1 /*
2 * Driver for the National Semiconductor DP83640 PHYTER
3 *
4 * Copyright (C) 2010 OMICRON electronics GmbH
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_vlan.h>
31 #include <linux/phy.h>
32 #include <linux/ptp_classify.h>
33 #include <linux/ptp_clock_kernel.h>
34
35 #include "dp83640_reg.h"
36
37 #define DP83640_PHY_ID 0x20005ce1
38 #define PAGESEL 0x13
39 #define LAYER4 0x02
40 #define LAYER2 0x01
41 #define MAX_RXTS 64
42 #define N_EXT_TS 6
43 #define N_PER_OUT 7
44 #define PSF_PTPVER 2
45 #define PSF_EVNT 0x4000
46 #define PSF_RX 0x2000
47 #define PSF_TX 0x1000
48 #define EXT_EVENT 1
49 #define CAL_EVENT 7
50 #define CAL_TRIGGER 1
51 #define DP83640_N_PINS 12
52
53 #define MII_DP83640_MICR 0x11
54 #define MII_DP83640_MISR 0x12
55
56 #define MII_DP83640_MICR_OE 0x1
57 #define MII_DP83640_MICR_IE 0x2
58
59 #define MII_DP83640_MISR_RHF_INT_EN 0x01
60 #define MII_DP83640_MISR_FHF_INT_EN 0x02
61 #define MII_DP83640_MISR_ANC_INT_EN 0x04
62 #define MII_DP83640_MISR_DUP_INT_EN 0x08
63 #define MII_DP83640_MISR_SPD_INT_EN 0x10
64 #define MII_DP83640_MISR_LINK_INT_EN 0x20
65 #define MII_DP83640_MISR_ED_INT_EN 0x40
66 #define MII_DP83640_MISR_LQ_INT_EN 0x80
67
68 /* phyter seems to miss the mark by 16 ns */
69 #define ADJTIME_FIX 16
70
71 #if defined(__BIG_ENDIAN)
72 #define ENDIAN_FLAG 0
73 #elif defined(__LITTLE_ENDIAN)
74 #define ENDIAN_FLAG PSF_ENDIAN
75 #endif
76
77 struct dp83640_skb_info {
78 int ptp_type;
79 unsigned long tmo;
80 };
81
82 struct phy_rxts {
83 u16 ns_lo; /* ns[15:0] */
84 u16 ns_hi; /* overflow[1:0], ns[29:16] */
85 u16 sec_lo; /* sec[15:0] */
86 u16 sec_hi; /* sec[31:16] */
87 u16 seqid; /* sequenceId[15:0] */
88 u16 msgtype; /* messageType[3:0], hash[11:0] */
89 };
90
91 struct phy_txts {
92 u16 ns_lo; /* ns[15:0] */
93 u16 ns_hi; /* overflow[1:0], ns[29:16] */
94 u16 sec_lo; /* sec[15:0] */
95 u16 sec_hi; /* sec[31:16] */
96 };
97
98 struct rxts {
99 struct list_head list;
100 unsigned long tmo;
101 u64 ns;
102 u16 seqid;
103 u8 msgtype;
104 u16 hash;
105 };
106
107 struct dp83640_clock;
108
109 struct dp83640_private {
110 struct list_head list;
111 struct dp83640_clock *clock;
112 struct phy_device *phydev;
113 struct work_struct ts_work;
114 int hwts_tx_en;
115 int hwts_rx_en;
116 int layer;
117 int version;
118 /* remember state of cfg0 during calibration */
119 int cfg0;
120 /* remember the last event time stamp */
121 struct phy_txts edata;
122 /* list of rx timestamps */
123 struct list_head rxts;
124 struct list_head rxpool;
125 struct rxts rx_pool_data[MAX_RXTS];
126 /* protects above three fields from concurrent access */
127 spinlock_t rx_lock;
128 /* queues of incoming and outgoing packets */
129 struct sk_buff_head rx_queue;
130 struct sk_buff_head tx_queue;
131 };
132
133 struct dp83640_clock {
134 /* keeps the instance in the 'phyter_clocks' list */
135 struct list_head list;
136 /* we create one clock instance per MII bus */
137 struct mii_bus *bus;
138 /* protects extended registers from concurrent access */
139 struct mutex extreg_lock;
140 /* remembers which page was last selected */
141 int page;
142 /* our advertised capabilities */
143 struct ptp_clock_info caps;
144 /* protects the three fields below from concurrent access */
145 struct mutex clock_lock;
146 /* the one phyter from which we shall read */
147 struct dp83640_private *chosen;
148 /* list of the other attached phyters, not chosen */
149 struct list_head phylist;
150 /* reference to our PTP hardware clock */
151 struct ptp_clock *ptp_clock;
152 };
153
154 /* globals */
155
156 enum {
157 CALIBRATE_GPIO,
158 PEROUT_GPIO,
159 EXTTS0_GPIO,
160 EXTTS1_GPIO,
161 EXTTS2_GPIO,
162 EXTTS3_GPIO,
163 EXTTS4_GPIO,
164 EXTTS5_GPIO,
165 GPIO_TABLE_SIZE
166 };
167
168 static int chosen_phy = -1;
169 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
170 1, 2, 3, 4, 8, 9, 10, 11
171 };
172
173 module_param(chosen_phy, int, 0444);
174 module_param_array(gpio_tab, ushort, NULL, 0444);
175
176 MODULE_PARM_DESC(chosen_phy, \
177 "The address of the PHY to use for the ancillary clock features");
178 MODULE_PARM_DESC(gpio_tab, \
179 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
180
dp83640_gpio_defaults(struct ptp_pin_desc * pd)181 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
182 {
183 int i, index;
184
185 for (i = 0; i < DP83640_N_PINS; i++) {
186 snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
187 pd[i].index = i;
188 }
189
190 for (i = 0; i < GPIO_TABLE_SIZE; i++) {
191 if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
192 pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
193 return;
194 }
195 }
196
197 index = gpio_tab[CALIBRATE_GPIO] - 1;
198 pd[index].func = PTP_PF_PHYSYNC;
199 pd[index].chan = 0;
200
201 index = gpio_tab[PEROUT_GPIO] - 1;
202 pd[index].func = PTP_PF_PEROUT;
203 pd[index].chan = 0;
204
205 for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
206 index = gpio_tab[i] - 1;
207 pd[index].func = PTP_PF_EXTTS;
208 pd[index].chan = i - EXTTS0_GPIO;
209 }
210 }
211
212 /* a list of clocks and a mutex to protect it */
213 static LIST_HEAD(phyter_clocks);
214 static DEFINE_MUTEX(phyter_clocks_lock);
215
216 static void rx_timestamp_work(struct work_struct *work);
217
218 /* extended register access functions */
219
220 #define BROADCAST_ADDR 31
221
broadcast_write(struct mii_bus * bus,u32 regnum,u16 val)222 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
223 {
224 return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
