1 /*
2  * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3  *
4  * This software may be used and distributed according to the terms of the
5  * GNU General Public License.
6  *
7  * The author may be reached as romieu@cogenit.fr.
8  * Specific bug reports/asian food will be welcome.
9  *
10  * Special thanks to the nice people at CS-Telecom for the hardware and the
11  * access to the test/measure tools.
12  *
13  *
14  *                             Theory of Operation
15  *
16  * I. Board Compatibility
17  *
18  * This device driver is designed for the Siemens PEB20534 4 ports serial
19  * controller as found on Etinc PCISYNC cards. The documentation for the
20  * chipset is available at http://www.infineon.com:
21  * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22  * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23  * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24  * - Errata sheet DS5 (courtesy of Michael Skerritt).
25  * Jens David has built an adapter based on the same chipset. Take a look
26  * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27  * driver.
28  * Sample code (2 revisions) is available at Infineon.
29  *
30  * II. Board-specific settings
31  *
32  * Pcisync can transmit some clock signal to the outside world on the
33  * *first two* ports provided you put a quartz and a line driver on it and
34  * remove the jumpers. The operation is described on Etinc web site. If you
35  * go DCE on these ports, don't forget to use an adequate cable.
36  *
37  * Sharing of the PCI interrupt line for this board is possible.
38  *
39  * III. Driver operation
40  *
41  * The rx/tx operations are based on a linked list of descriptors. The driver
42  * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43  * I tried to fix it, the more it started to look like (convoluted) software
44  * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45  * this a rfc2119 MUST.
46  *
47  * Tx direction
48  * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49  * The device is supposed to be enabled again during an ALLS irq (we could
50  * use HI but as it's easy to lose events, it's fscked).
51  *
52  * Rx direction
53  * The received frames aren't supposed to span over multiple receiving areas.
54  * I may implement it some day but it isn't the highest ranked item.
55  *
56  * IV. Notes
57  * The current error (XDU, RFO) recovery code is untested.
58  * So far, RDO takes his RX channel down and the right sequence to enable it
59  * again is still a mystery. If RDO happens, plan a reboot. More details
60  * in the code (NB: as this happens, TX still works).
61  * Don't mess the cables during operation, especially on DTE ports. I don't
62  * suggest it for DCE either but at least one can get some messages instead
63  * of a complete instant freeze.
64  * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65  * the documentation/chipset releases.
66  *
67  * TODO:
68  * - test X25.
69  * - use polling at high irq/s,
70  * - performance analysis,
71  * - endianness.
72  *
73  * 2001/12/10	Daniela Squassoni  <daniela@cyclades.com>
74  * - Contribution to support the new generic HDLC layer.
75  *
76  * 2002/01	Ueimor
77  * - old style interface removal
78  * - dscc4_release_ring fix (related to DMA mapping)
79  * - hard_start_xmit fix (hint: TxSizeMax)
80  * - misc crapectomy.
81  */
82 
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
84 
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
93 #include <linux/mm.h>
94 #include <linux/slab.h>
95 
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <asm/uaccess.h>
99 #include <asm/io.h>
100 #include <asm/irq.h>
101 
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
105 
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
112 
113 /* Version */
114 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 static int debug;
116 static int quartz;
117 
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex);
120 static u32 dscc4_pci_config_store[16];
121 #endif
122 
123 #define	DRV_NAME	"dscc4"
124 
125 #undef DSCC4_POLLING
126 
127 /* Module parameters */
128 
129 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug, int, 0);
133 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
134 module_param(quartz, int, 0);
135 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
136 
137 /* Structures */
138 
139 struct thingie {
140 	int define;
141 	u32 bits;
142 };
143 
144 struct TxFD {
145 	__le32 state;
146 	__le32 next;
147 	__le32 data;
148 	__le32 complete;
149 	u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150 		     /* FWIW, datasheet calls that "dummy" and says that card
151 		      * never looks at it; neither does the driver */
152 };
153 
154 struct RxFD {
155 	__le32 state1;
156 	__le32 next;
157 	__le32 data;
158 	__le32 state2;
159 	__le32 end;
160 };
161 
162 #define DUMMY_SKB_SIZE		64
163 #define TX_LOW			8
164 #define TX_RING_SIZE		32
165 #define RX_RING_SIZE		32
166 #define TX_TOTAL_SIZE		TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE		64		/* Keep it a multiple of 32 */
169 #define TX_TIMEOUT		(HZ/10)
170 #define DSCC4_HZ_MAX		33000000
171 #define BRR_DIVIDER_MAX		64*0x00004000	/* Cf errata DS5 p.10 */
172 #define dev_per_card		4
173 #define SCC_REGISTERS_MAX	23		/* Cf errata DS5 p.4 */
174 
175 #define SOURCE_ID(flags)	(((flags) >> 28) & 0x03)
176 #define TO_SIZE(state)		(((state) >> 16) & 0x1fff)
177 
178 /*
179  * Given the operating range of Linux HDLC, the 2 defines below could be
180  * made simpler. However they are a fine reminder for the limitations of
181  * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
182  */
183 #define TO_STATE_TX(len)	cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len)	cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len)		((((len) >> 5) + 1) << 5)	/* Cf RLCR */
186 #define SCC_REG_START(dpriv)	(SCC_START+(dpriv->dev_id)*SCC_OFFSET)
187 
188 struct dscc4_pci_priv {
189         __le32 *iqcfg;
190         int cfg_cur;
191         spinlock_t lock;
192         struct pci_dev *pdev;
193 
194         struct dscc4_dev_priv *root;
195         dma_addr_t iqcfg_dma;
196 	u32 xtal_hz;
197 };
198 
199 struct dscc4_dev_priv {
200         struct sk_buff *rx_skbuff[RX_RING_SIZE];
201         struct sk_buff *tx_skbuff[TX_RING_SIZE];
202 
203         struct RxFD *rx_fd;
204         struct TxFD *tx_fd;
205         __le32 *iqrx;
206         __le32 *iqtx;
207 
208 	/* FIXME: check all the volatile are required */
209         volatile u32 tx_current;
210         u32 rx_current;
211         u32 iqtx_current;
212         u32 iqrx_current;
213 
214         volatile u32 tx_dirty;
215         volatile u32 ltda;
216         u32 rx_dirty;
217         u32 lrda;
218 
219         dma_addr_t tx_fd_dma;
220         dma_addr_t rx_fd_dma;
221         dma_addr_t iqtx_dma;
222         dma_addr_t iqrx_dma;
223 
224 	u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
225 
226 	struct timer_list timer;
227 
228         struct dscc4_pci_priv *pci_priv;
229         spinlock_t lock;
230 
231         int dev_id;
232 	volatile u32 flags;
233 	u32 timer_help;
234 
235 	unsigned short encoding;
236 	unsigned short parity;
237 	struct net_device *dev;
238 	sync_serial_settings settings;
239 	void __iomem *base_addr;
240 	u32 __pad __attribute__ ((aligned (4)));
241 };
242 
243 /* GLOBAL registers definitions */
244 #define GCMDR   0x00
245 #define GSTAR   0x04
246 #define GMODE   0x08
247 #define IQLENR0 0x0C
248 #define IQLENR1 0x10
249 #define IQRX0   0x14
250 #define IQTX0   0x24
251 #define IQCFG   0x3c
252 #define FIFOCR1 0x44
253 #define FIFOCR2 0x48
254 #define FIFOCR3 0x4c
255 #define FIFOCR4 0x34
256 #define CH0CFG  0x50
257 #define CH0BRDA 0x54
258 #define CH0BTDA 0x58
259 #define CH0FRDA 0x98
260 #define CH0FTDA 0xb0
261 #define CH0LRDA 0xc8
262 #define CH0LTDA 0xe0
263 
264 /* SCC registers definitions */
265 #define SCC_START	0x0100
266 #define SCC_OFFSET      0x80
267 #define CMDR    0x00
268 #define STAR    0x04
269 #define CCR0    0x08
270 #define CCR1    0x0c
271 #define CCR2    0x10
272 #define BRR     0x2C
273 #define RLCR    0x40
274 #define IMR     0x54
275 #define ISR     0x58
276 
277 #define GPDIR	0x0400
278 #define GPDATA	0x0404
279 #define GPIM	0x0408
280 
281 /* Bit masks */
282 #define EncodingMask	0x00700000
283 #define CrcMask		0x00000003
284 
285 #define IntRxScc0	0x10000000
286 #define IntTxScc0	0x01000000
287 
288 #define TxPollCmd	0x00000400
289 #define RxActivate	0x08000000
290 #define MTFi		0x04000000
291 #define Rdr		0x00400000
292 #define Rdt		0x00200000
293 #define Idr		0x00100000
294 #define Idt		0x00080000
295 #define TxSccRes	0x01000000
296 #define RxSccRes	0x00010000
297 #define TxSizeMax	0x1fff		/* Datasheet DS1 - 11.1.1.1 */
298 #define RxSizeMax	0x1ffc		/* Datasheet DS1 - 11.1.2.1 */
299 
300 #define Ccr0ClockMask	0x0000003f
301 #define Ccr1LoopMask	0x00000200
302 #define IsrMask		0x000fffff
303 #define BrrExpMask	0x00000f00
304 #define BrrMultMask	0x0000003f
305 #define EncodingMask	0x00700000
306 #define Hold		cpu_to_le32(0x40000000)
307 #define SccBusy		0x10000000
308 #define PowerUp		0x80000000
309 #define Vis		0x00001000
310 #define FrameOk		(FrameVfr | FrameCrc)
311 #define FrameVfr	0x80
312 #define FrameRdo	0x40
313 #define FrameCrc	0x20
314 #define FrameRab	0x10
315 #define FrameAborted	cpu_to_le32(0x00000200)
316 #define FrameEnd	cpu_to_le32(0x80000000)
317 #define DataComplete	cpu_to_le32(0x40000000)
318 #define LengthCheck	0x00008000
319 #define SccEvt		0x02000000
320 #define NoAck		0x00000200
321 #define Action		0x00000001
322 #define HiDesc		cpu_to_le32(0x20000000)
323 
324 /* SCC events */
325 #define RxEvt		0xf0000000
326 #define TxEvt		0x0f000000
327 #define Alls		0x00040000
328 #define Xdu		0x00010000
329 #define Cts		0x00004000
330 #define Xmr		0x00002000
331 #define Xpr		0x00001000
332 #define Rdo		0x00000080
333 #define Rfs		0x00000040
