1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/phy.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/ptp_clock_kernel.h>
35 
36 #include "dp83640_reg.h"
37 
38 #define DP83640_PHY_ID	0x20005ce1
39 #define PAGESEL		0x13
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define N_PER_OUT	7
43 #define PSF_PTPVER	2
44 #define PSF_EVNT	0x4000
45 #define PSF_RX		0x2000
46 #define PSF_TX		0x1000
47 #define EXT_EVENT	1
48 #define CAL_EVENT	7
49 #define CAL_TRIGGER	1
50 #define DP83640_N_PINS	12
51 
52 #define MII_DP83640_MICR 0x11
53 #define MII_DP83640_MISR 0x12
54 
55 #define MII_DP83640_MICR_OE 0x1
56 #define MII_DP83640_MICR_IE 0x2
57 
58 #define MII_DP83640_MISR_RHF_INT_EN 0x01
59 #define MII_DP83640_MISR_FHF_INT_EN 0x02
60 #define MII_DP83640_MISR_ANC_INT_EN 0x04
61 #define MII_DP83640_MISR_DUP_INT_EN 0x08
62 #define MII_DP83640_MISR_SPD_INT_EN 0x10
63 #define MII_DP83640_MISR_LINK_INT_EN 0x20
64 #define MII_DP83640_MISR_ED_INT_EN 0x40
65 #define MII_DP83640_MISR_LQ_INT_EN 0x80
66 
67 /* phyter seems to miss the mark by 16 ns */
68 #define ADJTIME_FIX	16
69 
70 #define SKB_TIMESTAMP_TIMEOUT	2 /* jiffies */
71 
72 #if defined(__BIG_ENDIAN)
73 #define ENDIAN_FLAG	0
74 #elif defined(__LITTLE_ENDIAN)
75 #define ENDIAN_FLAG	PSF_ENDIAN
76 #endif
77 
78 struct dp83640_skb_info {
79 	int ptp_type;
80 	unsigned long tmo;
81 };
82 
83 struct phy_rxts {
84 	u16 ns_lo;   /* ns[15:0] */
85 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
86 	u16 sec_lo;  /* sec[15:0] */
87 	u16 sec_hi;  /* sec[31:16] */
88 	u16 seqid;   /* sequenceId[15:0] */
89 	u16 msgtype; /* messageType[3:0], hash[11:0] */
90 };
91 
92 struct phy_txts {
93 	u16 ns_lo;   /* ns[15:0] */
94 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
95 	u16 sec_lo;  /* sec[15:0] */
96 	u16 sec_hi;  /* sec[31:16] */
97 };
98 
99 struct rxts {
100 	struct list_head list;
101 	unsigned long tmo;
102 	u64 ns;
103 	u16 seqid;
104 	u8  msgtype;
105 	u16 hash;
106 };
107 
108 struct dp83640_clock;
109 
110 struct dp83640_private {
111 	struct list_head list;
112 	struct dp83640_clock *clock;
113 	struct phy_device *phydev;
114 	struct delayed_work ts_work;
115 	int hwts_tx_en;
116 	int hwts_rx_en;
117 	int layer;
118 	int version;
119 	/* remember state of cfg0 during calibration */
120 	int cfg0;
121 	/* remember the last event time stamp */
122 	struct phy_txts edata;
123 	/* list of rx timestamps */
124 	struct list_head rxts;
125 	struct list_head rxpool;
126 	struct rxts rx_pool_data[MAX_RXTS];
127 	/* protects above three fields from concurrent access */
128 	spinlock_t rx_lock;
129 	/* queues of incoming and outgoing packets */
130 	struct sk_buff_head rx_queue;
131 	struct sk_buff_head tx_queue;
132 };
133 
134 struct dp83640_clock {
135 	/* keeps the instance in the 'phyter_clocks' list */
136 	struct list_head list;
137 	/* we create one clock instance per MII bus */
138 	struct mii_bus *bus;
139 	/* protects extended registers from concurrent access */
140 	struct mutex extreg_lock;
141 	/* remembers which page was last selected */
142 	int page;
143 	/* our advertised capabilities */
144 	struct ptp_clock_info caps;
145 	/* protects the three fields below from concurrent access */
146 	struct mutex clock_lock;
147 	/* the one phyter from which we shall read */
148 	struct dp83640_private *chosen;
149 	/* list of the other attached phyters, not chosen */
150 	struct list_head phylist;
151 	/* reference to our PTP hardware clock */
152 	struct ptp_clock *ptp_clock;
153 };
154 
155 /* globals */
156 
157 enum {
158 	CALIBRATE_GPIO,
159 	PEROUT_GPIO,
160 	EXTTS0_GPIO,
161 	EXTTS1_GPIO,
162 	EXTTS2_GPIO,
163 	EXTTS3_GPIO,
164 	EXTTS4_GPIO,
165 	EXTTS5_GPIO,
166 	GPIO_TABLE_SIZE
167 };
168 
169 static int chosen_phy = -1;
170 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
171 	1, 2, 3, 4, 8, 9, 10, 11
172 };
173 
174 module_param(chosen_phy, int, 0444);
175 module_param_array(gpio_tab, ushort, NULL, 0444);
176 
177 MODULE_PARM_DESC(chosen_phy, \
178 	"The address of the PHY to use for the ancillary clock features");
179 MODULE_PARM_DESC(gpio_tab, \
180 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
181 
dp83640_gpio_defaults(struct ptp_pin_desc * pd)182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
183 {
184 	int i, index;
185 
186 	for (i = 0; i < DP83640_N_PINS; i++) {
187 		snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
188 		pd[i].index = i;
189 	}
190 
191 	for (i = 0; i < GPIO_TABLE_SIZE; i++) {
192 		if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
193 			pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
194 			return;
195 		}
196 	}
197 
198 	index = gpio_tab[CALIBRATE_GPIO] - 1;
199 	pd[index].func = PTP_PF_PHYSYNC;
200 	pd[index].chan = 0;
201 
202 	index = gpio_tab[PEROUT_GPIO] - 1;
203 	pd[index].func = PTP_PF_PEROUT;
204 	pd[index].chan = 0;
205 
206 	for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
207 		index = gpio_tab[i] - 1;
208 		pd[index].func = PTP_PF_EXTTS;
209 		pd[index].chan = i - EXTTS0_GPIO;
210 	}
211 }
212 
213 /* a list of clocks and a mutex to protect it */
214 static LIST_HEAD(phyter_clocks);
215 static DEFINE_MUTEX(phyter_clocks_lock);
216 
217 static void rx_timestamp_work(struct work_struct *work);
218 
219 /* extended register access functions */
220 
221 #define BROADCAST_ADDR 31
222 
broadcast_write(struct mii_bus * bus,u32 regnum,u16 val)223 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
224 {
225 	return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
226 }
227 
228 /* Caller must hold extreg_lock. */
ext_read(struct phy_device * phydev,int page,u32 regnum)229 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
230 {
231 	struct dp83640_private *dp83640 = phydev->priv;
232 	int val;
233 
234 	if (dp83640->clock->page != page) {
235 		broadcast_write(phydev->bus, PAGESEL, page);
236 		dp83640->clock->page = page;
237 	}
238 	val = phy_read(phydev, regnum);
239 
240 	return val;
241 }
242 
243 /* Caller must hold extreg_lock. */
ext_write(int broadcast,struct phy_device * phydev,int page,u32 regnum,u16 val)244 static void ext_write(int broadcast, struct phy_device *phydev,