225 }
226
227 /* Caller must hold extreg_lock. */
ext_read(struct phy_device * phydev,int page,u32 regnum)228 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
229 {
230 struct dp83640_private *dp83640 = phydev->priv;
231 int val;
232
233 if (dp83640->clock->page != page) {
234 broadcast_write(phydev->bus, PAGESEL, page);
235 dp83640->clock->page = page;
236 }
237 val = phy_read(phydev, regnum);
238
239 return val;
240 }
241
242 /* Caller must hold extreg_lock. */
ext_write(int broadcast,struct phy_device * phydev,int page,u32 regnum,u16 val)243 static void ext_write(int broadcast, struct phy_device *phydev,
244 int page, u32 regnum, u16 val)
245 {
246 struct dp83640_private *dp83640 = phydev->priv;
247
248 if (dp83640->clock->page != page) {
249 broadcast_write(phydev->bus, PAGESEL, page);
250 dp83640->clock->page = page;
251 }
252 if (broadcast)
253 broadcast_write(phydev->bus, regnum, val);
254 else
255 phy_write(phydev, regnum, val);
256 }
257
258 /* Caller must hold extreg_lock. */
tdr_write(int bc,struct phy_device * dev,const struct timespec64 * ts,u16 cmd)259 static int tdr_write(int bc, struct phy_device *dev,
260 const struct timespec64 *ts, u16 cmd)
261 {
262 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
263 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
264 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
265 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
266
267 ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
268
269 return 0;
270 }
271
272 /* convert phy timestamps into driver timestamps */
273
phy2rxts(struct phy_rxts * p,struct rxts * rxts)274 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
275 {
276 u32 sec;
277
278 sec = p->sec_lo;
279 sec |= p->sec_hi << 16;
280
281 rxts->ns = p->ns_lo;
282 rxts->ns |= (p->ns_hi & 0x3fff) << 16;
283 rxts->ns += ((u64)sec) * 1000000000ULL;
284 rxts->seqid = p->seqid;
285 rxts->msgtype = (p->msgtype >> 12) & 0xf;
286 rxts->hash = p->msgtype & 0x0fff;
287 rxts->tmo = jiffies + 2;
288 }
289
phy2txts(struct phy_txts * p)290 static u64 phy2txts(struct phy_txts *p)
291 {
292 u64 ns;
293 u32 sec;
294
295 sec = p->sec_lo;
296 sec |= p->sec_hi << 16;
297
298 ns = p->ns_lo;
299 ns |= (p->ns_hi & 0x3fff) << 16;
300 ns += ((u64)sec) * 1000000000ULL;
301
302 return ns;
303 }
304
periodic_output(struct dp83640_clock * clock,struct ptp_clock_request * clkreq,bool on,int trigger)305 static int periodic_output(struct dp83640_clock *clock,
306 struct ptp_clock_request *clkreq, bool on,
307 int trigger)
308 {
309 struct dp83640_private *dp83640 = clock->chosen;
310 struct phy_device *phydev = dp83640->phydev;
311 u32 sec, nsec, pwidth;
312 u16 gpio, ptp_trig, val;
313
314 if (on) {
315 gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
316 trigger);
317 if (gpio < 1)
318 return -EINVAL;
319 } else {
320 gpio = 0;
321 }
322
323 ptp_trig = TRIG_WR |
324 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
325 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
326 TRIG_PER |
327 TRIG_PULSE;
328
329 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
330
331 if (!on) {
332 val |= TRIG_DIS;
333 mutex_lock(&clock->extreg_lock);
334 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
335 ext_write(0, phydev, PAGE4, PTP_CTL, val);
336 mutex_unlock(&clock->extreg_lock);
337 return 0;
338 }
339
340 sec = clkreq->perout.start.sec;
341 nsec = clkreq->perout.start.nsec;
342 pwidth = clkreq->perout.period.sec * 1000000000UL;
343 pwidth += clkreq->perout.period.nsec;
344 pwidth /= 2;
345
346 mutex_lock(&clock->extreg_lock);
347
348 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
349
350 /*load trigger*/
351 val |= TRIG_LOAD;
352 ext_write(0, phydev, PAGE4, PTP_CTL, val);
353 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
354 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
355 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
356 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
357 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
358 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
359 /* Triggers 0 and 1 has programmable pulsewidth2 */
360 if (trigger < 2) {
361 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
362 ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
363 }
364
365 /*enable trigger*/
366 val &= ~TRIG_LOAD;
367 val |= TRIG_EN;
368 ext_write(0, phydev, PAGE4, PTP_CTL, val);
369
370 mutex_unlock(&clock->extreg_lock);
371 return 0;
372 }
373
374 /* ptp clock methods */
375
ptp_dp83640_adjfreq(struct ptp_clock_info * ptp,s32 ppb)376 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
377 {
378 struct dp83640_clock *clock =
379 container_of(ptp, struct dp83640_clock, caps);
380 struct phy_device *phydev = clock->chosen->phydev;
381 u64 rate;
382 int neg_adj = 0;
383 u16 hi, lo;
384
385 if (ppb < 0) {
386 neg_adj = 1;
387 ppb = -ppb;
388 }
389 rate = ppb;
390 rate <<= 26;
391 rate = div_u64(rate, 1953125);
392
393 hi = (rate >> 16) & PTP_RATE_HI_MASK;
394 if (neg_adj)
395 hi |= PTP_RATE_DIR;
396
397 lo = rate & 0xffff;
398
399 mutex_lock(&clock->extreg_lock);
400
401 ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
402 ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
403
404 mutex_unlock(&clock->extreg_lock);
405
406 return 0;
407 }
408
ptp_dp83640_adjtime(struct ptp_clock_info * ptp,s64 delta)409 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
410 {
411 struct dp83640_clock *clock =
412 container_of(ptp, struct dp83640_clock, caps);
