1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
39 
40 #define RT_FL_TOS(oldflp4) \
41 	((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42 
43 #define DRV_NAME	"vrf"
44 #define DRV_VERSION	"1.0"
45 
46 #define vrf_master_get_rcu(dev) \
47 	((struct net_device *)rcu_dereference(dev->rx_handler_data))
48 
49 struct slave {
50 	struct list_head        list;
51 	struct net_device       *dev;
52 };
53 
54 struct slave_queue {
55 	struct list_head        all_slaves;
56 };
57 
58 struct net_vrf {
59 	struct slave_queue      queue;
60 	struct rtable           *rth;
61 	struct rt6_info		*rt6;
62 	u32                     tb_id;
63 };
64 
65 struct pcpu_dstats {
66 	u64			tx_pkts;
67 	u64			tx_bytes;
68 	u64			tx_drps;
69 	u64			rx_pkts;
70 	u64			rx_bytes;
71 	struct u64_stats_sync	syncp;
72 };
73 
vrf_ip_check(struct dst_entry * dst,u32 cookie)74 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
75 {
76 	return dst;
77 }
78 
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)79 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
80 {
81 	return ip_local_out(net, sk, skb);
82 }
83 
vrf_v4_mtu(const struct dst_entry * dst)84 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
85 {
86 	/* TO-DO: return max ethernet size? */
87 	return dst->dev->mtu;
88 }
89 
vrf_dst_destroy(struct dst_entry * dst)90 static void vrf_dst_destroy(struct dst_entry *dst)
91 {
92 	/* our dst lives forever - or until the device is closed */
93 }
94 
vrf_default_advmss(const struct dst_entry * dst)95 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
96 {
97 	return 65535 - 40;
98 }
99 
100 static struct dst_ops vrf_dst_ops = {
101 	.family		= AF_INET,
102 	.local_out	= vrf_ip_local_out,
103 	.check		= vrf_ip_check,
104 	.mtu		= vrf_v4_mtu,
105 	.destroy	= vrf_dst_destroy,
106 	.default_advmss	= vrf_default_advmss,
107 };
108 
109 /* neighbor handling is done with actual device; do not want
110  * to flip skb->dev for those ndisc packets. This really fails
111  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
112  * a start.
113  */
114 #if IS_ENABLED(CONFIG_IPV6)
check_ipv6_frame(const struct sk_buff * skb)115 static bool check_ipv6_frame(const struct sk_buff *skb)
116 {
117 	const struct ipv6hdr *ipv6h;
118 	struct ipv6hdr _ipv6h;
119 	bool rc = true;
120 
121 	ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
122 	if (!ipv6h)
123 		goto out;
124 
125 	if (ipv6h->nexthdr == NEXTHDR_ICMP) {
126 		const struct icmp6hdr *icmph;
127 		struct icmp6hdr _icmph;
128 
129 		icmph = skb_header_pointer(skb, sizeof(_ipv6h),
130 					   sizeof(_icmph), &_icmph);
131 		if (!icmph)
132 			goto out;
133 
134 		switch (icmph->icmp6_type) {
135 		case NDISC_ROUTER_SOLICITATION:
136 		case NDISC_ROUTER_ADVERTISEMENT:
137 		case NDISC_NEIGHBOUR_SOLICITATION:
138 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
139 		case NDISC_REDIRECT:
140 			rc = false;
141 			break;
142 		}
143 	}
144 
145 out:
146 	return rc;
147 }
148 #else
check_ipv6_frame(const struct sk_buff * skb)149 static bool check_ipv6_frame(const struct sk_buff *skb)
150 {
151 	return false;
152 }
153 #endif
154 
is_ip_rx_frame(struct sk_buff * skb)155 static bool is_ip_rx_frame(struct sk_buff *skb)
156 {
157 	switch (skb->protocol) {
158 	case htons(ETH_P_IP):
159 		return true;
160 	case htons(ETH_P_IPV6):
161 		return check_ipv6_frame(skb);
162 	}
163 	return false;
164 }
165 
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)166 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
167 {
168 	vrf_dev->stats.tx_errors++;
169 	kfree_skb(skb);
