;
655 	cpumask_t cpumask;
656 	u32 static_power, dynamic_power;
657 	int ret;
658 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
659 
660 	cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
661 	num_cpus = cpumask_weight(&cpumask);
662 
663 	/* None of our cpus are online, so no power */
664 	if (num_cpus == 0) {
665 		*power = 0;
666 		return 0;
667 	}
668 
669 	freq = cpufreq_device->freq_table[state];
670 	if (!freq)
671 		return -EINVAL;
672 
673 	dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
674 	ret = get_static_power(cpufreq_device, tz, freq, &static_power);
675 	if (ret)
676 		return ret;
677 
678 	*power = static_power + dynamic_power;
679 	return 0;
680 }
681 
682 /**
683  * cpufreq_power2state() - convert power to a cooling device state
684  * @cdev:	&thermal_cooling_device pointer
685  * @tz:		a valid thermal zone device pointer
686  * @power:	power in milliwatts to be converted
687  * @state:	pointer in which to store the resulting state
688  *
689  * Calculate a cooling device state for the cpus described by @cdev
690  * that would allow them to consume at most @power mW and store it in
691  * @state.  Note that this calculation depends on external factors
692  * such as the cpu load or the current static power.  Calling this
693  * function with the same power as input can yield different cooling
694  * device states depending on those external factors.
695  *
696  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
697  * the calculated frequency could not be converted to a valid state.
698  * The latter should not happen unless the frequencies available to
699  * cpufreq have changed since the initialization of the cpu cooling
700  * device.
701  */
cpufreq_power2state(struct thermal_cooling_device * cdev,struct thermal_zone_device * tz,u32 power,unsigned long * state)702 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
703 			       struct thermal_zone_device *tz, u32 power,
704 			       unsigned long *state)
705 {
706 	unsigned int cpu, cur_freq, target_freq;
707 	int ret;
708 	s32 dyn_power;
709 	u32 last_load, normalised_power, static_power;
710 	struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
711 
712 	cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
713 
714 	/* None of our cpus are online */
715 	if (cpu >= nr_cpu_ids)
716 		return -ENODEV;
717 
718 	cur_freq = cpufreq_quick_get(cpu);
719 	ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
720 	if (ret)
721 		return ret;
722 
723 	dyn_power = power - static_power;
724 	dyn_power = dyn_power > 0 ? dyn_power : 0;
725 	last_load = cpufreq_device->last_load ?: 1;
726 	normalised_power = (dyn_power * 100) / last_load;
727 	target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
728 
729 	*state = cpufreq_cooling_get_level(cpu, target_freq);
730 	if (*state == THERMAL_CSTATE_INVALID) {
731 		dev_warn_ratelimited(&cdev->device,
732 				     "Failed to convert %dKHz for cpu %d into a cdev state\n",
733 				     target_freq, cpu);
734 		return -EINVAL;
735 	}
736 
737 	trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
738 				      target_freq, *state, power);
739 	return 0;
740 }
741 
742 /* Bind cpufreq callbacks to thermal cooling device ops */
743 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
744 	.get_max_state = cpufreq_get_max_state,
745 	.get_cur_state = cpufreq_get_cur_state,
746 	.set_cur_state = cpufreq_set_cur_state,
747 };
748 
749 /* Notifier for cpufreq policy change */
750 static struct notifier_block thermal_cpufreq_notifier_block = {
751 	.notifier_call = cpufreq_thermal_notifier,
752 };
753 
find_next_max(struct cpufreq_frequency_table * table,unsigned int prev_max)754 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
755 				  unsigned int prev_max)
756 {
757 	struct cpufreq_frequency_table *pos;
758 	unsigned int max = 0;
759 
760 	cpufreq_for_each_valid_entry(pos, table) {
761 		if (pos->frequency > max && pos->frequency < prev_max)
762 			max = pos->frequency;
763 	}
764 
765 	return max;
766 }
767 
768 /**
769  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
770  * @np: a valid struct device_node to the cooling device device tree node
771  * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
772  * Normally this should be same as cpufreq policy->related_cpus.
773  * @capacitance: dynamic power coefficient for these cpus
774  * @plat_static_func: function to calculate the static power consumed by these
775  *                    cpus (optional)
776  *
777  * This interface function registers the cpufreq cooling device with the name
778  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
779  * cooling devices. It also gives the opportunity to link the cooling device
780  * with a device tree node, in order to bind it via the thermal DT code.
781  *
782  * Return: a valid struct thermal_cooling_device pointer on success,
783  * on failure, it returns a corresponding ERR_PTR().
