1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <asm/uaccess.h>
55 #include <asm/unaligned.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_dbg.h>
60 #include <scsi/scsi_device.h>
61 #include <scsi/scsi_driver.h>
62 #include <scsi/scsi_eh.h>
63 #include <scsi/scsi_host.h>
64 #include <scsi/scsi_ioctl.h>
65 #include <scsi/scsicam.h>
66
67 #include "sd.h"
68 #include "scsi_priv.h"
69 #include "scsi_logging.h"
70
71 MODULE_AUTHOR("Eric Youngdale");
72 MODULE_DESCRIPTION("SCSI disk (sd) driver");
73 MODULE_LICENSE("GPL");
74
75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
94
95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
96 #define SD_MINORS 16
97 #else
98 #define SD_MINORS 0
99 #endif
100
101 static void sd_config_discard(struct scsi_disk *, unsigned int);
102 static void sd_config_write_same(struct scsi_disk *);
103 static int sd_revalidate_disk(struct gendisk *);
104 static void sd_unlock_native_capacity(struct gendisk *disk);
105 static int sd_probe(struct device *);
106 static int sd_remove(struct device *);
107 static void sd_shutdown(struct device *);
108 static int sd_suspend_system(struct device *);
109 static int sd_suspend_runtime(struct device *);
110 static int sd_resume(struct device *);
111 static void sd_rescan(struct device *);
112 static int sd_init_command(struct scsi_cmnd *SCpnt);
113 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
114 static int sd_done(struct scsi_cmnd *);
115 static int sd_eh_action(struct scsi_cmnd *, int);
116 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
117 static void scsi_disk_release(struct device *cdev);
118 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
119 static void sd_print_result(const struct scsi_disk *, const char *, int);
120
121 static DEFINE_SPINLOCK(sd_index_lock);
122 static DEFINE_IDA(sd_index_ida);
123
124 /* This semaphore is used to mediate the 0->1 reference get in the
125 * face of object destruction (i.e. we can't allow a get on an
126 * object after last put) */
127 static DEFINE_MUTEX(sd_ref_mutex);
128
129 static struct kmem_cache *sd_cdb_cache;
130 static mempool_t *sd_cdb_pool;
131
132 static const char *sd_cache_types[] = {
133 "write through", "none", "write back",
134 "write back, no read (daft)"
135 };
136
sd_set_flush_flag(struct scsi_disk * sdkp)137 static void sd_set_flush_flag(struct scsi_disk *sdkp)
138 {
139 unsigned flush = 0;
140
141 if (sdkp->WCE) {
142 flush |= REQ_FLUSH;
143 if (sdkp->DPOFUA)
144 flush |= REQ_FUA;
145 }
146
147 blk_queue_flush(sdkp->disk->queue, flush);
148 }
149
150 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)151 cache_type_store(struct device *dev, struct device_attribute *attr,
152 const char *buf, size_t count)
153 {
154 int i, ct = -1, rcd, wce, sp;
155 struct scsi_disk *sdkp = to_scsi_disk(dev);
156 struct scsi_device *sdp = sdkp->device;
157 char buffer[64];
158 char *buffer_data;
159 struct scsi_mode_data data;
160 struct scsi_sense_hdr sshdr;
161 static const char temp[] = "temporary ";
162 int len;
163
164 if (sdp->type != TYPE_DISK)
165 /* no cache control on RBC devices; theoretically they
166 * can do it, but there's probably so many exceptions
167 * it's not worth the risk */
168 return -EINVAL;
169
170 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
171 buf += sizeof(temp) - 1;
172 sdkp->cache_override = 1;
173 } else {
174 sdkp->cache_override = 0;
175 }
176
177 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
178 len = strlen(sd_cache_types[i]);
179 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
180 buf[len] == '\n') {
181 ct = i;
182 break;
183 }
184 }
185 if (ct < 0)
186 return -EINVAL;
187 rcd = ct & 0x01 ? 1 : 0;
188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189
190 if (sdkp->cache_override) {
191 sdkp->WCE = wce;
192 sdkp->RCD = rcd;
193 sd_set_flush_flag(sdkp);
194 return count;
195 }
196
197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 SD_MAX_RETRIES, &data, NULL))
199 return -EINVAL;
200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 data.block_descriptor_length);
202 buffer_data = buffer + data.header_length +
203 data.block_descriptor_length;
204 buffer_data[2] &= ~0x05;
205 buffer_data[2] |= wce << 2 | rcd;
206 sp = buffer_data[0] & 0x80 ? 1 : 0;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234
235 if (!capable(CAP_SYS_ADMIN))
236 return -EACCES;
237
238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239
240 return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 struct scsi_device *sdp = sdkp->device;
258
259 if (!capable(CAP_SYS_ADMIN))
260 return -EACCES;
261
262 if (sdp->type != TYPE_DISK)
263 return -EINVAL;
264
265 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266
267 return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270
271 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 struct scsi_disk *sdkp = to_scsi_disk(dev);
275 int ct = sdkp->RCD + 2*sdkp->WCE;
276
277 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280
281 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285
286 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289
290 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
297 }
298
299 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304 unsigned int val;
305 int err;
306
307 if (!capable(CAP_SYS_ADMIN))
308 return -EACCES;
309
310 err = kstrtouint(buf, 10, &val);
311
312 if (err)
313 return err;
314
315 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
316 sdkp->protection_type = val;
317
318 return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321
322 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 char *buf)
325 {
326 struct scsi_disk *sdkp = to_scsi_disk(dev);
327 struct scsi_device *sdp = sdkp->device;
328 unsigned int dif, dix;
329
330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332
333 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
334 dif = 0;
335 dix = 1;
336 }
337
338 if (!dif && !dix)
339 return snprintf(buf, 20, "none\n");
340
341 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344
345 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 struct scsi_disk *sdkp = to_scsi_disk(dev);
349
350 return snprintf(buf, 20, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353
354 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 char *buf)
357 {
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363
364 static const char *lbp_mode[] = {
365 [SD_LBP_FULL] = "full",
366 [SD_LBP_UNMAP] = "unmap",
367 [SD_LBP_WS16] = "writesame_16",
368 [SD_LBP_WS10] = "writesame_10",
369 [SD_LBP_ZERO] = "writesame_zero",
370 [SD_LBP_DISABLE] = "disabled",
371 };
372
373 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)374 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
375 char *buf)
376 {
377 struct scsi_disk *sdkp = to_scsi_disk(dev);
378
379 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
380 }
381
382 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)383 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
384 const char *buf, size_t count)
385 {
386 struct scsi_disk *sdkp = to_scsi_disk(dev);
387 struct scsi_device *sdp = sdkp->device;
388
389 if (!capable(CAP_SYS_ADMIN))
390 return -EACCES;
391
392 if (sdp->type != TYPE_DISK)
393 return -EINVAL;
394
395 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
396 sd_config_discard(sdkp, SD_LBP_UNMAP);
397 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
398 sd_config_discard(sdkp, SD_LBP_WS16);
399 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
400 sd_config_discard(sdkp, SD_LBP_WS10);
401 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
402 sd_config_discard(sdkp, SD_LBP_ZERO);
403 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
404 sd_config_discard(sdkp, SD_LBP_DISABLE);
405 else
406 return -EINVAL;
407
408 return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411
412 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)413 max_medium_access_timeouts_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
419 }
420
421 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)422 max_medium_access_timeouts_store(struct device *dev,
423 struct device_attribute *attr, const char *buf,
424 size_t count)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427 int err;
428
429 if (!capable(CAP_SYS_ADMIN))
430 return -EACCES;
431
432 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
433
434 return err ? err : count;
435 }
436 static DEVICE_ATTR_RW(max_medium_access_timeouts);
437
438 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)439 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
440 char *buf)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443
444 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
445 }
446
447 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)448 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
449 const char *buf, size_t count)
450 {
451 struct scsi_disk *sdkp = to_scsi_disk(dev);
452 struct scsi_device *sdp = sdkp->device;
453 unsigned long max;
454 int err;
455
456 if (!capable(CAP_SYS_ADMIN))
457 return -EACCES;
458
459 if (sdp->type != TYPE_DISK)
460 return -EINVAL;
461
462 err = kstrtoul(buf, 10, &max);
463
464 if (err)
465 return err;
466
467 if (max == 0)
468 sdp->no_write_same = 1;
469 else if (max <= SD_MAX_WS16_BLOCKS) {
470 sdp->no_write_same = 0;
471 sdkp->max_ws_blocks = max;
472 }
473
474 sd_config_write_same(sdkp);
475
476 return count;
477 }
478 static DEVICE_ATTR_RW(max_write_same_blocks);
479
480 static struct attribute *sd_disk_attrs[] = {
481 &dev_attr_cache_type.attr,
482 &dev_attr_FUA.attr,
483 &dev_attr_allow_restart.attr,
484 &dev_attr_manage_start_stop.attr,
485 &dev_attr_protection_type.attr,
486 &dev_attr_protection_mode.attr,
487 &dev_attr_app_tag_own.attr,
488 &dev_attr_thin_provisioning.attr,
489 &dev_attr_provisioning_mode.attr,
490 &dev_attr_max_write_same_blocks.attr,
491 &dev_attr_max_medium_access_timeouts.attr,
492 NULL,
493 };
494 ATTRIBUTE_GROUPS(sd_disk);
495
496 static struct class sd_disk_class = {
497 .name = "scsi_disk",
498 .owner = THIS_MODULE,
499 .dev_release = scsi_disk_release,
500 .dev_groups = sd_disk_groups,
501 };
502
503 static const struct dev_pm_ops sd_pm_ops = {
504 .suspend = sd_suspend_system,
505 .resume = sd_resume,
506 .poweroff = sd_suspend_system,
507 .restore = sd_resume,
508 .runtime_suspend = sd_suspend_runtime,
509 .runtime_resume = sd_resume,
510 };
511
512 static struct scsi_driver sd_template = {
513 .gendrv = {
514 .name = "sd",
515 .owner = THIS_MODULE,
516 .probe = sd_probe,
517 .remove = sd_remove,
518 .shutdown = sd_shutdown,
519 .pm = &sd_pm_ops,
520 },
521 .rescan = sd_rescan,
522 .init_command = sd_init_command,
523 .uninit_command = sd_uninit_command,
524 .done = sd_done,
525 .eh_action = sd_eh_action,
526 };
527
528 /*
529 * Dummy kobj_map->probe function.
530 * The default ->probe function will call modprobe, which is
531 * pointless as this module is already loaded.
532 */
sd_default_probe(dev_t devt,int * partno,void * data)533 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
534 {
535 return NULL;
536 }
537
538 /*
539 * Device no to disk mapping:
540 *
541 * major disc2 disc p1
542 * |............|.............|....|....| <- dev_t
543 * 31 20 19 8 7 4 3 0
544 *
545 * Inside a major, we have 16k disks, however mapped non-
546 * contiguously. The first 16 disks are for major0, the next
547 * ones with major1, ... Disk 256 is for major0 again, disk 272
548 * for major1, ...
549 * As we stay compatible with our numbering scheme, we can reuse
550 * the well-know SCSI majors 8, 65--71, 136--143.