170 }
171 
172 /* note: already called with rcu_read_lock */
vrf_handle_frame(struct sk_buff ** pskb)173 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
174 {
175 	struct sk_buff *skb = *pskb;
176 
177 	if (is_ip_rx_frame(skb)) {
178 		struct net_device *dev = vrf_master_get_rcu(skb->dev);
179 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
180 
181 		u64_stats_update_begin(&dstats->syncp);
182 		dstats->rx_pkts++;
183 		dstats->rx_bytes += skb->len;
184 		u64_stats_update_end(&dstats->syncp);
185 
186 		skb->dev = dev;
187 
188 		return RX_HANDLER_ANOTHER;
189 	}
190 	return RX_HANDLER_PASS;
191 }
192 
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)193 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
194 						 struct rtnl_link_stats64 *stats)
195 {
196 	int i;
197 
198 	for_each_possible_cpu(i) {
199 		const struct pcpu_dstats *dstats;
200 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
201 		unsigned int start;
202 
203 		dstats = per_cpu_ptr(dev->dstats, i);
204 		do {
205 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
206 			tbytes = dstats->tx_bytes;
207 			tpkts = dstats->tx_pkts;
208 			tdrops = dstats->tx_drps;
209 			rbytes = dstats->rx_bytes;
210 			rpkts = dstats->rx_pkts;
211 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
212 		stats->tx_bytes += tbytes;
213 		stats->tx_packets += tpkts;
214 		stats->tx_dropped += tdrops;
215 		stats->rx_bytes += rbytes;
216 		stats->rx_packets += rpkts;
217 	}
218 	return stats;
219 }
220 
221 #if IS_ENABLED(CONFIG_IPV6)
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)222 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
223 					   struct net_device *dev)
224 {
225 	const struct ipv6hdr *iph = ipv6_hdr(skb);
226 	struct net *net = dev_net(skb->dev);
227 	struct flowi6 fl6 = {
228 		/* needed to match OIF rule */
229 		.flowi6_oif = dev->ifindex,
230 		.flowi6_iif = LOOPBACK_IFINDEX,
231 		.daddr = iph->daddr,
232 		.saddr = iph->saddr,
233 		.flowlabel = ip6_flowinfo(iph),
234 		.flowi6_mark = skb->mark,
235 		.flowi6_proto = iph->nexthdr,
236 		.flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
237 	};
238 	int ret = NET_XMIT_DROP;
239 	struct dst_entry *dst;
240 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
241 
242 	dst = ip6_route_output(net, NULL, &fl6);
243 	if (dst == dst_null)
244 		goto err;
245 
246 	skb_dst_drop(skb);
247 	skb_dst_set(skb, dst);
248 
249 	ret = ip6_local_out(net, skb->sk, skb);
250 	if (unlikely(net_xmit_eval(ret)))
251 		dev->stats.tx_errors++;
252 	else
253 		ret = NET_XMIT_SUCCESS;
254 
255 	return ret;
256 err:
257 	vrf_tx_error(dev, skb);
258 	return NET_XMIT_DROP;
259 }
260 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)261 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
262 					   struct net_device *dev)
263 {
264 	vrf_tx_error(dev, skb);
265 	return NET_XMIT_DROP;
266 }
267 #endif
268 
vrf_send_v4_prep(struct sk_buff * skb,struct flowi4 * fl4,struct net_device * vrf_dev)269 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
270 			    struct net_device *vrf_dev)
271 {
272 	struct rtable *rt;
273 	int err = 1;
274 
275 	rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
276 	if (IS_ERR(rt))
277 		goto out;
278 
279 	/* TO-DO: what about broadcast ? */
280 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
281 		ip_rt_put(rt);
282 		goto out;
283 	}
284 
285 	skb_dst_drop(skb);
286 	skb_dst_set(skb, &rt->dst);
287 	err = 0;
288 out:
289 	return err;
290 }
291 
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)292 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