334 #define Cd		0x00000004
335 #define Rfo		0x00000002
336 #define Flex		0x00000001
337 
338 /* DMA core events */
339 #define Cfg		0x00200000
340 #define Hi		0x00040000
341 #define Fi		0x00020000
342 #define Err		0x00010000
343 #define Arf		0x00000002
344 #define ArAck		0x00000001
345 
346 /* State flags */
347 #define Ready		0x00000000
348 #define NeedIDR		0x00000001
349 #define NeedIDT		0x00000002
350 #define RdoSet		0x00000004
351 #define FakeReset	0x00000008
352 
353 /* Don't mask RDO. Ever. */
354 #ifdef DSCC4_POLLING
355 #define EventsMask	0xfffeef7f
356 #else
357 #define EventsMask	0xfffa8f7a
358 #endif
359 
360 /* Functions prototypes */
361 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
362 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
363 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
364 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
365 static int dscc4_open(struct net_device *);
366 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
367 					  struct net_device *);
368 static int dscc4_close(struct net_device *);
369 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
370 static int dscc4_init_ring(struct net_device *);
371 static void dscc4_release_ring(struct dscc4_dev_priv *);
372 static void dscc4_timer(unsigned long);
373 static void dscc4_tx_timeout(struct net_device *);
374 static irqreturn_t dscc4_irq(int irq, void *dev_id);
375 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
376 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
377 #ifdef DSCC4_POLLING
378 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
379 #endif
380 
dscc4_priv(struct net_device * dev)381 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
382 {
383 	return dev_to_hdlc(dev)->priv;
384 }
385 
dscc4_to_dev(struct dscc4_dev_priv * p)386 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
387 {
388 	return p->dev;
389 }
390 
scc_patchl(u32 mask,u32 value,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)391 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
392 			struct net_device *dev, int offset)
393 {
394 	u32 state;
395 
396 	/* Cf scc_writel for concern regarding thread-safety */
397 	state = dpriv->scc_regs[offset >> 2];
398 	state &= ~mask;
399 	state |= value;
400 	dpriv->scc_regs[offset >> 2] = state;
401 	writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
402 }
403 
scc_writel(u32 bits,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)404 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
405 		       struct net_device *dev, int offset)
406 {
407 	/*
408 	 * Thread-UNsafe.
409 	 * As of 2002/02/16, there are no thread racing for access.
410 	 */
411 	dpriv->scc_regs[offset >> 2] = bits;
412 	writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
413 }
414 
scc_readl(struct dscc4_dev_priv * dpriv,int offset)415 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
416 {
417 	return dpriv->scc_regs[offset >> 2];
418 }
419 
scc_readl_star(struct dscc4_dev_priv * dpriv,struct net_device * dev)420 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
421 {
422 	/* Cf errata DS5 p.4 */
423 	readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
424 	return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
425 }
426 
dscc4_do_tx(struct dscc4_dev_priv * dpriv,struct net_device * dev)427 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
428 			       struct net_device *dev)
429 {
430 	dpriv->ltda = dpriv->tx_fd_dma +
431                       ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
432 	writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
433 	/* Flush posted writes *NOW* */
434 	readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
435 }
436 
dscc4_rx_update(struct dscc4_dev_priv * dpriv,struct net_device * dev)437 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
438 				   struct net_device *dev)
439 {
440 	dpriv->lrda = dpriv->rx_fd_dma +
441 		      ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
442 	writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
443 }
444 
dscc4_tx_done(struct dscc4_dev_priv * dpriv)445 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
446 {
447 	return dpriv->tx_current == dpriv->tx_dirty;
448 }
449 
dscc4_tx_quiescent(struct dscc4_dev_priv * dpriv,struct net_device * dev)450 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
451 					      struct net_device *dev)
452 {
453 	return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
454 }
455 
state_check(u32 state,struct dscc4_dev_priv * dpriv,struct net_device * dev,const char * msg)456 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
457 		       struct net_device *dev, const char *msg)
458 {
459 	int ret = 0;
460 
461 	if (debug > 1) {
462 	if (SOURCE_ID(state) != dpriv->dev_id) {
463 		printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
464 		       dev->name, msg, SOURCE_ID(state), state );
465 			ret = -1;
466 	}
467 	if (state & 0x0df80c00) {
468 		printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
469 		       dev->name, msg, state);
470 			ret = -1;
471 	}
472 	}
473 	return ret;
474 }
475 
dscc4_tx_print(struct net_device * dev,struct dscc4_dev_priv * dpriv,char * msg)476 static void dscc4_tx_print(struct net_device *dev,
477 			   struct dscc4_dev_priv *dpriv,
478 			   char *msg)
479 {
480 	printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
481 	       dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
482 }
483 
dscc4_release_ring(struct dscc4_dev_priv * dpriv)484 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
485 {
486 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
487 	struct TxFD *tx_fd = dpriv->tx_fd;
488 	struct RxFD *rx_fd = dpriv->rx_fd;
489 	struct sk_buff **skbuff;
490 	int i;
491 
492 	pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
493 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
494 
495 	skbuff = dpriv->tx_skbuff;
496 	for (i = 0; i < TX_RING_SIZE; i++) {
497 		if (*skbuff) {
498 			pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
499 				(*skbuff)->len, PCI_DMA_TODEVICE);
500 			dev_kfree_skb(*skbuff);
501 		}
502 		skbuff++;
503 		tx_fd++;
504 	}
505 
506 	skbuff = dpriv->rx_skbuff;
507 	for (i = 0; i < RX_RING_SIZE; i++) {
508 		if (*skbuff) {
509 			pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
510 				RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
511 			dev_kfree_skb(*skbuff);
512 		}
513 		skbuff++;
514 		rx_fd++;
515 	}
516 }
517 
try_get_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)518 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
519 				 struct net_device *dev)
520 {
521 	unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
522 	struct RxFD *rx_fd = dpriv->rx_fd + dirty;
523 	const int len = RX_MAX(HDLC_MAX_MRU);
524 	struct sk_buff *skb;
525 	int ret = 0;
526 
527 	skb = dev_alloc_skb(len);
528 	dpriv->rx_skbuff[dirty] = skb;
529 	if (skb) {
530 		skb->protocol = hdlc_type_trans(skb, dev);
531 		rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
532 					  skb->data, len, PCI_DMA_FROMDEVICE));
533 	} else {
534 		rx_fd->data = 0;
535 		ret = -1;
536 	}
537 	return ret;
538 }
539 
540 /*
541  * IRQ/thread/whatever safe
542  */
dscc4_wait_ack_cec(struct dscc4_dev_priv * dpriv,struct net_device * dev,char * msg)543 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
544 			      struct net_device *dev, char *msg)
545 {
546 	s8 i = 0;
547 
548 	do {
549 		if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
550 			printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
551 			       msg, i);
552 			goto done;
553 		}
554 		schedule_timeout_uninterruptible(msecs_to_jiffies(100));
555 		rmb();
556 	} while (++i > 0);
557 	netdev_err(dev, "%s timeout\n", msg);
558 done:
559 	return (i >= 0) ? i : -EAGAIN;
560 }
561 
dscc4_do_action(struct net_device * dev,char * msg)562 static int dscc4_do_action(struct net_device *dev, char *msg)
563 {
564 	void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
565 	s16 i = 0;
566 
567 	writel(Action, ioaddr + GCMDR);
568 	ioaddr += GSTAR;
569 	do {
570 		u32 state = readl(ioaddr);
571 
572 		if (state & ArAck) {
573 			netdev_dbg(dev, "%s ack\n", msg);
574 			writel(ArAck, ioaddr);
575 			goto done;
576 		} else if (state & Arf) {
577 			netdev_err(dev, "%s failed\n", msg);
578 			writel(Arf, ioaddr);
579 			i = -1;
580 			goto done;
581 	}
582 		rmb();
583 	} while (++i > 0);
584 	netdev_err(dev, "%s timeout\n", msg);
585 done:
586 	return i;
587 }
588 
dscc4_xpr_ack(struct dscc4_dev_priv * dpriv)589 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
590 {
591 	int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
592 	s8 i = 0;
593 
594 	do {
595 		if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
596 		    (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
597 			break;
598 		smp_rmb();
599 		schedule_timeout_uninterruptible(msecs_to_jiffies(100));
600 	} while (++i > 0);
601 
602 	return (i >= 0 ) ? i : -EAGAIN;
603 }
604 
605 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
606 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
607 {
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
611 	/* Cf errata DS5 p.6 */
612 	writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
613 	scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
614 	readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
615 	writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
616 	writel(Action, dpriv->base_addr + GCMDR);
617 	spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
618 }
619 
620 #endif
621 
622 #if 0
623 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
624 {
625 	u16 i = 0;
626 
627 	/* Cf errata DS5 p.7 */
628 	scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
629 	scc_writel(0x00050000, dpriv, dev, CCR2);
630 	/*
631 	 * Must be longer than the time required to fill the fifo.