413 struct phy_device *phydev = clock->chosen->phydev;
414 struct timespec64 ts;
415 int err;
416
417 delta += ADJTIME_FIX;
418
419 ts = ns_to_timespec64(delta);
420
421 mutex_lock(&clock->extreg_lock);
422
423 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
424
425 mutex_unlock(&clock->extreg_lock);
426
427 return err;
428 }
429
ptp_dp83640_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)430 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
431 struct timespec64 *ts)
432 {
433 struct dp83640_clock *clock =
434 container_of(ptp, struct dp83640_clock, caps);
435 struct phy_device *phydev = clock->chosen->phydev;
436 unsigned int val[4];
437
438 mutex_lock(&clock->extreg_lock);
439
440 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
441
442 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
443 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
444 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
445 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
446
447 mutex_unlock(&clock->extreg_lock);
448
449 ts->tv_nsec = val[0] | (val[1] << 16);
450 ts->tv_sec = val[2] | (val[3] << 16);
451
452 return 0;
453 }
454
ptp_dp83640_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)455 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
456 const struct timespec64 *ts)
457 {
458 struct dp83640_clock *clock =
459 container_of(ptp, struct dp83640_clock, caps);
460 struct phy_device *phydev = clock->chosen->phydev;
461 int err;
462
463 mutex_lock(&clock->extreg_lock);
464
465 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
466
467 mutex_unlock(&clock->extreg_lock);
468
469 return err;
470 }
471
ptp_dp83640_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)472 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
473 struct ptp_clock_request *rq, int on)
474 {
475 struct dp83640_clock *clock =
476 container_of(ptp, struct dp83640_clock, caps);
477 struct phy_device *phydev = clock->chosen->phydev;
478 unsigned int index;
479 u16 evnt, event_num, gpio_num;
480
481 switch (rq->type) {
482 case PTP_CLK_REQ_EXTTS:
483 index = rq->extts.index;
484 if (index >= N_EXT_TS)
485 return -EINVAL;
486 event_num = EXT_EVENT + index;
487 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
488 if (on) {
489 gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
490 PTP_PF_EXTTS, index);
491 if (gpio_num < 1)
492 return -EINVAL;
493 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
494 if (rq->extts.flags & PTP_FALLING_EDGE)
495 evnt |= EVNT_FALL;
496 else
497 evnt |= EVNT_RISE;
498 }
499 mutex_lock(&clock->extreg_lock);
500 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
501 mutex_unlock(&clock->extreg_lock);
502 return 0;
503
504 case PTP_CLK_REQ_PEROUT:
505 if (rq->perout.index >= N_PER_OUT)
506 return -EINVAL;
507 return periodic_output(clock, rq, on, rq->perout.index);
508
509 default:
510 break;
511 }
512
513 return -EOPNOTSUPP;
514 }
515
ptp_dp83640_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)516 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
517 enum ptp_pin_function func, unsigned int chan)
518 {
519 struct dp83640_clock *clock =
520 container_of(ptp, struct dp83640_clock, caps);
521
522 if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
523 !list_empty(&clock->phylist))
524 return 1;
525
526 if (func == PTP_PF_PHYSYNC)
527 return 1;
528
529 return 0;
530 }
531
532 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
533 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
534
enable_status_frames(struct phy_device * phydev,bool on)535 static void enable_status_frames(struct phy_device *phydev, bool on)
536 {
537 struct dp83640_private *dp83640 = phydev->priv;
538 struct dp83640_clock *clock = dp83640->clock;
539 u16 cfg0 = 0, ver;
540
541 if (on)
542 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
543
544 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
545
546 mutex_lock(&clock->extreg_lock);
547
548 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
549 ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
550
551 mutex_unlock(&clock->extreg_lock);
552
553 if (!phydev->attached_dev) {
554 pr_warn("expected to find an attached netdevice\n");
555 return;
556 }
557
558 if (on) {
559 if (dev_mc_add(phydev->attached_dev, status_frame_dst))
560 pr_warn("failed to add mc address\n");
561 } else {
562 if (dev_mc_del(phydev->attached_dev, status_frame_dst))
563 pr_warn("failed to delete mc address\n");
564 }
565 }
566
is_status_frame(struct sk_buff * skb,int type)567 static bool is_status_frame(struct sk_buff *skb, int type)
568 {
569 struct ethhdr *h = eth_hdr(skb);
570
571 if (PTP_CLASS_V2_L2 == type &&
572 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
573 return true;
574 else
575 return false;
576 }
577
expired(struct rxts * rxts)578 static int expired(struct rxts *rxts)
579 {
580 return time_after(jiffies, rxts->tmo);
581 }
582
583 /* Caller must hold rx_lock. */
prune_rx_ts(struct dp83640_private * dp83640)584 static void prune_rx_ts(struct dp83640_private *dp83640)
585 {
586 struct list_head *this, *next;
587 struct rxts *rxts;
588
589 list_for_each_safe(this, next, &dp83640->rxts) {
590 rxts = list_entry(this, struct rxts, list);
591 if (expired(rxts)) {
592 list_del_init(&rxts->list);
593 list_add(&rxts->list, &dp83640->rxpool);
594 }
595 }
596 }
597
598 /* synchronize the phyters so they act as one clock */
599
enable_broadcast(struct phy_device * phydev,int init_page,int on)600 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