293 					   struct net_device *vrf_dev)
294 {
295 	struct iphdr *ip4h = ip_hdr(skb);
296 	int ret = NET_XMIT_DROP;
297 	struct flowi4 fl4 = {
298 		/* needed to match OIF rule */
299 		.flowi4_oif = vrf_dev->ifindex,
300 		.flowi4_iif = LOOPBACK_IFINDEX,
301 		.flowi4_tos = RT_TOS(ip4h->tos),
302 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
303 				FLOWI_FLAG_SKIP_NH_OIF,
304 		.daddr = ip4h->daddr,
305 	};
306 
307 	if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
308 		goto err;
309 
310 	if (!ip4h->saddr) {
311 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
312 					       RT_SCOPE_LINK);
313 	}
314 
315 	ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
316 	if (unlikely(net_xmit_eval(ret)))
317 		vrf_dev->stats.tx_errors++;
318 	else
319 		ret = NET_XMIT_SUCCESS;
320 
321 out:
322 	return ret;
323 err:
324 	vrf_tx_error(vrf_dev, skb);
325 	goto out;
326 }
327 
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)328 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
329 {
330 	/* strip the ethernet header added for pass through VRF device */
331 	__skb_pull(skb, skb_network_offset(skb));
332 
333 	switch (skb->protocol) {
334 	case htons(ETH_P_IP):
335 		return vrf_process_v4_outbound(skb, dev);
336 	case htons(ETH_P_IPV6):
337 		return vrf_process_v6_outbound(skb, dev);
338 	default:
339 		vrf_tx_error(dev, skb);
340 		return NET_XMIT_DROP;
341 	}
342 }
343 
vrf_xmit(struct sk_buff * skb,struct net_device * dev)344 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
345 {
346 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
347 
348 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
349 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
350 
351 		u64_stats_update_begin(&dstats->syncp);
352 		dstats->tx_pkts++;
353 		dstats->tx_bytes += skb->len;
354 		u64_stats_update_end(&dstats->syncp);
355 	} else {
356 		this_cpu_inc(dev->dstats->tx_drps);
357 	}
358 
359 	return ret;
360 }
361 
362 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_check(struct dst_entry * dst,u32 cookie)363 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
364 {
365 	return dst;
366 }
367 
368 static struct dst_ops vrf_dst_ops6 = {
369 	.family		= AF_INET6,
370 	.local_out	= ip6_local_out,
371 	.check		= vrf_ip6_check,
372 	.mtu		= vrf_v4_mtu,
373 	.destroy	= vrf_dst_destroy,
374 	.default_advmss	= vrf_default_advmss,
375 };
376 
init_dst_ops6_kmem_cachep(void)377 static int init_dst_ops6_kmem_cachep(void)
378 {
379 	vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
380 						     sizeof(struct rt6_info),
381 						     0,
382 						     SLAB_HWCACHE_ALIGN,
383 						     NULL);
384 
385 	if (!vrf_dst_ops6.kmem_cachep)
386 		return -ENOMEM;
387 
388 	return 0;
389 }
390 
free_dst_ops6_kmem_cachep(void)391 static void free_dst_ops6_kmem_cachep(void)
392 {
393 	kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
394 }
395 
vrf_input6(struct sk_buff * skb)396 static int vrf_input6(struct sk_buff *skb)
397 {
398 	skb->dev->stats.rx_errors++;
399 	kfree_skb(skb);
400 	return 0;
401 }
402 
403 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)404 static int vrf_finish_output6(struct net *net, struct sock *sk,
405 			      struct sk_buff *skb)
406 {
407 	struct dst_entry *dst = skb_dst(skb);
408 	struct net_device *dev = dst->dev;
409 	struct neighbour *neigh;
410 	struct in6_addr *nexthop;
411 	int ret;
412 
413 	skb->protocol = htons(ETH_P_IPV6);
414 	skb->dev = dev;
415 
416 	rcu_read_lock_bh();
