1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_vlan.h>
31 #include <linux/phy.h>
32 #include <linux/ptp_classify.h>
33 #include <linux/ptp_clock_kernel.h>
34 
35 #include "dp83640_reg.h"
36 
37 #define DP83640_PHY_ID	0x20005ce1
38 #define PAGESEL		0x13
39 #define LAYER4		0x02
40 #define LAYER2		0x01
41 #define MAX_RXTS	64
42 #define N_EXT_TS	6
43 #define N_PER_OUT	7
44 #define PSF_PTPVER	2
45 #define PSF_EVNT	0x4000
46 #define PSF_RX		0x2000
47 #define PSF_TX		0x1000
48 #define EXT_EVENT	1
49 #define CAL_EVENT	7
50 #define CAL_TRIGGER	1
51 #define DP83640_N_PINS	12
52 
53 #define MII_DP83640_MICR 0x11
54 #define MII_DP83640_MISR 0x12
55 
56 #define MII_DP83640_MICR_OE 0x1
57 #define MII_DP83640_MICR_IE 0x2
58 
59 #define MII_DP83640_MISR_RHF_INT_EN 0x01
60 #define MII_DP83640_MISR_FHF_INT_EN 0x02
61 #define MII_DP83640_MISR_ANC_INT_EN 0x04
62 #define MII_DP83640_MISR_DUP_INT_EN 0x08
63 #define MII_DP83640_MISR_SPD_INT_EN 0x10
64 #define MII_DP83640_MISR_LINK_INT_EN 0x20
65 #define MII_DP83640_MISR_ED_INT_EN 0x40
66 #define MII_DP83640_MISR_LQ_INT_EN 0x80
67 
68 /* phyter seems to miss the mark by 16 ns */
69 #define ADJTIME_FIX	16
70 
71 #if defined(__BIG_ENDIAN)
72 #define ENDIAN_FLAG	0
73 #elif defined(__LITTLE_ENDIAN)
74 #define ENDIAN_FLAG	PSF_ENDIAN
75 #endif
76 
77 struct dp83640_skb_info {
78 	int ptp_type;
79 	unsigned long tmo;
80 };
81 
82 struct phy_rxts {
83 	u16 ns_lo;   /* ns[15:0] */
84 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
85 	u16 sec_lo;  /* sec[15:0] */
86 	u16 sec_hi;  /* sec[31:16] */
87 	u16 seqid;   /* sequenceId[15:0] */
88 	u16 msgtype; /* messageType[3:0], hash[11:0] */
89 };
90 
91 struct phy_txts {
92 	u16 ns_lo;   /* ns[15:0] */
93 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
94 	u16 sec_lo;  /* sec[15:0] */
95 	u16 sec_hi;  /* sec[31:16] */
96 };
97 
98 struct rxts {
99 	struct list_head list;
100 	unsigned long tmo;
101 	u64 ns;
102 	u16 seqid;
103 	u8  msgtype;
104 	u16 hash;
105 };
106 
107 struct dp83640_clock;
108 
109 struct dp83640_private {
110 	struct list_head list;
111 	struct dp83640_clock *clock;
112 	struct phy_device *phydev;
113 	struct work_struct ts_work;
114 	int hwts_tx_en;
115 	int hwts_rx_en;
116 	int layer;
117 	int version;
118 	/* remember state of cfg0 during calibration */
119 	int cfg0;
120 	/* remember the last event time stamp */
121 	struct phy_txts edata;
122 	/* list of rx timestamps */
123 	struct list_head rxts;
124 	struct list_head rxpool;
125 	struct rxts rx_pool_data[MAX_RXTS];
126 	/* protects above three fields from concurrent access */
127 	spinlock_t rx_lock;
128 	/* queues of incoming and outgoing packets */
129 	struct sk_buff_head rx_queue;
130 	struct sk_buff_head tx_queue;
131 };
132 
133 struct dp83640_clock {
134 	/* keeps the instance in the 'phyter_clocks' list */
135 	struct list_head list;
136 	/* we create one clock instance per MII bus */
137 	struct mii_bus *bus;
138 	/* protects extended registers from concurrent access */
139 	struct mutex extreg_lock;
140 	/* remembers which page was last selected */
141 	int page;
142 	/* our advertised capabilities */
143 	struct ptp_clock_info caps;
144 	/* protects the three fields below from concurrent access */
145 	struct mutex clock_lock;
146 	/* the one phyter from which we shall read */
147 	struct dp83640_private *chosen;
148 	/* list of the other attached phyters, not chosen */
149 	struct list_head phylist;
150 	/* reference to our PTP hardware clock */
151 	struct ptp_clock *ptp_clock;
152 };
153 
154 /* globals */
155 
156 enum {
157 	CALIBRATE_GPIO,
158 	PEROUT_GPIO,
159 	EXTTS0_GPIO,
160 	EXTTS1_GPIO,
161 	EXTTS2_GPIO,
162 	EXTTS3_GPIO,
163 	EXTTS4_GPIO,
164 	EXTTS5_GPIO,
165 	GPIO_TABLE_SIZE
166 };
167 
168 static int chosen_phy = -1;
169 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
170 	1, 2, 3, 4, 8, 9, 10, 11
171 };
172 
173 module_param(chosen_phy, int, 0444);
174 module_param_array(gpio_tab, ushort, NULL, 0444);
175 
176 MODULE_PARM_DESC(chosen_phy, \
177 	"The address of the PHY to use for the ancillary clock features");
178 MODULE_PARM_DESC(gpio_tab, \
179 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
180 
dp83640_gpio_defaults(struct ptp_pin_desc * pd)181 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
182 {
183 	int i, index;
184 
185 	for (i = 0; i < DP83640_N_PINS; i++) {
186 		snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
187 		pd[i].index = i;
188 	}
189 
190 	for (i = 0; i < GPIO_TABLE_SIZE; i++) {
191 		if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
192 			pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
193 			return;
194 		}
195 	}
196 
197 	index = gpio_tab[CALIBRATE_GPIO] - 1;
198 	pd[index].func = PTP_PF_PHYSYNC;
199 	pd[index].chan = 0;
200 
201 	index = gpio_tab[PEROUT_GPIO] - 1;
202 	pd[index].func = PTP_PF_PEROUT;
203 	pd[index].chan = 0;
204 
205 	for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
206 		index = gpio_tab[i] - 1;
207 		pd[index].func = PTP_PF_EXTTS;
208 		pd[index].chan = i - EXTTS0_GPIO;
209 	}
210 }
211 
212 /* a list of clocks and a mutex to protect it */
213 static LIST_HEAD(phyter_clocks);
214 static DEFINE_MUTEX(phyter_clocks_lock);
215 
216 static void rx_timestamp_work(struct work_struct *work);
217 
218 /* extended register access functions */
219 
220 #define BROADCAST_ADDR 31
221 
broadcast_write(struct mii_bus * bus,u32 regnum,u16 val)222 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
223 {
224 	return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
225 }
226 
227 /* Caller must hold extreg_lock. */
ext_read(struct phy_device * phydev,int page,u32 regnum)228 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
229 {
230 	struct dp83640_private *dp83640 = phydev->priv;
231 	int val;
232 
233 	if (dp83640->clock->page != page) {
234 		broadcast_write(phydev->bus, PAGESEL, page);
235 		dp83640->clock->page = page;
236 	}
237 	val = phy_read(phydev, regnum);
238 
239 	return val;
240 }
241 
242 /* Caller must hold extreg_lock. */