245 		      int page, u32 regnum, u16 val)
246 {
247 	struct dp83640_private *dp83640 = phydev->priv;
248 
249 	if (dp83640->clock->page != page) {
250 		broadcast_write(phydev->bus, PAGESEL, page);
251 		dp83640->clock->page = page;
252 	}
253 	if (broadcast)
254 		broadcast_write(phydev->bus, regnum, val);
255 	else
256 		phy_write(phydev, regnum, val);
257 }
258 
259 /* Caller must hold extreg_lock. */
tdr_write(int bc,struct phy_device * dev,const struct timespec64 * ts,u16 cmd)260 static int tdr_write(int bc, struct phy_device *dev,
261 		     const struct timespec64 *ts, u16 cmd)
262 {
263 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
264 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
265 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
266 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
267 
268 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
269 
270 	return 0;
271 }
272 
273 /* convert phy timestamps into driver timestamps */
274 
phy2rxts(struct phy_rxts * p,struct rxts * rxts)275 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
276 {
277 	u32 sec;
278 
279 	sec = p->sec_lo;
280 	sec |= p->sec_hi << 16;
281 
282 	rxts->ns = p->ns_lo;
283 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
284 	rxts->ns += ((u64)sec) * 1000000000ULL;
285 	rxts->seqid = p->seqid;
286 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
287 	rxts->hash = p->msgtype & 0x0fff;
288 	rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
289 }
290 
phy2txts(struct phy_txts * p)291 static u64 phy2txts(struct phy_txts *p)
292 {
293 	u64 ns;
294 	u32 sec;
295 
296 	sec = p->sec_lo;
297 	sec |= p->sec_hi << 16;
298 
299 	ns = p->ns_lo;
300 	ns |= (p->ns_hi & 0x3fff) << 16;
301 	ns += ((u64)sec) * 1000000000ULL;
302 
303 	return ns;
304 }
305 
periodic_output(struct dp83640_clock * clock,struct ptp_clock_request * clkreq,bool on,int trigger)306 static int periodic_output(struct dp83640_clock *clock,
307 			   struct ptp_clock_request *clkreq, bool on,
308 			   int trigger)
309 {
310 	struct dp83640_private *dp83640 = clock->chosen;
311 	struct phy_device *phydev = dp83640->phydev;
312 	u32 sec, nsec, pwidth;
313 	u16 gpio, ptp_trig, val;
314 
315 	if (on) {
316 		gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
317 					trigger);
318 		if (gpio < 1)
319 			return -EINVAL;
320 	} else {
321 		gpio = 0;
322 	}
323 
324 	ptp_trig = TRIG_WR |
325 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
326 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
327 		TRIG_PER |
328 		TRIG_PULSE;
329 
330 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
331 
332 	if (!on) {
333 		val |= TRIG_DIS;
334 		mutex_lock(&clock->extreg_lock);
335 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
336 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
337 		mutex_unlock(&clock->extreg_lock);
338 		return 0;
339 	}
340 
341 	sec = clkreq->perout.start.sec;
342 	nsec = clkreq->perout.start.nsec;
343 	pwidth = clkreq->perout.period.sec * 1000000000UL;
344 	pwidth += clkreq->perout.period.nsec;
345 	pwidth /= 2;
346 
347 	mutex_lock(&clock->extreg_lock);
348 
349 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
350 
351 	/*load trigger*/
352 	val |= TRIG_LOAD;
353 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
354 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
355 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
356 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
357 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
358 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
359 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);    /* ns[31:16] */
360 	/* Triggers 0 and 1 has programmable pulsewidth2 */
361 	if (trigger < 2) {
362 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
363 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
364 	}
365 
366 	/*enable trigger*/
367 	val &= ~TRIG_LOAD;
368 	val |= TRIG_EN;
369 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
370 
371 	mutex_unlock(&clock->extreg_lock);
372 	return 0;
373 }
374 
375 /* ptp clock methods */
376 
ptp_dp83640_adjfreq(struct ptp_clock_info * ptp,s32 ppb)377 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
378 {
379 	struct dp83640_clock *clock =
380 		container_of(ptp, struct dp83640_clock, caps);
381 	struct phy_device *phydev = clock->chosen->phydev;
382 	u64 rate;
383 	int neg_adj = 0;
384 	u16 hi, lo;
385 
386 	if (ppb < 0) {
387 		neg_adj = 1;
388 		ppb = -ppb;
389 	}
390 	rate = ppb;
391 	rate <<= 26;
392 	rate = div_u64(rate, 1953125);
393 
394 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
395 	if (neg_adj)
396 		hi |= PTP_RATE_DIR;
397 
398 	lo = rate & 0xffff;
399 
400 	mutex_lock(&clock->extreg_lock);
401 
402 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
403 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
404 
405 	mutex_unlock(&clock->extreg_lock);
406 
407 	return 0;
408 }
409 
ptp_dp83640_adjtime(struct ptp_clock_info * ptp,s64 delta)410 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
411 {
412 	struct dp83640_clock *clock =
413 		container_of(ptp, struct dp83640_clock, caps);
414 	struct phy_device *phydev = clock->chosen->phydev;
415 	struct timespec64 ts;
416 	int err;
417 
418 	delta += ADJTIME_FIX;
419 
420 	ts = ns_to_timespec64(delta);
421 
422 	mutex_lock(&clock->extreg_lock);
423 
424 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
425 
426 	mutex_unlock(&clock->extreg_lock);
427 
428 	return err;
429 }
430 
ptp_dp83640_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)431 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
432 			       struct timespec64 *ts)
433 {
434 	struct dp83640_clock *clock =
435 		container_of(ptp, struct dp83640_clock, caps);
436 	struct phy_device *phydev = clock->chosen->phydev;
437 	unsigned int val[4];
438 
439 	mutex_lock(&clock->extreg_lock);
440 
441 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
442 
443 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
444 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