417 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
418 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
419 	if (unlikely(!neigh))
420 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
421 	if (!IS_ERR(neigh)) {
422 		ret = dst_neigh_output(dst, neigh, skb);
423 		rcu_read_unlock_bh();
424 		return ret;
425 	}
426 	rcu_read_unlock_bh();
427 
428 	IP6_INC_STATS(dev_net(dst->dev),
429 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
430 	kfree_skb(skb);
431 	return -EINVAL;
432 }
433 
434 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)435 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
436 {
437 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
438 			    net, sk, skb, NULL, skb_dst(skb)->dev,
439 			    vrf_finish_output6,
440 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
441 }
442 
vrf_rt6_destroy(struct net_vrf * vrf)443 static void vrf_rt6_destroy(struct net_vrf *vrf)
444 {
445 	dst_destroy(&vrf->rt6->dst);
446 	free_percpu(vrf->rt6->rt6i_pcpu);
447 	vrf->rt6 = NULL;
448 }
449 
vrf_rt6_create(struct net_device * dev)450 static int vrf_rt6_create(struct net_device *dev)
451 {
452 	struct net_vrf *vrf = netdev_priv(dev);
453 	struct dst_entry *dst;
454 	struct rt6_info *rt6;
455 	int cpu;
456 	int rc = -ENOMEM;
457 
458 	rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
459 			DST_OBSOLETE_NONE,
460 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
461 	if (!rt6)
462 		goto out;
463 
464 	dst = &rt6->dst;
465 
466 	rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
467 	if (!rt6->rt6i_pcpu) {
468 		dst_destroy(dst);
469 		goto out;
470 	}
471 	for_each_possible_cpu(cpu) {
472 		struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
473 		*p =  NULL;
474 	}
475 
476 	memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
477 
478 	INIT_LIST_HEAD(&rt6->rt6i_siblings);
479 	INIT_LIST_HEAD(&rt6->rt6i_uncached);
480 
481 	rt6->dst.input	= vrf_input6;
482 	rt6->dst.output	= vrf_output6;
483 
484 	rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
485 
486 	atomic_set(&rt6->dst.__refcnt, 2);
487 
488 	vrf->rt6 = rt6;
489 	rc = 0;
490 out:
491 	return rc;
492 }
493 #else
init_dst_ops6_kmem_cachep(void)494 static int init_dst_ops6_kmem_cachep(void)
495 {
496 	return 0;
497 }
498 
free_dst_ops6_kmem_cachep(void)499 static void free_dst_ops6_kmem_cachep(void)
500 {
501 }
502 
vrf_rt6_destroy(struct net_vrf * vrf)503 static void vrf_rt6_destroy(struct net_vrf *vrf)
504 {
505 }
506 
vrf_rt6_create(struct net_device * dev)507 static int vrf_rt6_create(struct net_device *dev)
508 {
509 	return 0;
510 }
511 #endif
512 
513 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)514 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
515 {
516 	struct dst_entry *dst = skb_dst(skb);
517 	struct rtable *rt = (struct rtable *)dst;
518 	struct net_device *dev = dst->dev;
519 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
520 	struct neighbour *neigh;
521 	u32 nexthop;
522 	int ret = -EINVAL;
523 
524 	/* Be paranoid, rather than too clever. */
525 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
526 		struct sk_buff *skb2;
527 
528 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
529 		if (!skb2) {
530 			ret = -ENOMEM;
531 			goto err;
532 		}
533 		if (skb->sk)
534 			skb_set_owner_w(skb2, skb->sk);
535 
536 		consume_skb(skb);
537 		skb = skb2;
538 	}
539 
540 	rcu_read_lock_bh();
541 
542 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
543 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
544 	if (unlikely(!neigh))