784  */
785 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,const struct cpumask * clip_cpus,u32 capacitance,get_static_t plat_static_func)786 __cpufreq_cooling_register(struct device_node *np,
787 			const struct cpumask *clip_cpus, u32 capacitance,
788 			get_static_t plat_static_func)
789 {
790 	struct thermal_cooling_device *cool_dev;
791 	struct cpufreq_cooling_device *cpufreq_dev;
792 	char dev_name[THERMAL_NAME_LENGTH];
793 	struct cpufreq_frequency_table *pos, *table;
794 	unsigned int freq, i, num_cpus;
795 	int ret;
796 
797 	table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
798 	if (!table) {
799 		pr_debug("%s: CPUFreq table not found\n", __func__);
800 		return ERR_PTR(-EPROBE_DEFER);
801 	}
802 
803 	cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
804 	if (!cpufreq_dev)
805 		return ERR_PTR(-ENOMEM);
806 
807 	num_cpus = cpumask_weight(clip_cpus);
808 	cpufreq_dev->time_in_idle = kcalloc(num_cpus,
809 					    sizeof(*cpufreq_dev->time_in_idle),
810 					    GFP_KERNEL);
811 	if (!cpufreq_dev->time_in_idle) {
812 		cool_dev = ERR_PTR(-ENOMEM);
813 		goto free_cdev;
814 	}
815 
816 	cpufreq_dev->time_in_idle_timestamp =
817 		kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
818 			GFP_KERNEL);
819 	if (!cpufreq_dev->time_in_idle_timestamp) {
820 		cool_dev = ERR_PTR(-ENOMEM);
821 		goto free_time_in_idle;
822 	}
823 
824 	/* Find max levels */
825 	cpufreq_for_each_valid_entry(pos, table)
826 		cpufreq_dev->max_level++;
827 
828 	cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
829 					  cpufreq_dev->max_level, GFP_KERNEL);
830 	if (!cpufreq_dev->freq_table) {
831 		cool_dev = ERR_PTR(-ENOMEM);
832 		goto free_time_in_idle_timestamp;
833 	}
834 
835 	/* max_level is an index, not a counter */
836 	cpufreq_dev->max_level--;
837 
838 	cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
839 
840 	if (capacitance) {
841 		cpufreq_cooling_ops.get_requested_power =
842 			cpufreq_get_requested_power;
843 		cpufreq_cooling_ops.state2power = cpufreq_state2power;
844 		cpufreq_cooling_ops.power2state = cpufreq_power2state;
845 		cpufreq_dev->plat_get_static_power = plat_static_func;
846 
847 		ret = build_dyn_power_table(cpufreq_dev, capacitance);
848 		if (ret) {
849 			cool_dev = ERR_PTR(ret);
850 			goto free_table;
851 		}
852 	}
853 
854 	ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
855 	if (ret) {
856 		cool_dev = ERR_PTR(ret);
857 		goto free_power_table;
858 	}
859 
860 	snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
861 		 cpufreq_dev->id);
862 
863 	cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
864 						      &cpufreq_cooling_ops);
865 	if (IS_ERR(cool_dev))
866 		goto remove_idr;
867 
868 	/* Fill freq-table in descending order of frequencies */
869 	for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
870 		freq = find_next_max(table, freq);
871 		cpufreq_dev->freq_table[i] = freq;
872 
873 		/* Warn for duplicate entries */
874 		if (!freq)
875 			pr_warn("%s: table has duplicate entries\n", __func__);
876 		else
877 			pr_debug("%s: freq:%u KHz\n", __func__, freq);
878 	}
879 
880 	cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
881 	cpufreq_dev->cool_dev = cool_dev;
882 
883 	mutex_lock(&cooling_cpufreq_lock);
884 
885 	mutex_lock(&cooling_list_lock);
886 	list_add(&cpufreq_dev->node, &cpufreq_dev_list);
887 	mutex_unlock(&cooling_list_lock);
888 
889 	/* Register the notifier for first cpufreq cooling device */
890 	if (!cpufreq_dev_count++)
891 		cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
892 					  CPUFREQ_POLICY_NOTIFIER);
893 	mutex_unlock(&cooling_cpufreq_lock);
894 
895 	return cool_dev;
896 
897 remove_idr:
898 	release_idr(&cpufreq_idr, cpufreq_dev->id);
899 free_power_table:
900 	kfree(cpufreq_dev->dyn_power_table);
901 free_table:
902 	kfree(cpufreq_dev->freq_table);
903 free_time_in_idle_timestamp:
904 	kfree(cpufreq_dev->time_in_idle_timestamp);
905 free_time_in_idle:
906 	kfree(cpufreq_dev->time_in_idle);
907 free_cdev:
908 	kfree(cpufreq_dev);
909 
910 	return cool_dev;
911 }
912 
913 /**
914  * cpufreq_cooling_register - function to create cpufreq cooling device.
915  * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
916  *
917  * This interface function registers the cpufreq cooling device with the name
918  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
919  * cooling devices.
920  *
921  * Return: a valid struct thermal_cooling_device pointer on success,
922  * on failure, it returns a corresponding ERR_PTR().