445 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
446 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
447 
448 	mutex_unlock(&clock->extreg_lock);
449 
450 	ts->tv_nsec = val[0] | (val[1] << 16);
451 	ts->tv_sec  = val[2] | (val[3] << 16);
452 
453 	return 0;
454 }
455 
ptp_dp83640_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)456 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
457 			       const struct timespec64 *ts)
458 {
459 	struct dp83640_clock *clock =
460 		container_of(ptp, struct dp83640_clock, caps);
461 	struct phy_device *phydev = clock->chosen->phydev;
462 	int err;
463 
464 	mutex_lock(&clock->extreg_lock);
465 
466 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
467 
468 	mutex_unlock(&clock->extreg_lock);
469 
470 	return err;
471 }
472 
ptp_dp83640_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)473 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
474 			      struct ptp_clock_request *rq, int on)
475 {
476 	struct dp83640_clock *clock =
477 		container_of(ptp, struct dp83640_clock, caps);
478 	struct phy_device *phydev = clock->chosen->phydev;
479 	unsigned int index;
480 	u16 evnt, event_num, gpio_num;
481 
482 	switch (rq->type) {
483 	case PTP_CLK_REQ_EXTTS:
484 		index = rq->extts.index;
485 		if (index >= N_EXT_TS)
486 			return -EINVAL;
487 		event_num = EXT_EVENT + index;
488 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
489 		if (on) {
490 			gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
491 						    PTP_PF_EXTTS, index);
492 			if (gpio_num < 1)
493 				return -EINVAL;
494 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
495 			if (rq->extts.flags & PTP_FALLING_EDGE)
496 				evnt |= EVNT_FALL;
497 			else
498 				evnt |= EVNT_RISE;
499 		}
500 		mutex_lock(&clock->extreg_lock);
501 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
502 		mutex_unlock(&clock->extreg_lock);
503 		return 0;
504 
505 	case PTP_CLK_REQ_PEROUT:
506 		if (rq->perout.index >= N_PER_OUT)
507 			return -EINVAL;
508 		return periodic_output(clock, rq, on, rq->perout.index);
509 
510 	default:
511 		break;
512 	}
513 
514 	return -EOPNOTSUPP;
515 }
516 
ptp_dp83640_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)517 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
518 			      enum ptp_pin_function func, unsigned int chan)
519 {
520 	struct dp83640_clock *clock =
521 		container_of(ptp, struct dp83640_clock, caps);
522 
523 	if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
524 	    !list_empty(&clock->phylist))
525 		return 1;
526 
527 	if (func == PTP_PF_PHYSYNC)
528 		return 1;
529 
530 	return 0;
531 }
532 
533 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
534 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
535 
enable_status_frames(struct phy_device * phydev,bool on)536 static void enable_status_frames(struct phy_device *phydev, bool on)
537 {
538 	struct dp83640_private *dp83640 = phydev->priv;
539 	struct dp83640_clock *clock = dp83640->clock;
540 	u16 cfg0 = 0, ver;
541 
542 	if (on)
543 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
544 
545 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
546 
547 	mutex_lock(&clock->extreg_lock);
548 
549 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
550 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
551 
552 	mutex_unlock(&clock->extreg_lock);
553 
554 	if (!phydev->attached_dev) {
555 		pr_warn("expected to find an attached netdevice\n");
556 		return;
557 	}
558 
559 	if (on) {
560 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
561 			pr_warn("failed to add mc address\n");
562 	} else {
563 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
564 			pr_warn("failed to delete mc address\n");
565 	}
566 }
567 
is_status_frame(struct sk_buff * skb,int type)568 static bool is_status_frame(struct sk_buff *skb, int type)
569 {
570 	struct ethhdr *h = eth_hdr(skb);
571 
572 	if (PTP_CLASS_V2_L2 == type &&
573 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
574 		return true;
575 	else
576 		return false;
577 }
578 
expired(struct rxts * rxts)579 static int expired(struct rxts *rxts)
580 {
581 	return time_after(jiffies, rxts->tmo);
582 }
583 
584 /* Caller must hold rx_lock. */
prune_rx_ts(struct dp83640_private * dp83640)585 static void prune_rx_ts(struct dp83640_private *dp83640)
586 {
587 	struct list_head *this, *next;
588 	struct rxts *rxts;
589 
590 	list_for_each_safe(this, next, &dp83640->rxts) {
591 		rxts = list_entry(this, struct rxts, list);
592 		if (expired(rxts)) {
593 			list_del_init(&rxts->list);
594 			list_add(&rxts->list, &dp83640->rxpool);
595 		}
596 	}
597 }
598 
599 /* synchronize the phyters so they act as one clock */
600 
enable_broadcast(struct phy_device * phydev,int init_page,int on)601 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
602 {
603 	int val;
604 	phy_write(phydev, PAGESEL, 0);
605 	val = phy_read(phydev, PHYCR2);
606 	if (on)
607 		val |= BC_WRITE;
608 	else
609 		val &= ~BC_WRITE;
610 	phy_write(phydev, PHYCR2, val);
611 	phy_write(phydev, PAGESEL, init_page);
612 }
613 
recalibrate(struct dp83640_clock * clock)614 static void recalibrate(struct dp83640_clock *clock)
615 {
616 	s64 now, diff;
617 	struct phy_txts event_ts;
618 	struct timespec64 ts;
619 	struct list_head *this;
620 	struct dp83640_private *tmp;
621 	struct phy_device *master = clock->chosen->phydev;
622 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
623 
624 	trigger = CAL_TRIGGER;
625 	cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
626 	if (cal_gpio < 1) {
627 		pr_err("PHY calibration pin not available - PHY is not calibrated.");
628 		return;
629 	}
630 
631 	mutex_lock(&clock->extreg_lock);
632 
633 	/*
634 	 * enable broadcast, disable status frames, enable ptp clock
635 	 */
636 	list_for_each(this, &clock->phylist) {
637 		tmp = list_entry(this, struct dp83640_private, list);
638 		enable_broadcast(tmp->phydev, clock->page, 1);
639 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
640 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
641 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
642 	}