ext_write(int broadcast,struct phy_device * phydev,int page,u32 regnum,u16 val)243 static void ext_write(int broadcast, struct phy_device *phydev,
244 		      int page, u32 regnum, u16 val)
245 {
246 	struct dp83640_private *dp83640 = phydev->priv;
247 
248 	if (dp83640->clock->page != page) {
249 		broadcast_write(phydev->bus, PAGESEL, page);
250 		dp83640->clock->page = page;
251 	}
252 	if (broadcast)
253 		broadcast_write(phydev->bus, regnum, val);
254 	else
255 		phy_write(phydev, regnum, val);
256 }
257 
258 /* Caller must hold extreg_lock. */
tdr_write(int bc,struct phy_device * dev,const struct timespec64 * ts,u16 cmd)259 static int tdr_write(int bc, struct phy_device *dev,
260 		     const struct timespec64 *ts, u16 cmd)
261 {
262 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
263 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
264 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
265 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
266 
267 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
268 
269 	return 0;
270 }
271 
272 /* convert phy timestamps into driver timestamps */
273 
phy2rxts(struct phy_rxts * p,struct rxts * rxts)274 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
275 {
276 	u32 sec;
277 
278 	sec = p->sec_lo;
279 	sec |= p->sec_hi << 16;
280 
281 	rxts->ns = p->ns_lo;
282 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
283 	rxts->ns += ((u64)sec) * 1000000000ULL;
284 	rxts->seqid = p->seqid;
285 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
286 	rxts->hash = p->msgtype & 0x0fff;
287 	rxts->tmo = jiffies + 2;
288 }
289 
phy2txts(struct phy_txts * p)290 static u64 phy2txts(struct phy_txts *p)
291 {
292 	u64 ns;
293 	u32 sec;
294 
295 	sec = p->sec_lo;
296 	sec |= p->sec_hi << 16;
297 
298 	ns = p->ns_lo;
299 	ns |= (p->ns_hi & 0x3fff) << 16;
300 	ns += ((u64)sec) * 1000000000ULL;
301 
302 	return ns;
303 }
304 
periodic_output(struct dp83640_clock * clock,struct ptp_clock_request * clkreq,bool on,int trigger)305 static int periodic_output(struct dp83640_clock *clock,
306 			   struct ptp_clock_request *clkreq, bool on,
307 			   int trigger)
308 {
309 	struct dp83640_private *dp83640 = clock->chosen;
310 	struct phy_device *phydev = dp83640->phydev;
311 	u32 sec, nsec, pwidth;
312 	u16 gpio, ptp_trig, val;
313 
314 	if (on) {
315 		gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
316 					trigger);
317 		if (gpio < 1)
318 			return -EINVAL;
319 	} else {
320 		gpio = 0;
321 	}
322 
323 	ptp_trig = TRIG_WR |
324 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
325 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
326 		TRIG_PER |
327 		TRIG_PULSE;
328 
329 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
330 
331 	if (!on) {
332 		val |= TRIG_DIS;
333 		mutex_lock(&clock->extreg_lock);
334 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
335 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
336 		mutex_unlock(&clock->extreg_lock);
337 		return 0;
338 	}
339 
340 	sec = clkreq->perout.start.sec;
341 	nsec = clkreq->perout.start.nsec;
342 	pwidth = clkreq->perout.period.sec * 1000000000UL;
343 	pwidth += clkreq->perout.period.nsec;
344 	pwidth /= 2;
345 
346 	mutex_lock(&clock->extreg_lock);
347 
348 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
349 
350 	/*load trigger*/
351 	val |= TRIG_LOAD;
352 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
353 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
354 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
355 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
356 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
357 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
358 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);    /* ns[31:16] */
359 	/* Triggers 0 and 1 has programmable pulsewidth2 */
360 	if (trigger < 2) {
361 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
362 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
363 	}
364 
365 	/*enable trigger*/
366 	val &= ~TRIG_LOAD;
367 	val |= TRIG_EN;
368 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
369 
370 	mutex_unlock(&clock->extreg_lock);
371 	return 0;
372 }
373 
374 /* ptp clock methods */
375 
ptp_dp83640_adjfreq(struct ptp_clock_info * ptp,s32 ppb)376 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
377 {
378 	struct dp83640_clock *clock =
379 		container_of(ptp, struct dp83640_clock, caps);
380 	struct phy_device *phydev = clock->chosen->phydev;
381 	u64 rate;
382 	int neg_adj = 0;
383 	u16 hi, lo;
384 
385 	if (ppb < 0) {
386 		neg_adj = 1;
387 		ppb = -ppb;
388 	}
389 	rate = ppb;
390 	rate <<= 26;
391 	rate = div_u64(rate, 1953125);
392 
393 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
394 	if (neg_adj)
395 		hi |= PTP_RATE_DIR;
396 
397 	lo = rate & 0xffff;
398 
399 	mutex_lock(&clock->extreg_lock);
400 
401 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
402 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
403 
404 	mutex_unlock(&clock->extreg_lock);
405 
406 	return 0;
407 }
408 
ptp_dp83640_adjtime(struct ptp_clock_info * ptp,s64 delta)409 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
410 {
411 	struct dp83640_clock *clock =
412 		container_of(ptp, struct dp83640_clock, caps);
413 	struct phy_device *phydev = clock->chosen->phydev;
414 	struct timespec64 ts;
415 	int err;
416 
417 	delta += ADJTIME_FIX;
418 
419 	ts = ns_to_timespec64(delta);
420 
421 	mutex_lock(&clock->extreg_lock);
422 
423 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
424 
425 	mutex_unlock(&clock->extreg_lock);
426 
427 	return err;
428 }
429 
ptp_dp83640_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)430 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
431 			       struct timespec64 *ts)
432 {
433 	struct dp83640_clock *clock =
434 		container_of(ptp, struct dp83640_clock, caps);
435 	struct phy_device *phydev = clock->chosen->phydev;
436 	unsigned int val[4];
437 
438 	mutex_lock(&clock->extreg_lock);
439 
440 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
441 
442 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