632 	 */
633 	while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
634 		udelay(1);
635 		wmb();
636 	}
637 
638 	writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
639 	if (dscc4_do_action(dev, "Rdt") < 0)
640 		netdev_err(dev, "Tx reset failed\n");
641 }
642 #endif
643 
644 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
dscc4_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)645 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
646 				struct net_device *dev)
647 {
648 	struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
649 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
650 	struct sk_buff *skb;
651 	int pkt_len;
652 
653 	skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
654 	if (!skb) {
655 		printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
656 		goto refill;
657 	}
658 	pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
659 	pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
660 			 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
661 	if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
662 		dev->stats.rx_packets++;
663 		dev->stats.rx_bytes += pkt_len;
664 		skb_put(skb, pkt_len);
665 		if (netif_running(dev))
666 			skb->protocol = hdlc_type_trans(skb, dev);
667 		netif_rx(skb);
668 	} else {
669 		if (skb->data[pkt_len] & FrameRdo)
670 			dev->stats.rx_fifo_errors++;
671 		else if (!(skb->data[pkt_len] & FrameCrc))
672 			dev->stats.rx_crc_errors++;
673 		else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
674 			 (FrameVfr | FrameRab))
675 			dev->stats.rx_length_errors++;
676 		dev->stats.rx_errors++;
677 		dev_kfree_skb_irq(skb);
678 	}
679 refill:
680 	while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
681 		if (try_get_rx_skb(dpriv, dev) < 0)
682 			break;
683 		dpriv->rx_dirty++;
684 	}
685 	dscc4_rx_update(dpriv, dev);
686 	rx_fd->state2 = 0x00000000;
687 	rx_fd->end = cpu_to_le32(0xbabeface);
688 }
689 
dscc4_free1(struct pci_dev * pdev)690 static void dscc4_free1(struct pci_dev *pdev)
691 {
692 	struct dscc4_pci_priv *ppriv;
693 	struct dscc4_dev_priv *root;
694 	int i;
695 
696 	ppriv = pci_get_drvdata(pdev);
697 	root = ppriv->root;
698 
699 	for (i = 0; i < dev_per_card; i++)
700 		unregister_hdlc_device(dscc4_to_dev(root + i));
701 
702 	for (i = 0; i < dev_per_card; i++)
703 		free_netdev(root[i].dev);
704 	kfree(root);
705 	kfree(ppriv);
706 }
707 
dscc4_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)708 static int dscc4_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
709 {
710 	struct dscc4_pci_priv *priv;
711 	struct dscc4_dev_priv *dpriv;
712 	void __iomem *ioaddr;
713 	int i, rc;
714 
715 	printk(KERN_DEBUG "%s", version);
716 
717 	rc = pci_enable_device(pdev);
718 	if (rc < 0)
719 		goto out;
720 
721 	rc = pci_request_region(pdev, 0, "registers");
722 	if (rc < 0) {
723 		pr_err("can't reserve MMIO region (regs)\n");
724 	        goto err_disable_0;
725 	}
726 	rc = pci_request_region(pdev, 1, "LBI interface");
727 	if (rc < 0) {
728 		pr_err("can't reserve MMIO region (lbi)\n");
729 	        goto err_free_mmio_region_1;
730 	}
731 
732 	ioaddr = pci_ioremap_bar(pdev, 0);
733 	if (!ioaddr) {
734 		pr_err("cannot remap MMIO region %llx @ %llx\n",
735 		       (unsigned long long)pci_resource_len(pdev, 0),
736 		       (unsigned long long)pci_resource_start(pdev, 0));
737 		rc = -EIO;
738 		goto err_free_mmio_regions_2;
739 	}
740 	printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
741 	        (unsigned long long)pci_resource_start(pdev, 0),
742 	        (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
743 
744 	/* Cf errata DS5 p.2 */
745 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
746 	pci_set_master(pdev);
747 
748 	rc = dscc4_found1(pdev, ioaddr);
749 	if (rc < 0)
750 	        goto err_iounmap_3;
751 
752 	priv = pci_get_drvdata(pdev);
753 
754 	rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
755 	if (rc < 0) {
756 		pr_warn("IRQ %d busy\n", pdev->irq);
757 		goto err_release_4;
758 	}
759 
760 	/* power up/little endian/dma core controlled via lrda/ltda */
761 	writel(0x00000001, ioaddr + GMODE);
762 	/* Shared interrupt queue */
763 	{
764 		u32 bits;
765 
766 		bits = (IRQ_RING_SIZE >> 5) - 1;
767 		bits |= bits << 4;
768 		bits |= bits << 8;
769 		bits |= bits << 16;
770 		writel(bits, ioaddr + IQLENR0);
771 	}
772 	/* Global interrupt queue */
773 	writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
774 
775 	rc = -ENOMEM;
776 
777 	priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
778 		IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
779 	if (!priv->iqcfg)
780 		goto err_free_irq_5;
781 	writel(priv->iqcfg_dma, ioaddr + IQCFG);
782 
783 	/*
784 	 * SCC 0-3 private rx/tx irq structures
785 	 * IQRX/TXi needs to be set soon. Learned it the hard way...
786 	 */
787 	for (i = 0; i < dev_per_card; i++) {
788 		dpriv = priv->root + i;
789 		dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
790 			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
791 		if (!dpriv->iqtx)
792 			goto err_free_iqtx_6;
793 		writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
794 	}
795 	for (i = 0; i < dev_per_card; i++) {
796 		dpriv = priv->root + i;
797 		dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
798 			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
799 		if (!dpriv->iqrx)
800 			goto err_free_iqrx_7;
801 		writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
802 	}
803 
804 	/* Cf application hint. Beware of hard-lock condition on threshold. */
805 	writel(0x42104000, ioaddr + FIFOCR1);
806 	//writel(0x9ce69800, ioaddr + FIFOCR2);
807 	writel(0xdef6d800, ioaddr + FIFOCR2);
808 	//writel(0x11111111, ioaddr + FIFOCR4);
809 	writel(0x18181818, ioaddr + FIFOCR4);
810 	// FIXME: should depend on the chipset revision
811 	writel(0x0000000e, ioaddr + FIFOCR3);
812 
813 	writel(0xff200001, ioaddr + GCMDR);
814 
815 	rc = 0;
816 out:
817 	return rc;
818 
819 err_free_iqrx_7:
820 	while (--i >= 0) {
821 		dpriv = priv->root + i;
822 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
823 				    dpriv->iqrx, dpriv->iqrx_dma);
824 	}
825 	i = dev_per_card;
826 err_free_iqtx_6:
827 	while (--i >= 0) {
828 		dpriv = priv->root + i;
829 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
830 				    dpriv->iqtx, dpriv->iqtx_dma);
831 	}
832 	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
833 			    priv->iqcfg_dma);
834 err_free_irq_5:
835 	free_irq(pdev->irq, priv->root);
836 err_release_4:
837 	dscc4_free1(pdev);
838 err_iounmap_3:
839 	iounmap (ioaddr);
840 err_free_mmio_regions_2:
841 	pci_release_region(pdev, 1);
842 err_free_mmio_region_1:
843 	pci_release_region(pdev, 0);
844 err_disable_0:
845 	pci_disable_device(pdev);
846 	goto out;
847 };
848 
849 /*
850  * Let's hope the default values are decent enough to protect my
851  * feet from the user's gun - Ueimor
852  */
dscc4_init_registers(struct dscc4_dev_priv * dpriv,struct net_device * dev)853 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
854 				 struct net_device *dev)
855 {
856 	/* No interrupts, SCC core disabled. Let's relax */
857 	scc_writel(0x00000000, dpriv, dev, CCR0);
858 
859 	scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
860 
861 	/*
862 	 * No address recognition/crc-CCITT/cts enabled
863 	 * Shared flags transmission disabled - cf errata DS5 p.11
864 	 * Carrier detect disabled - cf errata p.14
865 	 * FIXME: carrier detection/polarity may be handled more gracefully.