643 	enable_broadcast(master, clock->page, 1);
644 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
645 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
646 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
647 
648 	/*
649 	 * enable an event timestamp
650 	 */
651 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
652 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
653 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
654 
655 	list_for_each(this, &clock->phylist) {
656 		tmp = list_entry(this, struct dp83640_private, list);
657 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
658 	}
659 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
660 
661 	/*
662 	 * configure a trigger
663 	 */
664 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
665 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
666 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
667 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
668 
669 	/* load trigger */
670 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
671 	val |= TRIG_LOAD;
672 	ext_write(0, master, PAGE4, PTP_CTL, val);
673 
674 	/* enable trigger */
675 	val &= ~TRIG_LOAD;
676 	val |= TRIG_EN;
677 	ext_write(0, master, PAGE4, PTP_CTL, val);
678 
679 	/* disable trigger */
680 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
681 	val |= TRIG_DIS;
682 	ext_write(0, master, PAGE4, PTP_CTL, val);
683 
684 	/*
685 	 * read out and correct offsets
686 	 */
687 	val = ext_read(master, PAGE4, PTP_STS);
688 	pr_info("master PTP_STS  0x%04hx\n", val);
689 	val = ext_read(master, PAGE4, PTP_ESTS);
690 	pr_info("master PTP_ESTS 0x%04hx\n", val);
691 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
692 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
693 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
694 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
695 	now = phy2txts(&event_ts);
696 
697 	list_for_each(this, &clock->phylist) {
698 		tmp = list_entry(this, struct dp83640_private, list);
699 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
700 		pr_info("slave  PTP_STS  0x%04hx\n", val);
701 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
702 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
703 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
704 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
705 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
707 		diff = now - (s64) phy2txts(&event_ts);
708 		pr_info("slave offset %lld nanoseconds\n", diff);
709 		diff += ADJTIME_FIX;
710 		ts = ns_to_timespec64(diff);
711 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
712 	}
713 
714 	/*
715 	 * restore status frames
716 	 */
717 	list_for_each(this, &clock->phylist) {
718 		tmp = list_entry(this, struct dp83640_private, list);
719 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
720 	}
721 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
722 
723 	mutex_unlock(&clock->extreg_lock);
724 }
725 
726 /* time stamping methods */
727 
exts_chan_to_edata(int ch)728 static inline u16 exts_chan_to_edata(int ch)
729 {
730 	return 1 << ((ch + EXT_EVENT) * 2);
731 }
732 
decode_evnt(struct dp83640_private * dp83640,void * data,int len,u16 ests)733 static int decode_evnt(struct dp83640_private *dp83640,
734 		       void *data, int len, u16 ests)
735 {
736 	struct phy_txts *phy_txts;
737 	struct ptp_clock_event event;
738 	int i, parsed;
739 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
740 	u16 ext_status = 0;
741 
742 	/* calculate length of the event timestamp status message */
743 	if (ests & MULT_EVNT)
744 		parsed = (words + 2) * sizeof(u16);
745 	else
746 		parsed = (words + 1) * sizeof(u16);
747 
748 	/* check if enough data is available */
749 	if (len < parsed)
750 		return len;
751 
752 	if (ests & MULT_EVNT) {
753 		ext_status = *(u16 *) data;
754 		data += sizeof(ext_status);
755 	}
756 
757 	phy_txts = data;
758 
759 	switch (words) { /* fall through in every case */
760 	case 3:
761 		dp83640->edata.sec_hi = phy_txts->sec_hi;
762 	case 2:
763 		dp83640->edata.sec_lo = phy_txts->sec_lo;
764 	case 1:
765 		dp83640->edata.ns_hi = phy_txts->ns_hi;
766 	case 0:
767 		dp83640->edata.ns_lo = phy_txts->ns_lo;
768 	}
769 
770 	if (!ext_status) {
771 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
772 		ext_status = exts_chan_to_edata(i);
773 	}
774 
775 	event.type = PTP_CLOCK_EXTTS;
776 	event.timestamp = phy2txts(&dp83640->edata);
777 
778 	/* Compensate for input path and synchronization delays */
779 	event.timestamp -= 35;
780 
781 	for (i = 0; i < N_EXT_TS; i++) {
782 		if (ext_status & exts_chan_to_edata(i)) {
783 			event.index = i;
784 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
785 		}
786 	}
787 
788 	return parsed;
789 }
790 
791 #define DP83640_PACKET_HASH_OFFSET	20
792 #define DP83640_PACKET_HASH_LEN		10
793 
match(struct sk_buff * skb,unsigned int type,struct rxts * rxts)794 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
795 {
796 	u16 *seqid, hash;
797 	unsigned int offset = 0;
798 	u8 *msgtype, *data = skb_mac_header(skb);
799 
800 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
801 
802 	if (type & PTP_CLASS_VLAN)
803 		offset += VLAN_HLEN;
804 
805 	switch (type & PTP_CLASS_PMASK) {
806 	case PTP_CLASS_IPV4:
807 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
808 		break;
809 	case PTP_CLASS_IPV6:
810 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
811 		break;
812 	case PTP_CLASS_L2:
813 		offset += ETH_HLEN;
814 		break;
815 	default:
816 		return 0;
817 	}
818 
819 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
820 		return 0;
821 
822 	if (unlikely(type & PTP_CLASS_V1))
823 		msgtype = data + offset + OFF_PTP_CONTROL;
824 	else
825 		msgtype = data + offset;
826 	if (rxts->msgtype != (*msgtype & 0xf))
827 		return 0;
828 
829 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
830 	if (rxts->seqid != ntohs(*seqid))
831 		return 0;
832 
833 	hash = ether_crc(DP83640_PACKET_HASH_LEN,
834 			 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
835 	if (rxts->hash != hash)
836 		return 0;
837 