443 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
444 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
445 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
446 
447 	mutex_unlock(&clock->extreg_lock);
448 
449 	ts->tv_nsec = val[0] | (val[1] << 16);
450 	ts->tv_sec  = val[2] | (val[3] << 16);
451 
452 	return 0;
453 }
454 
ptp_dp83640_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)455 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
456 			       const struct timespec64 *ts)
457 {
458 	struct dp83640_clock *clock =
459 		container_of(ptp, struct dp83640_clock, caps);
460 	struct phy_device *phydev = clock->chosen->phydev;
461 	int err;
462 
463 	mutex_lock(&clock->extreg_lock);
464 
465 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
466 
467 	mutex_unlock(&clock->extreg_lock);
468 
469 	return err;
470 }
471 
ptp_dp83640_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)472 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
473 			      struct ptp_clock_request *rq, int on)
474 {
475 	struct dp83640_clock *clock =
476 		container_of(ptp, struct dp83640_clock, caps);
477 	struct phy_device *phydev = clock->chosen->phydev;
478 	unsigned int index;
479 	u16 evnt, event_num, gpio_num;
480 
481 	switch (rq->type) {
482 	case PTP_CLK_REQ_EXTTS:
483 		index = rq->extts.index;
484 		if (index >= N_EXT_TS)
485 			return -EINVAL;
486 		event_num = EXT_EVENT + index;
487 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
488 		if (on) {
489 			gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
490 						    PTP_PF_EXTTS, index);
491 			if (gpio_num < 1)
492 				return -EINVAL;
493 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
494 			if (rq->extts.flags & PTP_FALLING_EDGE)
495 				evnt |= EVNT_FALL;
496 			else
497 				evnt |= EVNT_RISE;
498 		}
499 		mutex_lock(&clock->extreg_lock);
500 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
501 		mutex_unlock(&clock->extreg_lock);
502 		return 0;
503 
504 	case PTP_CLK_REQ_PEROUT:
505 		if (rq->perout.index >= N_PER_OUT)
506 			return -EINVAL;
507 		return periodic_output(clock, rq, on, rq->perout.index);
508 
509 	default:
510 		break;
511 	}
512 
513 	return -EOPNOTSUPP;
514 }
515 
ptp_dp83640_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)516 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
517 			      enum ptp_pin_function func, unsigned int chan)
518 {
519 	struct dp83640_clock *clock =
520 		container_of(ptp, struct dp83640_clock, caps);
521 
522 	if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
523 	    !list_empty(&clock->phylist))
524 		return 1;
525 
526 	if (func == PTP_PF_PHYSYNC)
527 		return 1;
528 
529 	return 0;
530 }
531 
532 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
533 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
534 
enable_status_frames(struct phy_device * phydev,bool on)535 static void enable_status_frames(struct phy_device *phydev, bool on)
536 {
537 	struct dp83640_private *dp83640 = phydev->priv;
538 	struct dp83640_clock *clock = dp83640->clock;
539 	u16 cfg0 = 0, ver;
540 
541 	if (on)
542 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
543 
544 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
545 
546 	mutex_lock(&clock->extreg_lock);
547 
548 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
549 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
550 
551 	mutex_unlock(&clock->extreg_lock);
552 
553 	if (!phydev->attached_dev) {
554 		pr_warn("expected to find an attached netdevice\n");
555 		return;
556 	}
557 
558 	if (on) {
559 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
560 			pr_warn("failed to add mc address\n");
561 	} else {
562 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
563 			pr_warn("failed to delete mc address\n");
564 	}
565 }
566 
is_status_frame(struct sk_buff * skb,int type)567 static bool is_status_frame(struct sk_buff *skb, int type)
568 {
569 	struct ethhdr *h = eth_hdr(skb);
570 
571 	if (PTP_CLASS_V2_L2 == type &&
572 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
573 		return true;
574 	else
575 		return false;
576 }
577 
expired(struct rxts * rxts)578 static int expired(struct rxts *rxts)
579 {
580 	return time_after(jiffies, rxts->tmo);
581 }
582 
583 /* Caller must hold rx_lock. */
prune_rx_ts(struct dp83640_private * dp83640)584 static void prune_rx_ts(struct dp83640_private *dp83640)
585 {
586 	struct list_head *this, *next;
587 	struct rxts *rxts;
588 
589 	list_for_each_safe(this, next, &dp83640->rxts) {
590 		rxts = list_entry(this, struct rxts, list);
591 		if (expired(rxts)) {
592 			list_del_init(&rxts->list);
593 			list_add(&rxts->list, &dp83640->rxpool);
594 		}
595 	}
596 }
597 
598 /* synchronize the phyters so they act as one clock */
599 
enable_broadcast(struct phy_device * phydev,int init_page,int on)600 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
601 {
602 	int val;
603 	phy_write(phydev, PAGESEL, 0);
604 	val = phy_read(phydev, PHYCR2);
605 	if (on)
606 		val |= BC_WRITE;
607 	else
608 		val &= ~BC_WRITE;
609 	phy_write(phydev, PHYCR2, val);
610 	phy_write(phydev, PAGESEL, init_page);
611 }
612 
recalibrate(struct dp83640_clock * clock)613 static void recalibrate(struct dp83640_clock *clock)
614 {
615 	s64 now, diff;
616 	struct phy_txts event_ts;
617 	struct timespec64 ts;
618 	struct list_head *this;
619 	struct dp83640_private *tmp;
620 	struct phy_device *master = clock->chosen->phydev;
621 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
622 
623 	trigger = CAL_TRIGGER;
624 	cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
625 	if (cal_gpio < 1) {
626 		pr_err("PHY calibration pin not available - PHY is not calibrated.");
627 		return;
628 	}
629 
630 	mutex_lock(&clock->extreg_lock);
631 
632 	/*
633 	 * enable broadcast, disable status frames, enable ptp clock
634 	 */
635 	list_for_each(this, &clock->phylist) {
636 		tmp = list_entry(this, struct dp83640_private, list);
637 		enable_broadcast(tmp->phydev, clock->page, 1);
638 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