601 {
602 int val;
603 phy_write(phydev, PAGESEL, 0);
604 val = phy_read(phydev, PHYCR2);
605 if (on)
606 val |= BC_WRITE;
607 else
608 val &= ~BC_WRITE;
609 phy_write(phydev, PHYCR2, val);
610 phy_write(phydev, PAGESEL, init_page);
611 }
612
recalibrate(struct dp83640_clock * clock)613 static void recalibrate(struct dp83640_clock *clock)
614 {
615 s64 now, diff;
616 struct phy_txts event_ts;
617 struct timespec64 ts;
618 struct list_head *this;
619 struct dp83640_private *tmp;
620 struct phy_device *master = clock->chosen->phydev;
621 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
622
623 trigger = CAL_TRIGGER;
624 cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
625 if (cal_gpio < 1) {
626 pr_err("PHY calibration pin not available - PHY is not calibrated.");
627 return;
628 }
629
630 mutex_lock(&clock->extreg_lock);
631
632 /*
633 * enable broadcast, disable status frames, enable ptp clock
634 */
635 list_for_each(this, &clock->phylist) {
636 tmp = list_entry(this, struct dp83640_private, list);
637 enable_broadcast(tmp->phydev, clock->page, 1);
638 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
639 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
640 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
641 }
642 enable_broadcast(master, clock->page, 1);
643 cfg0 = ext_read(master, PAGE5, PSF_CFG0);
644 ext_write(0, master, PAGE5, PSF_CFG0, 0);
645 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
646
647 /*
648 * enable an event timestamp
649 */
650 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
651 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
652 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
653
654 list_for_each(this, &clock->phylist) {
655 tmp = list_entry(this, struct dp83640_private, list);
656 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
657 }
658 ext_write(0, master, PAGE5, PTP_EVNT, evnt);
659
660 /*
661 * configure a trigger
662 */
663 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
664 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
665 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
666 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
667
668 /* load trigger */
669 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
670 val |= TRIG_LOAD;
671 ext_write(0, master, PAGE4, PTP_CTL, val);
672
673 /* enable trigger */
674 val &= ~TRIG_LOAD;
675 val |= TRIG_EN;
676 ext_write(0, master, PAGE4, PTP_CTL, val);
677
678 /* disable trigger */
679 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
680 val |= TRIG_DIS;
681 ext_write(0, master, PAGE4, PTP_CTL, val);
682
683 /*
684 * read out and correct offsets
685 */
686 val = ext_read(master, PAGE4, PTP_STS);
687 pr_info("master PTP_STS 0x%04hx\n", val);
688 val = ext_read(master, PAGE4, PTP_ESTS);
689 pr_info("master PTP_ESTS 0x%04hx\n", val);
690 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
691 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
692 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
693 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
694 now = phy2txts(&event_ts);
695
696 list_for_each(this, &clock->phylist) {
697 tmp = list_entry(this, struct dp83640_private, list);
698 val = ext_read(tmp->phydev, PAGE4, PTP_STS);
699 pr_info("slave PTP_STS 0x%04hx\n", val);
700 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
701 pr_info("slave PTP_ESTS 0x%04hx\n", val);
702 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
703 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
704 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
705 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 diff = now - (s64) phy2txts(&event_ts);
707 pr_info("slave offset %lld nanoseconds\n", diff);
708 diff += ADJTIME_FIX;
709 ts = ns_to_timespec64(diff);
710 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
711 }
712
713 /*
714 * restore status frames
715 */
716 list_for_each(this, &clock->phylist) {
717 tmp = list_entry(this, struct dp83640_private, list);
718 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
719 }
720 ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
721
722 mutex_unlock(&clock->extreg_lock);
723 }
724
725 /* time stamping methods */
726
exts_chan_to_edata(int ch)727 static inline u16 exts_chan_to_edata(int ch)
728 {
729 return 1 << ((ch + EXT_EVENT) * 2);
730 }
731
decode_evnt(struct dp83640_private * dp83640,void * data,int len,u16 ests)732 static int decode_evnt(struct dp83640_private *dp83640,
733 void *data, int len, u16 ests)
734 {
735 struct phy_txts *phy_txts;
736 struct ptp_clock_event event;
737 int i, parsed;
738 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
739 u16 ext_status = 0;
740
741 /* calculate length of the event timestamp status message */
742 if (ests & MULT_EVNT)
743 parsed = (words + 2) * sizeof(u16);
744 else
745 parsed = (words + 1) * sizeof(u16);
746
747 /* check if enough data is available */
748 if (len < parsed)
749 return len;
750
751 if (ests & MULT_EVNT) {
752 ext_status = *(u16 *) data;
753 data += sizeof(ext_status);
754 }
755
756 phy_txts = data;
757
758 switch (words) { /* fall through in every case */
759 case 3:
760 dp83640->edata.sec_hi = phy_txts->sec_hi;
761 case 2:
762 dp83640->edata.sec_lo = phy_txts->sec_lo;
763 case 1:
764 dp83640->edata.ns_hi = phy_txts->ns_hi;
765 case 0:
766 dp83640->edata.ns_lo = phy_txts->ns_lo;
767 }
768
769 if (!ext_status) {
770 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