838 	return 1;
839 }
840 
decode_rxts(struct dp83640_private * dp83640,struct phy_rxts * phy_rxts)841 static void decode_rxts(struct dp83640_private *dp83640,
842 			struct phy_rxts *phy_rxts)
843 {
844 	struct rxts *rxts;
845 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
846 	struct sk_buff *skb;
847 	unsigned long flags;
848 	u8 overflow;
849 
850 	overflow = (phy_rxts->ns_hi >> 14) & 0x3;
851 	if (overflow)
852 		pr_debug("rx timestamp queue overflow, count %d\n", overflow);
853 
854 	spin_lock_irqsave(&dp83640->rx_lock, flags);
855 
856 	prune_rx_ts(dp83640);
857 
858 	if (list_empty(&dp83640->rxpool)) {
859 		pr_debug("rx timestamp pool is empty\n");
860 		goto out;
861 	}
862 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
863 	list_del_init(&rxts->list);
864 	phy2rxts(phy_rxts, rxts);
865 
866 	spin_lock(&dp83640->rx_queue.lock);
867 	skb_queue_walk(&dp83640->rx_queue, skb) {
868 		struct dp83640_skb_info *skb_info;
869 
870 		skb_info = (struct dp83640_skb_info *)skb->cb;
871 		if (match(skb, skb_info->ptp_type, rxts)) {
872 			__skb_unlink(skb, &dp83640->rx_queue);
873 			shhwtstamps = skb_hwtstamps(skb);
874 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
875 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
876 			netif_rx_ni(skb);
877 			list_add(&rxts->list, &dp83640->rxpool);
878 			break;
879 		}
880 	}
881 	spin_unlock(&dp83640->rx_queue.lock);
882 
883 	if (!shhwtstamps)
884 		list_add_tail(&rxts->list, &dp83640->rxts);
885 out:
886 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
887 }
888 
decode_txts(struct dp83640_private * dp83640,struct phy_txts * phy_txts)889 static void decode_txts(struct dp83640_private *dp83640,
890 			struct phy_txts *phy_txts)
891 {
892 	struct skb_shared_hwtstamps shhwtstamps;
893 	struct sk_buff *skb;
894 	u64 ns;
895 	u8 overflow;
896 
897 	/* We must already have the skb that triggered this. */
898 
899 	skb = skb_dequeue(&dp83640->tx_queue);
900 
901 	if (!skb) {
902 		pr_debug("have timestamp but tx_queue empty\n");
903 		return;
904 	}
905 
906 	overflow = (phy_txts->ns_hi >> 14) & 0x3;
907 	if (overflow) {
908 		pr_debug("tx timestamp queue overflow, count %d\n", overflow);
909 		while (skb) {
910 			skb_complete_tx_timestamp(skb, NULL);
911 			skb = skb_dequeue(&dp83640->tx_queue);
912 		}
913 		return;
914 	}
915 
916 	ns = phy2txts(phy_txts);
917 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
918 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
919 	skb_complete_tx_timestamp(skb, &shhwtstamps);
920 }
921 
decode_status_frame(struct dp83640_private * dp83640,struct sk_buff * skb)922 static void decode_status_frame(struct dp83640_private *dp83640,
923 				struct sk_buff *skb)
924 {
925 	struct phy_rxts *phy_rxts;
926 	struct phy_txts *phy_txts;
927 	u8 *ptr;
928 	int len, size;
929 	u16 ests, type;
930 
931 	ptr = skb->data + 2;
932 
933 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
934 
935 		type = *(u16 *)ptr;
936 		ests = type & 0x0fff;
937 		type = type & 0xf000;
938 		len -= sizeof(type);
939 		ptr += sizeof(type);
940 
941 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
942 
943 			phy_rxts = (struct phy_rxts *) ptr;
944 			decode_rxts(dp83640, phy_rxts);
945 			size = sizeof(*phy_rxts);
946 
947 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
948 
949 			phy_txts = (struct phy_txts *) ptr;
950 			decode_txts(dp83640, phy_txts);
951 			size = sizeof(*phy_txts);
952 
953 		} else if (PSF_EVNT == type) {
954 
955 			size = decode_evnt(dp83640, ptr, len, ests);
956 
957 		} else {
958 			size = 0;
959 			break;
960 		}
961 		ptr += size;
962 	}
963 }
964 
is_sync(struct sk_buff * skb,int type)965 static int is_sync(struct sk_buff *skb, int type)
966 {
967 	u8 *data = skb->data, *msgtype;
968 	unsigned int offset = 0;
969 
970 	if (type & PTP_CLASS_VLAN)
971 		offset += VLAN_HLEN;
972 
973 	switch (type & PTP_CLASS_PMASK) {
974 	case PTP_CLASS_IPV4:
975 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
976 		break;
977 	case PTP_CLASS_IPV6:
978 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
979 		break;
980 	case PTP_CLASS_L2:
981 		offset += ETH_HLEN;
982 		break;
983 	default:
984 		return 0;
985 	}
986 
987 	if (type & PTP_CLASS_V1)
988 		offset += OFF_PTP_CONTROL;
989 
990 	if (skb->len < offset + 1)
991 		return 0;
992 
993 	msgtype = data + offset;
994 
995 	return (*msgtype & 0xf) == 0;
996 }
997 
dp83640_free_clocks(void)998 static void dp83640_free_clocks(void)
999 {
1000 	struct dp83640_clock *clock;
1001 	struct list_head *this, *next;
1002 
1003 	mutex_lock(&phyter_clocks_lock);
1004 
1005 	list_for_each_safe(this, next, &phyter_clocks) {
1006 		clock = list_entry(this, struct dp83640_clock, list);
1007 		if (!list_empty(&clock->phylist)) {
1008 			pr_warn("phy list non-empty while unloading\n");
1009 			BUG();
1010 		}
1011 		list_del(&clock->list);
1012 		mutex_destroy(&clock->extreg_lock);
1013 		mutex_destroy(&clock->clock_lock);
1014 		put_device(&clock->bus->dev);
1015 		kfree(clock->caps.pin_config);
1016 		kfree(clock);
1017 	}
1018 
1019 	mutex_unlock(&phyter_clocks_lock);
1020 }
1021 
dp83640_clock_init(struct dp83640_clock * clock,struct mii_bus * bus)1022 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1023 {
1024 	INIT_LIST_HEAD(&clock->list);
1025 	clock->bus = bus;
1026 	mutex_init(&clock->extreg_lock);
1027 	mutex_init(&clock->clock_lock);
1028 	INIT_LIST_HEAD(&clock->phylist);
1029 	clock->caps.owner = THIS_MODULE;
1030 	sprintf(clock->caps.name, "dp83640 timer");
1031 	clock->caps.max_adj	= 1953124;
1032 	clock->caps.n_alarm	= 0;
1033 	clock->caps.n_ext_ts	= N_EXT_TS;
1034 	clock->caps.n_per_out	= N_PER_OUT;
1035 	clock->caps.n_pins	= DP83640_N_PINS;
1036 	clock->caps.pps		= 0;
1037 	clock->caps.adjfreq	= ptp_dp83640_adjfreq;
1038 	clock->caps.adjtime	= ptp_dp83640_adjtime;
1039 	clock->caps.gettime64	= ptp_dp83640_gettime;
1040 	clock->caps.settime64	= ptp_dp83640_settime;
1041 	clock->caps.enable	= ptp_dp83640_enable;
1042 	clock->caps.verify	= ptp_dp83640_verify;
1043 	/*
1044 	 * Convert the module param defaults into a dynamic pin configuration.