551 */
sd_major(int major_idx)552 static int sd_major(int major_idx)
553 {
554 switch (major_idx) {
555 case 0:
556 return SCSI_DISK0_MAJOR;
557 case 1 ... 7:
558 return SCSI_DISK1_MAJOR + major_idx - 1;
559 case 8 ... 15:
560 return SCSI_DISK8_MAJOR + major_idx - 8;
561 default:
562 BUG();
563 return 0; /* shut up gcc */
564 }
565 }
566
scsi_disk_get(struct gendisk * disk)567 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
568 {
569 struct scsi_disk *sdkp = NULL;
570
571 mutex_lock(&sd_ref_mutex);
572
573 if (disk->private_data) {
574 sdkp = scsi_disk(disk);
575 if (scsi_device_get(sdkp->device) == 0)
576 get_device(&sdkp->dev);
577 else
578 sdkp = NULL;
579 }
580 mutex_unlock(&sd_ref_mutex);
581 return sdkp;
582 }
583
scsi_disk_put(struct scsi_disk * sdkp)584 static void scsi_disk_put(struct scsi_disk *sdkp)
585 {
586 struct scsi_device *sdev = sdkp->device;
587
588 mutex_lock(&sd_ref_mutex);
589 put_device(&sdkp->dev);
590 scsi_device_put(sdev);
591 mutex_unlock(&sd_ref_mutex);
592 }
593
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)594 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
595 unsigned int dix, unsigned int dif)
596 {
597 struct bio *bio = scmd->request->bio;
598 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
599 unsigned int protect = 0;
600
601 if (dix) { /* DIX Type 0, 1, 2, 3 */
602 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
603 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
604
605 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
606 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
607 }
608
609 if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
610 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
611
612 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
613 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
614 }
615
616 if (dif) { /* DIX/DIF Type 1, 2, 3 */
617 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
618
619 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
620 protect = 3 << 5; /* Disable target PI checking */
621 else
622 protect = 1 << 5; /* Enable target PI checking */
623 }
624
625 scsi_set_prot_op(scmd, prot_op);
626 scsi_set_prot_type(scmd, dif);
627 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
628
629 return protect;
630 }
631
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)632 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
633 {
634 struct request_queue *q = sdkp->disk->queue;
635 unsigned int logical_block_size = sdkp->device->sector_size;
636 unsigned int max_blocks = 0;
637
638 q->limits.discard_zeroes_data = 0;
639 q->limits.discard_alignment = sdkp->unmap_alignment *
640 logical_block_size;
641 q->limits.discard_granularity =
642 max(sdkp->physical_block_size,
643 sdkp->unmap_granularity * logical_block_size);
644
645 sdkp->provisioning_mode = mode;
646
647 switch (mode) {
648
649 case SD_LBP_DISABLE:
650 q->limits.max_discard_sectors = 0;
651 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
652 return;
653
654 case SD_LBP_UNMAP:
655 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
656 (u32)SD_MAX_WS16_BLOCKS);
657 break;
658
659 case SD_LBP_WS16:
660 max_blocks = min_not_zero(sdkp->max_ws_blocks,
661 (u32)SD_MAX_WS16_BLOCKS);
662 q->limits.discard_zeroes_data = sdkp->lbprz;
663 break;
664
665 case SD_LBP_WS10:
666 max_blocks = min_not_zero(sdkp->max_ws_blocks,
667 (u32)SD_MAX_WS10_BLOCKS);
668 q->limits.discard_zeroes_data = sdkp->lbprz;
669 break;
670
671 case SD_LBP_ZERO:
672 max_blocks = min_not_zero(sdkp->max_ws_blocks,
673 (u32)SD_MAX_WS10_BLOCKS);
674 q->limits.discard_zeroes_data = 1;
675 break;
676 }
677
678 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9);
679 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
680 }
681
682 /**
683 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
684 * @sdp: scsi device to operate one
685 * @rq: Request to prepare
686 *
687 * Will issue either UNMAP or WRITE SAME(16) depending on preference
688 * indicated by target device.
689 **/
sd_setup_discard_cmnd(struct scsi_cmnd * cmd)690 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
691 {
692 struct request *rq = cmd->request;
693 struct scsi_device *sdp = cmd->device;
694 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
695 sector_t sector = blk_rq_pos(rq);
696 unsigned int nr_sectors = blk_rq_sectors(rq);
697 unsigned int nr_bytes = blk_rq_bytes(rq);
698 unsigned int len;
699 int ret;
700 char *buf;
701 struct page *page;
702
703 sector >>= ilog2(sdp->sector_size) - 9;
704 nr_sectors >>= ilog2(sdp->sector_size) - 9;
705
706 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
707 if (!page)
708 return BLKPREP_DEFER;
709
710 switch (sdkp->provisioning_mode) {
711 case SD_LBP_UNMAP:
712 buf = page_address(page);
713
714 cmd->cmd_len = 10;
715 cmd->cmnd[0] = UNMAP;
716 cmd->cmnd[8] = 24;
717
718 put_unaligned_be16(6 + 16, &buf[0]);
719 put_unaligned_be16(16, &buf[2]);
720 put_unaligned_be64(sector, &buf[8]);
721 put_unaligned_be32(nr_sectors, &buf[16]);
722
723 len = 24;
724 break;
725
726 case SD_LBP_WS16:
727 cmd->cmd_len = 16;
728 cmd->cmnd[0] = WRITE_SAME_16;
729 cmd->cmnd[1] = 0x8; /* UNMAP */
730 put_unaligned_be64(sector, &cmd->cmnd[2]);
731 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
732
733 len = sdkp->device->sector_size;
734 break;
735
736 case SD_LBP_WS10:
737 case SD_LBP_ZERO:
738 cmd->cmd_len = 10;
739 cmd->cmnd[0] = WRITE_SAME;
740 if (sdkp->provisioning_mode == SD_LBP_WS10)
741 cmd->cmnd[1] = 0x8; /* UNMAP */
742 put_unaligned_be32(sector, &cmd->cmnd[2]);
743 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
744
745 len = sdkp->device->sector_size;
746 break;
747
748 default:
749 ret = BLKPREP_KILL;
750 goto out;
751 }
752
753 rq->completion_data = page;
754 rq->timeout = SD_TIMEOUT;
755
756 cmd->transfersize = len;
757 cmd->allowed = SD_MAX_RETRIES;
758
759 /*
760 * Initially __data_len is set to the amount of data that needs to be
761 * transferred to the target. This amount depends on whether WRITE SAME
762 * or UNMAP is being used. After the scatterlist has been mapped by
763 * scsi_init_io() we set __data_len to the size of the area to be
764 * discarded on disk. This allows us to report completion on the full
765 * amount of blocks described by the request.
766 */
767 blk_add_request_payload(rq, page, len);
768 ret = scsi_init_io(cmd);
769 rq->__data_len = nr_bytes;
770
771 out:
772 if (ret != BLKPREP_OK)
773 __free_page(page);
774 return ret;
775 }
776
sd_config_write_same(struct scsi_disk * sdkp)777 static void sd_config_write_same(struct scsi_disk *sdkp)
778 {
779 struct request_queue *q = sdkp->disk->queue;
780 unsigned int logical_block_size = sdkp->device->sector_size;
781
782 if (sdkp->device->no_write_same) {
783 sdkp->max_ws_blocks = 0;
784 goto out;
785 }
786
787 /* Some devices can not handle block counts above 0xffff despite
788 * supporting WRITE SAME(16). Consequently we default to 64k
789 * blocks per I/O unless the device explicitly advertises a
790 * bigger limit.
791 */
792 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
793 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
794 (u32)SD_MAX_WS16_BLOCKS);
795 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
796 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
797 (u32)SD_MAX_WS10_BLOCKS);
798 else {
799 sdkp->device->no_write_same = 1;
800 sdkp->max_ws_blocks = 0;
801 }
802
803 out:
804 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
805 (logical_block_size >> 9));
806 }
807
808 /**
809 * sd_setup_write_same_cmnd - write the same data to multiple blocks
810 * @cmd: command to prepare
811 *
812 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
813 * preference indicated by target device.
814 **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)815 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
816 {
817 struct request *rq = cmd->request;
818 struct scsi_device *sdp = cmd->device;
819 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
820 struct bio *bio = rq->bio;
821 sector_t sector = blk_rq_pos(rq);
822 unsigned int nr_sectors = blk_rq_sectors(rq);
823 unsigned int nr_bytes = blk_rq_bytes(rq);
824 int ret;
825
826 if (sdkp->device->no_write_same)
827 return BLKPREP_KILL;
828
829 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
830
831 sector >>= ilog2(sdp->sector_size) - 9;
832 nr_sectors >>= ilog2(sdp->sector_size) - 9;
833
834 rq->timeout = SD_WRITE_SAME_TIMEOUT;
835
836 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
837 cmd->cmd_len = 16;
838 cmd->cmnd[0] = WRITE_SAME_16;
839 put_unaligned_be64(sector, &cmd->cmnd[2]);
840 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
841 } else {
842 cmd->cmd_len = 10;
843 cmd->cmnd[0] = WRITE_SAME;
844 put_unaligned_be32(sector, &cmd->cmnd[2]);
845 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
846 }
847
848 cmd->transfersize = sdp->sector_size;
849 cmd->allowed = SD_MAX_RETRIES;
850
851 /*
852 * For WRITE_SAME the data transferred in the DATA IN buffer is
853 * different from the amount of data actually written to the target.
854 *
855 * We set up __data_len to the amount of data transferred from the
856 * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
857 * to transfer a single sector of data first, but then reset it to
858 * the amount of data to be written right after so that the I/O path
859 * knows how much to actually write.
860 */
861 rq->__data_len = sdp->sector_size;
862 ret = scsi_init_io(cmd);
863 rq->__data_len = nr_bytes;
864 return ret;
865 }
866
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)867 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
868 {
869 struct request *rq = cmd->request;
870
871 /* flush requests don't perform I/O, zero the S/G table */
872 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
873
874 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
875 cmd->cmd_len = 10;
876 cmd->transfersize = 0;
877 cmd->allowed = SD_MAX_RETRIES;
878
879 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
880 return BLKPREP_OK;
881 }
882
sd_setup_read_write_cmnd(struct scsi_cmnd * SCpnt)883 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
884 {
885 struct request *rq = SCpnt->request;
886 struct scsi_device *sdp = SCpnt->device;
887 struct gendisk *disk = rq->rq_disk;
888 struct scsi_disk *sdkp;
889 sector_t block = blk_rq_pos(rq);
890 sector_t threshold;
891 unsigned int this_count = blk_rq_sectors(rq);
892 unsigned int dif, dix;
893 int ret;
894 unsigned char protect;
895
896 ret = scsi_init_io(SCpnt);
897 if (ret != BLKPREP_OK)
898 goto out;
899 SCpnt = rq->special;
900 sdkp = scsi_disk(disk);
901
902 /* from here on until we're complete, any goto out
903 * is used for a killable error condition */
904 ret = BLKPREP_KILL;
905
906 SCSI_LOG_HLQUEUE(1,
907 scmd_printk(KERN_INFO, SCpnt,
908 "%s: block=%llu, count=%d\n",
909 __func__, (unsigned long long)block, this_count));
910
911 if (!sdp || !scsi_device_online(sdp) ||
912 block + blk_rq_sectors(rq) > get_capacity(disk)) {
913 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
914 "Finishing %u sectors\n",
915 blk_rq_sectors(rq)));
916 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
917 "Retry with 0x%p\n", SCpnt));
918 goto out;
919 }
920
921 if (sdp->changed) {
922 /*
923 * quietly refuse to do anything to a changed disc until
924 * the changed bit has been reset
925 */
926 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
927 goto out;
928 }
929
930 /*
931 * Some SD card readers can't handle multi-sector accesses which touch
932 * the last one or two hardware sectors. Split accesses as needed.
933 */
934 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
935 (sdp->sector_size / 512);
936
937 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
938 if (block < threshold) {
939 /* Access up to the threshold but not beyond */
940 this_count = threshold - block;
941 } else {
942 /* Access only a single hardware sector */
943 this_count = sdp->sector_size / 512;
944 }
945 }
946
947 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
948 (unsigned long long)block));
949
950 /*
951 * If we have a 1K hardware sectorsize, prevent access to single
952 * 512 byte sectors. In theory we could handle this - in fact
953 * the scsi cdrom driver must be able to handle this because
954 * we typically use 1K blocksizes, and cdroms typically have
955 * 2K hardware sectorsizes. Of course, things are simpler
956 * with the cdrom, since it is read-only. For performance
957 * reasons, the filesystems should be able to handle this
958 * and not force the scsi disk driver to use bounce buffers
959 * for this.