771 ext_status = exts_chan_to_edata(i);
772 }
773
774 event.type = PTP_CLOCK_EXTTS;
775 event.timestamp = phy2txts(&dp83640->edata);
776
777 /* Compensate for input path and synchronization delays */
778 event.timestamp -= 35;
779
780 for (i = 0; i < N_EXT_TS; i++) {
781 if (ext_status & exts_chan_to_edata(i)) {
782 event.index = i;
783 ptp_clock_event(dp83640->clock->ptp_clock, &event);
784 }
785 }
786
787 return parsed;
788 }
789
match(struct sk_buff * skb,unsigned int type,struct rxts * rxts)790 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
791 {
792 u16 *seqid;
793 unsigned int offset = 0;
794 u8 *msgtype, *data = skb_mac_header(skb);
795
796 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
797
798 if (type & PTP_CLASS_VLAN)
799 offset += VLAN_HLEN;
800
801 switch (type & PTP_CLASS_PMASK) {
802 case PTP_CLASS_IPV4:
803 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
804 break;
805 case PTP_CLASS_IPV6:
806 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
807 break;
808 case PTP_CLASS_L2:
809 offset += ETH_HLEN;
810 break;
811 default:
812 return 0;
813 }
814
815 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
816 return 0;
817
818 if (unlikely(type & PTP_CLASS_V1))
819 msgtype = data + offset + OFF_PTP_CONTROL;
820 else
821 msgtype = data + offset;
822
823 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
824
825 return rxts->msgtype == (*msgtype & 0xf) &&
826 rxts->seqid == ntohs(*seqid);
827 }
828
decode_rxts(struct dp83640_private * dp83640,struct phy_rxts * phy_rxts)829 static void decode_rxts(struct dp83640_private *dp83640,
830 struct phy_rxts *phy_rxts)
831 {
832 struct rxts *rxts;
833 struct skb_shared_hwtstamps *shhwtstamps = NULL;
834 struct sk_buff *skb;
835 unsigned long flags;
836 u8 overflow;
837
838 overflow = (phy_rxts->ns_hi >> 14) & 0x3;
839 if (overflow)
840 pr_debug("rx timestamp queue overflow, count %d\n", overflow);
841
842 spin_lock_irqsave(&dp83640->rx_lock, flags);
843
844 prune_rx_ts(dp83640);
845
846 if (list_empty(&dp83640->rxpool)) {
847 pr_debug("rx timestamp pool is empty\n");
848 goto out;
849 }
850 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
851 list_del_init(&rxts->list);
852 phy2rxts(phy_rxts, rxts);
853
854 spin_lock(&dp83640->rx_queue.lock);
855 skb_queue_walk(&dp83640->rx_queue, skb) {
856 struct dp83640_skb_info *skb_info;
857
858 skb_info = (struct dp83640_skb_info *)skb->cb;
859 if (match(skb, skb_info->ptp_type, rxts)) {
860 __skb_unlink(skb, &dp83640->rx_queue);
861 shhwtstamps = skb_hwtstamps(skb);
862 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
863 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
864 netif_rx_ni(skb);
865 list_add(&rxts->list, &dp83640->rxpool);
866 break;
867 }
868 }
869 spin_unlock(&dp83640->rx_queue.lock);
870
871 if (!shhwtstamps)
872 list_add_tail(&rxts->list, &dp83640->rxts);
873 out:
874 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
875 }
876
decode_txts(struct dp83640_private * dp83640,struct phy_txts * phy_txts)877 static void decode_txts(struct dp83640_private *dp83640,
878 struct phy_txts *phy_txts)
879 {
880 struct skb_shared_hwtstamps shhwtstamps;
881 struct sk_buff *skb;
882 u64 ns;
883 u8 overflow;
884
885 /* We must already have the skb that triggered this. */
886
887 skb = skb_dequeue(&dp83640->tx_queue);
888
889 if (!skb) {
890 pr_debug("have timestamp but tx_queue empty\n");
891 return;
892 }
893
894 overflow = (phy_txts->ns_hi >> 14) & 0x3;
895 if (overflow) {
896 pr_debug("tx timestamp queue overflow, count %d\n", overflow);
897 while (skb) {
898 skb_complete_tx_timestamp(skb, NULL);
899 skb = skb_dequeue(&dp83640->tx_queue);
900 }
901 return;
902 }
903
904 ns = phy2txts(phy_txts);
905 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
906 shhwtstamps.hwtstamp = ns_to_ktime(ns);
907 skb_complete_tx_timestamp(skb, &shhwtstamps);
908 }
909
decode_status_frame(struct dp83640_private * dp83640,struct sk_buff * skb)910 static void decode_status_frame(struct dp83640_private *dp83640,
911 struct sk_buff *skb)
912 {
913 struct phy_rxts *phy_rxts;
914 struct phy_txts *phy_txts;
915 u8 *ptr;
916 int len, size;
917 u16 ests, type;
918
919 ptr = skb->data + 2;
920
921 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
922
923 type = *(u16 *)ptr;
924 ests = type & 0x0fff;
925 type = type & 0xf000;
926 len -= sizeof(type);
927 ptr += sizeof(type);
928
929 if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
930
931 phy_rxts = (struct phy_rxts *) ptr;
932 decode_rxts(dp83640, phy_rxts);
933 size = sizeof(*phy_rxts);
934
935 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
936
937 phy_txts = (struct phy_txts *) ptr;
938 decode_txts(dp83640, phy_txts);
939 size = sizeof(*phy_txts);
940
941 } else if (PSF_EVNT == type) {
942
943 size = decode_evnt(dp83640, ptr, len, ests);
944
945 } else {
946 size = 0;
947 break;
948 }
949 ptr += size;
950 }
951 }
952
is_sync(struct sk_buff * skb,int type)953 static int is_sync(struct sk_buff *skb, int type)
954 {
955 u8 *data = skb->data, *msgtype;
956 unsigned int offset = 0;
957
958 if (type & PTP_CLASS_VLAN)
959 offset += VLAN_HLEN;
960
961 switch (type & PTP_CLASS_PMASK) {
962 case PTP_CLASS_IPV4:
963 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
964 break;
965 case PTP_CLASS_IPV6:
966 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
967 break;
968 case PTP_CLASS_L2:
969 offset += ETH_HLEN;
970 break;
971 default:
972 return 0;
973 }
974
975 if (type & PTP_CLASS_V1)