1045 	 */
1046 	dp83640_gpio_defaults(clock->caps.pin_config);
1047 	/*
1048 	 * Get a reference to this bus instance.
1049 	 */
1050 	get_device(&bus->dev);
1051 }
1052 
choose_this_phy(struct dp83640_clock * clock,struct phy_device * phydev)1053 static int choose_this_phy(struct dp83640_clock *clock,
1054 			   struct phy_device *phydev)
1055 {
1056 	if (chosen_phy == -1 && !clock->chosen)
1057 		return 1;
1058 
1059 	if (chosen_phy == phydev->addr)
1060 		return 1;
1061 
1062 	return 0;
1063 }
1064 
dp83640_clock_get(struct dp83640_clock * clock)1065 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1066 {
1067 	if (clock)
1068 		mutex_lock(&clock->clock_lock);
1069 	return clock;
1070 }
1071 
1072 /*
1073  * Look up and lock a clock by bus instance.
1074  * If there is no clock for this bus, then create it first.
1075  */
dp83640_clock_get_bus(struct mii_bus * bus)1076 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1077 {
1078 	struct dp83640_clock *clock = NULL, *tmp;
1079 	struct list_head *this;
1080 
1081 	mutex_lock(&phyter_clocks_lock);
1082 
1083 	list_for_each(this, &phyter_clocks) {
1084 		tmp = list_entry(this, struct dp83640_clock, list);
1085 		if (tmp->bus == bus) {
1086 			clock = tmp;
1087 			break;
1088 		}
1089 	}
1090 	if (clock)
1091 		goto out;
1092 
1093 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1094 	if (!clock)
1095 		goto out;
1096 
1097 	clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
1098 					 DP83640_N_PINS, GFP_KERNEL);
1099 	if (!clock->caps.pin_config) {
1100 		kfree(clock);
1101 		clock = NULL;
1102 		goto out;
1103 	}
1104 	dp83640_clock_init(clock, bus);
1105 	list_add_tail(&phyter_clocks, &clock->list);
1106 out:
1107 	mutex_unlock(&phyter_clocks_lock);
1108 
1109 	return dp83640_clock_get(clock);
1110 }
1111 
dp83640_clock_put(struct dp83640_clock * clock)1112 static void dp83640_clock_put(struct dp83640_clock *clock)
1113 {
1114 	mutex_unlock(&clock->clock_lock);
1115 }
1116 
dp83640_probe(struct phy_device * phydev)1117 static int dp83640_probe(struct phy_device *phydev)
1118 {
1119 	struct dp83640_clock *clock;
1120 	struct dp83640_private *dp83640;
1121 	int err = -ENOMEM, i;
1122 
1123 	if (phydev->addr == BROADCAST_ADDR)
1124 		return 0;
1125 
1126 	clock = dp83640_clock_get_bus(phydev->bus);
1127 	if (!clock)
1128 		goto no_clock;
1129 
1130 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1131 	if (!dp83640)
1132 		goto no_memory;
1133 
1134 	dp83640->phydev = phydev;
1135 	INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
1136 
1137 	INIT_LIST_HEAD(&dp83640->rxts);
1138 	INIT_LIST_HEAD(&dp83640->rxpool);
1139 	for (i = 0; i < MAX_RXTS; i++)
1140 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1141 
1142 	phydev->priv = dp83640;
1143 
1144 	spin_lock_init(&dp83640->rx_lock);
1145 	skb_queue_head_init(&dp83640->rx_queue);
1146 	skb_queue_head_init(&dp83640->tx_queue);
1147 
1148 	dp83640->clock = clock;
1149 
1150 	if (choose_this_phy(clock, phydev)) {
1151 		clock->chosen = dp83640;
1152 		clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
1153 		if (IS_ERR(clock->ptp_clock)) {
1154 			err = PTR_ERR(clock->ptp_clock);
1155 			goto no_register;
1156 		}
1157 	} else
1158 		list_add_tail(&dp83640->list, &clock->phylist);
1159 
1160 	dp83640_clock_put(clock);
1161 	return 0;
1162 
1163 no_register:
1164 	clock->chosen = NULL;
1165 	kfree(dp83640);
1166 no_memory:
1167 	dp83640_clock_put(clock);
1168 no_clock:
1169 	return err;
1170 }
1171 
dp83640_remove(struct phy_device * phydev)1172 static void dp83640_remove(struct phy_device *phydev)
1173 {
1174 	struct dp83640_clock *clock;
1175 	struct list_head *this, *next;
1176 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1177 
1178 	if (phydev->addr == BROADCAST_ADDR)
1179 		return;
1180 
1181 	enable_status_frames(phydev, false);
1182 	cancel_delayed_work_sync(&dp83640->ts_work);
1183 
1184 	skb_queue_purge(&dp83640->rx_queue);
1185 	skb_queue_purge(&dp83640->tx_queue);
1186 
1187 	clock = dp83640_clock_get(dp83640->clock);
1188 
1189 	if (dp83640 == clock->chosen) {
1190 		ptp_clock_unregister(clock->ptp_clock);
1191 		clock->chosen = NULL;
1192 	} else {
1193 		list_for_each_safe(this, next, &clock->phylist) {
1194 			tmp = list_entry(this, struct dp83640_private, list);
1195 			if (tmp == dp83640) {
1196 				list_del_init(&tmp->list);
1197 				break;
1198 			}
1199 		}
1200 	}
1201 
1202 	dp83640_clock_put(clock);
1203 	kfree(dp83640);
1204 }
1205 
dp83640_config_init(struct phy_device * phydev)1206 static int dp83640_config_init(struct phy_device *phydev)
1207 {
1208 	struct dp83640_private *dp83640 = phydev->priv;
1209 	struct dp83640_clock *clock = dp83640->clock;
1210 
1211 	if (clock->chosen && !list_empty(&clock->phylist))
1212 		recalibrate(clock);
1213 	else {
1214 		mutex_lock(&clock->extreg_lock);
1215 		enable_broadcast(phydev, clock->page, 1);
1216 		mutex_unlock(&clock->extreg_lock);
1217 	}
1218 
1219 	enable_status_frames(phydev, true);
1220 
1221 	mutex_lock(&clock->extreg_lock);