923  */
924 struct thermal_cooling_device *
cpufreq_cooling_register(const struct cpumask * clip_cpus)925 cpufreq_cooling_register(const struct cpumask *clip_cpus)
926 {
927 	return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
928 }
929 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
930 
931 /**
932  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
933  * @np: a valid struct device_node to the cooling device device tree node
934  * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
935  *
936  * This interface function registers the cpufreq cooling device with the name
937  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
938  * cooling devices. Using this API, the cpufreq cooling device will be
939  * linked to the device tree node provided.
940  *
941  * Return: a valid struct thermal_cooling_device pointer on success,
942  * on failure, it returns a corresponding ERR_PTR().
943  */
944 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct device_node * np,const struct cpumask * clip_cpus)945 of_cpufreq_cooling_register(struct device_node *np,
946 			    const struct cpumask *clip_cpus)
947 {
948 	if (!np)
949 		return ERR_PTR(-EINVAL);
950 
951 	return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
952 }
953 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
954 
955 /**
956  * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
957  * @clip_cpus:	cpumask of cpus where the frequency constraints will happen
958  * @capacitance:	dynamic power coefficient for these cpus
959  * @plat_static_func:	function to calculate the static power consumed by these
960  *			cpus (optional)
961  *
962  * This interface function registers the cpufreq cooling device with
963  * the name "thermal-cpufreq-%x".  This api can support multiple
964  * instances of cpufreq cooling devices.  Using this function, the
965  * cooling device will implement the power extensions by using a
966  * simple cpu power model.  The cpus must have registered their OPPs
967  * using the OPP library.
968  *
969  * An optional @plat_static_func may be provided to calculate the
970  * static power consumed by these cpus.  If the platform's static
971  * power consumption is unknown or negligible, make it NULL.
972  *
973  * Return: a valid struct thermal_cooling_device pointer on success,
974  * on failure, it returns a corresponding ERR_PTR().
975  */
976 struct thermal_cooling_device *
cpufreq_power_cooling_register(const struct cpumask * clip_cpus,u32 capacitance,get_static_t plat_static_func)977 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
978 			       get_static_t plat_static_func)
979 {
980 	return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
981 				plat_static_func);
982 }
983 EXPORT_SYMBOL(cpufreq_power_cooling_register);
984 
985 /**
986  * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
987  * @np:	a valid struct device_node to the cooling device device tree node
988  * @clip_cpus:	cpumask of cpus where the frequency constraints will happen
989  * @capacitance:	dynamic power coefficient for these cpus
990  * @plat_static_func:	function to calculate the static power consumed by these
991  *			cpus (optional)
992  *
993  * This interface function registers the cpufreq cooling device with
994  * the name "thermal-cpufreq-%x".  This api can support multiple
995  * instances of cpufreq cooling devices.  Using this API, the cpufreq
996  * cooling device will be linked to the device tree node provided.
997  * Using this function, the cooling device will implement the power
998  * extensions by using a simple cpu power model.  The cpus must have
999  * registered their OPPs using the OPP library.
1000  *
1001  * An optional @plat_static_func may be provided to calculate the
1002  * static power consumed by these cpus.  If the platform's static
1003  * power consumption is unknown or negligible, make it NULL.
1004  *
1005  * Return: a valid struct thermal_cooling_device pointer on success,
1006  * on failure, it returns a corresponding ERR_PTR().
1007  */
1008 struct thermal_cooling_device *
of_cpufreq_power_cooling_register(struct device_node * np,const struct cpumask * clip_cpus,u32 capacitance,get_static_t plat_static_func)1009 of_cpufreq_power_cooling_register(struct device_node *np,
1010 				  const struct cpumask *clip_cpus,
1011 				  u32 capacitance,
1012 				  get_static_t plat_static_func)
1013 {
1014 	if (!np)
1015 		return ERR_PTR(-EINVAL);
1016 
1017 	return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1018 				plat_static_func);
1019 }
1020 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1021 
1022 /**
1023  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1024  * @cdev: thermal cooling device pointer.
1025  *
1026  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1027  */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)1028 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1029 {
1030 	struct cpufreq_cooling_device *cpufreq_dev;
1031 
1032 	if (!cdev)
1033 		return;
1034 
1035 	cpufreq_dev = cdev->devdata;
1036 
1037 	/* Unregister the notifier for the last cpufreq cooling device */
1038 	mutex_lock(&cooling_cpufreq_lock);
1039 	if (!--cpufreq_dev_count)
1040 		cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1041 					    CPUFREQ_POLICY_NOTIFIER);
1042 
1043 	mutex_lock(&cooling_list_lock);
1044 	list_del(&cpufreq_dev->node);
1045 	mutex_unlock(&cooling_list_lock);
1046 
1047 	mutex_unlock(&cooling_cpufreq_lock);
1048 
1049 	thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1050 	release_idr(&cpufreq_idr, cpufreq_dev->id);
1051 	kfree(cpufreq_dev->dyn_power_table);
1052 	kfree(cpufreq_dev->time_in_idle_timestamp);
1053 	kfree(cpufreq_dev->time_in_idle);
1054 	kfree(cpufreq_dev->freq_table);
1055 	kfree(cpufreq_dev);
1056 }
1057 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
1058