976 offset += OFF_PTP_CONTROL;
977
978 if (skb->len < offset + 1)
979 return 0;
980
981 msgtype = data + offset;
982
983 return (*msgtype & 0xf) == 0;
984 }
985
dp83640_free_clocks(void)986 static void dp83640_free_clocks(void)
987 {
988 struct dp83640_clock *clock;
989 struct list_head *this, *next;
990
991 mutex_lock(&phyter_clocks_lock);
992
993 list_for_each_safe(this, next, &phyter_clocks) {
994 clock = list_entry(this, struct dp83640_clock, list);
995 if (!list_empty(&clock->phylist)) {
996 pr_warn("phy list non-empty while unloading\n");
997 BUG();
998 }
999 list_del(&clock->list);
1000 mutex_destroy(&clock->extreg_lock);
1001 mutex_destroy(&clock->clock_lock);
1002 put_device(&clock->bus->dev);
1003 kfree(clock->caps.pin_config);
1004 kfree(clock);
1005 }
1006
1007 mutex_unlock(&phyter_clocks_lock);
1008 }
1009
dp83640_clock_init(struct dp83640_clock * clock,struct mii_bus * bus)1010 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1011 {
1012 INIT_LIST_HEAD(&clock->list);
1013 clock->bus = bus;
1014 mutex_init(&clock->extreg_lock);
1015 mutex_init(&clock->clock_lock);
1016 INIT_LIST_HEAD(&clock->phylist);
1017 clock->caps.owner = THIS_MODULE;
1018 sprintf(clock->caps.name, "dp83640 timer");
1019 clock->caps.max_adj = 1953124;
1020 clock->caps.n_alarm = 0;
1021 clock->caps.n_ext_ts = N_EXT_TS;
1022 clock->caps.n_per_out = N_PER_OUT;
1023 clock->caps.n_pins = DP83640_N_PINS;
1024 clock->caps.pps = 0;
1025 clock->caps.adjfreq = ptp_dp83640_adjfreq;
1026 clock->caps.adjtime = ptp_dp83640_adjtime;
1027 clock->caps.gettime64 = ptp_dp83640_gettime;
1028 clock->caps.settime64 = ptp_dp83640_settime;
1029 clock->caps.enable = ptp_dp83640_enable;
1030 clock->caps.verify = ptp_dp83640_verify;
1031 /*
1032 * Convert the module param defaults into a dynamic pin configuration.
1033 */
1034 dp83640_gpio_defaults(clock->caps.pin_config);
1035 /*
1036 * Get a reference to this bus instance.
1037 */
1038 get_device(&bus->dev);
1039 }
1040
choose_this_phy(struct dp83640_clock * clock,struct phy_device * phydev)1041 static int choose_this_phy(struct dp83640_clock *clock,
1042 struct phy_device *phydev)
1043 {
1044 if (chosen_phy == -1 && !clock->chosen)
1045 return 1;
1046
1047 if (chosen_phy == phydev->addr)
1048 return 1;
1049
1050 return 0;
1051 }
1052
dp83640_clock_get(struct dp83640_clock * clock)1053 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1054 {
1055 if (clock)
1056 mutex_lock(&clock->clock_lock);
1057 return clock;
1058 }
1059
1060 /*
1061 * Look up and lock a clock by bus instance.
1062 * If there is no clock for this bus, then create it first.
1063 */
dp83640_clock_get_bus(struct mii_bus * bus)1064 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1065 {
1066 struct dp83640_clock *clock = NULL, *tmp;
1067 struct list_head *this;
1068
1069 mutex_lock(&phyter_clocks_lock);
1070
1071 list_for_each(this, &phyter_clocks) {
1072 tmp = list_entry(this, struct dp83640_clock, list);
1073 if (tmp->bus == bus) {
1074 clock = tmp;
1075 break;
1076 }
1077 }
1078 if (clock)
1079 goto out;
1080
1081 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1082 if (!clock)
1083 goto out;
1084
1085 clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
1086 DP83640_N_PINS, GFP_KERNEL);
1087 if (!clock->caps.pin_config) {
1088 kfree(clock);
1089 clock = NULL;
1090 goto out;
1091 }
1092 dp83640_clock_init(clock, bus);
1093 list_add_tail(&phyter_clocks, &clock->list);
1094 out:
1095 mutex_unlock(&phyter_clocks_lock);
1096
1097 return dp83640_clock_get(clock);
1098 }
1099
dp83640_clock_put(struct dp83640_clock * clock)1100 static void dp83640_clock_put(struct dp83640_clock *clock)
1101 {
1102 mutex_unlock(&clock->clock_lock);
1103 }
1104
dp83640_probe(struct phy_device * phydev)1105 static int dp83640_probe(struct phy_device *phydev)
1106 {
1107 struct dp83640_clock *clock;
1108 struct dp83640_private *dp83640;
1109 int err = -ENOMEM, i;
1110
1111 if (phydev->addr == BROADCAST_ADDR)
1112 return 0;
1113
1114 clock = dp83640_clock_get_bus(phydev->bus);
1115 if (!clock)
1116 goto no_clock;
1117
1118 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1119 if (!dp83640)
1120 goto no_memory;
1121
1122 dp83640->phydev = phydev;
1123 INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
1124
1125 INIT_LIST_HEAD(&dp83640->rxts);
1126 INIT_LIST_HEAD(&dp83640->rxpool);
1127 for (i = 0; i < MAX_RXTS; i++)
1128 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1129
1130 phydev->priv = dp83640;
1131
1132 spin_lock_init(&dp83640->rx_lock);
1133 skb_queue_head_init(&dp83640->rx_queue);
1134 skb_queue_head_init(&dp83640->tx_queue);
1135
1136 dp83640->clock = clock;
1137
1138 if (choose_this_phy(clock, phydev)) {
1139 clock->chosen = dp83640;
1140 clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
1141 if (IS_ERR(clock->ptp_clock)) {
1142 err = PTR_ERR(clock->ptp_clock);
1143 goto no_register;
1144 }
1145 } else
1146 list_add_tail(&dp83640->list, &clock->phylist);
1147
1148 dp83640_clock_put(clock);
1149 return 0;
1150
1151 no_register:
1152 clock->chosen = NULL;
1153 kfree(dp83640);
1154 no_memory:
1155 dp83640_clock_put(clock);
1156 no_clock:
1157 return err;
1158 }
1159
dp83640_remove(struct phy_device * phydev)1160 static void dp83640_remove(struct phy_device *phydev)
1161 {
1162 struct dp83640_clock *clock;
1163 struct list_head *this, *next;
1164 struct dp83640_private *tmp, *dp83640 = phydev->priv;
1165
1166 if (phydev->addr == BROADCAST_ADDR)
1167 return;
1168