1222 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1223 	mutex_unlock(&clock->extreg_lock);
1224 
1225 	return 0;
1226 }
1227 
dp83640_ack_interrupt(struct phy_device * phydev)1228 static int dp83640_ack_interrupt(struct phy_device *phydev)
1229 {
1230 	int err = phy_read(phydev, MII_DP83640_MISR);
1231 
1232 	if (err < 0)
1233 		return err;
1234 
1235 	return 0;
1236 }
1237 
dp83640_config_intr(struct phy_device * phydev)1238 static int dp83640_config_intr(struct phy_device *phydev)
1239 {
1240 	int micr;
1241 	int misr;
1242 	int err;
1243 
1244 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1245 		misr = phy_read(phydev, MII_DP83640_MISR);
1246 		if (misr < 0)
1247 			return misr;
1248 		misr |=
1249 			(MII_DP83640_MISR_ANC_INT_EN |
1250 			MII_DP83640_MISR_DUP_INT_EN |
1251 			MII_DP83640_MISR_SPD_INT_EN |
1252 			MII_DP83640_MISR_LINK_INT_EN);
1253 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1254 		if (err < 0)
1255 			return err;
1256 
1257 		micr = phy_read(phydev, MII_DP83640_MICR);
1258 		if (micr < 0)
1259 			return micr;
1260 		micr |=
1261 			(MII_DP83640_MICR_OE |
1262 			MII_DP83640_MICR_IE);
1263 		return phy_write(phydev, MII_DP83640_MICR, micr);
1264 	} else {
1265 		micr = phy_read(phydev, MII_DP83640_MICR);
1266 		if (micr < 0)
1267 			return micr;
1268 		micr &=
1269 			~(MII_DP83640_MICR_OE |
1270 			MII_DP83640_MICR_IE);
1271 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1272 		if (err < 0)
1273 			return err;
1274 
1275 		misr = phy_read(phydev, MII_DP83640_MISR);
1276 		if (misr < 0)
1277 			return misr;
1278 		misr &=
1279 			~(MII_DP83640_MISR_ANC_INT_EN |
1280 			MII_DP83640_MISR_DUP_INT_EN |
1281 			MII_DP83640_MISR_SPD_INT_EN |
1282 			MII_DP83640_MISR_LINK_INT_EN);
1283 		return phy_write(phydev, MII_DP83640_MISR, misr);
1284 	}
1285 }
1286 
dp83640_hwtstamp(struct phy_device * phydev,struct ifreq * ifr)1287 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1288 {
1289 	struct dp83640_private *dp83640 = phydev->priv;
1290 	struct hwtstamp_config cfg;
1291 	u16 txcfg0, rxcfg0;
1292 
1293 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1294 		return -EFAULT;
1295 
1296 	if (cfg.flags) /* reserved for future extensions */
1297 		return -EINVAL;
1298 
1299 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1300 		return -ERANGE;
1301 
1302 	dp83640->hwts_tx_en = cfg.tx_type;
1303 
1304 	switch (cfg.rx_filter) {
1305 	case HWTSTAMP_FILTER_NONE:
1306 		dp83640->hwts_rx_en = 0;
1307 		dp83640->layer = 0;
1308 		dp83640->version = 0;
1309 		break;
1310 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1311 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1312 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1313 		dp83640->hwts_rx_en = 1;
1314 		dp83640->layer = PTP_CLASS_L4;
1315 		dp83640->version = PTP_CLASS_V1;
1316 		break;
1317 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1318 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1319 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1320 		dp83640->hwts_rx_en = 1;
1321 		dp83640->layer = PTP_CLASS_L4;
1322 		dp83640->version = PTP_CLASS_V2;
1323 		break;
1324 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1325 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1326 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1327 		dp83640->hwts_rx_en = 1;
1328 		dp83640->layer = PTP_CLASS_L2;
1329 		dp83640->version = PTP_CLASS_V2;
1330 		break;
1331 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1332 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1333 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1334 		dp83640->hwts_rx_en = 1;
1335 		dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
1336 		dp83640->version = PTP_CLASS_V2;
1337 		break;
1338 	default:
1339 		return -ERANGE;
1340 	}
1341 
1342 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1343 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1344 
1345 	if (dp83640->layer & PTP_CLASS_L2) {
1346 		txcfg0 |= TX_L2_EN;
1347 		rxcfg0 |= RX_L2_EN;
1348 	}
1349 	if (dp83640->layer & PTP_CLASS_L4) {
1350 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1351 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1352 	}
1353 
1354 	if (dp83640->hwts_tx_en)
1355 		txcfg0 |= TX_TS_EN;
1356 
1357 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1358 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1359 
1360 	if (dp83640->hwts_rx_en)
1361 		rxcfg0 |= RX_TS_EN;
1362 
1363 	mutex_lock(&dp83640->clock->extreg_lock);
1364 
1365 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1366 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1367 
1368 	mutex_unlock(&dp83640->clock->extreg_lock);
1369 
1370 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1371 }
1372 
rx_timestamp_work(struct work_struct * work)1373 static void rx_timestamp_work(struct work_struct *work)
1374 {
1375 	struct dp83640_private *dp83640 =
1376 		container_of(work, struct dp83640_private, ts_work.work);
1377 	struct sk_buff *skb;
1378 