960 */
961 if (sdp->sector_size == 1024) {
962 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
963 scmd_printk(KERN_ERR, SCpnt,
964 "Bad block number requested\n");
965 goto out;
966 } else {
967 block = block >> 1;
968 this_count = this_count >> 1;
969 }
970 }
971 if (sdp->sector_size == 2048) {
972 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
973 scmd_printk(KERN_ERR, SCpnt,
974 "Bad block number requested\n");
975 goto out;
976 } else {
977 block = block >> 2;
978 this_count = this_count >> 2;
979 }
980 }
981 if (sdp->sector_size == 4096) {
982 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
983 scmd_printk(KERN_ERR, SCpnt,
984 "Bad block number requested\n");
985 goto out;
986 } else {
987 block = block >> 3;
988 this_count = this_count >> 3;
989 }
990 }
991 if (rq_data_dir(rq) == WRITE) {
992 SCpnt->cmnd[0] = WRITE_6;
993
994 if (blk_integrity_rq(rq))
995 sd_dif_prepare(SCpnt);
996
997 } else if (rq_data_dir(rq) == READ) {
998 SCpnt->cmnd[0] = READ_6;
999 } else {
1000 scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1001 goto out;
1002 }
1003
1004 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1005 "%s %d/%u 512 byte blocks.\n",
1006 (rq_data_dir(rq) == WRITE) ?
1007 "writing" : "reading", this_count,
1008 blk_rq_sectors(rq)));
1009
1010 dix = scsi_prot_sg_count(SCpnt);
1011 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1012
1013 if (dif || dix)
1014 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1015 else
1016 protect = 0;
1017
1018 if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
1019 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1020
1021 if (unlikely(SCpnt->cmnd == NULL)) {
1022 ret = BLKPREP_DEFER;
1023 goto out;
1024 }
1025
1026 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1027 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1028 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1029 SCpnt->cmnd[7] = 0x18;
1030 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1031 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1032
1033 /* LBA */
1034 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1035 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1036 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1037 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1038 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1039 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1040 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1041 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1042
1043 /* Expected Indirect LBA */
1044 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1045 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1046 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1047 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1048
1049 /* Transfer length */
1050 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1051 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1052 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1053 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1054 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1055 SCpnt->cmnd[0] += READ_16 - READ_6;
1056 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1057 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1058 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1059 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1060 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1061 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1062 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1063 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1064 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1065 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1066 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1067 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1068 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1069 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1070 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1071 scsi_device_protection(SCpnt->device) ||
1072 SCpnt->device->use_10_for_rw) {
1073 SCpnt->cmnd[0] += READ_10 - READ_6;
1074 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1075 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1076 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1077 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1078 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1079 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1080 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1081 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1082 } else {
1083 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1084 /*
1085 * This happens only if this drive failed
1086 * 10byte rw command with ILLEGAL_REQUEST
1087 * during operation and thus turned off
1088 * use_10_for_rw.
1089 */
1090 scmd_printk(KERN_ERR, SCpnt,
1091 "FUA write on READ/WRITE(6) drive\n");
1092 goto out;
1093 }
1094
1095 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1096 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1097 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1098 SCpnt->cmnd[4] = (unsigned char) this_count;
1099 SCpnt->cmnd[5] = 0;
1100 }
1101 SCpnt->sdb.length = this_count * sdp->sector_size;
1102
1103 /*
1104 * We shouldn't disconnect in the middle of a sector, so with a dumb
1105 * host adapter, it's safe to assume that we can at least transfer
1106 * this many bytes between each connect / disconnect.
1107 */
1108 SCpnt->transfersize = sdp->sector_size;
1109 SCpnt->underflow = this_count << 9;
1110 SCpnt->allowed = SD_MAX_RETRIES;
1111
1112 /*
1113 * This indicates that the command is ready from our end to be
1114 * queued.
1115 */
1116 ret = BLKPREP_OK;
1117 out:
1118 return ret;
1119 }
1120
sd_init_command(struct scsi_cmnd * cmd)1121 static int sd_init_command(struct scsi_cmnd *cmd)
1122 {
1123 struct request *rq = cmd->request;
1124
1125 if (rq->cmd_flags & REQ_DISCARD)
1126 return sd_setup_discard_cmnd(cmd);
1127 else if (rq->cmd_flags & REQ_WRITE_SAME)
1128 return sd_setup_write_same_cmnd(cmd);
1129 else if (rq->cmd_flags & REQ_FLUSH)
1130 return sd_setup_flush_cmnd(cmd);
1131 else
1132 return sd_setup_read_write_cmnd(cmd);
1133 }
1134
sd_uninit_command(struct scsi_cmnd * SCpnt)1135 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1136 {
1137 struct request *rq = SCpnt->request;
1138
1139 if (rq->cmd_flags & REQ_DISCARD)
1140 __free_page(rq->completion_data);
1141
1142 if (SCpnt->cmnd != rq->cmd) {
1143 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1144 SCpnt->cmnd = NULL;
1145 SCpnt->cmd_len = 0;
1146 }
1147 }
1148
1149 /**
1150 * sd_open - open a scsi disk device
1151 * @inode: only i_rdev member may be used
1152 * @filp: only f_mode and f_flags may be used
1153 *
1154 * Returns 0 if successful. Returns a negated errno value in case
1155 * of error.
1156 *
1157 * Note: This can be called from a user context (e.g. fsck(1) )
1158 * or from within the kernel (e.g. as a result of a mount(1) ).
1159 * In the latter case @inode and @filp carry an abridged amount
1160 * of information as noted above.
1161 *
1162 * Locking: called with bdev->bd_mutex held.
1163 **/
sd_open(struct block_device * bdev,fmode_t mode)1164 static int sd_open(struct block_device *bdev, fmode_t mode)
1165 {
1166 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1167 struct scsi_device *sdev;
1168 int retval;
1169
1170 if (!sdkp)
1171 return -ENXIO;
1172
1173 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1174
1175 sdev = sdkp->device;
1176
1177 /*
1178 * If the device is in error recovery, wait until it is done.
1179 * If the device is offline, then disallow any access to it.
1180 */
1181 retval = -ENXIO;
1182 if (!scsi_block_when_processing_errors(sdev))
1183 goto error_out;
1184
1185 if (sdev->removable || sdkp->write_prot)
1186 check_disk_change(bdev);
1187
1188 /*
1189 * If the drive is empty, just let the open fail.
1190 */
1191 retval = -ENOMEDIUM;
1192 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1193 goto error_out;
1194
1195 /*
1196 * If the device has the write protect tab set, have the open fail
1197 * if the user expects to be able to write to the thing.
1198 */
1199 retval = -EROFS;
1200 if (sdkp->write_prot && (mode & FMODE_WRITE))
1201 goto error_out;
1202
1203 /*
1204 * It is possible that the disk changing stuff resulted in
1205 * the device being taken offline. If this is the case,
1206 * report this to the user, and don't pretend that the
1207 * open actually succeeded.
1208 */
1209 retval = -ENXIO;
1210 if (!scsi_device_online(sdev))
1211 goto error_out;
1212
1213 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1214 if (scsi_block_when_processing_errors(sdev))
1215 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1216 }
1217
1218 return 0;
1219
1220 error_out:
1221 scsi_disk_put(sdkp);
1222 return retval;
1223 }
1224
1225 /**
1226 * sd_release - invoked when the (last) close(2) is called on this
1227 * scsi disk.
1228 * @inode: only i_rdev member may be used
1229 * @filp: only f_mode and f_flags may be used
1230 *
1231 * Returns 0.
1232 *
1233 * Note: may block (uninterruptible) if error recovery is underway
1234 * on this disk.
1235 *
1236 * Locking: called with bdev->bd_mutex held.
1237 **/
sd_release(struct gendisk * disk,fmode_t mode)1238 static void sd_release(struct gendisk *disk, fmode_t mode)
1239 {
1240 struct scsi_disk *sdkp = scsi_disk(disk);
1241 struct scsi_device *sdev = sdkp->device;
1242
1243 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1244
1245 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1246 if (scsi_block_when_processing_errors(sdev))
1247 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1248 }
1249
1250 /*
1251 * XXX and what if there are packets in flight and this close()
1252 * XXX is followed by a "rmmod sd_mod"?
1253 */
1254
1255 scsi_disk_put(sdkp);
1256 }
1257
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1258 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1259 {
1260 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1261 struct scsi_device *sdp = sdkp->device;
1262 struct Scsi_Host *host = sdp->host;
1263 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1264 int diskinfo[4];
1265
1266 /* default to most commonly used values */
1267 diskinfo[0] = 0x40; /* 1 << 6 */
1268 diskinfo[1] = 0x20; /* 1 << 5 */
1269 diskinfo[2] = capacity >> 11;
1270
1271 /* override with calculated, extended default, or driver values */
1272 if (host->hostt->bios_param)
1273 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1274 else
1275 scsicam_bios_param(bdev, capacity, diskinfo);
1276
1277 geo->heads = diskinfo[0];
1278 geo->sectors = diskinfo[1];
1279 geo->cylinders = diskinfo[2];
1280 return 0;
1281 }
1282
1283 /**
1284 * sd_ioctl - process an ioctl
1285 * @inode: only i_rdev/i_bdev members may be used
1286 * @filp: only f_mode and f_flags may be used
1287 * @cmd: ioctl command number
1288 * @arg: this is third argument given to ioctl(2) system call.
1289 * Often contains a pointer.
1290 *
1291 * Returns 0 if successful (some ioctls return positive numbers on
1292 * success as well). Returns a negated errno value in case of error.
1293 *
1294 * Note: most ioctls are forward onto the block subsystem or further
1295 * down in the scsi subsystem.
1296 **/
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1297 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1298 unsigned int cmd, unsigned long arg)
1299 {
1300 struct gendisk *disk = bdev->bd_disk;
1301 struct scsi_disk *sdkp = scsi_disk(disk);
1302 struct scsi_device *sdp = sdkp->device;
1303 void __user *p = (void __user *)arg;
1304 int error;
1305
1306 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1307 "cmd=0x%x\n", disk->disk_name, cmd));
1308
1309 error = scsi_verify_blk_ioctl(bdev, cmd);
1310 if (error < 0)
1311 return error;
1312
1313 /*
1314 * If we are in the middle of error recovery, don't let anyone
1315 * else try and use this device. Also, if error recovery fails, it
1316 * may try and take the device offline, in which case all further
1317 * access to the device is prohibited.
1318 */
1319 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1320 (mode & FMODE_NDELAY) != 0);
1321 if (error)
1322 goto out;
1323
1324 /*
1325 * Send SCSI addressing ioctls directly to mid level, send other
1326 * ioctls to block level and then onto mid level if they can't be
1327 * resolved.
1328 */
1329 switch (cmd) {
1330 case SCSI_IOCTL_GET_IDLUN:
1331 case SCSI_IOCTL_GET_BUS_NUMBER:
1332 error = scsi_ioctl(sdp, cmd, p);
1333 break;
1334 default:
1335 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1336 if (error != -ENOTTY)
1337 break;
1338 error = scsi_ioctl(sdp, cmd, p);
1339 break;
1340 }
1341 out:
1342 return error;
1343 }
1344
set_media_not_present(struct scsi_disk * sdkp)1345 static void set_media_not_present(struct scsi_disk *sdkp)
1346 {
1347 if (sdkp->media_present)
1348 sdkp->device->changed = 1;
1349
1350 if (sdkp->device->removable) {
1351 sdkp->media_present = 0;
1352 sdkp->capacity = 0;
1353 }
1354 }
1355
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1356 static int media_not_present(struct scsi_disk *sdkp,
1357 struct scsi_sense_hdr *sshdr)
1358 {
1359 if (!scsi_sense_valid(sshdr))
1360 return 0;
1361
1362 /* not invoked for commands that could return deferred errors */
1363 switch (sshdr->sense_key) {
1364 case UNIT_ATTENTION:
1365 case NOT_READY:
1366 /* medium not present */
1367 if (sshdr->asc == 0x3A) {
1368 set_media_not_present(sdkp);
1369 return 1;
1370 }
1371 }
1372 return 0;
1373 }
1374
1375 /**
1376 * sd_check_events - check media events
1377 * @disk: kernel device descriptor
1378 * @clearing: disk events currently being cleared
1379 *
1380 * Returns mask of DISK_EVENT_*.