1169 enable_status_frames(phydev, false);
1170 cancel_work_sync(&dp83640->ts_work);
1171
1172 skb_queue_purge(&dp83640->rx_queue);
1173 skb_queue_purge(&dp83640->tx_queue);
1174
1175 clock = dp83640_clock_get(dp83640->clock);
1176
1177 if (dp83640 == clock->chosen) {
1178 ptp_clock_unregister(clock->ptp_clock);
1179 clock->chosen = NULL;
1180 } else {
1181 list_for_each_safe(this, next, &clock->phylist) {
1182 tmp = list_entry(this, struct dp83640_private, list);
1183 if (tmp == dp83640) {
1184 list_del_init(&tmp->list);
1185 break;
1186 }
1187 }
1188 }
1189
1190 dp83640_clock_put(clock);
1191 kfree(dp83640);
1192 }
1193
dp83640_config_init(struct phy_device * phydev)1194 static int dp83640_config_init(struct phy_device *phydev)
1195 {
1196 struct dp83640_private *dp83640 = phydev->priv;
1197 struct dp83640_clock *clock = dp83640->clock;
1198
1199 if (clock->chosen && !list_empty(&clock->phylist))
1200 recalibrate(clock);
1201 else {
1202 mutex_lock(&clock->extreg_lock);
1203 enable_broadcast(phydev, clock->page, 1);
1204 mutex_unlock(&clock->extreg_lock);
1205 }
1206
1207 enable_status_frames(phydev, true);
1208
1209 mutex_lock(&clock->extreg_lock);
1210 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1211 mutex_unlock(&clock->extreg_lock);
1212
1213 return 0;
1214 }
1215
dp83640_ack_interrupt(struct phy_device * phydev)1216 static int dp83640_ack_interrupt(struct phy_device *phydev)
1217 {
1218 int err = phy_read(phydev, MII_DP83640_MISR);
1219
1220 if (err < 0)
1221 return err;
1222
1223 return 0;
1224 }
1225
dp83640_config_intr(struct phy_device * phydev)1226 static int dp83640_config_intr(struct phy_device *phydev)
1227 {
1228 int micr;
1229 int misr;
1230 int err;
1231
1232 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1233 misr = phy_read(phydev, MII_DP83640_MISR);
1234 if (misr < 0)
1235 return misr;
1236 misr |=
1237 (MII_DP83640_MISR_ANC_INT_EN |
1238 MII_DP83640_MISR_DUP_INT_EN |
1239 MII_DP83640_MISR_SPD_INT_EN |
1240 MII_DP83640_MISR_LINK_INT_EN);
1241 err = phy_write(phydev, MII_DP83640_MISR, misr);
1242 if (err < 0)
1243 return err;
1244
1245 micr = phy_read(phydev, MII_DP83640_MICR);
1246 if (micr < 0)
1247 return micr;
1248 micr |=
1249 (MII_DP83640_MICR_OE |
1250 MII_DP83640_MICR_IE);
1251 return phy_write(phydev, MII_DP83640_MICR, micr);
1252 } else {
1253 micr = phy_read(phydev, MII_DP83640_MICR);
1254 if (micr < 0)
1255 return micr;
1256 micr &=
1257 ~(MII_DP83640_MICR_OE |
1258 MII_DP83640_MICR_IE);
1259 err = phy_write(phydev, MII_DP83640_MICR, micr);
1260 if (err < 0)
1261 return err;
1262
1263 misr = phy_read(phydev, MII_DP83640_MISR);
1264 if (misr < 0)
1265 return misr;
1266 misr &=
1267 ~(MII_DP83640_MISR_ANC_INT_EN |
1268 MII_DP83640_MISR_DUP_INT_EN |
1269 MII_DP83640_MISR_SPD_INT_EN |
1270 MII_DP83640_MISR_LINK_INT_EN);
1271 return phy_write(phydev, MII_DP83640_MISR, misr);
1272 }
1273 }
1274
dp83640_hwtstamp(struct phy_device * phydev,struct ifreq * ifr)1275 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1276 {
1277 struct dp83640_private *dp83640 = phydev->priv;
1278 struct hwtstamp_config cfg;
1279 u16 txcfg0, rxcfg0;
1280
1281 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1282 return -EFAULT;
1283
1284 if (cfg.flags) /* reserved for future extensions */
1285 return -EINVAL;
1286
1287 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1288 return -ERANGE;
1289
1290 dp83640->hwts_tx_en = cfg.tx_type;
1291
1292 switch (cfg.rx_filter) {
1293 case HWTSTAMP_FILTER_NONE:
1294 dp83640->hwts_rx_en = 0;
1295 dp83640->layer = 0;
1296 dp83640->version = 0;
1297 break;
1298 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1299 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1300 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1301 dp83640->hwts_rx_en = 1;
1302 dp83640->layer = LAYER4;
1303 dp83640->version = 1;
1304 break;
1305 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1306 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1307 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1308 dp83640->hwts_rx_en = 1;
1309 dp83640->layer = LAYER4;
1310 dp83640->version = 2;
1311 break;
1312 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1313 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1314 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1315 dp83640->hwts_rx_en = 1;
1316 dp83640->layer = LAYER2;
1317 dp83640->version = 2;
1318 break;
1319 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1320 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1321 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1322 dp83640->hwts_rx_en = 1;
1323 dp83640->layer = LAYER4|LAYER2;
1324 dp83640->version = 2;
1325 break;
1326 default:
1327 return -ERANGE;
1328 }
1329
1330 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1331 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1332
1333 if (dp83640->layer & LAYER2) {
1334 txcfg0 |= TX_L2_EN;
1335 rxcfg0 |= RX_L2_EN;
1336 }
1337 if (dp83640->layer & LAYER4) {
1338 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1339 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1340 }
1341
1342 if (dp83640->hwts_tx_en)
1343 txcfg0 |= TX_TS_EN;
1344
1345 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1346 txcfg0 |= SYNC_1STEP | CHK_1STEP;
1347
1348 if (dp83640->hwts_rx_en)
1349 rxcfg0 |= RX_TS_EN;
1350
1351 mutex_lock(&dp83640->clock->extreg_lock);
1352
1353 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1354 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1355