545 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
546 	if (!IS_ERR(neigh))
547 		ret = dst_neigh_output(dst, neigh, skb);
548 
549 	rcu_read_unlock_bh();
550 err:
551 	if (unlikely(ret < 0))
552 		vrf_tx_error(skb->dev, skb);
553 	return ret;
554 }
555 
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)556 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
557 {
558 	struct net_device *dev = skb_dst(skb)->dev;
559 
560 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
561 
562 	skb->dev = dev;
563 	skb->protocol = htons(ETH_P_IP);
564 
565 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
566 			    net, sk, skb, NULL, dev,
567 			    vrf_finish_output,
568 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
569 }
570 
vrf_rtable_destroy(struct net_vrf * vrf)571 static void vrf_rtable_destroy(struct net_vrf *vrf)
572 {
573 	struct dst_entry *dst = (struct dst_entry *)vrf->rth;
574 
575 	dst_destroy(dst);
576 	vrf->rth = NULL;
577 }
578 
vrf_rtable_create(struct net_device * dev)579 static struct rtable *vrf_rtable_create(struct net_device *dev)
580 {
581 	struct net_vrf *vrf = netdev_priv(dev);
582 	struct rtable *rth;
583 
584 	rth = dst_alloc(&vrf_dst_ops, dev, 2,
585 			DST_OBSOLETE_NONE,
586 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
587 	if (rth) {
588 		rth->dst.output	= vrf_output;
589 		rth->rt_genid	= rt_genid_ipv4(dev_net(dev));
590 		rth->rt_flags	= 0;
591 		rth->rt_type	= RTN_UNICAST;
592 		rth->rt_is_input = 0;
593 		rth->rt_iif	= 0;
594 		rth->rt_pmtu	= 0;
595 		rth->rt_gateway	= 0;
596 		rth->rt_uses_gateway = 0;
597 		rth->rt_table_id = vrf->tb_id;
598 		INIT_LIST_HEAD(&rth->rt_uncached);
599 		rth->rt_uncached_list = NULL;
600 	}
601 
602 	return rth;
603 }
604 
605 /**************************** device handling ********************/
606 
607 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev)608 static void cycle_netdev(struct net_device *dev)
609 {
610 	unsigned int flags = dev->flags;
611 	int ret;
612 
613 	if (!netif_running(dev))
614 		return;
615 
616 	ret = dev_change_flags(dev, flags & ~IFF_UP);
617 	if (ret >= 0)
618 		ret = dev_change_flags(dev, flags);
619 
620 	if (ret < 0) {
621 		netdev_err(dev,
622 			   "Failed to cycle device %s; route tables might be wrong!\n",
623 			   dev->name);
624 	}
625 }
626 
__vrf_find_slave_dev(struct slave_queue * queue,struct net_device * dev)627 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue,
628 					  struct net_device *dev)
629 {
630 	struct list_head *head = &queue->all_slaves;
631 	struct slave *slave;
632 
633 	list_for_each_entry(slave, head, list) {
634 		if (slave->dev == dev)
635 			return slave;
636 	}
637 
638 	return NULL;
639 }
640 
641 /* inverse of __vrf_insert_slave */
__vrf_remove_slave(struct slave_queue * queue,struct slave * slave)642 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave)
643 {
644 	list_del(&slave->list);
645 }
646 
__vrf_insert_slave(struct slave_queue * queue,struct slave * slave)647 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave)
648 {
649 	list_add(&slave->list, &queue->all_slaves);
650 }
651 
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev)652 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
653 {
654 	struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL);
655 	struct net_vrf *vrf = netdev_priv(dev);
656 	struct slave_queue *queue = &vrf->queue;
657 	int ret = -ENOMEM;
658 
659 	if (!slave)
660 		goto out_fail;
661 
662 	slave->dev = port_dev;
663 
664 	/* register the packet handler for slave ports */
665 	ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