1381 *
1382 * Note: this function is invoked from the block subsystem.
1383 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1384 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1385 {
1386 struct scsi_disk *sdkp = scsi_disk(disk);
1387 struct scsi_device *sdp = sdkp->device;
1388 struct scsi_sense_hdr *sshdr = NULL;
1389 int retval;
1390
1391 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1392
1393 /*
1394 * If the device is offline, don't send any commands - just pretend as
1395 * if the command failed. If the device ever comes back online, we
1396 * can deal with it then. It is only because of unrecoverable errors
1397 * that we would ever take a device offline in the first place.
1398 */
1399 if (!scsi_device_online(sdp)) {
1400 set_media_not_present(sdkp);
1401 goto out;
1402 }
1403
1404 /*
1405 * Using TEST_UNIT_READY enables differentiation between drive with
1406 * no cartridge loaded - NOT READY, drive with changed cartridge -
1407 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1408 *
1409 * Drives that auto spin down. eg iomega jaz 1G, will be started
1410 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1411 * sd_revalidate() is called.
1412 */
1413 retval = -ENODEV;
1414
1415 if (scsi_block_when_processing_errors(sdp)) {
1416 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1417 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1418 sshdr);
1419 }
1420
1421 /* failed to execute TUR, assume media not present */
1422 if (host_byte(retval)) {
1423 set_media_not_present(sdkp);
1424 goto out;
1425 }
1426
1427 if (media_not_present(sdkp, sshdr))
1428 goto out;
1429
1430 /*
1431 * For removable scsi disk we have to recognise the presence
1432 * of a disk in the drive.
1433 */
1434 if (!sdkp->media_present)
1435 sdp->changed = 1;
1436 sdkp->media_present = 1;
1437 out:
1438 /*
1439 * sdp->changed is set under the following conditions:
1440 *
1441 * Medium present state has changed in either direction.
1442 * Device has indicated UNIT_ATTENTION.
1443 */
1444 kfree(sshdr);
1445 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1446 sdp->changed = 0;
1447 return retval;
1448 }
1449
sd_sync_cache(struct scsi_disk * sdkp)1450 static int sd_sync_cache(struct scsi_disk *sdkp)
1451 {
1452 int retries, res;
1453 struct scsi_device *sdp = sdkp->device;
1454 const int timeout = sdp->request_queue->rq_timeout
1455 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1456 struct scsi_sense_hdr sshdr;
1457
1458 if (!scsi_device_online(sdp))
1459 return -ENODEV;
1460
1461 for (retries = 3; retries > 0; --retries) {
1462 unsigned char cmd[10] = { 0 };
1463
1464 cmd[0] = SYNCHRONIZE_CACHE;
1465 /*
1466 * Leave the rest of the command zero to indicate
1467 * flush everything.
1468 */
1469 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1470 &sshdr, timeout, SD_MAX_RETRIES,
1471 NULL, REQ_PM);
1472 if (res == 0)
1473 break;
1474 }
1475
1476 if (res) {
1477 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1478
1479 if (driver_byte(res) & DRIVER_SENSE)
1480 sd_print_sense_hdr(sdkp, &sshdr);
1481 /* we need to evaluate the error return */
1482 if (scsi_sense_valid(&sshdr) &&
1483 (sshdr.asc == 0x3a || /* medium not present */
1484 sshdr.asc == 0x20)) /* invalid command */
1485 /* this is no error here */
1486 return 0;
1487
1488 switch (host_byte(res)) {
1489 /* ignore errors due to racing a disconnection */
1490 case DID_BAD_TARGET:
1491 case DID_NO_CONNECT:
1492 return 0;
1493 /* signal the upper layer it might try again */
1494 case DID_BUS_BUSY:
1495 case DID_IMM_RETRY:
1496 case DID_REQUEUE:
1497 case DID_SOFT_ERROR:
1498 return -EBUSY;
1499 default:
1500 return -EIO;
1501 }
1502 }
1503 return 0;
1504 }
1505
sd_rescan(struct device * dev)1506 static void sd_rescan(struct device *dev)
1507 {
1508 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1509
1510 revalidate_disk(sdkp->disk);
1511 }
1512
1513
1514 #ifdef CONFIG_COMPAT
1515 /*
1516 * This gets directly called from VFS. When the ioctl
1517 * is not recognized we go back to the other translation paths.
1518 */
sd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1519 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1520 unsigned int cmd, unsigned long arg)
1521 {
1522 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1523 int error;
1524
1525 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1526 (mode & FMODE_NDELAY) != 0);
1527 if (error)
1528 return error;
1529
1530 /*
1531 * Let the static ioctl translation table take care of it.
1532 */
1533 if (!sdev->host->hostt->compat_ioctl)
1534 return -ENOIOCTLCMD;
1535 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1536 }
1537 #endif
1538
1539 static const struct block_device_operations sd_fops = {
1540 .owner = THIS_MODULE,
1541 .open = sd_open,
1542 .release = sd_release,
1543 .ioctl = sd_ioctl,
1544 .getgeo = sd_getgeo,
1545 #ifdef CONFIG_COMPAT
1546 .compat_ioctl = sd_compat_ioctl,
1547 #endif
1548 .check_events = sd_check_events,
1549 .revalidate_disk = sd_revalidate_disk,
1550 .unlock_native_capacity = sd_unlock_native_capacity,
1551 };
1552
1553 /**
1554 * sd_eh_action - error handling callback
1555 * @scmd: sd-issued command that has failed
1556 * @eh_disp: The recovery disposition suggested by the midlayer
1557 *
1558 * This function is called by the SCSI midlayer upon completion of an
1559 * error test command (currently TEST UNIT READY). The result of sending
1560 * the eh command is passed in eh_disp. We're looking for devices that
1561 * fail medium access commands but are OK with non access commands like
1562 * test unit ready (so wrongly see the device as having a successful
1563 * recovery)
1564 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1565 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1566 {
1567 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1568
1569 if (!scsi_device_online(scmd->device) ||
1570 !scsi_medium_access_command(scmd) ||
1571 host_byte(scmd->result) != DID_TIME_OUT ||
1572 eh_disp != SUCCESS)
1573 return eh_disp;
1574
1575 /*
1576 * The device has timed out executing a medium access command.
1577 * However, the TEST UNIT READY command sent during error
1578 * handling completed successfully. Either the device is in the
1579 * process of recovering or has it suffered an internal failure
1580 * that prevents access to the storage medium.
1581 */
1582 sdkp->medium_access_timed_out++;
1583
1584 /*
1585 * If the device keeps failing read/write commands but TEST UNIT
1586 * READY always completes successfully we assume that medium
1587 * access is no longer possible and take the device offline.
1588 */
1589 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1590 scmd_printk(KERN_ERR, scmd,
1591 "Medium access timeout failure. Offlining disk!\n");
1592 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1593
1594 return FAILED;
1595 }
1596
1597 return eh_disp;
1598 }
1599
sd_completed_bytes(struct scsi_cmnd * scmd)1600 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1601 {
1602 u64 start_lba = blk_rq_pos(scmd->request);
1603 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1604 u64 factor = scmd->device->sector_size / 512;
1605 u64 bad_lba;
1606 int info_valid;
1607 /*
1608 * resid is optional but mostly filled in. When it's unused,
1609 * its value is zero, so we assume the whole buffer transferred
1610 */
1611 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1612 unsigned int good_bytes;
1613
1614 if (scmd->request->cmd_type != REQ_TYPE_FS)
1615 return 0;
1616
1617 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1618 SCSI_SENSE_BUFFERSIZE,
1619 &bad_lba);
1620 if (!info_valid)
1621 return 0;
1622
1623 if (scsi_bufflen(scmd) <= scmd->device->sector_size)
1624 return 0;
1625
1626 /* be careful ... don't want any overflows */
1627 do_div(start_lba, factor);
1628 do_div(end_lba, factor);
1629
1630 /* The bad lba was reported incorrectly, we have no idea where
1631 * the error is.
1632 */
1633 if (bad_lba < start_lba || bad_lba >= end_lba)
1634 return 0;
1635
1636 /* This computation should always be done in terms of
1637 * the resolution of the device's medium.
1638 */
1639 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1640 return min(good_bytes, transferred);
1641 }
1642
1643 /**
1644 * sd_done - bottom half handler: called when the lower level
1645 * driver has completed (successfully or otherwise) a scsi command.
1646 * @SCpnt: mid-level's per command structure.
1647 *
1648 * Note: potentially run from within an ISR. Must not block.
1649 **/
sd_done(struct scsi_cmnd * SCpnt)1650 static int sd_done(struct scsi_cmnd *SCpnt)
1651 {
1652 int result = SCpnt->result;
1653 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1654 struct scsi_sense_hdr sshdr;
1655 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1656 struct request *req = SCpnt->request;
1657 int sense_valid = 0;
1658 int sense_deferred = 0;
1659 unsigned char op = SCpnt->cmnd[0];
1660 unsigned char unmap = SCpnt->cmnd[1] & 8;
1661
1662 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
1663 if (!result) {
1664 good_bytes = blk_rq_bytes(req);
1665 scsi_set_resid(SCpnt, 0);
1666 } else {
1667 good_bytes = 0;
1668 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1669 }
1670 }
1671
1672 if (result) {
1673 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1674 if (sense_valid)
1675 sense_deferred = scsi_sense_is_deferred(&sshdr);
1676 }
1677 sdkp->medium_access_timed_out = 0;
1678
1679 if (driver_byte(result) != DRIVER_SENSE &&
1680 (!sense_valid || sense_deferred))
1681 goto out;
1682
1683 switch (sshdr.sense_key) {
1684 case HARDWARE_ERROR:
1685 case MEDIUM_ERROR:
1686 good_bytes = sd_completed_bytes(SCpnt);
1687 break;
1688 case RECOVERED_ERROR:
1689 good_bytes = scsi_bufflen(SCpnt);
1690 break;
1691 case NO_SENSE:
1692 /* This indicates a false check condition, so ignore it. An
1693 * unknown amount of data was transferred so treat it as an
1694 * error.
1695 */
1696 SCpnt->result = 0;
1697 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1698 break;
1699 case ABORTED_COMMAND:
1700 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1701 good_bytes = sd_completed_bytes(SCpnt);
1702 break;
1703 case ILLEGAL_REQUEST:
1704 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
1705 good_bytes = sd_completed_bytes(SCpnt);
1706 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1707 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1708 switch (op) {
1709 case UNMAP:
1710 sd_config_discard(sdkp, SD_LBP_DISABLE);
1711 break;
1712 case WRITE_SAME_16:
1713 case WRITE_SAME:
1714 if (unmap)
1715 sd_config_discard(sdkp, SD_LBP_DISABLE);
1716 else {
1717 sdkp->device->no_write_same = 1;
1718 sd_config_write_same(sdkp);
1719
1720 good_bytes = 0;
1721 req->__data_len = blk_rq_bytes(req);
1722 req->cmd_flags |= REQ_QUIET;
1723 }
1724 }
1725 }
1726 break;
1727 default:
1728 break;
1729 }
1730 out:
1731 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1732 "sd_done: completed %d of %d bytes\n",
1733 good_bytes, scsi_bufflen(SCpnt)));
1734
1735 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1736 sd_dif_complete(SCpnt, good_bytes);
1737
1738 return good_bytes;
1739 }
1740
1741 /*
1742 * spinup disk - called only in sd_revalidate_disk()
1743 */
1744 static void
sd_spinup_disk(struct scsi_disk * sdkp)1745 sd_spinup_disk(struct scsi_disk *sdkp)
1746 {
1747 unsigned char cmd[10];
1748 unsigned long spintime_expire = 0;
1749 int retries, spintime;
1750 unsigned int the_result;
1751 struct scsi_sense_hdr sshdr;
1752 int sense_valid = 0;
1753
1754 spintime = 0;
1755
1756 /* Spin up drives, as required. Only do this at boot time */
1757 /* Spinup needs to be done for module loads too. */
1758 do {
1759 retries = 0;
1760
1761 do {
1762 cmd[0] = TEST_UNIT_READY;
1763 memset((void *) &cmd[1], 0, 9);
1764
1765 the_result = scsi_execute_req(sdkp->device, cmd,
1766 DMA_NONE, NULL, 0,
1767 &sshdr, SD_TIMEOUT,
1768 SD_MAX_RETRIES, NULL);
1769
1770 /*
1771 * If the drive has indicated to us that it
1772 * doesn't have any media in it, don't bother
1773 * with any more polling.