639 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
640 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
641 	}
642 	enable_broadcast(master, clock->page, 1);
643 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
644 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
645 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
646 
647 	/*
648 	 * enable an event timestamp
649 	 */
650 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
651 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
652 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
653 
654 	list_for_each(this, &clock->phylist) {
655 		tmp = list_entry(this, struct dp83640_private, list);
656 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
657 	}
658 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
659 
660 	/*
661 	 * configure a trigger
662 	 */
663 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
664 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
665 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
666 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
667 
668 	/* load trigger */
669 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
670 	val |= TRIG_LOAD;
671 	ext_write(0, master, PAGE4, PTP_CTL, val);
672 
673 	/* enable trigger */
674 	val &= ~TRIG_LOAD;
675 	val |= TRIG_EN;
676 	ext_write(0, master, PAGE4, PTP_CTL, val);
677 
678 	/* disable trigger */
679 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
680 	val |= TRIG_DIS;
681 	ext_write(0, master, PAGE4, PTP_CTL, val);
682 
683 	/*
684 	 * read out and correct offsets
685 	 */
686 	val = ext_read(master, PAGE4, PTP_STS);
687 	pr_info("master PTP_STS  0x%04hx\n", val);
688 	val = ext_read(master, PAGE4, PTP_ESTS);
689 	pr_info("master PTP_ESTS 0x%04hx\n", val);
690 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
691 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
692 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
693 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
694 	now = phy2txts(&event_ts);
695 
696 	list_for_each(this, &clock->phylist) {
697 		tmp = list_entry(this, struct dp83640_private, list);
698 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
699 		pr_info("slave  PTP_STS  0x%04hx\n", val);
700 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
701 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
702 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
703 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
704 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
705 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 		diff = now - (s64) phy2txts(&event_ts);
707 		pr_info("slave offset %lld nanoseconds\n", diff);
708 		diff += ADJTIME_FIX;
709 		ts = ns_to_timespec64(diff);
710 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
711 	}
712 
713 	/*
714 	 * restore status frames
715 	 */
716 	list_for_each(this, &clock->phylist) {
717 		tmp = list_entry(this, struct dp83640_private, list);
718 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
719 	}
720 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
721 
722 	mutex_unlock(&clock->extreg_lock);
723 }
724 
725 /* time stamping methods */
726 
exts_chan_to_edata(int ch)727 static inline u16 exts_chan_to_edata(int ch)
728 {
729 	return 1 << ((ch + EXT_EVENT) * 2);
730 }
731 
decode_evnt(struct dp83640_private * dp83640,void * data,int len,u16 ests)732 static int decode_evnt(struct dp83640_private *dp83640,
733 		       void *data, int len, u16 ests)
734 {
735 	struct phy_txts *phy_txts;
736 	struct ptp_clock_event event;
737 	int i, parsed;
738 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
739 	u16 ext_status = 0;
740 
741 	/* calculate length of the event timestamp status message */
742 	if (ests & MULT_EVNT)
743 		parsed = (words + 2) * sizeof(u16);
744 	else
745 		parsed = (words + 1) * sizeof(u16);
746 
747 	/* check if enough data is available */
748 	if (len < parsed)
749 		return len;
750 
751 	if (ests & MULT_EVNT) {
752 		ext_status = *(u16 *) data;
753 		data += sizeof(ext_status);
754 	}
755 
756 	phy_txts = data;
757 
758 	switch (words) { /* fall through in every case */
759 	case 3:
760 		dp83640->edata.sec_hi = phy_txts->sec_hi;
761 	case 2:
762 		dp83640->edata.sec_lo = phy_txts->sec_lo;
763 	case 1:
764 		dp83640->edata.ns_hi = phy_txts->ns_hi;
765 	case 0:
766 		dp83640->edata.ns_lo = phy_txts->ns_lo;
767 	}
768 
769 	if (!ext_status) {
770 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
771 		ext_status = exts_chan_to_edata(i);
772 	}
773 
774 	event.type = PTP_CLOCK_EXTTS;
775 	event.timestamp = phy2txts(&dp83640->edata);
776 
777 	/* Compensate for input path and synchronization delays */
778 	event.timestamp -= 35;
779 
780 	for (i = 0; i < N_EXT_TS; i++) {
781 		if (ext_status & exts_chan_to_edata(i)) {
782 			event.index = i;
783 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
784 		}
785 	}
786 
787 	return parsed;
788 }
789 
match(struct sk_buff * skb,unsigned int type,struct rxts * rxts)790 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
791 {
792 	u16 *seqid;
793 	unsigned int offset = 0;
794 	u8 *msgtype, *data = skb_mac_header(skb);
795 
796 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
797 
798 	if (type & PTP_CLASS_VLAN)
799 		offset += VLAN_HLEN;
800 
801 	switch (type & PTP_CLASS_PMASK) {
802 	case PTP_CLASS_IPV4:
803 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
804 		break;
805 	case PTP_CLASS_IPV6:
806 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
807 		break;
808 	case PTP_CLASS_L2:
809 		offset += ETH_HLEN;
810 		break;
811 	default:
812 		return 0;
813 	}
814 
815 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
816 		return 0;
817 
818 	if (unlikely(type & PTP_CLASS_V1))
819 		msgtype = data + offset + OFF_PTP_CONTROL;
820 	else
821 		msgtype = data + offset;
822 
823 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
824 
825 	return rxts->msgtype == (*msgtype & 0xf) &&
826 		rxts->seqid   == ntohs(*seqid);
827 }
828 