666 	if (ret) {
667 		netdev_err(port_dev,
668 			   "Device %s failed to register rx_handler\n",
669 			   port_dev->name);
670 		goto out_fail;
671 	}
672 
673 	ret = netdev_master_upper_dev_link(port_dev, dev);
674 	if (ret < 0)
675 		goto out_unregister;
676 
677 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
678 	__vrf_insert_slave(queue, slave);
679 	cycle_netdev(port_dev);
680 
681 	return 0;
682 
683 out_unregister:
684 	netdev_rx_handler_unregister(port_dev);
685 out_fail:
686 	kfree(slave);
687 	return ret;
688 }
689 
vrf_add_slave(struct net_device * dev,struct net_device * port_dev)690 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
691 {
692 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
693 		return -EINVAL;
694 
695 	return do_vrf_add_slave(dev, port_dev);
696 }
697 
698 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)699 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
700 {
701 	struct net_vrf *vrf = netdev_priv(dev);
702 	struct slave_queue *queue = &vrf->queue;
703 	struct slave *slave;
704 
705 	netdev_upper_dev_unlink(port_dev, dev);
706 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
707 
708 	netdev_rx_handler_unregister(port_dev);
709 
710 	cycle_netdev(port_dev);
711 
712 	slave = __vrf_find_slave_dev(queue, port_dev);
713 	if (slave)
714 		__vrf_remove_slave(queue, slave);
715 
716 	kfree(slave);
717 
718 	return 0;
719 }
720 
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)721 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
722 {
723 	return do_vrf_del_slave(dev, port_dev);
724 }
725 
vrf_dev_uninit(struct net_device * dev)726 static void vrf_dev_uninit(struct net_device *dev)
727 {
728 	struct net_vrf *vrf = netdev_priv(dev);
729 	struct slave_queue *queue = &vrf->queue;
730 	struct list_head *head = &queue->all_slaves;
731 	struct slave *slave, *next;
732 
733 	vrf_rtable_destroy(vrf);
734 	vrf_rt6_destroy(vrf);
735 
736 	list_for_each_entry_safe(slave, next, head, list)
737 		vrf_del_slave(dev, slave->dev);
738 
739 	free_percpu(dev->dstats);
740 	dev->dstats = NULL;
741 }
742 
vrf_dev_init(struct net_device * dev)743 static int vrf_dev_init(struct net_device *dev)
744 {
745 	struct net_vrf *vrf = netdev_priv(dev);
746 
747 	INIT_LIST_HEAD(&vrf->queue.all_slaves);
748 
749 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
750 	if (!dev->dstats)
751 		goto out_nomem;
752 
753 	/* create the default dst which points back to us */
754 	vrf->rth = vrf_rtable_create(dev);
755 	if (!vrf->rth)
756 		goto out_stats;
757 
758 	if (vrf_rt6_create(dev) != 0)
759 		goto out_rth;
760 
761 	dev->flags = IFF_MASTER | IFF_NOARP;
762 
763 	return 0;
764 
765 out_rth:
766 	vrf_rtable_destroy(vrf);
767 out_stats:
768 	free_percpu(dev->dstats);
769 	dev->dstats = NULL;
770 out_nomem:
771 	return -ENOMEM;
772 }
773 
774 static const struct net_device_ops vrf_netdev_ops = {
775 	.ndo_init		= vrf_dev_init,
776 	.ndo_uninit		= vrf_dev_uninit,
777 	.ndo_start_xmit		= vrf_xmit,
778 	.ndo_get_stats64	= vrf_get_stats64,
779 	.ndo_add_slave		= vrf_add_slave,
780 	.ndo_del_slave		= vrf_del_slave,
781 };
782 
vrf_fib_table(const struct net_device * dev)783 static u32 vrf_fib_table(const struct net_device *dev)
784 {
785 	struct net_vrf *vrf = netdev_priv(dev);
786 
787 	return vrf->tb_id;
788 }
789 
vrf_get_rtable(const struct net_device * dev,const struct flowi4 * fl4)790 static struct rtable *vrf_get_rtable(const struct net_device *dev,
791 				     const struct flowi4 *fl4)
792 {
793 	struct rtable *rth = NULL;
794 