866 	 */
867 	scc_writel(0x02408000, dpriv, dev, CCR1);
868 
869 	/* crc not forwarded - Cf errata DS5 p.11 */
870 	scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
871 	// crc forwarded
872 	//scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
873 }
874 
dscc4_set_quartz(struct dscc4_dev_priv * dpriv,int hz)875 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
876 {
877 	int ret = 0;
878 
879 	if ((hz < 0) || (hz > DSCC4_HZ_MAX))
880 		ret = -EOPNOTSUPP;
881 	else
882 		dpriv->pci_priv->xtal_hz = hz;
883 
884 	return ret;
885 }
886 
887 static const struct net_device_ops dscc4_ops = {
888 	.ndo_open       = dscc4_open,
889 	.ndo_stop       = dscc4_close,
890 	.ndo_change_mtu = hdlc_change_mtu,
891 	.ndo_start_xmit = hdlc_start_xmit,
892 	.ndo_do_ioctl   = dscc4_ioctl,
893 	.ndo_tx_timeout = dscc4_tx_timeout,
894 };
895 
dscc4_found1(struct pci_dev * pdev,void __iomem * ioaddr)896 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
897 {
898 	struct dscc4_pci_priv *ppriv;
899 	struct dscc4_dev_priv *root;
900 	int i, ret = -ENOMEM;
901 
902 	root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
903 	if (!root)
904 		goto err_out;
905 
906 	for (i = 0; i < dev_per_card; i++) {
907 		root[i].dev = alloc_hdlcdev(root + i);
908 		if (!root[i].dev)
909 			goto err_free_dev;
910 	}
911 
912 	ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
913 	if (!ppriv)
914 		goto err_free_dev;
915 
916 	ppriv->root = root;
917 	spin_lock_init(&ppriv->lock);
918 
919 	for (i = 0; i < dev_per_card; i++) {
920 		struct dscc4_dev_priv *dpriv = root + i;
921 		struct net_device *d = dscc4_to_dev(dpriv);
922 		hdlc_device *hdlc = dev_to_hdlc(d);
923 
924 	        d->base_addr = (unsigned long)ioaddr;
925 	        d->irq = pdev->irq;
926 		d->netdev_ops = &dscc4_ops;
927 		d->watchdog_timeo = TX_TIMEOUT;
928 		SET_NETDEV_DEV(d, &pdev->dev);
929 
930 		dpriv->dev_id = i;
931 		dpriv->pci_priv = ppriv;
932 		dpriv->base_addr = ioaddr;
933 		spin_lock_init(&dpriv->lock);
934 
935 		hdlc->xmit = dscc4_start_xmit;
936 		hdlc->attach = dscc4_hdlc_attach;
937 
938 		dscc4_init_registers(dpriv, d);
939 		dpriv->parity = PARITY_CRC16_PR0_CCITT;
940 		dpriv->encoding = ENCODING_NRZ;
941 
942 		ret = dscc4_init_ring(d);
943 		if (ret < 0)
944 			goto err_unregister;
945 
946 		ret = register_hdlc_device(d);
947 		if (ret < 0) {
948 			pr_err("unable to register\n");
949 			dscc4_release_ring(dpriv);
950 			goto err_unregister;
951 	        }
952 	}
953 
954 	ret = dscc4_set_quartz(root, quartz);
955 	if (ret < 0)
956 		goto err_unregister;
957 
958 	pci_set_drvdata(pdev, ppriv);
959 	return ret;
960 
961 err_unregister:
962 	while (i-- > 0) {
963 		dscc4_release_ring(root + i);
964 		unregister_hdlc_device(dscc4_to_dev(root + i));
965 	}
966 	kfree(ppriv);
967 	i = dev_per_card;
968 err_free_dev:
969 	while (i-- > 0)
970 		free_netdev(root[i].dev);
971 	kfree(root);
972 err_out:
973 	return ret;
974 };
975 
976 /* FIXME: get rid of the unneeded code */
dscc4_timer(unsigned long data)977 static void dscc4_timer(unsigned long data)
978 {
979 	struct net_device *dev = (struct net_device *)data;
980 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
981 //	struct dscc4_pci_priv *ppriv;
982 
983 	goto done;
984 done:
985         dpriv->timer.expires = jiffies + TX_TIMEOUT;
986         add_timer(&dpriv->timer);
987 }
988 
dscc4_tx_timeout(struct net_device * dev)989 static void dscc4_tx_timeout(struct net_device *dev)
990 {
991 	/* FIXME: something is missing there */
992 }
993 
dscc4_loopback_check(struct dscc4_dev_priv * dpriv)994 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
995 {
996 	sync_serial_settings *settings = &dpriv->settings;
997 
998 	if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
999 		struct net_device *dev = dscc4_to_dev(dpriv);
1000 
1001 		netdev_info(dev, "loopback requires clock\n");
1002 		return -1;
1003 	}
1004 	return 0;
1005 }
1006 
1007 #ifdef CONFIG_DSCC4_PCI_RST
1008 /*
1009  * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1010  * so as to provide a safe way to reset the asic while not the whole machine
1011  * rebooting.
1012  *
1013  * This code doesn't need to be efficient. Keep It Simple
1014  */
dscc4_pci_reset(struct pci_dev * pdev,void __iomem * ioaddr)1015 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1016 {
1017 	int i;
1018 
1019 	mutex_lock(&dscc4_mutex);
1020 	for (i = 0; i < 16; i++)
1021 		pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1022 
1023 	/* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1024 	writel(0x001c0000, ioaddr + GMODE);
1025 	/* Configure GPIO port as output */
1026 	writel(0x0000ffff, ioaddr + GPDIR);
1027 	/* Disable interruption */
1028 	writel(0x0000ffff, ioaddr + GPIM);
1029 
1030 	writel(0x0000ffff, ioaddr + GPDATA);
1031 	writel(0x00000000, ioaddr + GPDATA);
1032 
1033 	/* Flush posted writes */
1034 	readl(ioaddr + GSTAR);
1035 
1036 	schedule_timeout_uninterruptible(msecs_to_jiffies(100));
1037 
1038 	for (i = 0; i < 16; i++)
1039 		pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1040 	mutex_unlock(&dscc4_mutex);
1041 }
1042 #else
1043 #define dscc4_pci_reset(pdev,ioaddr)	do {} while (0)
1044 #endif /* CONFIG_DSCC4_PCI_RST */
1045 
dscc4_open(struct net_device * dev)1046 static int dscc4_open(struct net_device *dev)
1047 {
1048 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1049 	int ret = -EAGAIN;
1050 
1051 	if ((dscc4_loopback_check(dpriv) < 0))
1052 		goto err;
1053 
1054 	if ((ret = hdlc_open(dev)))
1055 		goto err;
1056 
1057 	/*
1058 	 * Due to various bugs, there is no way to reliably reset a
1059 	 * specific port (manufacturer's dependent special PCI #RST wiring
1060 	 * apart: it affects all ports). Thus the device goes in the best
1061 	 * silent mode possible at dscc4_close() time and simply claims to
1062 	 * be up if it's opened again. It still isn't possible to change
1063 	 * the HDLC configuration without rebooting but at least the ports
1064 	 * can be up/down ifconfig'ed without killing the host.
1065 	 */
1066 	if (dpriv->flags & FakeReset) {
1067 		dpriv->flags &= ~FakeReset;
1068 		scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1069 		scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1070 		scc_writel(EventsMask, dpriv, dev, IMR);
1071 		netdev_info(dev, "up again\n");
1072 		goto done;
1073 	}
1074 
1075 	/* IDT+IDR during XPR */
1076 	dpriv->flags = NeedIDR | NeedIDT;
1077 
1078 	scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1079 
1080 	/*
1081 	 * The following is a bit paranoid...