decode_rxts(struct dp83640_private * dp83640,struct phy_rxts * phy_rxts)829 static void decode_rxts(struct dp83640_private *dp83640,
830 			struct phy_rxts *phy_rxts)
831 {
832 	struct rxts *rxts;
833 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
834 	struct sk_buff *skb;
835 	unsigned long flags;
836 	u8 overflow;
837 
838 	overflow = (phy_rxts->ns_hi >> 14) & 0x3;
839 	if (overflow)
840 		pr_debug("rx timestamp queue overflow, count %d\n", overflow);
841 
842 	spin_lock_irqsave(&dp83640->rx_lock, flags);
843 
844 	prune_rx_ts(dp83640);
845 
846 	if (list_empty(&dp83640->rxpool)) {
847 		pr_debug("rx timestamp pool is empty\n");
848 		goto out;
849 	}
850 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
851 	list_del_init(&rxts->list);
852 	phy2rxts(phy_rxts, rxts);
853 
854 	spin_lock(&dp83640->rx_queue.lock);
855 	skb_queue_walk(&dp83640->rx_queue, skb) {
856 		struct dp83640_skb_info *skb_info;
857 
858 		skb_info = (struct dp83640_skb_info *)skb->cb;
859 		if (match(skb, skb_info->ptp_type, rxts)) {
860 			__skb_unlink(skb, &dp83640->rx_queue);
861 			shhwtstamps = skb_hwtstamps(skb);
862 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
863 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
864 			netif_rx_ni(skb);
865 			list_add(&rxts->list, &dp83640->rxpool);
866 			break;
867 		}
868 	}
869 	spin_unlock(&dp83640->rx_queue.lock);
870 
871 	if (!shhwtstamps)
872 		list_add_tail(&rxts->list, &dp83640->rxts);
873 out:
874 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
875 }
876 
decode_txts(struct dp83640_private * dp83640,struct phy_txts * phy_txts)877 static void decode_txts(struct dp83640_private *dp83640,
878 			struct phy_txts *phy_txts)
879 {
880 	struct skb_shared_hwtstamps shhwtstamps;
881 	struct sk_buff *skb;
882 	u64 ns;
883 	u8 overflow;
884 
885 	/* We must already have the skb that triggered this. */
886 
887 	skb = skb_dequeue(&dp83640->tx_queue);
888 
889 	if (!skb) {
890 		pr_debug("have timestamp but tx_queue empty\n");
891 		return;
892 	}
893 
894 	overflow = (phy_txts->ns_hi >> 14) & 0x3;
895 	if (overflow) {
896 		pr_debug("tx timestamp queue overflow, count %d\n", overflow);
897 		while (skb) {
898 			skb_complete_tx_timestamp(skb, NULL);
899 			skb = skb_dequeue(&dp83640->tx_queue);
900 		}
901 		return;
902 	}
903 
904 	ns = phy2txts(phy_txts);
905 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
906 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
907 	skb_complete_tx_timestamp(skb, &shhwtstamps);
908 }
909 
decode_status_frame(struct dp83640_private * dp83640,struct sk_buff * skb)910 static void decode_status_frame(struct dp83640_private *dp83640,
911 				struct sk_buff *skb)
912 {
913 	struct phy_rxts *phy_rxts;
914 	struct phy_txts *phy_txts;
915 	u8 *ptr;
916 	int len, size;
917 	u16 ests, type;
918 
919 	ptr = skb->data + 2;
920 
921 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
922 
923 		type = *(u16 *)ptr;
924 		ests = type & 0x0fff;
925 		type = type & 0xf000;
926 		len -= sizeof(type);
927 		ptr += sizeof(type);
928 
929 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
930 
931 			phy_rxts = (struct phy_rxts *) ptr;
932 			decode_rxts(dp83640, phy_rxts);
933 			size = sizeof(*phy_rxts);
934 
935 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
936 
937 			phy_txts = (struct phy_txts *) ptr;
938 			decode_txts(dp83640, phy_txts);
939 			size = sizeof(*phy_txts);
940 
941 		} else if (PSF_EVNT == type) {
942 
943 			size = decode_evnt(dp83640, ptr, len, ests);
944 
945 		} else {
946 			size = 0;
947 			break;
948 		}
949 		ptr += size;
950 	}
951 }
952 
is_sync(struct sk_buff * skb,int type)953 static int is_sync(struct sk_buff *skb, int type)
954 {
955 	u8 *data = skb->data, *msgtype;
956 	unsigned int offset = 0;
957 
958 	if (type & PTP_CLASS_VLAN)
959 		offset += VLAN_HLEN;
960 
961 	switch (type & PTP_CLASS_PMASK) {
962 	case PTP_CLASS_IPV4:
963 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
964 		break;
965 	case PTP_CLASS_IPV6:
966 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
967 		break;
968 	case PTP_CLASS_L2:
969 		offset += ETH_HLEN;
970 		break;
971 	default:
972 		return 0;
973 	}
974 
975 	if (type & PTP_CLASS_V1)
976 		offset += OFF_PTP_CONTROL;
977 
978 	if (skb->len < offset + 1)
979 		return 0;
980 
981 	msgtype = data + offset;
982 
983 	return (*msgtype & 0xf) == 0;
984 }
985 
dp83640_free_clocks(void)986 static void dp83640_free_clocks(void)
987 {
988 	struct dp83640_clock *clock;
989 	struct list_head *this, *next;
990 
991 	mutex_lock(&phyter_clocks_lock);
992 
993 	list_for_each_safe(this, next, &phyter_clocks) {
994 		clock = list_entry(this, struct dp83640_clock, list);
995 		if (!list_empty(&clock->phylist)) {
996 			pr_warn("phy list non-empty while unloading\n");
997 			BUG();
998 		}
999 		list_del(&clock->list);
1000 		mutex_destroy(&clock->extreg_lock);
1001 		mutex_destroy(&clock->clock_lock);
1002 		put_device(&clock->bus->dev);
1003 		kfree(clock->caps.pin_config);
1004 		kfree(clock);
1005 	}
1006 
1007 	mutex_unlock(&phyter_clocks_lock);
1008 }
1009 
dp83640_clock_init(struct dp83640_clock * clock,struct mii_bus * bus)1010 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1011 {
1012 	INIT_LIST_HEAD(&clock->list);
1013 	clock->bus = bus;
1014 	mutex_init(&clock->extreg_lock);
1015 	mutex_init(&clock->clock_lock);
1016 	INIT_LIST_HEAD(&clock->phylist);
1017 	clock->caps.owner = THIS_MODULE;
1018 	sprintf(clock->caps.name, "dp83640 timer");
1019 	clock->caps.max_adj	= 1953124;
1020 	clock->caps.n_alarm	= 0;
1021 	clock->caps.n_ext_ts	= N_EXT_TS;
1022 	clock->caps.n_per_out	= N_PER_OUT;
1023 	clock->caps.n_pins	= DP83640_N_PINS;
1024 	clock->caps.pps		= 0;
1025 	clock->caps.adjfreq	= ptp_dp83640_adjfreq;
1026 	clock->caps.adjtime	= ptp_dp83640_adjtime;
1027 	clock->caps.gettime64	= ptp_dp83640_gettime;
1028 	clock->caps.settime64	= ptp_dp83640_settime;
1029 	clock->caps.enable	= ptp_dp83640_enable;
1030 	clock->caps.verify	= ptp_dp83640_verify;
1031 	/*
1032 	 * Convert the module param defaults into a dynamic pin configuration.