795 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
796 		struct net_vrf *vrf = netdev_priv(dev);
797 
798 		rth = vrf->rth;
799 		atomic_inc(&rth->dst.__refcnt);
800 	}
801 
802 	return rth;
803 }
804 
805 /* called under rcu_read_lock */
vrf_get_saddr(struct net_device * dev,struct flowi4 * fl4)806 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
807 {
808 	struct fib_result res = { .tclassid = 0 };
809 	struct net *net = dev_net(dev);
810 	u32 orig_tos = fl4->flowi4_tos;
811 	u8 flags = fl4->flowi4_flags;
812 	u8 scope = fl4->flowi4_scope;
813 	u8 tos = RT_FL_TOS(fl4);
814 	int rc;
815 
816 	if (unlikely(!fl4->daddr))
817 		return 0;
818 
819 	fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
820 	fl4->flowi4_iif = LOOPBACK_IFINDEX;
821 	fl4->flowi4_tos = tos & IPTOS_RT_MASK;
822 	fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
823 			     RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
824 
825 	rc = fib_lookup(net, fl4, &res, 0);
826 	if (!rc) {
827 		if (res.type == RTN_LOCAL)
828 			fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
829 		else
830 			fib_select_path(net, &res, fl4, -1);
831 	}
832 
833 	fl4->flowi4_flags = flags;
834 	fl4->flowi4_tos = orig_tos;
835 	fl4->flowi4_scope = scope;
836 
837 	return rc;
838 }
839 
840 #if IS_ENABLED(CONFIG_IPV6)
vrf_get_rt6_dst(const struct net_device * dev,const struct flowi6 * fl6)841 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
842 					 const struct flowi6 *fl6)
843 {
844 	struct rt6_info *rt = NULL;
845 
846 	if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
847 		struct net_vrf *vrf = netdev_priv(dev);
848 
849 		rt = vrf->rt6;
850 		atomic_inc(&rt->dst.__refcnt);
851 	}
852 
853 	return (struct dst_entry *)rt;
854 }
855 #endif
856 
857 static const struct l3mdev_ops vrf_l3mdev_ops = {
858 	.l3mdev_fib_table	= vrf_fib_table,
859 	.l3mdev_get_rtable	= vrf_get_rtable,
860 	.l3mdev_get_saddr	= vrf_get_saddr,
861 #if IS_ENABLED(CONFIG_IPV6)
862 	.l3mdev_get_rt6_dst	= vrf_get_rt6_dst,
863 #endif
864 };
865 
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)866 static void vrf_get_drvinfo(struct net_device *dev,
867 			    struct ethtool_drvinfo *info)
868 {
869 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
870 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
871 }
872 
873 static const struct ethtool_ops vrf_ethtool_ops = {
874 	.get_drvinfo	= vrf_get_drvinfo,
875 };
876 
vrf_setup(struct net_device * dev)877 static void vrf_setup(struct net_device *dev)
878 {
879 	ether_setup(dev);
880 
881 	/* Initialize the device structure. */
882 	dev->netdev_ops = &vrf_netdev_ops;
883 	dev->l3mdev_ops = &vrf_l3mdev_ops;
884 	dev->ethtool_ops = &vrf_ethtool_ops;
885 	dev->destructor = free_netdev;
886 
887 	/* Fill in device structure with ethernet-generic values. */
888 	eth_hw_addr_random(dev);
889 
890 	/* don't acquire vrf device's netif_tx_lock when transmitting */
891 	dev->features |= NETIF_F_LLTX;
892 
893 	/* don't allow vrf devices to change network namespaces. */
894 	dev->features |= NETIF_F_NETNS_LOCAL;
895 }
896 
vrf_validate(struct nlattr * tb[],struct nlattr * data[])897 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
898 {
899 	if (tb[IFLA_ADDRESS]) {
900 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
901 			return -EINVAL;
902 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
903 			return -EADDRNOTAVAIL;
904 	}
905 	return 0;
906 }
907 
vrf_dellink(struct net_device * dev,struct list_head * head)908 static void vrf_dellink(struct net_device *dev, struct list_head *head)