1356 mutex_unlock(&dp83640->clock->extreg_lock);
1357
1358 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1359 }
1360
rx_timestamp_work(struct work_struct * work)1361 static void rx_timestamp_work(struct work_struct *work)
1362 {
1363 struct dp83640_private *dp83640 =
1364 container_of(work, struct dp83640_private, ts_work);
1365 struct sk_buff *skb;
1366
1367 /* Deliver expired packets. */
1368 while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1369 struct dp83640_skb_info *skb_info;
1370
1371 skb_info = (struct dp83640_skb_info *)skb->cb;
1372 if (!time_after(jiffies, skb_info->tmo)) {
1373 skb_queue_head(&dp83640->rx_queue, skb);
1374 break;
1375 }
1376
1377 netif_rx_ni(skb);
1378 }
1379
1380 if (!skb_queue_empty(&dp83640->rx_queue))
1381 schedule_work(&dp83640->ts_work);
1382 }
1383
dp83640_rxtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1384 static bool dp83640_rxtstamp(struct phy_device *phydev,
1385 struct sk_buff *skb, int type)
1386 {
1387 struct dp83640_private *dp83640 = phydev->priv;
1388 struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1389 struct list_head *this, *next;
1390 struct rxts *rxts;
1391 struct skb_shared_hwtstamps *shhwtstamps = NULL;
1392 unsigned long flags;
1393
1394 if (is_status_frame(skb, type)) {
1395 decode_status_frame(dp83640, skb);
1396 kfree_skb(skb);
1397 return true;
1398 }
1399
1400 if (!dp83640->hwts_rx_en)
1401 return false;
1402
1403 spin_lock_irqsave(&dp83640->rx_lock, flags);
1404 list_for_each_safe(this, next, &dp83640->rxts) {
1405 rxts = list_entry(this, struct rxts, list);
1406 if (match(skb, type, rxts)) {
1407 shhwtstamps = skb_hwtstamps(skb);
1408 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1409 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1410 netif_rx_ni(skb);
1411 list_del_init(&rxts->list);
1412 list_add(&rxts->list, &dp83640->rxpool);
1413 break;
1414 }
1415 }
1416 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1417
1418 if (!shhwtstamps) {
1419 skb_info->ptp_type = type;
1420 skb_info->tmo = jiffies + 2;
1421 skb_queue_tail(&dp83640->rx_queue, skb);
1422 schedule_work(&dp83640->ts_work);
1423 }
1424
1425 return true;
1426 }
1427
dp83640_txtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1428 static void dp83640_txtstamp(struct phy_device *phydev,
1429 struct sk_buff *skb, int type)
1430 {
1431 struct dp83640_private *dp83640 = phydev->priv;
1432
1433 switch (dp83640->hwts_tx_en) {
1434
1435 case HWTSTAMP_TX_ONESTEP_SYNC:
1436 if (is_sync(skb, type)) {
1437 kfree_skb(skb);
1438 return;
1439 }
1440 /* fall through */
1441 case HWTSTAMP_TX_ON:
1442 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1443 skb_queue_tail(&dp83640->tx_queue, skb);
1444 break;
1445
1446 case HWTSTAMP_TX_OFF:
1447 default:
1448 kfree_skb(skb);
1449 break;
1450 }
1451 }
1452
dp83640_ts_info(struct phy_device * dev,struct ethtool_ts_info * info)1453 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1454 {
1455 struct dp83640_private *dp83640 = dev->priv;
1456
1457 info->so_timestamping =
1458 SOF_TIMESTAMPING_TX_HARDWARE |
1459 SOF_TIMESTAMPING_RX_HARDWARE |
1460 SOF_TIMESTAMPING_RAW_HARDWARE;
1461 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1462 info->tx_types =
1463 (1 << HWTSTAMP_TX_OFF) |
1464 (1 << HWTSTAMP_TX_ON) |
1465 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
1466 info->rx_filters =
1467 (1 << HWTSTAMP_FILTER_NONE) |
1468 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1469 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1470 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1471 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1472 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1473 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1474 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1475 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1476 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1477 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1478 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1479 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1480 return 0;
1481 }
1482
1483 static struct phy_driver dp83640_driver = {
1484 .phy_id = DP83640_PHY_ID,
1485 .phy_id_mask = 0xfffffff0,
1486 .name = "NatSemi DP83640",
1487 .features = PHY_BASIC_FEATURES,
1488 .flags = PHY_HAS_INTERRUPT,
1489 .probe = dp83640_probe,
1490 .remove = dp83640_remove,
1491 .config_init = dp83640_config_init,
1492 .config_aneg = genphy_config_aneg,
1493 .read_status = genphy_read_status,
1494 .ack_interrupt = dp83640_ack_interrupt,
1495 .config_intr = dp83640_config_intr,
1496 .ts_info = dp83640_ts_info,
1497 .hwtstamp = dp83640_hwtstamp,
1498 .rxtstamp = dp83640_rxtstamp,
1499 .txtstamp = dp83640_txtstamp,
1500 .driver = {.owner = THIS_MODULE,}
1501 };
1502
dp83640_init(void)1503 static int __init dp83640_init(void)
1504 {
1505 return phy_driver_register(&dp83640_driver);
1506 }
1507
dp83640_exit(void)1508 static void __exit dp83640_exit(void)
1509 {
1510 dp83640_free_clocks();
1511 phy_driver_unregister(&dp83640_driver);
1512 }
1513
1514 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1515 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1516 MODULE_LICENSE("GPL");
1517
1518 module_init(dp83640_init);
1519 module_exit(dp83640_exit);
1520
1521 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1522 { DP83640_PHY_ID, 0xfffffff0 },
1523 { }
1524 };
1525
1526 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1527