1033 	 */
1034 	dp83640_gpio_defaults(clock->caps.pin_config);
1035 	/*
1036 	 * Get a reference to this bus instance.
1037 	 */
1038 	get_device(&bus->dev);
1039 }
1040 
choose_this_phy(struct dp83640_clock * clock,struct phy_device * phydev)1041 static int choose_this_phy(struct dp83640_clock *clock,
1042 			   struct phy_device *phydev)
1043 {
1044 	if (chosen_phy == -1 && !clock->chosen)
1045 		return 1;
1046 
1047 	if (chosen_phy == phydev->addr)
1048 		return 1;
1049 
1050 	return 0;
1051 }
1052 
dp83640_clock_get(struct dp83640_clock * clock)1053 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1054 {
1055 	if (clock)
1056 		mutex_lock(&clock->clock_lock);
1057 	return clock;
1058 }
1059 
1060 /*
1061  * Look up and lock a clock by bus instance.
1062  * If there is no clock for this bus, then create it first.
1063  */
dp83640_clock_get_bus(struct mii_bus * bus)1064 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1065 {
1066 	struct dp83640_clock *clock = NULL, *tmp;
1067 	struct list_head *this;
1068 
1069 	mutex_lock(&phyter_clocks_lock);
1070 
1071 	list_for_each(this, &phyter_clocks) {
1072 		tmp = list_entry(this, struct dp83640_clock, list);
1073 		if (tmp->bus == bus) {
1074 			clock = tmp;
1075 			break;
1076 		}
1077 	}
1078 	if (clock)
1079 		goto out;
1080 
1081 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1082 	if (!clock)
1083 		goto out;
1084 
1085 	clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
1086 					 DP83640_N_PINS, GFP_KERNEL);
1087 	if (!clock->caps.pin_config) {
1088 		kfree(clock);
1089 		clock = NULL;
1090 		goto out;
1091 	}
1092 	dp83640_clock_init(clock, bus);
1093 	list_add_tail(&phyter_clocks, &clock->list);
1094 out:
1095 	mutex_unlock(&phyter_clocks_lock);
1096 
1097 	return dp83640_clock_get(clock);
1098 }
1099 
dp83640_clock_put(struct dp83640_clock * clock)1100 static void dp83640_clock_put(struct dp83640_clock *clock)
1101 {
1102 	mutex_unlock(&clock->clock_lock);
1103 }
1104 
dp83640_probe(struct phy_device * phydev)1105 static int dp83640_probe(struct phy_device *phydev)
1106 {
1107 	struct dp83640_clock *clock;
1108 	struct dp83640_private *dp83640;
1109 	int err = -ENOMEM, i;
1110 
1111 	if (phydev->addr == BROADCAST_ADDR)
1112 		return 0;
1113 
1114 	clock = dp83640_clock_get_bus(phydev->bus);
1115 	if (!clock)
1116 		goto no_clock;
1117 
1118 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1119 	if (!dp83640)
1120 		goto no_memory;
1121 
1122 	dp83640->phydev = phydev;
1123 	INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
1124 
1125 	INIT_LIST_HEAD(&dp83640->rxts);
1126 	INIT_LIST_HEAD(&dp83640->rxpool);
1127 	for (i = 0; i < MAX_RXTS; i++)
1128 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1129 
1130 	phydev->priv = dp83640;
1131 
1132 	spin_lock_init(&dp83640->rx_lock);
1133 	skb_queue_head_init(&dp83640->rx_queue);
1134 	skb_queue_head_init(&dp83640->tx_queue);
1135 
1136 	dp83640->clock = clock;
1137 
1138 	if (choose_this_phy(clock, phydev)) {
1139 		clock->chosen = dp83640;
1140 		clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
1141 		if (IS_ERR(clock->ptp_clock)) {
1142 			err = PTR_ERR(clock->ptp_clock);
1143 			goto no_register;
1144 		}
1145 	} else
1146 		list_add_tail(&dp83640->list, &clock->phylist);
1147 
1148 	dp83640_clock_put(clock);
1149 	return 0;
1150 
1151 no_register:
1152 	clock->chosen = NULL;
1153 	kfree(dp83640);
1154 no_memory:
1155 	dp83640_clock_put(clock);
1156 no_clock:
1157 	return err;
1158 }
1159 
dp83640_remove(struct phy_device * phydev)1160 static void dp83640_remove(struct phy_device *phydev)
1161 {
1162 	struct dp83640_clock *clock;
1163 	struct list_head *this, *next;
1164 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1165 
1166 	if (phydev->addr == BROADCAST_ADDR)
1167 		return;
1168 
1169 	enable_status_frames(phydev, false);
1170 	cancel_work_sync(&dp83640->ts_work);
1171 
1172 	skb_queue_purge(&dp83640->rx_queue);
1173 	skb_queue_purge(&dp83640->tx_queue);
1174 
1175 	clock = dp83640_clock_get(dp83640->clock);
1176 
1177 	if (dp83640 == clock->chosen) {
1178 		ptp_clock_unregister(clock->ptp_clock);
1179 		clock->chosen = NULL;
1180 	} else {
1181 		list_for_each_safe(this, next, &clock->phylist) {
1182 			tmp = list_entry(this, struct dp83640_private, list);
1183 			if (tmp == dp83640) {
1184 				list_del_init(&tmp->list);
1185 				break;
1186 			}
1187 		}
1188 	}
1189 
1190 	dp83640_clock_put(clock);
1191 	kfree(dp83640);
1192 }
1193 
dp83640_config_init(struct phy_device * phydev)1194 static int dp83640_config_init(struct phy_device *phydev)
1195 {
1196 	struct dp83640_private *dp83640 = phydev->priv;
1197 	struct dp83640_clock *clock = dp83640->clock;
1198 
1199 	if (clock->chosen && !list_empty(&clock->phylist))
1200 		recalibrate(clock);
1201 	else {
1202 		mutex_lock(&clock->extreg_lock);
1203 		enable_broadcast(phydev, clock->page, 1);
1204 		mutex_unlock(&clock->extreg_lock);
1205 	}
1206 
1207 	enable_status_frames(phydev, true);
1208 
1209 	mutex_lock(&clock->extreg_lock);
1210 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1211 	mutex_unlock(&clock->extreg_lock);