909 {
910 	unregister_netdevice_queue(dev, head);
911 }
912 
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])913 static int vrf_newlink(struct net *src_net, struct net_device *dev,
914 		       struct nlattr *tb[], struct nlattr *data[])
915 {
916 	struct net_vrf *vrf = netdev_priv(dev);
917 
918 	if (!data || !data[IFLA_VRF_TABLE])
919 		return -EINVAL;
920 
921 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
922 
923 	dev->priv_flags |= IFF_L3MDEV_MASTER;
924 
925 	return register_netdevice(dev);
926 }
927 
vrf_nl_getsize(const struct net_device * dev)928 static size_t vrf_nl_getsize(const struct net_device *dev)
929 {
930 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
931 }
932 
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)933 static int vrf_fillinfo(struct sk_buff *skb,
934 			const struct net_device *dev)
935 {
936 	struct net_vrf *vrf = netdev_priv(dev);
937 
938 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
939 }
940 
941 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
942 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
943 };
944 
945 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
946 	.kind		= DRV_NAME,
947 	.priv_size	= sizeof(struct net_vrf),
948 
949 	.get_size	= vrf_nl_getsize,
950 	.policy		= vrf_nl_policy,
951 	.validate	= vrf_validate,
952 	.fill_info	= vrf_fillinfo,
953 
954 	.newlink	= vrf_newlink,
955 	.dellink	= vrf_dellink,
956 	.setup		= vrf_setup,
957 	.maxtype	= IFLA_VRF_MAX,
958 };
959 
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)960 static int vrf_device_event(struct notifier_block *unused,
961 			    unsigned long event, void *ptr)
962 {
963 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
964 
965 	/* only care about unregister events to drop slave references */
966 	if (event == NETDEV_UNREGISTER) {
967 		struct net_device *vrf_dev;
968 
969 		if (!netif_is_l3_slave(dev))
970 			goto out;
971 
972 		vrf_dev = netdev_master_upper_dev_get(dev);
973 		vrf_del_slave(vrf_dev, dev);
974 	}
975 out:
976 	return NOTIFY_DONE;
977 }
978 
979 static struct notifier_block vrf_notifier_block __read_mostly = {
980 	.notifier_call = vrf_device_event,
981 };
982 
vrf_init_module(void)983 static int __init vrf_init_module(void)
984 {
985 	int rc;
986 
987 	vrf_dst_ops.kmem_cachep =
988 		kmem_cache_create("vrf_ip_dst_cache",
989 				  sizeof(struct rtable), 0,
990 				  SLAB_HWCACHE_ALIGN,
991 				  NULL);
992 
993 	if (!vrf_dst_ops.kmem_cachep)
994 		return -ENOMEM;
995 
996 	rc = init_dst_ops6_kmem_cachep();
997 	if (rc != 0)
998 		goto error2;
999 
1000 	register_netdevice_notifier(&vrf_notifier_block);
1001 
1002 	rc = rtnl_link_register(&vrf_link_ops);
1003 	if (rc < 0)
1004 		goto error;
1005 
1006 	return 0;
1007 
1008 error:
1009 	unregister_netdevice_notifier(&vrf_notifier_block);
1010 	free_dst_ops6_kmem_cachep();
1011 error2:
1012 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
1013 	return rc;
1014 }
1015 
vrf_cleanup_module(void)1016 static void __exit vrf_cleanup_module(void)
1017 {
1018 	rtnl_link_unregister(&vrf_link_ops);
1019 	unregister_netdevice_notifier(&vrf_notifier_block);
1020 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
1021 	free_dst_ops6_kmem_cachep();
1022 }
1023 
1024 module_init(vrf_init_module);
1025 module_exit(vrf_cleanup_module);
1026 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1027 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1028 MODULE_LICENSE("GPL");
1029 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1030 MODULE_VERSION(DRV_VERSION);
1031