1082 	 *
1083 	 * NB: the datasheet "...CEC will stay active if the SCC is in
1084 	 * power-down mode or..." and CCR2.RAC = 1 are two different
1085 	 * situations.
1086 	 */
1087 	if (scc_readl_star(dpriv, dev) & SccBusy) {
1088 		netdev_err(dev, "busy - try later\n");
1089 		ret = -EAGAIN;
1090 		goto err_out;
1091 	} else
1092 		netdev_info(dev, "available - good\n");
1093 
1094 	scc_writel(EventsMask, dpriv, dev, IMR);
1095 
1096 	/* Posted write is flushed in the wait_ack loop */
1097 	scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1098 
1099 	if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1100 		goto err_disable_scc_events;
1101 
1102 	/*
1103 	 * I would expect XPR near CE completion (before ? after ?).
1104 	 * At worst, this code won't see a late XPR and people
1105 	 * will have to re-issue an ifconfig (this is harmless).
1106 	 * WARNING, a really missing XPR usually means a hardware
1107 	 * reset is needed. Suggestions anyone ?
1108 	 */
1109 	if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1110 		pr_err("XPR timeout\n");
1111 		goto err_disable_scc_events;
1112 	}
1113 
1114 	if (debug > 2)
1115 		dscc4_tx_print(dev, dpriv, "Open");
1116 
1117 done:
1118 	netif_start_queue(dev);
1119 
1120         init_timer(&dpriv->timer);
1121         dpriv->timer.expires = jiffies + 10*HZ;
1122         dpriv->timer.data = (unsigned long)dev;
1123 	dpriv->timer.function = dscc4_timer;
1124         add_timer(&dpriv->timer);
1125 	netif_carrier_on(dev);
1126 
1127 	return 0;
1128 
1129 err_disable_scc_events:
1130 	scc_writel(0xffffffff, dpriv, dev, IMR);
1131 	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1132 err_out:
1133 	hdlc_close(dev);
1134 err:
1135 	return ret;
1136 }
1137 
1138 #ifdef DSCC4_POLLING
dscc4_tx_poll(struct dscc4_dev_priv * dpriv,struct net_device * dev)1139 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1140 {
1141 	/* FIXME: it's gonna be easy (TM), for sure */
1142 }
1143 #endif /* DSCC4_POLLING */
1144 
dscc4_start_xmit(struct sk_buff * skb,struct net_device * dev)1145 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1146 					  struct net_device *dev)
1147 {
1148 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1149 	struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1150 	struct TxFD *tx_fd;
1151 	int next;
1152 
1153 	next = dpriv->tx_current%TX_RING_SIZE;
1154 	dpriv->tx_skbuff[next] = skb;
1155 	tx_fd = dpriv->tx_fd + next;
1156 	tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1157 	tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1158 				     PCI_DMA_TODEVICE));
1159 	tx_fd->complete = 0x00000000;
1160 	tx_fd->jiffies = jiffies;
1161 	mb();
1162 
1163 #ifdef DSCC4_POLLING
1164 	spin_lock(&dpriv->lock);
1165 	while (dscc4_tx_poll(dpriv, dev));
1166 	spin_unlock(&dpriv->lock);
1167 #endif
1168 
1169 	if (debug > 2)
1170 		dscc4_tx_print(dev, dpriv, "Xmit");
1171 	/* To be cleaned(unsigned int)/optimized. Later, ok ? */
1172 	if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1173 		netif_stop_queue(dev);
1174 
1175 	if (dscc4_tx_quiescent(dpriv, dev))
1176 		dscc4_do_tx(dpriv, dev);
1177 
1178 	return NETDEV_TX_OK;
1179 }
1180 
dscc4_close(struct net_device * dev)1181 static int dscc4_close(struct net_device *dev)
1182 {
1183 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1184 
1185 	del_timer_sync(&dpriv->timer);
1186 	netif_stop_queue(dev);
1187 
1188 	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1189 	scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1190 	scc_writel(0xffffffff, dpriv, dev, IMR);
1191 
1192 	dpriv->flags |= FakeReset;
1193 
1194 	hdlc_close(dev);
1195 
1196 	return 0;
1197 }
1198 
dscc4_check_clock_ability(int port)1199 static inline int dscc4_check_clock_ability(int port)
1200 {
1201 	int ret = 0;
1202 
1203 #ifdef CONFIG_DSCC4_PCISYNC
1204 	if (port >= 2)
1205 		ret = -1;
1206 #endif
1207 	return ret;
1208 }
1209 
1210 /*
1211  * DS1 p.137: "There are a total of 13 different clocking modes..."
1212  *                                  ^^
1213  * Design choices:
1214  * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1215  *   Clock mode 3b _should_ work but the testing seems to make this point
1216  *   dubious (DIY testing requires setting CCR0 at 0x00000033).
1217  *   This is supposed to provide least surprise "DTE like" behavior.
1218  * - if line rate is specified, clocks are assumed to be locally generated.
1219  *   A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1220  *   between these it automagically done according on the required frequency
1221  *   scaling. Of course some rounding may take place.
1222  * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1223  *   appropriate external clocking device for testing.
1224  * - no time-slot/clock mode 5: shameless laziness.
1225  *
1226  * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1227  *
1228  * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1229  * won't pass the init sequence. For example, straight back-to-back DTE without
1230  * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1231  * called.
1232  *
1233  * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1234  * DS0 for example)
1235  *
1236  * Clock mode related bits of CCR0:
1237  *     +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1238  *     | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1239  *     | | +-------- High Speed: say 0
1240  *     | | | +-+-+-- Clock Mode: 0..7
1241  *     | | | | | |
1242  * -+-+-+-+-+-+-+-+
1243  * x|x|5|4|3|2|1|0| lower bits
1244  *
1245  * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1246  *            +-+-+-+------------------ M (0..15)
1247  *            | | | |     +-+-+-+-+-+-- N (0..63)
1248  *    0 0 0 0 | | | | 0 0 | | | | | |
1249  * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1250  *    f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1251  *
1252  */
dscc4_set_clock(struct net_device * dev,u32 * bps,u32 * state)1253 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1254 {
1255 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1256 	int ret = -1;
1257 	u32 brr;
1258 
1259 	*state &= ~Ccr0ClockMask;
1260 	if (*bps) { /* Clock generated - required for DCE */
1261 		u32 n = 0, m = 0, divider;
1262 		int xtal;
1263 
1264 		xtal = dpriv->pci_priv->xtal_hz;
1265 		if (!xtal)
1266 			goto done;
1267 		if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1268 			goto done;
1269 		divider = xtal / *bps;
1270 		if (divider > BRR_DIVIDER_MAX) {
1271 			divider >>= 4;
1272 			*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1273 		} else
1274 			*state |= 0x00000037; /* Clock mode 7b (BRG) */
1275 		if (divider >> 22) {
1276 			n = 63;
1277 			m = 15;
1278 		} else if (divider) {
1279 			/* Extraction of the 6 highest weighted bits */
1280 			m = 0;
1281 			while (0xffffffc0 & divider) {
1282 				m++;
1283 				divider >>= 1;
1284 			}
1285 			n = divider;
1286 		}
1287 		brr = (m << 8) | n;
1288 		divider = n << m;
1289 		if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1290 			divider <<= 4;
1291 		*bps = xtal / divider;
1292 	} else {
1293 		/*
1294 		 * External clock - DTE
1295 		 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1296 		 * Nothing more to be done
1297 		 */
1298 		brr = 0;
1299 	}
1300 	scc_writel(brr, dpriv, dev, BRR);
1301 	ret = 0;
1302 done:
1303 	return ret;
1304 }
1305 
dscc4_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1306 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1307 {
1308 	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1309 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1310 	const size_t size = sizeof(dpriv->settings);
1311 	int ret = 0;
1312 
1313         if (dev->flags & IFF_UP)
1314                 return -EBUSY;
1315 
1316 	if (cmd != SIOCWANDEV)
1317 		return -EOPNOTSUPP;
1318 
1319 	switch(ifr->ifr_settings.type) {
1320 	case IF_GET_IFACE:
1321 		ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1322 		if (ifr->ifr_settings.size < size) {
1323 			ifr->ifr_settings.size = size; /* data size wanted */