1212 
1213 	return 0;
1214 }
1215 
dp83640_ack_interrupt(struct phy_device * phydev)1216 static int dp83640_ack_interrupt(struct phy_device *phydev)
1217 {
1218 	int err = phy_read(phydev, MII_DP83640_MISR);
1219 
1220 	if (err < 0)
1221 		return err;
1222 
1223 	return 0;
1224 }
1225 
dp83640_config_intr(struct phy_device * phydev)1226 static int dp83640_config_intr(struct phy_device *phydev)
1227 {
1228 	int micr;
1229 	int misr;
1230 	int err;
1231 
1232 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1233 		misr = phy_read(phydev, MII_DP83640_MISR);
1234 		if (misr < 0)
1235 			return misr;
1236 		misr |=
1237 			(MII_DP83640_MISR_ANC_INT_EN |
1238 			MII_DP83640_MISR_DUP_INT_EN |
1239 			MII_DP83640_MISR_SPD_INT_EN |
1240 			MII_DP83640_MISR_LINK_INT_EN);
1241 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1242 		if (err < 0)
1243 			return err;
1244 
1245 		micr = phy_read(phydev, MII_DP83640_MICR);
1246 		if (micr < 0)
1247 			return micr;
1248 		micr |=
1249 			(MII_DP83640_MICR_OE |
1250 			MII_DP83640_MICR_IE);
1251 		return phy_write(phydev, MII_DP83640_MICR, micr);
1252 	} else {
1253 		micr = phy_read(phydev, MII_DP83640_MICR);
1254 		if (micr < 0)
1255 			return micr;
1256 		micr &=
1257 			~(MII_DP83640_MICR_OE |
1258 			MII_DP83640_MICR_IE);
1259 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1260 		if (err < 0)
1261 			return err;
1262 
1263 		misr = phy_read(phydev, MII_DP83640_MISR);
1264 		if (misr < 0)
1265 			return misr;
1266 		misr &=
1267 			~(MII_DP83640_MISR_ANC_INT_EN |
1268 			MII_DP83640_MISR_DUP_INT_EN |
1269 			MII_DP83640_MISR_SPD_INT_EN |
1270 			MII_DP83640_MISR_LINK_INT_EN);
1271 		return phy_write(phydev, MII_DP83640_MISR, misr);
1272 	}
1273 }
1274 
dp83640_hwtstamp(struct phy_device * phydev,struct ifreq * ifr)1275 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1276 {
1277 	struct dp83640_private *dp83640 = phydev->priv;
1278 	struct hwtstamp_config cfg;
1279 	u16 txcfg0, rxcfg0;
1280 
1281 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1282 		return -EFAULT;
1283 
1284 	if (cfg.flags) /* reserved for future extensions */
1285 		return -EINVAL;
1286 
1287 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1288 		return -ERANGE;
1289 
1290 	dp83640->hwts_tx_en = cfg.tx_type;
1291 
1292 	switch (cfg.rx_filter) {
1293 	case HWTSTAMP_FILTER_NONE:
1294 		dp83640->hwts_rx_en = 0;
1295 		dp83640->layer = 0;
1296 		dp83640->version = 0;
1297 		break;
1298 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1299 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1300 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1301 		dp83640->hwts_rx_en = 1;
1302 		dp83640->layer = LAYER4;
1303 		dp83640->version = 1;
1304 		break;
1305 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1306 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1307 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1308 		dp83640->hwts_rx_en = 1;
1309 		dp83640->layer = LAYER4;
1310 		dp83640->version = 2;
1311 		break;
1312 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1313 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1314 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1315 		dp83640->hwts_rx_en = 1;
1316 		dp83640->layer = LAYER2;
1317 		dp83640->version = 2;
1318 		break;
1319 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1320 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1321 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1322 		dp83640->hwts_rx_en = 1;
1323 		dp83640->layer = LAYER4|LAYER2;
1324 		dp83640->version = 2;
1325 		break;
1326 	default:
1327 		return -ERANGE;
1328 	}
1329 
1330 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1331 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1332 
1333 	if (dp83640->layer & LAYER2) {
1334 		txcfg0 |= TX_L2_EN;
1335 		rxcfg0 |= RX_L2_EN;
1336 	}
1337 	if (dp83640->layer & LAYER4) {
1338 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1339 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1340 	}
1341 
1342 	if (dp83640->hwts_tx_en)
1343 		txcfg0 |= TX_TS_EN;
1344 
1345 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1346 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1347 
1348 	if (dp83640->hwts_rx_en)
1349 		rxcfg0 |= RX_TS_EN;
1350 
1351 	mutex_lock(&dp83640->clock->extreg_lock);
1352 
1353 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1354 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1355 
1356 	mutex_unlock(&dp83640->clock->extreg_lock);
1357 
1358 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1359 }
1360 
rx_timestamp_work(struct work_struct * work)1361 static void rx_timestamp_work(struct work_struct *work)
1362 {
1363 	struct dp83640_private *dp83640 =
1364 		container_of(work, struct dp83640_private, ts_work);
1365 	struct sk_buff *skb;
1366 
1367 	/* Deliver expired packets. */
1368 	while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1369 		struct dp83640_skb_info *skb_info;
1370 
1371 		skb_info = (struct dp83640_skb_info *)skb->cb;