1774 */
1775 if (media_not_present(sdkp, &sshdr))
1776 return;
1777
1778 if (the_result)
1779 sense_valid = scsi_sense_valid(&sshdr);
1780 retries++;
1781 } while (retries < 3 &&
1782 (!scsi_status_is_good(the_result) ||
1783 ((driver_byte(the_result) & DRIVER_SENSE) &&
1784 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1785
1786 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1787 /* no sense, TUR either succeeded or failed
1788 * with a status error */
1789 if(!spintime && !scsi_status_is_good(the_result)) {
1790 sd_print_result(sdkp, "Test Unit Ready failed",
1791 the_result);
1792 }
1793 break;
1794 }
1795
1796 /*
1797 * The device does not want the automatic start to be issued.
1798 */
1799 if (sdkp->device->no_start_on_add)
1800 break;
1801
1802 if (sense_valid && sshdr.sense_key == NOT_READY) {
1803 if (sshdr.asc == 4 && sshdr.ascq == 3)
1804 break; /* manual intervention required */
1805 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1806 break; /* standby */
1807 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1808 break; /* unavailable */
1809 /*
1810 * Issue command to spin up drive when not ready
1811 */
1812 if (!spintime) {
1813 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1814 cmd[0] = START_STOP;
1815 cmd[1] = 1; /* Return immediately */
1816 memset((void *) &cmd[2], 0, 8);
1817 cmd[4] = 1; /* Start spin cycle */
1818 if (sdkp->device->start_stop_pwr_cond)
1819 cmd[4] |= 1 << 4;
1820 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1821 NULL, 0, &sshdr,
1822 SD_TIMEOUT, SD_MAX_RETRIES,
1823 NULL);
1824 spintime_expire = jiffies + 100 * HZ;
1825 spintime = 1;
1826 }
1827 /* Wait 1 second for next try */
1828 msleep(1000);
1829 printk(".");
1830
1831 /*
1832 * Wait for USB flash devices with slow firmware.
1833 * Yes, this sense key/ASC combination shouldn't
1834 * occur here. It's characteristic of these devices.
1835 */
1836 } else if (sense_valid &&
1837 sshdr.sense_key == UNIT_ATTENTION &&
1838 sshdr.asc == 0x28) {
1839 if (!spintime) {
1840 spintime_expire = jiffies + 5 * HZ;
1841 spintime = 1;
1842 }
1843 /* Wait 1 second for next try */
1844 msleep(1000);
1845 } else {
1846 /* we don't understand the sense code, so it's
1847 * probably pointless to loop */
1848 if(!spintime) {
1849 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1850 sd_print_sense_hdr(sdkp, &sshdr);
1851 }
1852 break;
1853 }
1854
1855 } while (spintime && time_before_eq(jiffies, spintime_expire));
1856
1857 if (spintime) {
1858 if (scsi_status_is_good(the_result))
1859 printk("ready\n");
1860 else
1861 printk("not responding...\n");
1862 }
1863 }
1864
1865
1866 /*
1867 * Determine whether disk supports Data Integrity Field.
1868 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)1869 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1870 {
1871 struct scsi_device *sdp = sdkp->device;
1872 u8 type;
1873 int ret = 0;
1874
1875 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1876 return ret;
1877
1878 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1879
1880 if (type > SD_DIF_TYPE3_PROTECTION)
1881 ret = -ENODEV;
1882 else if (scsi_host_dif_capable(sdp->host, type))
1883 ret = 1;
1884
1885 if (sdkp->first_scan || type != sdkp->protection_type)
1886 switch (ret) {
1887 case -ENODEV:
1888 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1889 " protection type %u. Disabling disk!\n",
1890 type);
1891 break;
1892 case 1:
1893 sd_printk(KERN_NOTICE, sdkp,
1894 "Enabling DIF Type %u protection\n", type);
1895 break;
1896 case 0:
1897 sd_printk(KERN_NOTICE, sdkp,
1898 "Disabling DIF Type %u protection\n", type);
1899 break;
1900 }
1901
1902 sdkp->protection_type = type;
1903
1904 return ret;
1905 }
1906
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)1907 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
1908 struct scsi_sense_hdr *sshdr, int sense_valid,
1909 int the_result)
1910 {
1911 if (driver_byte(the_result) & DRIVER_SENSE)
1912 sd_print_sense_hdr(sdkp, sshdr);
1913 else
1914 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
1915
1916 /*
1917 * Set dirty bit for removable devices if not ready -
1918 * sometimes drives will not report this properly.
1919 */
1920 if (sdp->removable &&
1921 sense_valid && sshdr->sense_key == NOT_READY)
1922 set_media_not_present(sdkp);
1923
1924 /*
1925 * We used to set media_present to 0 here to indicate no media
1926 * in the drive, but some drives fail read capacity even with
1927 * media present, so we can't do that.
1928 */
1929 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
1930 }
1931
1932 #define RC16_LEN 32
1933 #if RC16_LEN > SD_BUF_SIZE
1934 #error RC16_LEN must not be more than SD_BUF_SIZE
1935 #endif
1936
1937 #define READ_CAPACITY_RETRIES_ON_RESET 10
1938
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)1939 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
1940 unsigned char *buffer)
1941 {
1942 unsigned char cmd[16];
1943 struct scsi_sense_hdr sshdr;
1944 int sense_valid = 0;
1945 int the_result;
1946 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
1947 unsigned int alignment;
1948 unsigned long long lba;
1949 unsigned sector_size;
1950
1951 if (sdp->no_read_capacity_16)
1952 return -EINVAL;
1953
1954 do {
1955 memset(cmd, 0, 16);
1956 cmd[0] = SERVICE_ACTION_IN_16;
1957 cmd[1] = SAI_READ_CAPACITY_16;
1958 cmd[13] = RC16_LEN;
1959 memset(buffer, 0, RC16_LEN);
1960
1961 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
1962 buffer, RC16_LEN, &sshdr,
1963 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1964
1965 if (media_not_present(sdkp, &sshdr))
1966 return -ENODEV;
1967
1968 if (the_result) {
1969 sense_valid = scsi_sense_valid(&sshdr);
1970 if (sense_valid &&
1971 sshdr.sense_key == ILLEGAL_REQUEST &&
1972 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
1973 sshdr.ascq == 0x00)
1974 /* Invalid Command Operation Code or
1975 * Invalid Field in CDB, just retry
1976 * silently with RC10 */
1977 return -EINVAL;
1978 if (sense_valid &&
1979 sshdr.sense_key == UNIT_ATTENTION &&
1980 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
1981 /* Device reset might occur several times,
1982 * give it one more chance */
1983 if (--reset_retries > 0)
1984 continue;
1985 }
1986 retries--;
1987
1988 } while (the_result && retries);
1989
1990 if (the_result) {
1991 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
1992 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
1993 return -EINVAL;
1994 }
1995
1996 sector_size = get_unaligned_be32(&buffer[8]);
1997 lba = get_unaligned_be64(&buffer[0]);
1998
1999 if (sd_read_protection_type(sdkp, buffer) < 0) {
2000 sdkp->capacity = 0;
2001 return -ENODEV;
2002 }
2003
2004 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2005 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2006 "kernel compiled with support for large block "
2007 "devices.\n");
2008 sdkp->capacity = 0;
2009 return -EOVERFLOW;
2010 }
2011
2012 /* Logical blocks per physical block exponent */
2013 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2014
2015 /* Lowest aligned logical block */
2016 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2017 blk_queue_alignment_offset(sdp->request_queue, alignment);
2018 if (alignment && sdkp->first_scan)
2019 sd_printk(KERN_NOTICE, sdkp,
2020 "physical block alignment offset: %u\n", alignment);
2021
2022 if (buffer[14] & 0x80) { /* LBPME */
2023 sdkp->lbpme = 1;
2024
2025 if (buffer[14] & 0x40) /* LBPRZ */
2026 sdkp->lbprz = 1;
2027
2028 sd_config_discard(sdkp, SD_LBP_WS16);
2029 }
2030
2031 sdkp->capacity = lba + 1;
2032 return sector_size;
2033 }
2034
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2035 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2036 unsigned char *buffer)
2037 {
2038 unsigned char cmd[16];
2039 struct scsi_sense_hdr sshdr;
2040 int sense_valid = 0;
2041 int the_result;
2042 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2043 sector_t lba;
2044 unsigned sector_size;
2045
2046 do {
2047 cmd[0] = READ_CAPACITY;
2048 memset(&cmd[1], 0, 9);
2049 memset(buffer, 0, 8);
2050
2051 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2052 buffer, 8, &sshdr,
2053 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2054
2055 if (media_not_present(sdkp, &sshdr))
2056 return -ENODEV;
2057
2058 if (the_result) {
2059 sense_valid = scsi_sense_valid(&sshdr);
2060 if (sense_valid &&
2061 sshdr.sense_key == UNIT_ATTENTION &&
2062 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2063 /* Device reset might occur several times,
2064 * give it one more chance */
2065 if (--reset_retries > 0)
2066 continue;
2067 }
2068 retries--;
2069
2070 } while (the_result && retries);
2071
2072 if (the_result) {
2073 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2074 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2075 return -EINVAL;
2076 }
2077
2078 sector_size = get_unaligned_be32(&buffer[4]);
2079 lba = get_unaligned_be32(&buffer[0]);
2080
2081 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2082 /* Some buggy (usb cardreader) devices return an lba of
2083 0xffffffff when the want to report a size of 0 (with
2084 which they really mean no media is present) */
2085 sdkp->capacity = 0;
2086 sdkp->physical_block_size = sector_size;
2087 return sector_size;
2088 }
2089
2090 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2091 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2092 "kernel compiled with support for large block "
2093 "devices.\n");
2094 sdkp->capacity = 0;
2095 return -EOVERFLOW;
2096 }
2097
2098 sdkp->capacity = lba + 1;
2099 sdkp->physical_block_size = sector_size;
2100 return sector_size;
2101 }
2102
sd_try_rc16_first(struct scsi_device * sdp)2103 static int sd_try_rc16_first(struct scsi_device *sdp)
2104 {
2105 if (sdp->host->max_cmd_len < 16)
2106 return 0;
2107 if (sdp->try_rc_10_first)
2108 return 0;
2109 if (sdp->scsi_level > SCSI_SPC_2)
2110 return 1;
2111 if (scsi_device_protection(sdp))
2112 return 1;
2113 return 0;
2114 }
2115
2116 /*
2117 * read disk capacity
2118 */
2119 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2120 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2121 {
2122 int sector_size;
2123 struct scsi_device *sdp = sdkp->device;
2124 sector_t old_capacity = sdkp->capacity;
2125
2126 if (sd_try_rc16_first(sdp)) {
2127 sector_size = read_capacity_16(sdkp, sdp, buffer);
2128 if (sector_size == -EOVERFLOW)
2129 goto got_data;
2130 if (sector_size == -ENODEV)
2131 return;
2132 if (sector_size < 0)
2133 sector_size = read_capacity_10(sdkp, sdp, buffer);
2134 if (sector_size < 0)
2135 return;
2136 } else {
2137 sector_size = read_capacity_10(sdkp, sdp, buffer);
2138 if (sector_size == -EOVERFLOW)
2139 goto got_data;
2140 if (sector_size < 0)
2141 return;
2142 if ((sizeof(sdkp->capacity) > 4) &&
2143 (sdkp->capacity > 0xffffffffULL)) {
2144 int old_sector_size = sector_size;
2145 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2146 "Trying to use READ CAPACITY(16).\n");
2147 sector_size = read_capacity_16(sdkp, sdp, buffer);
2148 if (sector_size < 0) {
2149 sd_printk(KERN_NOTICE, sdkp,
2150 "Using 0xffffffff as device size\n");
2151 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2152 sector_size = old_sector_size;
2153 goto got_data;
2154 }
2155 }
2156 }
2157
2158 /* Some devices are known to return the total number of blocks,
2159 * not the highest block number. Some devices have versions
2160 * which do this and others which do not. Some devices we might
2161 * suspect of doing this but we don't know for certain.