1324 			return -ENOBUFS;
1325 		}
1326 		if (copy_to_user(line, &dpriv->settings, size))
1327 			return -EFAULT;
1328 		break;
1329 
1330 	case IF_IFACE_SYNC_SERIAL:
1331 		if (!capable(CAP_NET_ADMIN))
1332 			return -EPERM;
1333 
1334 		if (dpriv->flags & FakeReset) {
1335 			netdev_info(dev, "please reset the device before this command\n");
1336 			return -EPERM;
1337 		}
1338 		if (copy_from_user(&dpriv->settings, line, size))
1339 			return -EFAULT;
1340 		ret = dscc4_set_iface(dpriv, dev);
1341 		break;
1342 
1343 	default:
1344 		ret = hdlc_ioctl(dev, ifr, cmd);
1345 		break;
1346 	}
1347 
1348 	return ret;
1349 }
1350 
dscc4_match(const struct thingie * p,int value)1351 static int dscc4_match(const struct thingie *p, int value)
1352 {
1353 	int i;
1354 
1355 	for (i = 0; p[i].define != -1; i++) {
1356 		if (value == p[i].define)
1357 			break;
1358 	}
1359 	if (p[i].define == -1)
1360 		return -1;
1361 	else
1362 		return i;
1363 }
1364 
dscc4_clock_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1365 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1366 			       struct net_device *dev)
1367 {
1368 	sync_serial_settings *settings = &dpriv->settings;
1369 	int ret = -EOPNOTSUPP;
1370 	u32 bps, state;
1371 
1372 	bps = settings->clock_rate;
1373 	state = scc_readl(dpriv, CCR0);
1374 	if (dscc4_set_clock(dev, &bps, &state) < 0)
1375 		goto done;
1376 	if (bps) { /* DCE */
1377 		printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1378 		if (settings->clock_rate != bps) {
1379 			printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1380 				dev->name, settings->clock_rate, bps);
1381 			settings->clock_rate = bps;
1382 		}
1383 	} else { /* DTE */
1384 		state |= PowerUp | Vis;
1385 		printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1386 	}
1387 	scc_writel(state, dpriv, dev, CCR0);
1388 	ret = 0;
1389 done:
1390 	return ret;
1391 }
1392 
dscc4_encoding_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1393 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1394 				  struct net_device *dev)
1395 {
1396 	static const struct thingie encoding[] = {
1397 		{ ENCODING_NRZ,		0x00000000 },
1398 		{ ENCODING_NRZI,	0x00200000 },
1399 		{ ENCODING_FM_MARK,	0x00400000 },
1400 		{ ENCODING_FM_SPACE,	0x00500000 },
1401 		{ ENCODING_MANCHESTER,	0x00600000 },
1402 		{ -1,			0}
1403 	};
1404 	int i, ret = 0;
1405 
1406 	i = dscc4_match(encoding, dpriv->encoding);
1407 	if (i >= 0)
1408 		scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1409 	else
1410 		ret = -EOPNOTSUPP;
1411 	return ret;
1412 }
1413 
dscc4_loopback_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1414 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1415 				  struct net_device *dev)
1416 {
1417 	sync_serial_settings *settings = &dpriv->settings;
1418 	u32 state;
1419 
1420 	state = scc_readl(dpriv, CCR1);
1421 	if (settings->loopback) {
1422 		printk(KERN_DEBUG "%s: loopback\n", dev->name);
1423 		state |= 0x00000100;
1424 	} else {
1425 		printk(KERN_DEBUG "%s: normal\n", dev->name);
1426 		state &= ~0x00000100;
1427 	}
1428 	scc_writel(state, dpriv, dev, CCR1);
1429 	return 0;
1430 }
1431 
dscc4_crc_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1432 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1433 			     struct net_device *dev)
1434 {
1435 	static const struct thingie crc[] = {
1436 		{ PARITY_CRC16_PR0_CCITT,	0x00000010 },
1437 		{ PARITY_CRC16_PR1_CCITT,	0x00000000 },
1438 		{ PARITY_CRC32_PR0_CCITT,	0x00000011 },
1439 		{ PARITY_CRC32_PR1_CCITT,	0x00000001 }
1440 	};
1441 	int i, ret = 0;
1442 
1443 	i = dscc4_match(crc, dpriv->parity);
1444 	if (i >= 0)
1445 		scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1446 	else
1447 		ret = -EOPNOTSUPP;
1448 	return ret;
1449 }
1450 
dscc4_set_iface(struct dscc4_dev_priv * dpriv,struct net_device * dev)1451 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1452 {
1453 	struct {
1454 		int (*action)(struct dscc4_dev_priv *, struct net_device *);
1455 	} *p, do_setting[] = {
1456 		{ dscc4_encoding_setting },
1457 		{ dscc4_clock_setting },
1458 		{ dscc4_loopback_setting },
1459 		{ dscc4_crc_setting },
1460 		{ NULL }
1461 	};
1462 	int ret = 0;
1463 
1464 	for (p = do_setting; p->action; p++) {
1465 		if ((ret = p->action(dpriv, dev)) < 0)
1466 			break;
1467 	}
1468 	return ret;
1469 }
1470 
dscc4_irq(int irq,void * token)1471 static irqreturn_t dscc4_irq(int irq, void *token)
1472 {
1473 	struct dscc4_dev_priv *root = token;
1474 	struct dscc4_pci_priv *priv;
1475 	struct net_device *dev;
1476 	void __iomem *ioaddr;
1477 	u32 state;
1478 	unsigned long flags;
1479 	int i, handled = 1;
1480 
1481 	priv = root->pci_priv;
1482 	dev = dscc4_to_dev(root);
1483 
1484 	spin_lock_irqsave(&priv->lock, flags);
1485 
1486 	ioaddr = root->base_addr;
1487 
1488 	state = readl(ioaddr + GSTAR);
1489 	if (!state) {
1490 		handled = 0;
1491 		goto out;
1492 	}
1493 	if (debug > 3)
1494 		printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1495 	writel(state, ioaddr + GSTAR);
1496 
1497 	if (state & Arf) {
1498 		netdev_err(dev, "failure (Arf). Harass the maintainer\n");
1499 		goto out;
1500 	}
1501 	state &= ~ArAck;
1502 	if (state & Cfg) {
1503 		if (debug > 0)
1504 			printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1505 		if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1506 			netdev_err(dev, "CFG failed\n");
1507 		if (!(state &= ~Cfg))
1508 			goto out;
1509 	}
1510 	if (state & RxEvt) {
1511 		i = dev_per_card - 1;
1512 		do {
1513 			dscc4_rx_irq(priv, root + i);
1514 		} while (--i >= 0);
1515 		state &= ~RxEvt;
1516 	}
1517 	if (state & TxEvt) {
1518 		i = dev_per_card - 1;
1519 		do {
1520 			dscc4_tx_irq(priv, root + i);
1521 		} while (--i >= 0);
1522 		state &= ~TxEvt;
1523 	}
1524 out:
1525 	spin_unlock_irqrestore(&priv->lock, flags);
1526 	return IRQ_RETVAL(handled);
1527 }
1528 
dscc4_tx_irq(struct dscc4_pci_priv * ppriv,struct dscc4_dev_priv * dpriv)1529 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1530 				struct dscc4_dev_priv *dpriv)
1531 {
1532 	struct net_device *dev = dscc4_to_dev(dpriv);
1533 	u32 state;
1534 	int cur, loop = 0;
1535 
1536 try:
1537 	cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1538 	state = le32_to_cpu(dpriv->iqtx[cur]);
1539 	if (!state) {
1540 		if (debug > 4)
1541 			printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1542 			       state);
1543 		if ((debug > 1) && (loop > 1))
1544 			printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1545 		if (loop && netif_queue_stopped(dev))
1546 			if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1547 				netif_wake_queue(dev);
1548 
1549 		if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1550 		    !dscc4_tx_done(dpriv))
1551 				dscc4_do_tx(dpriv, dev);
1552 		return;
1553 	}
1554 	loop++;
1555 	dpriv->iqtx[cur] = 0;
1556 	dpriv->iqtx_current++;
1557 
1558 	if (state_check(state, dpriv, dev, "Tx") < 0)
1559 		return;
1560 
1561 	if (state & SccEvt) {
1562 		if (state & Alls) {
1563 			struct sk_buff *skb;
1564 			struct TxFD *tx_fd;
1565 
1566 			if (debug > 2)
1567 				dscc4_tx_print(dev, dpriv, "Alls");
1568 			/*
1569 			 * DataComplete can't be trusted for Tx completion.
1570 			 * Cf errata DS5 p.8
1571 			 */
1572 			cur = dpriv->tx_dirty%TX_RING_SIZE;
1573 			tx_fd = dpriv->tx_fd + cur;
1574 			skb = dpriv->tx_skbuff[cur];
1575 			if (skb) {
1576 				pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1577 						 skb->len, PCI_DMA_TODEVICE);
1578 				if (tx_fd->state & FrameEnd) {
1579 					dev->stats.tx_packets++;
1580 					dev->stats.tx_bytes += skb->len;
1581 				}
1582 				dev_kfree_skb_irq(skb);
1583 				dpriv->tx_skbuff[cur] = NULL;
1584 				++dpriv->tx_dirty;
1585 			} else {
1586 				if (debug > 1)
1587 					netdev_err(dev, "Tx: NULL skb %d\n",
1588 						   cur);
1589 			}
1590 			/*
1591 			 * If the driver ends sending crap on the wire, it
1592 			 * will be way easier to diagnose than the (not so)
1593 			 * random freeze induced by null sized tx frames.