1372 		if (!time_after(jiffies, skb_info->tmo)) {
1373 			skb_queue_head(&dp83640->rx_queue, skb);
1374 			break;
1375 		}
1376 
1377 		netif_rx_ni(skb);
1378 	}
1379 
1380 	if (!skb_queue_empty(&dp83640->rx_queue))
1381 		schedule_work(&dp83640->ts_work);
1382 }
1383 
dp83640_rxtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1384 static bool dp83640_rxtstamp(struct phy_device *phydev,
1385 			     struct sk_buff *skb, int type)
1386 {
1387 	struct dp83640_private *dp83640 = phydev->priv;
1388 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1389 	struct list_head *this, *next;
1390 	struct rxts *rxts;
1391 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
1392 	unsigned long flags;
1393 
1394 	if (is_status_frame(skb, type)) {
1395 		decode_status_frame(dp83640, skb);
1396 		kfree_skb(skb);
1397 		return true;
1398 	}
1399 
1400 	if (!dp83640->hwts_rx_en)
1401 		return false;
1402 
1403 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1404 	list_for_each_safe(this, next, &dp83640->rxts) {
1405 		rxts = list_entry(this, struct rxts, list);
1406 		if (match(skb, type, rxts)) {
1407 			shhwtstamps = skb_hwtstamps(skb);
1408 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1409 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1410 			netif_rx_ni(skb);
1411 			list_del_init(&rxts->list);
1412 			list_add(&rxts->list, &dp83640->rxpool);
1413 			break;
1414 		}
1415 	}
1416 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1417 
1418 	if (!shhwtstamps) {
1419 		skb_info->ptp_type = type;
1420 		skb_info->tmo = jiffies + 2;
1421 		skb_queue_tail(&dp83640->rx_queue, skb);
1422 		schedule_work(&dp83640->ts_work);
1423 	}
1424 
1425 	return true;
1426 }
1427 
dp83640_txtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1428 static void dp83640_txtstamp(struct phy_device *phydev,
1429 			     struct sk_buff *skb, int type)
1430 {
1431 	struct dp83640_private *dp83640 = phydev->priv;
1432 
1433 	switch (dp83640->hwts_tx_en) {
1434 
1435 	case HWTSTAMP_TX_ONESTEP_SYNC:
1436 		if (is_sync(skb, type)) {
1437 			kfree_skb(skb);
1438 			return;
1439 		}
1440 		/* fall through */
1441 	case HWTSTAMP_TX_ON:
1442 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1443 		skb_queue_tail(&dp83640->tx_queue, skb);
1444 		break;
1445 
1446 	case HWTSTAMP_TX_OFF:
1447 	default:
1448 		kfree_skb(skb);
1449 		break;
1450 	}
1451 }
1452 
dp83640_ts_info(struct phy_device * dev,struct ethtool_ts_info * info)1453 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1454 {
1455 	struct dp83640_private *dp83640 = dev->priv;
1456 
1457 	info->so_timestamping =
1458 		SOF_TIMESTAMPING_TX_HARDWARE |
1459 		SOF_TIMESTAMPING_RX_HARDWARE |
1460 		SOF_TIMESTAMPING_RAW_HARDWARE;
1461 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1462 	info->tx_types =
1463 		(1 << HWTSTAMP_TX_OFF) |
1464 		(1 << HWTSTAMP_TX_ON) |
1465 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1466 	info->rx_filters =
1467 		(1 << HWTSTAMP_FILTER_NONE) |
1468 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1469 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1470 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1471 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1472 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1473 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1474 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1475 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1476 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1477 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1478 		(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1479 		(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1480 	return 0;
1481 }
1482 
1483 static struct phy_driver dp83640_driver = {
1484 	.phy_id		= DP83640_PHY_ID,
1485 	.phy_id_mask	= 0xfffffff0,
1486 	.name		= "NatSemi DP83640",
1487 	.features	= PHY_BASIC_FEATURES,
1488 	.flags		= PHY_HAS_INTERRUPT,
1489 	.probe		= dp83640_probe,
1490 	.remove		= dp83640_remove,
1491 	.config_init	= dp83640_config_init,
1492 	.config_aneg	= genphy_config_aneg,
1493 	.read_status	= genphy_read_status,
1494 	.ack_interrupt  = dp83640_ack_interrupt,
1495 	.config_intr    = dp83640_config_intr,
1496 	.ts_info	= dp83640_ts_info,
1497 	.hwtstamp	= dp83640_hwtstamp,
1498 	.rxtstamp	= dp83640_rxtstamp,
1499 	.txtstamp	= dp83640_txtstamp,
1500 	.driver		= {.owner = THIS_MODULE,}
1501 };
1502 
dp83640_init(void)1503 static int __init dp83640_init(void)
1504 {
1505 	return phy_driver_register(&dp83640_driver);
1506 }
1507 
dp83640_exit(void)1508 static void __exit dp83640_exit(void)
1509 {
1510 	dp83640_free_clocks();
1511 	phy_driver_unregister(&dp83640_driver);
1512 }
1513 
1514 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1515 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1516 MODULE_LICENSE("GPL");
1517 
1518 module_init(dp83640_init);
1519 module_exit(dp83640_exit);
1520 
1521 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1522 	{ DP83640_PHY_ID, 0xfffffff0 },
1523 	{ }
1524 };
1525 
1526 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1527