2162 *
2163 * If we know the reported capacity is wrong, decrement it. If
2164 * we can only guess, then assume the number of blocks is even
2165 * (usually true but not always) and err on the side of lowering
2166 * the capacity.
2167 */
2168 if (sdp->fix_capacity ||
2169 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2170 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2171 "from its reported value: %llu\n",
2172 (unsigned long long) sdkp->capacity);
2173 --sdkp->capacity;
2174 }
2175
2176 got_data:
2177 if (sector_size == 0) {
2178 sector_size = 512;
2179 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2180 "assuming 512.\n");
2181 }
2182
2183 if (sector_size != 512 &&
2184 sector_size != 1024 &&
2185 sector_size != 2048 &&
2186 sector_size != 4096) {
2187 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2188 sector_size);
2189 /*
2190 * The user might want to re-format the drive with
2191 * a supported sectorsize. Once this happens, it
2192 * would be relatively trivial to set the thing up.
2193 * For this reason, we leave the thing in the table.
2194 */
2195 sdkp->capacity = 0;
2196 /*
2197 * set a bogus sector size so the normal read/write
2198 * logic in the block layer will eventually refuse any
2199 * request on this device without tripping over power
2200 * of two sector size assumptions
2201 */
2202 sector_size = 512;
2203 }
2204 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2205
2206 {
2207 char cap_str_2[10], cap_str_10[10];
2208
2209 string_get_size(sdkp->capacity, sector_size,
2210 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2211 string_get_size(sdkp->capacity, sector_size,
2212 STRING_UNITS_10, cap_str_10,
2213 sizeof(cap_str_10));
2214
2215 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2216 sd_printk(KERN_NOTICE, sdkp,
2217 "%llu %d-byte logical blocks: (%s/%s)\n",
2218 (unsigned long long)sdkp->capacity,
2219 sector_size, cap_str_10, cap_str_2);
2220
2221 if (sdkp->physical_block_size != sector_size)
2222 sd_printk(KERN_NOTICE, sdkp,
2223 "%u-byte physical blocks\n",
2224 sdkp->physical_block_size);
2225 }
2226 }
2227
2228 if (sdkp->capacity > 0xffffffff) {
2229 sdp->use_16_for_rw = 1;
2230 sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS;
2231 } else
2232 sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS;
2233
2234 blk_queue_physical_block_size(sdp->request_queue,
2235 sdkp->physical_block_size);
2236 sdkp->device->sector_size = sector_size;
2237 }
2238
2239 /* called with buffer of length 512 */
2240 static inline int
sd_do_mode_sense(struct scsi_device * sdp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2241 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2242 unsigned char *buffer, int len, struct scsi_mode_data *data,
2243 struct scsi_sense_hdr *sshdr)
2244 {
2245 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2246 SD_TIMEOUT, SD_MAX_RETRIES, data,
2247 sshdr);
2248 }
2249
2250 /*
2251 * read write protect setting, if possible - called only in sd_revalidate_disk()
2252 * called with buffer of length SD_BUF_SIZE
2253 */
2254 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2255 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2256 {
2257 int res;
2258 struct scsi_device *sdp = sdkp->device;
2259 struct scsi_mode_data data;
2260 int old_wp = sdkp->write_prot;
2261
2262 set_disk_ro(sdkp->disk, 0);
2263 if (sdp->skip_ms_page_3f) {
2264 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2265 return;
2266 }
2267
2268 if (sdp->use_192_bytes_for_3f) {
2269 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2270 } else {
2271 /*
2272 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2273 * We have to start carefully: some devices hang if we ask
2274 * for more than is available.
2275 */
2276 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2277
2278 /*
2279 * Second attempt: ask for page 0 When only page 0 is
2280 * implemented, a request for page 3F may return Sense Key
2281 * 5: Illegal Request, Sense Code 24: Invalid field in
2282 * CDB.
2283 */
2284 if (!scsi_status_is_good(res))
2285 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2286
2287 /*
2288 * Third attempt: ask 255 bytes, as we did earlier.
2289 */
2290 if (!scsi_status_is_good(res))
2291 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2292 &data, NULL);
2293 }
2294
2295 if (!scsi_status_is_good(res)) {
2296 sd_first_printk(KERN_WARNING, sdkp,
2297 "Test WP failed, assume Write Enabled\n");
2298 } else {
2299 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2300 set_disk_ro(sdkp->disk, sdkp->write_prot);
2301 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2302 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2303 sdkp->write_prot ? "on" : "off");
2304 sd_printk(KERN_DEBUG, sdkp,
2305 "Mode Sense: %02x %02x %02x %02x\n",
2306 buffer[0], buffer[1], buffer[2], buffer[3]);
2307 }
2308 }
2309 }
2310
2311 /*
2312 * sd_read_cache_type - called only from sd_revalidate_disk()
2313 * called with buffer of length SD_BUF_SIZE
2314 */
2315 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2316 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2317 {
2318 int len = 0, res;
2319 struct scsi_device *sdp = sdkp->device;
2320
2321 int dbd;
2322 int modepage;
2323 int first_len;
2324 struct scsi_mode_data data;
2325 struct scsi_sense_hdr sshdr;
2326 int old_wce = sdkp->WCE;
2327 int old_rcd = sdkp->RCD;
2328 int old_dpofua = sdkp->DPOFUA;
2329
2330
2331 if (sdkp->cache_override)
2332 return;
2333
2334 first_len = 4;
2335 if (sdp->skip_ms_page_8) {
2336 if (sdp->type == TYPE_RBC)
2337 goto defaults;
2338 else {
2339 if (sdp->skip_ms_page_3f)
2340 goto defaults;
2341 modepage = 0x3F;
2342 if (sdp->use_192_bytes_for_3f)
2343 first_len = 192;
2344 dbd = 0;
2345 }
2346 } else if (sdp->type == TYPE_RBC) {
2347 modepage = 6;
2348 dbd = 8;
2349 } else {
2350 modepage = 8;
2351 dbd = 0;
2352 }
2353
2354 /* cautiously ask */
2355 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2356 &data, &sshdr);
2357
2358 if (!scsi_status_is_good(res))
2359 goto bad_sense;
2360
2361 if (!data.header_length) {
2362 modepage = 6;
2363 first_len = 0;
2364 sd_first_printk(KERN_ERR, sdkp,
2365 "Missing header in MODE_SENSE response\n");
2366 }
2367
2368 /* that went OK, now ask for the proper length */
2369 len = data.length;
2370
2371 /*
2372 * We're only interested in the first three bytes, actually.
2373 * But the data cache page is defined for the first 20.
2374 */
2375 if (len < 3)
2376 goto bad_sense;
2377 else if (len > SD_BUF_SIZE) {
2378 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2379 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2380 len = SD_BUF_SIZE;
2381 }
2382 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2383 len = 192;
2384
2385 /* Get the data */
2386 if (len > first_len)
2387 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2388 &data, &sshdr);
2389
2390 if (scsi_status_is_good(res)) {
2391 int offset = data.header_length + data.block_descriptor_length;
2392
2393 while (offset < len) {
2394 u8 page_code = buffer[offset] & 0x3F;
2395 u8 spf = buffer[offset] & 0x40;
2396
2397 if (page_code == 8 || page_code == 6) {
2398 /* We're interested only in the first 3 bytes.
2399 */
2400 if (len - offset <= 2) {
2401 sd_first_printk(KERN_ERR, sdkp,
2402 "Incomplete mode parameter "
2403 "data\n");
2404 goto defaults;
2405 } else {
2406 modepage = page_code;
2407 goto Page_found;
2408 }
2409 } else {
2410 /* Go to the next page */
2411 if (spf && len - offset > 3)
2412 offset += 4 + (buffer[offset+2] << 8) +
2413 buffer[offset+3];
2414 else if (!spf && len - offset > 1)
2415 offset += 2 + buffer[offset+1];
2416 else {
2417 sd_first_printk(KERN_ERR, sdkp,
2418 "Incomplete mode "
2419 "parameter data\n");
2420 goto defaults;
2421 }
2422 }
2423 }
2424
2425 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2426 goto defaults;
2427
2428 Page_found:
2429 if (modepage == 8) {
2430 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2431 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2432 } else {
2433 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2434 sdkp->RCD = 0;
2435 }
2436
2437 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2438 if (sdp->broken_fua) {
2439 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2440 sdkp->DPOFUA = 0;
2441 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
2442 sd_first_printk(KERN_NOTICE, sdkp,
2443 "Uses READ/WRITE(6), disabling FUA\n");
2444 sdkp->DPOFUA = 0;
2445 }
2446
2447 /* No cache flush allowed for write protected devices */
2448 if (sdkp->WCE && sdkp->write_prot)
2449 sdkp->WCE = 0;
2450
2451 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2452 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2453 sd_printk(KERN_NOTICE, sdkp,
2454 "Write cache: %s, read cache: %s, %s\n",
2455 sdkp->WCE ? "enabled" : "disabled",
2456 sdkp->RCD ? "disabled" : "enabled",
2457 sdkp->DPOFUA ? "supports DPO and FUA"
2458 : "doesn't support DPO or FUA");
2459
2460 return;
2461 }
2462
2463 bad_sense:
2464 if (scsi_sense_valid(&sshdr) &&
2465 sshdr.sense_key == ILLEGAL_REQUEST &&
2466 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2467 /* Invalid field in CDB */
2468 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2469 else
2470 sd_first_printk(KERN_ERR, sdkp,
2471 "Asking for cache data failed\n");
2472
2473 defaults:
2474 if (sdp->wce_default_on) {
2475 sd_first_printk(KERN_NOTICE, sdkp,
2476 "Assuming drive cache: write back\n");
2477 sdkp->WCE = 1;
2478 } else {
2479 sd_first_printk(KERN_ERR, sdkp,
2480 "Assuming drive cache: write through\n");
2481 sdkp->WCE = 0;
2482 }
2483 sdkp->RCD = 0;
2484 sdkp->DPOFUA = 0;
2485 }
2486
2487 /*
2488 * The ATO bit indicates whether the DIF application tag is available
2489 * for use by the operating system.