1594 			 */
1595 			tx_fd->data = tx_fd->next;
1596 			tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1597 			tx_fd->complete = 0x00000000;
1598 			tx_fd->jiffies = 0;
1599 
1600 			if (!(state &= ~Alls))
1601 				goto try;
1602 		}
1603 		/*
1604 		 * Transmit Data Underrun
1605 		 */
1606 		if (state & Xdu) {
1607 			netdev_err(dev, "Tx Data Underrun. Ask maintainer\n");
1608 			dpriv->flags = NeedIDT;
1609 			/* Tx reset */
1610 			writel(MTFi | Rdt,
1611 			       dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1612 			writel(Action, dpriv->base_addr + GCMDR);
1613 			return;
1614 		}
1615 		if (state & Cts) {
1616 			netdev_info(dev, "CTS transition\n");
1617 			if (!(state &= ~Cts)) /* DEBUG */
1618 				goto try;
1619 		}
1620 		if (state & Xmr) {
1621 			/* Frame needs to be sent again - FIXME */
1622 			netdev_err(dev, "Tx ReTx. Ask maintainer\n");
1623 			if (!(state &= ~Xmr)) /* DEBUG */
1624 				goto try;
1625 		}
1626 		if (state & Xpr) {
1627 			void __iomem *scc_addr;
1628 			unsigned long ring;
1629 			int i;
1630 
1631 			/*
1632 			 * - the busy condition happens (sometimes);
1633 			 * - it doesn't seem to make the handler unreliable.
1634 			 */
1635 			for (i = 1; i; i <<= 1) {
1636 				if (!(scc_readl_star(dpriv, dev) & SccBusy))
1637 					break;
1638 			}
1639 			if (!i)
1640 				netdev_info(dev, "busy in irq\n");
1641 
1642 			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1643 			/* Keep this order: IDT before IDR */
1644 			if (dpriv->flags & NeedIDT) {
1645 				if (debug > 2)
1646 					dscc4_tx_print(dev, dpriv, "Xpr");
1647 				ring = dpriv->tx_fd_dma +
1648 				       (dpriv->tx_dirty%TX_RING_SIZE)*
1649 				       sizeof(struct TxFD);
1650 				writel(ring, scc_addr + CH0BTDA);
1651 				dscc4_do_tx(dpriv, dev);
1652 				writel(MTFi | Idt, scc_addr + CH0CFG);
1653 				if (dscc4_do_action(dev, "IDT") < 0)
1654 					goto err_xpr;
1655 				dpriv->flags &= ~NeedIDT;
1656 			}
1657 			if (dpriv->flags & NeedIDR) {
1658 				ring = dpriv->rx_fd_dma +
1659 				       (dpriv->rx_current%RX_RING_SIZE)*
1660 				       sizeof(struct RxFD);
1661 				writel(ring, scc_addr + CH0BRDA);
1662 				dscc4_rx_update(dpriv, dev);
1663 				writel(MTFi | Idr, scc_addr + CH0CFG);
1664 				if (dscc4_do_action(dev, "IDR") < 0)
1665 					goto err_xpr;
1666 				dpriv->flags &= ~NeedIDR;
1667 				smp_wmb();
1668 				/* Activate receiver and misc */
1669 				scc_writel(0x08050008, dpriv, dev, CCR2);
1670 			}
1671 		err_xpr:
1672 			if (!(state &= ~Xpr))
1673 				goto try;
1674 		}
1675 		if (state & Cd) {
1676 			if (debug > 0)
1677 				netdev_info(dev, "CD transition\n");
1678 			if (!(state &= ~Cd)) /* DEBUG */
1679 				goto try;
1680 		}
1681 	} else { /* ! SccEvt */
1682 		if (state & Hi) {
1683 #ifdef DSCC4_POLLING
1684 			while (!dscc4_tx_poll(dpriv, dev));
1685 #endif
1686 			netdev_info(dev, "Tx Hi\n");
1687 			state &= ~Hi;
1688 		}
1689 		if (state & Err) {
1690 			netdev_info(dev, "Tx ERR\n");
1691 			dev->stats.tx_errors++;
1692 			state &= ~Err;
1693 		}
1694 	}
1695 	goto try;
1696 }
1697 
dscc4_rx_irq(struct dscc4_pci_priv * priv,struct dscc4_dev_priv * dpriv)1698 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1699 				    struct dscc4_dev_priv *dpriv)
1700 {
1701 	struct net_device *dev = dscc4_to_dev(dpriv);
1702 	u32 state;
1703 	int cur;
1704 
1705 try:
1706 	cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1707 	state = le32_to_cpu(dpriv->iqrx[cur]);
1708 	if (!state)
1709 		return;
1710 	dpriv->iqrx[cur] = 0;
1711 	dpriv->iqrx_current++;
1712 
1713 	if (state_check(state, dpriv, dev, "Rx") < 0)
1714 		return;
1715 
1716 	if (!(state & SccEvt)){
1717 		struct RxFD *rx_fd;
1718 
1719 		if (debug > 4)
1720 			printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1721 			       state);
1722 		state &= 0x00ffffff;
1723 		if (state & Err) { /* Hold or reset */
1724 			printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1725 			cur = dpriv->rx_current%RX_RING_SIZE;
1726 			rx_fd = dpriv->rx_fd + cur;
1727 			/*
1728 			 * Presume we're not facing a DMAC receiver reset.
1729 			 * As We use the rx size-filtering feature of the
1730 			 * DSCC4, the beginning of a new frame is waiting in
1731 			 * the rx fifo. I bet a Receive Data Overflow will
1732 			 * happen most of time but let's try and avoid it.
1733 			 * Btw (as for RDO) if one experiences ERR whereas
1734 			 * the system looks rather idle, there may be a
1735 			 * problem with latency. In this case, increasing
1736 			 * RX_RING_SIZE may help.
1737 			 */
1738 			//while (dpriv->rx_needs_refill) {
1739 				while (!(rx_fd->state1 & Hold)) {
1740 					rx_fd++;
1741 					cur++;
1742 					if (!(cur = cur%RX_RING_SIZE))
1743 						rx_fd = dpriv->rx_fd;
1744 				}
1745 				//dpriv->rx_needs_refill--;
1746 				try_get_rx_skb(dpriv, dev);
1747 				if (!rx_fd->data)
1748 					goto try;
1749 				rx_fd->state1 &= ~Hold;
1750 				rx_fd->state2 = 0x00000000;
1751 				rx_fd->end = cpu_to_le32(0xbabeface);
1752 			//}
1753 			goto try;
1754 		}
1755 		if (state & Fi) {
1756 			dscc4_rx_skb(dpriv, dev);
1757 			goto try;
1758 		}
1759 		if (state & Hi ) { /* HI bit */
1760 			netdev_info(dev, "Rx Hi\n");
1761 			state &= ~Hi;
1762 			goto try;
1763 		}
1764 	} else { /* SccEvt */
1765 		if (debug > 1) {
1766 			//FIXME: verifier la presence de tous les evenements
1767 		static struct {
1768 			u32 mask;
1769 			const char *irq_name;
1770 		} evts[] = {
1771 			{ 0x00008000, "TIN"},
1772 			{ 0x00000020, "RSC"},
1773 			{ 0x00000010, "PCE"},
1774 			{ 0x00000008, "PLLA"},
1775 			{ 0, NULL}
1776 		}, *evt;
1777 
1778 		for (evt = evts; evt->irq_name; evt++) {
1779 			if (state & evt->mask) {
1780 					printk(KERN_DEBUG "%s: %s\n",
1781 						dev->name, evt->irq_name);
1782 				if (!(state &= ~evt->mask))
1783 					goto try;
1784 			}
1785 		}
1786 		} else {
1787 			if (!(state &= ~0x0000c03c))
1788 				goto try;
1789 		}
1790 		if (state & Cts) {
1791 			netdev_info(dev, "CTS transition\n");
1792 			if (!(state &= ~Cts)) /* DEBUG */
1793 				goto try;
1794 		}
1795 		/*
1796 		 * Receive Data Overflow (FIXME: fscked)
1797 		 */
1798 		if (state & Rdo) {
1799 			struct RxFD *rx_fd;
1800 			void __iomem *scc_addr;
1801 			int cur;
1802 
1803 			//if (debug)
1804 			//	dscc4_rx_dump(dpriv);
1805 			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1806 
1807 			scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1808 			/*
1809 			 * This has no effect. Why ?
1810 			 * ORed with TxSccRes, one sees the CFG ack (for
1811 			 * the TX part only).
1812 			 */
1813 			scc_writel(RxSccRes, dpriv, dev, CMDR);
1814 			dpriv->flags |= RdoSet;
1815 
1816 			/*
1817 			 * Let's try and save something in the received data.