1379 	/* Deliver expired packets. */
1380 	while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1381 		struct dp83640_skb_info *skb_info;
1382 
1383 		skb_info = (struct dp83640_skb_info *)skb->cb;
1384 		if (!time_after(jiffies, skb_info->tmo)) {
1385 			skb_queue_head(&dp83640->rx_queue, skb);
1386 			break;
1387 		}
1388 
1389 		netif_rx_ni(skb);
1390 	}
1391 
1392 	if (!skb_queue_empty(&dp83640->rx_queue))
1393 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1394 }
1395 
dp83640_rxtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1396 static bool dp83640_rxtstamp(struct phy_device *phydev,
1397 			     struct sk_buff *skb, int type)
1398 {
1399 	struct dp83640_private *dp83640 = phydev->priv;
1400 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1401 	struct list_head *this, *next;
1402 	struct rxts *rxts;
1403 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
1404 	unsigned long flags;
1405 
1406 	if (is_status_frame(skb, type)) {
1407 		decode_status_frame(dp83640, skb);
1408 		kfree_skb(skb);
1409 		return true;
1410 	}
1411 
1412 	if (!dp83640->hwts_rx_en)
1413 		return false;
1414 
1415 	if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
1416 		return false;
1417 
1418 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1419 	prune_rx_ts(dp83640);
1420 	list_for_each_safe(this, next, &dp83640->rxts) {
1421 		rxts = list_entry(this, struct rxts, list);
1422 		if (match(skb, type, rxts)) {
1423 			shhwtstamps = skb_hwtstamps(skb);
1424 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1425 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1426 			netif_rx_ni(skb);
1427 			list_del_init(&rxts->list);
1428 			list_add(&rxts->list, &dp83640->rxpool);
1429 			break;
1430 		}
1431 	}
1432 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1433 
1434 	if (!shhwtstamps) {
1435 		skb_info->ptp_type = type;
1436 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1437 		skb_queue_tail(&dp83640->rx_queue, skb);
1438 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1439 	} else {
1440 		netif_rx_ni(skb);
1441 	}
1442 
1443 	return true;
1444 }
1445 
dp83640_txtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1446 static void dp83640_txtstamp(struct phy_device *phydev,
1447 			     struct sk_buff *skb, int type)
1448 {
1449 	struct dp83640_private *dp83640 = phydev->priv;
1450 
1451 	switch (dp83640->hwts_tx_en) {
1452 
1453 	case HWTSTAMP_TX_ONESTEP_SYNC:
1454 		if (is_sync(skb, type)) {
1455 			kfree_skb(skb);
1456 			return;
1457 		}
1458 		/* fall through */
1459 	case HWTSTAMP_TX_ON:
1460 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1461 		skb_queue_tail(&dp83640->tx_queue, skb);
1462 		break;
1463 
1464 	case HWTSTAMP_TX_OFF:
1465 	default:
1466 		kfree_skb(skb);
1467 		break;
1468 	}
1469 }
1470 
dp83640_ts_info(struct phy_device * dev,struct ethtool_ts_info * info)1471 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1472 {
1473 	struct dp83640_private *dp83640 = dev->priv;
1474 
1475 	info->so_timestamping =
1476 		SOF_TIMESTAMPING_TX_HARDWARE |
1477 		SOF_TIMESTAMPING_RX_HARDWARE |
1478 		SOF_TIMESTAMPING_RAW_HARDWARE;
1479 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1480 	info->tx_types =
1481 		(1 << HWTSTAMP_TX_OFF) |
1482 		(1 << HWTSTAMP_TX_ON) |
1483 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1484 	info->rx_filters =
1485 		(1 << HWTSTAMP_FILTER_NONE) |
1486 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1487 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1488 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1489 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1490 	return 0;
1491 }
1492 
1493 static struct phy_driver dp83640_driver = {
1494 	.phy_id		= DP83640_PHY_ID,
1495 	.phy_id_mask	= 0xfffffff0,
1496 	.name		= "NatSemi DP83640",
1497 	.features	= PHY_BASIC_FEATURES,
1498 	.flags		= PHY_HAS_INTERRUPT,
1499 	.probe		= dp83640_probe,
1500 	.remove		= dp83640_remove,
1501 	.config_init	= dp83640_config_init,
1502 	.config_aneg	= genphy_config_aneg,
1503 	.read_status	= genphy_read_status,
1504 	.ack_interrupt  = dp83640_ack_interrupt,
1505 	.config_intr    = dp83640_config_intr,
1506 	.ts_info	= dp83640_ts_info,
1507 	.hwtstamp	= dp83640_hwtstamp,
1508 	.rxtstamp	= dp83640_rxtstamp,
1509 	.txtstamp	= dp83640_txtstamp,
1510 	.driver		= {.owner = THIS_MODULE,}
1511 };
1512 
dp83640_init(void)1513 static int __init dp83640_init(void)
1514 {
1515 	return phy_driver_register(&dp83640_driver);
1516 }
1517 
dp83640_exit(void)1518 static void __exit dp83640_exit(void)
1519 {
1520 	dp83640_free_clocks();
1521 	phy_driver_unregister(&dp83640_driver);
1522 }
1523 
1524 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1525 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1526 MODULE_LICENSE("GPL");
1527 
1528 module_init(dp83640_init);
1529 module_exit(dp83640_exit);
1530 
1531 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1532 	{ DP83640_PHY_ID, 0xfffffff0 },
1533 	{ }
1534 };
1535 
1536 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1537