2490 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2491 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2492 {
2493 int res, offset;
2494 struct scsi_device *sdp = sdkp->device;
2495 struct scsi_mode_data data;
2496 struct scsi_sense_hdr sshdr;
2497
2498 if (sdp->type != TYPE_DISK)
2499 return;
2500
2501 if (sdkp->protection_type == 0)
2502 return;
2503
2504 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2505 SD_MAX_RETRIES, &data, &sshdr);
2506
2507 if (!scsi_status_is_good(res) || !data.header_length ||
2508 data.length < 6) {
2509 sd_first_printk(KERN_WARNING, sdkp,
2510 "getting Control mode page failed, assume no ATO\n");
2511
2512 if (scsi_sense_valid(&sshdr))
2513 sd_print_sense_hdr(sdkp, &sshdr);
2514
2515 return;
2516 }
2517
2518 offset = data.header_length + data.block_descriptor_length;
2519
2520 if ((buffer[offset] & 0x3f) != 0x0a) {
2521 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2522 return;
2523 }
2524
2525 if ((buffer[offset + 5] & 0x80) == 0)
2526 return;
2527
2528 sdkp->ATO = 1;
2529
2530 return;
2531 }
2532
2533 /**
2534 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2535 * @disk: disk to query
2536 */
sd_read_block_limits(struct scsi_disk * sdkp)2537 static void sd_read_block_limits(struct scsi_disk *sdkp)
2538 {
2539 unsigned int sector_sz = sdkp->device->sector_size;
2540 const int vpd_len = 64;
2541 u32 max_xfer_length;
2542 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2543
2544 if (!buffer ||
2545 /* Block Limits VPD */
2546 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2547 goto out;
2548
2549 max_xfer_length = get_unaligned_be32(&buffer[8]);
2550 if (max_xfer_length)
2551 sdkp->max_xfer_blocks = max_xfer_length;
2552
2553 blk_queue_io_min(sdkp->disk->queue,
2554 get_unaligned_be16(&buffer[6]) * sector_sz);
2555 blk_queue_io_opt(sdkp->disk->queue,
2556 get_unaligned_be32(&buffer[12]) * sector_sz);
2557
2558 if (buffer[3] == 0x3c) {
2559 unsigned int lba_count, desc_count;
2560
2561 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2562
2563 if (!sdkp->lbpme)
2564 goto out;
2565
2566 lba_count = get_unaligned_be32(&buffer[20]);
2567 desc_count = get_unaligned_be32(&buffer[24]);
2568
2569 if (lba_count && desc_count)
2570 sdkp->max_unmap_blocks = lba_count;
2571
2572 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2573
2574 if (buffer[32] & 0x80)
2575 sdkp->unmap_alignment =
2576 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2577
2578 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2579
2580 if (sdkp->max_unmap_blocks)
2581 sd_config_discard(sdkp, SD_LBP_UNMAP);
2582 else
2583 sd_config_discard(sdkp, SD_LBP_WS16);
2584
2585 } else { /* LBP VPD page tells us what to use */
2586 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
2587 sd_config_discard(sdkp, SD_LBP_UNMAP);
2588 else if (sdkp->lbpws)
2589 sd_config_discard(sdkp, SD_LBP_WS16);
2590 else if (sdkp->lbpws10)
2591 sd_config_discard(sdkp, SD_LBP_WS10);
2592 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2593 sd_config_discard(sdkp, SD_LBP_UNMAP);
2594 else
2595 sd_config_discard(sdkp, SD_LBP_DISABLE);
2596 }
2597 }
2598
2599 out:
2600 kfree(buffer);
2601 }
2602
2603 /**
2604 * sd_read_block_characteristics - Query block dev. characteristics
2605 * @disk: disk to query
2606 */
sd_read_block_characteristics(struct scsi_disk * sdkp)2607 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2608 {
2609 unsigned char *buffer;
2610 u16 rot;
2611 const int vpd_len = 64;
2612
2613 buffer = kmalloc(vpd_len, GFP_KERNEL);
2614
2615 if (!buffer ||
2616 /* Block Device Characteristics VPD */
2617 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2618 goto out;
2619
2620 rot = get_unaligned_be16(&buffer[4]);
2621
2622 if (rot == 1) {
2623 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2624 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
2625 }
2626
2627 out:
2628 kfree(buffer);
2629 }
2630
2631 /**
2632 * sd_read_block_provisioning - Query provisioning VPD page
2633 * @disk: disk to query
2634 */
sd_read_block_provisioning(struct scsi_disk * sdkp)2635 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2636 {
2637 unsigned char *buffer;
2638 const int vpd_len = 8;
2639
2640 if (sdkp->lbpme == 0)
2641 return;
2642
2643 buffer = kmalloc(vpd_len, GFP_KERNEL);
2644
2645 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2646 goto out;
2647
2648 sdkp->lbpvpd = 1;
2649 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2650 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2651 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2652
2653 out:
2654 kfree(buffer);
2655 }
2656
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)2657 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2658 {
2659 struct scsi_device *sdev = sdkp->device;
2660
2661 if (sdev->host->no_write_same) {
2662 sdev->no_write_same = 1;
2663
2664 return;
2665 }
2666
2667 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2668 /* too large values might cause issues with arcmsr */
2669 int vpd_buf_len = 64;
2670
2671 sdev->no_report_opcodes = 1;
2672
2673 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2674 * CODES is unsupported and the device has an ATA
2675 * Information VPD page (SAT).
2676 */
2677 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2678 sdev->no_write_same = 1;
2679 }
2680
2681 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2682 sdkp->ws16 = 1;
2683
2684 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2685 sdkp->ws10 = 1;
2686 }
2687
sd_try_extended_inquiry(struct scsi_device * sdp)2688 static int sd_try_extended_inquiry(struct scsi_device *sdp)
2689 {
2690 /* Attempt VPD inquiry if the device blacklist explicitly calls
2691 * for it.
2692 */
2693 if (sdp->try_vpd_pages)
2694 return 1;
2695 /*
2696 * Although VPD inquiries can go to SCSI-2 type devices,
2697 * some USB ones crash on receiving them, and the pages
2698 * we currently ask for are for SPC-3 and beyond
2699 */
2700 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2701 return 1;
2702 return 0;
2703 }
2704
2705 /**
2706 * sd_revalidate_disk - called the first time a new disk is seen,
2707 * performs disk spin up, read_capacity, etc.
2708 * @disk: struct gendisk we care about
2709 **/
sd_revalidate_disk(struct gendisk * disk)2710 static int sd_revalidate_disk(struct gendisk *disk)
2711 {
2712 struct scsi_disk *sdkp = scsi_disk(disk);
2713 struct scsi_device *sdp = sdkp->device;
2714 unsigned char *buffer;
2715 unsigned int max_xfer;
2716
2717 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2718 "sd_revalidate_disk\n"));
2719
2720 /*
2721 * If the device is offline, don't try and read capacity or any
2722 * of the other niceties.
2723 */
2724 if (!scsi_device_online(sdp))
2725 goto out;
2726
2727 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2728 if (!buffer) {
2729 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2730 "allocation failure.\n");
2731 goto out;
2732 }
2733
2734 sd_spinup_disk(sdkp);
2735
2736 /*
2737 * Without media there is no reason to ask; moreover, some devices
2738 * react badly if we do.
2739 */
2740 if (sdkp->media_present) {
2741 sd_read_capacity(sdkp, buffer);
2742
2743 if (sd_try_extended_inquiry(sdp)) {
2744 sd_read_block_provisioning(sdkp);
2745 sd_read_block_limits(sdkp);
2746 sd_read_block_characteristics(sdkp);
2747 }
2748
2749 sd_read_write_protect_flag(sdkp, buffer);
2750 sd_read_cache_type(sdkp, buffer);
2751 sd_read_app_tag_own(sdkp, buffer);
2752 sd_read_write_same(sdkp, buffer);
2753 }
2754
2755 sdkp->first_scan = 0;
2756
2757 /*
2758 * We now have all cache related info, determine how we deal
2759 * with flush requests.
2760 */
2761 sd_set_flush_flag(sdkp);
2762
2763 max_xfer = sdkp->max_xfer_blocks;
2764 max_xfer <<= ilog2(sdp->sector_size) - 9;
2765
2766 sdkp->disk->queue->limits.max_sectors =
2767 min_not_zero(queue_max_hw_sectors(sdkp->disk->queue), max_xfer);
2768
2769 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
2770 sd_config_write_same(sdkp);
2771 kfree(buffer);
2772
2773 out:
2774 return 0;
2775 }
2776
2777 /**
2778 * sd_unlock_native_capacity - unlock native capacity
2779 * @disk: struct gendisk to set capacity for
2780 *
2781 * Block layer calls this function if it detects that partitions
2782 * on @disk reach beyond the end of the device. If the SCSI host
2783 * implements ->unlock_native_capacity() method, it's invoked to
2784 * give it a chance to adjust the device capacity.
2785 *
2786 * CONTEXT:
2787 * Defined by block layer. Might sleep.
2788 */
sd_unlock_native_capacity(struct gendisk * disk)2789 static void sd_unlock_native_capacity(struct gendisk *disk)
2790 {
2791 struct scsi_device *sdev = scsi_disk(disk)->device;
2792
2793 if (sdev->host->hostt->unlock_native_capacity)
2794 sdev->host->hostt->unlock_native_capacity(sdev);
2795 }
2796
2797 /**
2798 * sd_format_disk_name - format disk name
2799 * @prefix: name prefix - ie. "sd" for SCSI disks
2800 * @index: index of the disk to format name for
2801 * @buf: output buffer
2802 * @buflen: length of the output buffer
2803 *
2804 * SCSI disk names starts at sda. The 26th device is sdz and the
2805 * 27th is sdaa. The last one for two lettered suffix is sdzz
2806 * which is followed by sdaaa.
2807 *
2808 * This is basically 26 base counting with one extra 'nil' entry
2809 * at the beginning from the second digit on and can be
2810 * determined using similar method as 26 base conversion with the
2811 * index shifted -1 after each digit is computed.
2812 *
2813 * CONTEXT:
2814 * Don't care.
2815 *
2816 * RETURNS:
2817 * 0 on success, -errno on failure.
2818 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)2819 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2820 {
2821 const int base = 'z' - 'a' + 1;
2822 char *begin = buf + strlen(prefix);
2823 char *end = buf + buflen;
2824 char *p;
2825 int unit;
2826
2827 p = end - 1;
2828 *p = '\0';
2829 unit = base;
2830 do {
2831 if (p == begin)
2832 return -EINVAL;
2833 *--p = 'a' + (index % unit);
2834 index = (index / unit) - 1;
2835 } while (index >= 0);
2836
2837 memmove(begin, p, end - p);
2838 memcpy(buf, prefix, strlen(prefix));
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * The asynchronous part of sd_probe
2845 */
sd_probe_async(void * data,async_cookie_t cookie)2846 static void sd_probe_async(void *data, async_cookie_t cookie)
2847 {
2848 struct scsi_disk *sdkp = data;
2849 struct scsi_device *sdp;
2850 struct gendisk *gd;
2851 u32 index;
2852 struct device *dev;
2853
2854 sdp = sdkp->device;
2855 gd = sdkp->disk;
2856 index = sdkp->index;
2857 dev = &sdp->sdev_gendev;
2858
2859 gd->major = sd_major((index & 0xf0) >> 4);
2860 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2861 gd->minors = SD_MINORS;
2862
2863 gd->fops = &sd_fops;
2864 gd->private_data = &sdkp->driver;
2865 gd->queue = sdkp->device->request_queue;
2866
2867 /* defaults, until the device tells us otherwise */
2868 sdp->sector_size = 512;
2869 sdkp->capacity = 0;
2870 sdkp->media_present = 1;
2871 sdkp->write_prot = 0;
2872 sdkp->cache_override = 0;
2873 sdkp->WCE = 0;
2874 sdkp->RCD = 0;
2875 sdkp->ATO = 0;
2876 sdkp->first_scan = 1;
2877 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2878
2879 sd_revalidate_disk(gd);
2880
2881 gd->driverfs_dev = &sdp->sdev_gendev;
2882 gd->flags = GENHD_FL_EXT_DEVT;
2883 if (sdp->removable) {
2884 gd->flags |= GENHD_FL_REMOVABLE;
2885 gd->events |= DISK_EVENT_MEDIA_CHANGE;
2886 }
2887
2888 blk_pm_runtime_init(sdp->request_queue, dev);
2889 add_disk(gd);
2890 if (sdkp->capacity)
2891 sd_dif_config_host(sdkp);
2892
2893 sd_revalidate_disk(gd);
2894
2895 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2896 sdp->removable ? "removable " : "");
2897 scsi_autopm_put_device(sdp);
2898 put_device(&sdkp->dev);
2899 }
2900
2901 /**
2902 * sd_probe - called during driver initialization and whenever a
2903 * new scsi device is attached to the system. It is called once
2904 * for each scsi device (not just disks) present.