1818 			 * rx_current must be incremented at least once to
1819 			 * avoid HOLD in the BRDA-to-be-pointed desc.
1820 			 */
1821 			do {
1822 				cur = dpriv->rx_current++%RX_RING_SIZE;
1823 				rx_fd = dpriv->rx_fd + cur;
1824 				if (!(rx_fd->state2 & DataComplete))
1825 					break;
1826 				if (rx_fd->state2 & FrameAborted) {
1827 					dev->stats.rx_over_errors++;
1828 					rx_fd->state1 |= Hold;
1829 					rx_fd->state2 = 0x00000000;
1830 					rx_fd->end = cpu_to_le32(0xbabeface);
1831 				} else
1832 					dscc4_rx_skb(dpriv, dev);
1833 			} while (1);
1834 
1835 			if (debug > 0) {
1836 				if (dpriv->flags & RdoSet)
1837 					printk(KERN_DEBUG
1838 					       "%s: no RDO in Rx data\n", DRV_NAME);
1839 			}
1840 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1841 			/*
1842 			 * FIXME: must the reset be this violent ?
1843 			 */
1844 #warning "FIXME: CH0BRDA"
1845 			writel(dpriv->rx_fd_dma +
1846 			       (dpriv->rx_current%RX_RING_SIZE)*
1847 			       sizeof(struct RxFD), scc_addr + CH0BRDA);
1848 			writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1849 			if (dscc4_do_action(dev, "RDR") < 0) {
1850 				netdev_err(dev, "RDO recovery failed(RDR)\n");
1851 				goto rdo_end;
1852 			}
1853 			writel(MTFi|Idr, scc_addr + CH0CFG);
1854 			if (dscc4_do_action(dev, "IDR") < 0) {
1855 				netdev_err(dev, "RDO recovery failed(IDR)\n");
1856 				goto rdo_end;
1857 			}
1858 		rdo_end:
1859 #endif
1860 			scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1861 			goto try;
1862 		}
1863 		if (state & Cd) {
1864 			netdev_info(dev, "CD transition\n");
1865 			if (!(state &= ~Cd)) /* DEBUG */
1866 				goto try;
1867 		}
1868 		if (state & Flex) {
1869 			printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1870 			if (!(state &= ~Flex))
1871 				goto try;
1872 		}
1873 	}
1874 }
1875 
1876 /*
1877  * I had expected the following to work for the first descriptor
1878  * (tx_fd->state = 0xc0000000)
1879  * - Hold=1 (don't try and branch to the next descripto);
1880  * - No=0 (I want an empty data section, i.e. size=0);
1881  * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1882  * It failed and locked solid. Thus the introduction of a dummy skb.
1883  * Problem is acknowledged in errata sheet DS5. Joy :o/
1884  */
dscc4_init_dummy_skb(struct dscc4_dev_priv * dpriv)1885 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1886 {
1887 	struct sk_buff *skb;
1888 
1889 	skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1890 	if (skb) {
1891 		int last = dpriv->tx_dirty%TX_RING_SIZE;
1892 		struct TxFD *tx_fd = dpriv->tx_fd + last;
1893 
1894 		skb->len = DUMMY_SKB_SIZE;
1895 		skb_copy_to_linear_data(skb, version,
1896 					strlen(version) % DUMMY_SKB_SIZE);
1897 		tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1898 		tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1899 					     skb->data, DUMMY_SKB_SIZE,
1900 					     PCI_DMA_TODEVICE));
1901 		dpriv->tx_skbuff[last] = skb;
1902 	}
1903 	return skb;
1904 }
1905 
dscc4_init_ring(struct net_device * dev)1906 static int dscc4_init_ring(struct net_device *dev)
1907 {
1908 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1909 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
1910 	struct TxFD *tx_fd;
1911 	struct RxFD *rx_fd;
1912 	void *ring;
1913 	int i;
1914 
1915 	ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1916 	if (!ring)
1917 		goto err_out;
1918 	dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1919 
1920 	ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1921 	if (!ring)
1922 		goto err_free_dma_rx;
1923 	dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1924 
1925 	memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1926 	dpriv->tx_dirty = 0xffffffff;
1927 	i = dpriv->tx_current = 0;
1928 	do {
1929 		tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1930 		tx_fd->complete = 0x00000000;
1931 	        /* FIXME: NULL should be ok - to be tried */
1932 	        tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1933 		(tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1934 					(++i%TX_RING_SIZE)*sizeof(*tx_fd));
1935 	} while (i < TX_RING_SIZE);
1936 
1937 	if (!dscc4_init_dummy_skb(dpriv))
1938 		goto err_free_dma_tx;
1939 
1940 	memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1941 	i = dpriv->rx_dirty = dpriv->rx_current = 0;
1942 	do {
1943 		/* size set by the host. Multiple of 4 bytes please */
1944 	        rx_fd->state1 = HiDesc;
1945 	        rx_fd->state2 = 0x00000000;
1946 	        rx_fd->end = cpu_to_le32(0xbabeface);
1947 	        rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1948 		// FIXME: return value verifiee mais traitement suspect
1949 		if (try_get_rx_skb(dpriv, dev) >= 0)
1950 			dpriv->rx_dirty++;
1951 		(rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1952 					(++i%RX_RING_SIZE)*sizeof(*rx_fd));
1953 	} while (i < RX_RING_SIZE);
1954 
1955 	return 0;
1956 
1957 err_free_dma_tx:
1958 	pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1959 err_free_dma_rx:
1960 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1961 err_out:
1962 	return -ENOMEM;
1963 }
1964 
dscc4_remove_one(struct pci_dev * pdev)1965 static void dscc4_remove_one(struct pci_dev *pdev)
1966 {
1967 	struct dscc4_pci_priv *ppriv;
1968 	struct dscc4_dev_priv *root;
1969 	void __iomem *ioaddr;
1970 	int i;
1971 
1972 	ppriv = pci_get_drvdata(pdev);
1973 	root = ppriv->root;
1974 
1975 	ioaddr = root->base_addr;
1976 
1977 	dscc4_pci_reset(pdev, ioaddr);
1978 
1979 	free_irq(pdev->irq, root);
1980 	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1981 			    ppriv->iqcfg_dma);
1982 	for (i = 0; i < dev_per_card; i++) {
1983 		struct dscc4_dev_priv *dpriv = root + i;
1984 
1985 		dscc4_release_ring(dpriv);
1986 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1987 				    dpriv->iqrx, dpriv->iqrx_dma);
1988 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1989 				    dpriv->iqtx, dpriv->iqtx_dma);
1990 	}
1991 
1992 	dscc4_free1(pdev);
1993 
1994 	iounmap(ioaddr);
1995 
1996 	pci_release_region(pdev, 1);
1997 	pci_release_region(pdev, 0);
1998 
1999 	pci_disable_device(pdev);
2000 }
2001 
dscc4_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2002 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2003 	unsigned short parity)
2004 {
2005 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2006 
2007 	if (encoding != ENCODING_NRZ &&
2008 	    encoding != ENCODING_NRZI &&
2009 	    encoding != ENCODING_FM_MARK &&
2010 	    encoding != ENCODING_FM_SPACE &&
2011 	    encoding != ENCODING_MANCHESTER)
2012 		return -EINVAL;
2013 
2014 	if (parity != PARITY_NONE &&
2015 	    parity != PARITY_CRC16_PR0_CCITT &&
2016 	    parity != PARITY_CRC16_PR1_CCITT &&
2017 	    parity != PARITY_CRC32_PR0_CCITT &&
2018 	    parity != PARITY_CRC32_PR1_CCITT)
2019 		return -EINVAL;
2020 
2021         dpriv->encoding = encoding;
2022         dpriv->parity = parity;
2023 	return 0;
2024 }
2025 
2026 #ifndef MODULE
dscc4_setup(char * str)2027 static int __init dscc4_setup(char *str)
2028 {
2029 	int *args[] = { &debug, &quartz, NULL }, **p = args;
2030 
2031 	while (*p && (get_option(&str, *p) == 2))
2032 		p++;
2033 	return 1;
2034 }
2035 
2036 __setup("dscc4.setup=", dscc4_setup);
2037 #endif
2038 
2039 static const struct pci_device_id dscc4_pci_tbl[] = {
2040 	{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2041 	        PCI_ANY_ID, PCI_ANY_ID, },
2042 	{ 0,}
2043 };
2044 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2045 
2046 static struct pci_driver dscc4_driver = {
2047 	.name		= DRV_NAME,
2048 	.id_table	= dscc4_pci_tbl,
2049 	.probe		= dscc4_init_one,
2050 	.remove		= dscc4_remove_one,
2051 };
2052 
2053 module_pci_driver(dscc4_driver);
2054