2905 * @dev: pointer to device object
2906 *
2907 * Returns 0 if successful (or not interested in this scsi device
2908 * (e.g. scanner)); 1 when there is an error.
2909 *
2910 * Note: this function is invoked from the scsi mid-level.
2911 * This function sets up the mapping between a given
2912 * <host,channel,id,lun> (found in sdp) and new device name
2913 * (e.g. /dev/sda). More precisely it is the block device major
2914 * and minor number that is chosen here.
2915 *
2916 * Assume sd_probe is not re-entrant (for time being)
2917 * Also think about sd_probe() and sd_remove() running coincidentally.
2918 **/
sd_probe(struct device * dev)2919 static int sd_probe(struct device *dev)
2920 {
2921 struct scsi_device *sdp = to_scsi_device(dev);
2922 struct scsi_disk *sdkp;
2923 struct gendisk *gd;
2924 int index;
2925 int error;
2926
2927 scsi_autopm_get_device(sdp);
2928 error = -ENODEV;
2929 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
2930 goto out;
2931
2932 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
2933 "sd_probe\n"));
2934
2935 error = -ENOMEM;
2936 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
2937 if (!sdkp)
2938 goto out;
2939
2940 gd = alloc_disk(SD_MINORS);
2941 if (!gd)
2942 goto out_free;
2943
2944 do {
2945 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
2946 goto out_put;
2947
2948 spin_lock(&sd_index_lock);
2949 error = ida_get_new(&sd_index_ida, &index);
2950 spin_unlock(&sd_index_lock);
2951 } while (error == -EAGAIN);
2952
2953 if (error) {
2954 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
2955 goto out_put;
2956 }
2957
2958 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
2959 if (error) {
2960 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
2961 goto out_free_index;
2962 }
2963
2964 sdkp->device = sdp;
2965 sdkp->driver = &sd_template;
2966 sdkp->disk = gd;
2967 sdkp->index = index;
2968 atomic_set(&sdkp->openers, 0);
2969 atomic_set(&sdkp->device->ioerr_cnt, 0);
2970
2971 if (!sdp->request_queue->rq_timeout) {
2972 if (sdp->type != TYPE_MOD)
2973 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
2974 else
2975 blk_queue_rq_timeout(sdp->request_queue,
2976 SD_MOD_TIMEOUT);
2977 }
2978
2979 device_initialize(&sdkp->dev);
2980 sdkp->dev.parent = dev;
2981 sdkp->dev.class = &sd_disk_class;
2982 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
2983
2984 if (device_add(&sdkp->dev))
2985 goto out_free_index;
2986
2987 get_device(dev);
2988 dev_set_drvdata(dev, sdkp);
2989
2990 get_device(&sdkp->dev); /* prevent release before async_schedule */
2991 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
2992
2993 return 0;
2994
2995 out_free_index:
2996 spin_lock(&sd_index_lock);
2997 ida_remove(&sd_index_ida, index);
2998 spin_unlock(&sd_index_lock);
2999 out_put:
3000 put_disk(gd);
3001 out_free:
3002 kfree(sdkp);
3003 out:
3004 scsi_autopm_put_device(sdp);
3005 return error;
3006 }
3007
3008 /**
3009 * sd_remove - called whenever a scsi disk (previously recognized by
3010 * sd_probe) is detached from the system. It is called (potentially
3011 * multiple times) during sd module unload.
3012 * @sdp: pointer to mid level scsi device object
3013 *
3014 * Note: this function is invoked from the scsi mid-level.
3015 * This function potentially frees up a device name (e.g. /dev/sdc)
3016 * that could be re-used by a subsequent sd_probe().
3017 * This function is not called when the built-in sd driver is "exit-ed".
3018 **/
sd_remove(struct device * dev)3019 static int sd_remove(struct device *dev)
3020 {
3021 struct scsi_disk *sdkp;
3022 dev_t devt;
3023
3024 sdkp = dev_get_drvdata(dev);
3025 devt = disk_devt(sdkp->disk);
3026 scsi_autopm_get_device(sdkp->device);
3027
3028 async_synchronize_full_domain(&scsi_sd_pm_domain);
3029 async_synchronize_full_domain(&scsi_sd_probe_domain);
3030 device_del(&sdkp->dev);
3031 del_gendisk(sdkp->disk);
3032 sd_shutdown(dev);
3033
3034 blk_register_region(devt, SD_MINORS, NULL,
3035 sd_default_probe, NULL, NULL);
3036
3037 mutex_lock(&sd_ref_mutex);
3038 dev_set_drvdata(dev, NULL);
3039 put_device(&sdkp->dev);
3040 mutex_unlock(&sd_ref_mutex);
3041
3042 return 0;
3043 }
3044
3045 /**
3046 * scsi_disk_release - Called to free the scsi_disk structure
3047 * @dev: pointer to embedded class device
3048 *
3049 * sd_ref_mutex must be held entering this routine. Because it is
3050 * called on last put, you should always use the scsi_disk_get()
3051 * scsi_disk_put() helpers which manipulate the semaphore directly
3052 * and never do a direct put_device.
3053 **/
scsi_disk_release(struct device * dev)3054 static void scsi_disk_release(struct device *dev)
3055 {
3056 struct scsi_disk *sdkp = to_scsi_disk(dev);
3057 struct gendisk *disk = sdkp->disk;
3058
3059 spin_lock(&sd_index_lock);
3060 ida_remove(&sd_index_ida, sdkp->index);
3061 spin_unlock(&sd_index_lock);
3062
3063 blk_integrity_unregister(disk);
3064 disk->private_data = NULL;
3065 put_disk(disk);
3066 put_device(&sdkp->device->sdev_gendev);
3067
3068 kfree(sdkp);
3069 }
3070
sd_start_stop_device(struct scsi_disk * sdkp,int start)3071 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3072 {
3073 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3074 struct scsi_sense_hdr sshdr;
3075 struct scsi_device *sdp = sdkp->device;
3076 int res;
3077
3078 if (start)
3079 cmd[4] |= 1; /* START */
3080
3081 if (sdp->start_stop_pwr_cond)
3082 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3083
3084 if (!scsi_device_online(sdp))
3085 return -ENODEV;
3086
3087 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3088 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3089 if (res) {
3090 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3091 if (driver_byte(res) & DRIVER_SENSE)
3092 sd_print_sense_hdr(sdkp, &sshdr);
3093 if (scsi_sense_valid(&sshdr) &&
3094 /* 0x3a is medium not present */
3095 sshdr.asc == 0x3a)
3096 res = 0;
3097 }
3098
3099 /* SCSI error codes must not go to the generic layer */
3100 if (res)
3101 return -EIO;
3102
3103 return 0;
3104 }
3105
3106 /*
3107 * Send a SYNCHRONIZE CACHE instruction down to the device through
3108 * the normal SCSI command structure. Wait for the command to
3109 * complete.
3110 */
sd_shutdown(struct device * dev)3111 static void sd_shutdown(struct device *dev)
3112 {
3113 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3114
3115 if (!sdkp)
3116 return; /* this can happen */
3117
3118 if (pm_runtime_suspended(dev))
3119 return;
3120
3121 if (sdkp->WCE && sdkp->media_present) {
3122 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3123 sd_sync_cache(sdkp);
3124 }
3125
3126 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3127 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3128 sd_start_stop_device(sdkp, 0);
3129 }
3130 }
3131
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3132 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3133 {
3134 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3135 int ret = 0;
3136
3137 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3138 return 0;
3139
3140 if (sdkp->WCE && sdkp->media_present) {
3141 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3142 ret = sd_sync_cache(sdkp);
3143 if (ret) {
3144 /* ignore OFFLINE device */
3145 if (ret == -ENODEV)
3146 ret = 0;
3147 goto done;
3148 }
3149 }
3150
3151 if (sdkp->device->manage_start_stop) {
3152 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3153 /* an error is not worth aborting a system sleep */
3154 ret = sd_start_stop_device(sdkp, 0);
3155 if (ignore_stop_errors)
3156 ret = 0;
3157 }
3158
3159 done:
3160 return ret;
3161 }
3162
sd_suspend_system(struct device * dev)3163 static int sd_suspend_system(struct device *dev)
3164 {
3165 return sd_suspend_common(dev, true);
3166 }
3167
sd_suspend_runtime(struct device * dev)3168 static int sd_suspend_runtime(struct device *dev)
3169 {
3170 return sd_suspend_common(dev, false);
3171 }
3172
sd_resume(struct device * dev)3173 static int sd_resume(struct device *dev)
3174 {
3175 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3176
3177 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3178 return 0;
3179
3180 if (!sdkp->device->manage_start_stop)
3181 return 0;
3182
3183 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3184 return sd_start_stop_device(sdkp, 1);
3185 }
3186
3187 /**
3188 * init_sd - entry point for this driver (both when built in or when
3189 * a module).
3190 *
3191 * Note: this function registers this driver with the scsi mid-level.
3192 **/
init_sd(void)3193 static int __init init_sd(void)
3194 {
3195 int majors = 0, i, err;
3196
3197 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3198
3199 for (i = 0; i < SD_MAJORS; i++) {
3200 if (register_blkdev(sd_major(i), "sd") != 0)
3201 continue;
3202 majors++;
3203 blk_register_region(sd_major(i), SD_MINORS, NULL,
3204 sd_default_probe, NULL, NULL);
3205 }
3206
3207 if (!majors)
3208 return -ENODEV;
3209
3210 err = class_register(&sd_disk_class);
3211 if (err)
3212 goto err_out;
3213
3214 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3215 0, 0, NULL);
3216 if (!sd_cdb_cache) {
3217 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3218 err = -ENOMEM;
3219 goto err_out_class;
3220 }
3221
3222 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3223 if (!sd_cdb_pool) {
3224 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3225 err = -ENOMEM;
3226 goto err_out_cache;
3227 }
3228
3229 err = scsi_register_driver(&sd_template.gendrv);
3230 if (err)
3231 goto err_out_driver;
3232
3233 return 0;
3234
3235 err_out_driver:
3236 mempool_destroy(sd_cdb_pool);
3237
3238 err_out_cache:
3239 kmem_cache_destroy(sd_cdb_cache);
3240
3241 err_out_class:
3242 class_unregister(&sd_disk_class);
3243 err_out:
3244 for (i = 0; i < SD_MAJORS; i++)
3245 unregister_blkdev(sd_major(i), "sd");
3246 return err;
3247 }
3248
3249 /**
3250 * exit_sd - exit point for this driver (when it is a module).
3251 *
3252 * Note: this function unregisters this driver from the scsi mid-level.
3253 **/
exit_sd(void)3254 static void __exit exit_sd(void)
3255 {
3256 int i;
3257
3258 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3259
3260 scsi_unregister_driver(&sd_template.gendrv);
3261 mempool_destroy(sd_cdb_pool);
3262 kmem_cache_destroy(sd_cdb_cache);
3263
3264 class_unregister(&sd_disk_class);
3265
3266 for (i = 0; i < SD_MAJORS; i++) {
3267 blk_unregister_region(sd_major(i), SD_MINORS);
3268 unregister_blkdev(sd_major(i), "sd");
3269 }
3270 }
3271
3272 module_init(init_sd);
3273 module_exit(exit_sd);
3274
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3275 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3276 struct scsi_sense_hdr *sshdr)
3277 {
3278 scsi_print_sense_hdr(sdkp->device,
3279 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3280 }
3281
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3282 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3283 int result)
3284 {
3285 const char *hb_string = scsi_hostbyte_string(result);
3286 const char *db_string = scsi_driverbyte_string(result);
3287
3288 if (hb_string || db_string)
3289 sd_printk(KERN_INFO, sdkp,
3290 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3291 hb_string ? hb_string : "invalid",
3292 db_string ? db_string : "invalid");
3293 else
3294 sd_printk(KERN_INFO, sdkp,
3295 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3296 msg, host_byte(result), driver_byte(result));
3297 }
3298
3299